]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/platform/efi/efi.c
x86/efi: Delete dead code when checking for non-native
[karo-tx-linux.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  * Copyright (C) 2013 SuSE Labs
16  *      Borislav Petkov <bp@suse.de> - runtime services VA mapping
17  *
18  * Copied from efi_32.c to eliminate the duplicated code between EFI
19  * 32/64 support code. --ying 2007-10-26
20  *
21  * All EFI Runtime Services are not implemented yet as EFI only
22  * supports physical mode addressing on SoftSDV. This is to be fixed
23  * in a future version.  --drummond 1999-07-20
24  *
25  * Implemented EFI runtime services and virtual mode calls.  --davidm
26  *
27  * Goutham Rao: <goutham.rao@intel.com>
28  *      Skip non-WB memory and ignore empty memory ranges.
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/rtc.h>
55
56 #define EFI_DEBUG
57
58 #define EFI_MIN_RESERVE 5120
59
60 #define EFI_DUMMY_GUID \
61         EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
62
63 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
64
65 struct efi_memory_map memmap;
66
67 static struct efi efi_phys __initdata;
68 static efi_system_table_t efi_systab __initdata;
69
70 unsigned long x86_efi_facility;
71
72 static __initdata efi_config_table_type_t arch_tables[] = {
73 #ifdef CONFIG_X86_UV
74         {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
75 #endif
76         {NULL_GUID, NULL, NULL},
77 };
78
79 u64 efi_setup;          /* efi setup_data physical address */
80
81 /*
82  * Returns 1 if 'facility' is enabled, 0 otherwise.
83  */
84 int efi_enabled(int facility)
85 {
86         return test_bit(facility, &x86_efi_facility) != 0;
87 }
88 EXPORT_SYMBOL(efi_enabled);
89
90 static bool __initdata disable_runtime = false;
91 static int __init setup_noefi(char *arg)
92 {
93         disable_runtime = true;
94         return 0;
95 }
96 early_param("noefi", setup_noefi);
97
98 int add_efi_memmap;
99 EXPORT_SYMBOL(add_efi_memmap);
100
101 static int __init setup_add_efi_memmap(char *arg)
102 {
103         add_efi_memmap = 1;
104         return 0;
105 }
106 early_param("add_efi_memmap", setup_add_efi_memmap);
107
108 static bool efi_no_storage_paranoia;
109
110 static int __init setup_storage_paranoia(char *arg)
111 {
112         efi_no_storage_paranoia = true;
113         return 0;
114 }
115 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
116
117 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
118 {
119         unsigned long flags;
120         efi_status_t status;
121
122         spin_lock_irqsave(&rtc_lock, flags);
123         status = efi_call_virt2(get_time, tm, tc);
124         spin_unlock_irqrestore(&rtc_lock, flags);
125         return status;
126 }
127
128 static efi_status_t virt_efi_set_time(efi_time_t *tm)
129 {
130         unsigned long flags;
131         efi_status_t status;
132
133         spin_lock_irqsave(&rtc_lock, flags);
134         status = efi_call_virt1(set_time, tm);
135         spin_unlock_irqrestore(&rtc_lock, flags);
136         return status;
137 }
138
139 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
140                                              efi_bool_t *pending,
141                                              efi_time_t *tm)
142 {
143         unsigned long flags;
144         efi_status_t status;
145
146         spin_lock_irqsave(&rtc_lock, flags);
147         status = efi_call_virt3(get_wakeup_time,
148                                 enabled, pending, tm);
149         spin_unlock_irqrestore(&rtc_lock, flags);
150         return status;
151 }
152
153 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
154 {
155         unsigned long flags;
156         efi_status_t status;
157
158         spin_lock_irqsave(&rtc_lock, flags);
159         status = efi_call_virt2(set_wakeup_time,
160                                 enabled, tm);
161         spin_unlock_irqrestore(&rtc_lock, flags);
162         return status;
163 }
164
165 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
166                                           efi_guid_t *vendor,
167                                           u32 *attr,
168                                           unsigned long *data_size,
169                                           void *data)
170 {
171         return efi_call_virt5(get_variable,
172                               name, vendor, attr,
173                               data_size, data);
174 }
175
176 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
177                                                efi_char16_t *name,
178                                                efi_guid_t *vendor)
179 {
180         return efi_call_virt3(get_next_variable,
181                               name_size, name, vendor);
182 }
183
184 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
185                                           efi_guid_t *vendor,
186                                           u32 attr,
187                                           unsigned long data_size,
188                                           void *data)
189 {
190         return efi_call_virt5(set_variable,
191                               name, vendor, attr,
192                               data_size, data);
193 }
194
195 static efi_status_t virt_efi_query_variable_info(u32 attr,
196                                                  u64 *storage_space,
197                                                  u64 *remaining_space,
198                                                  u64 *max_variable_size)
199 {
200         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
201                 return EFI_UNSUPPORTED;
202
203         return efi_call_virt4(query_variable_info, attr, storage_space,
204                               remaining_space, max_variable_size);
205 }
206
207 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
208 {
209         return efi_call_virt1(get_next_high_mono_count, count);
210 }
211
212 static void virt_efi_reset_system(int reset_type,
213                                   efi_status_t status,
214                                   unsigned long data_size,
215                                   efi_char16_t *data)
216 {
217         efi_call_virt4(reset_system, reset_type, status,
218                        data_size, data);
219 }
220
221 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
222                                             unsigned long count,
223                                             unsigned long sg_list)
224 {
225         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
226                 return EFI_UNSUPPORTED;
227
228         return efi_call_virt3(update_capsule, capsules, count, sg_list);
229 }
230
231 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
232                                                 unsigned long count,
233                                                 u64 *max_size,
234                                                 int *reset_type)
235 {
236         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
237                 return EFI_UNSUPPORTED;
238
239         return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
240                               reset_type);
241 }
242
243 static efi_status_t __init phys_efi_set_virtual_address_map(
244         unsigned long memory_map_size,
245         unsigned long descriptor_size,
246         u32 descriptor_version,
247         efi_memory_desc_t *virtual_map)
248 {
249         efi_status_t status;
250
251         efi_call_phys_prelog();
252         status = efi_call_phys4(efi_phys.set_virtual_address_map,
253                                 memory_map_size, descriptor_size,
254                                 descriptor_version, virtual_map);
255         efi_call_phys_epilog();
256         return status;
257 }
258
259 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
260                                              efi_time_cap_t *tc)
261 {
262         unsigned long flags;
263         efi_status_t status;
264
265         spin_lock_irqsave(&rtc_lock, flags);
266         efi_call_phys_prelog();
267         status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
268                                 virt_to_phys(tc));
269         efi_call_phys_epilog();
270         spin_unlock_irqrestore(&rtc_lock, flags);
271         return status;
272 }
273
274 int efi_set_rtc_mmss(const struct timespec *now)
275 {
276         unsigned long nowtime = now->tv_sec;
277         efi_status_t    status;
278         efi_time_t      eft;
279         efi_time_cap_t  cap;
280         struct rtc_time tm;
281
282         status = efi.get_time(&eft, &cap);
283         if (status != EFI_SUCCESS) {
284                 pr_err("Oops: efitime: can't read time!\n");
285                 return -1;
286         }
287
288         rtc_time_to_tm(nowtime, &tm);
289         if (!rtc_valid_tm(&tm)) {
290                 eft.year = tm.tm_year + 1900;
291                 eft.month = tm.tm_mon + 1;
292                 eft.day = tm.tm_mday;
293                 eft.minute = tm.tm_min;
294                 eft.second = tm.tm_sec;
295                 eft.nanosecond = 0;
296         } else {
297                 printk(KERN_ERR
298                        "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
299                        __FUNCTION__, nowtime);
300                 return -1;
301         }
302
303         status = efi.set_time(&eft);
304         if (status != EFI_SUCCESS) {
305                 pr_err("Oops: efitime: can't write time!\n");
306                 return -1;
307         }
308         return 0;
309 }
310
311 void efi_get_time(struct timespec *now)
312 {
313         efi_status_t status;
314         efi_time_t eft;
315         efi_time_cap_t cap;
316
317         status = efi.get_time(&eft, &cap);
318         if (status != EFI_SUCCESS)
319                 pr_err("Oops: efitime: can't read time!\n");
320
321         now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
322                              eft.minute, eft.second);
323         now->tv_nsec = 0;
324 }
325
326 /*
327  * Tell the kernel about the EFI memory map.  This might include
328  * more than the max 128 entries that can fit in the e820 legacy
329  * (zeropage) memory map.
330  */
331
332 static void __init do_add_efi_memmap(void)
333 {
334         void *p;
335
336         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
337                 efi_memory_desc_t *md = p;
338                 unsigned long long start = md->phys_addr;
339                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
340                 int e820_type;
341
342                 switch (md->type) {
343                 case EFI_LOADER_CODE:
344                 case EFI_LOADER_DATA:
345                 case EFI_BOOT_SERVICES_CODE:
346                 case EFI_BOOT_SERVICES_DATA:
347                 case EFI_CONVENTIONAL_MEMORY:
348                         if (md->attribute & EFI_MEMORY_WB)
349                                 e820_type = E820_RAM;
350                         else
351                                 e820_type = E820_RESERVED;
352                         break;
353                 case EFI_ACPI_RECLAIM_MEMORY:
354                         e820_type = E820_ACPI;
355                         break;
356                 case EFI_ACPI_MEMORY_NVS:
357                         e820_type = E820_NVS;
358                         break;
359                 case EFI_UNUSABLE_MEMORY:
360                         e820_type = E820_UNUSABLE;
361                         break;
362                 default:
363                         /*
364                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
365                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
366                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
367                          */
368                         e820_type = E820_RESERVED;
369                         break;
370                 }
371                 e820_add_region(start, size, e820_type);
372         }
373         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
374 }
375
376 int __init efi_memblock_x86_reserve_range(void)
377 {
378         struct efi_info *e = &boot_params.efi_info;
379         unsigned long pmap;
380
381 #ifdef CONFIG_X86_32
382         /* Can't handle data above 4GB at this time */
383         if (e->efi_memmap_hi) {
384                 pr_err("Memory map is above 4GB, disabling EFI.\n");
385                 return -EINVAL;
386         }
387         pmap =  e->efi_memmap;
388 #else
389         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
390 #endif
391         memmap.phys_map         = (void *)pmap;
392         memmap.nr_map           = e->efi_memmap_size /
393                                   e->efi_memdesc_size;
394         memmap.desc_size        = e->efi_memdesc_size;
395         memmap.desc_version     = e->efi_memdesc_version;
396
397         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
398
399         efi.memmap = &memmap;
400
401         return 0;
402 }
403
404 static void __init print_efi_memmap(void)
405 {
406 #ifdef EFI_DEBUG
407         efi_memory_desc_t *md;
408         void *p;
409         int i;
410
411         for (p = memmap.map, i = 0;
412              p < memmap.map_end;
413              p += memmap.desc_size, i++) {
414                 md = p;
415                 pr_info("mem%02u: type=%u, attr=0x%llx, "
416                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
417                         i, md->type, md->attribute, md->phys_addr,
418                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
419                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
420         }
421 #endif  /*  EFI_DEBUG  */
422 }
423
424 void __init efi_reserve_boot_services(void)
425 {
426         void *p;
427
428         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
429                 efi_memory_desc_t *md = p;
430                 u64 start = md->phys_addr;
431                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
432
433                 if (md->type != EFI_BOOT_SERVICES_CODE &&
434                     md->type != EFI_BOOT_SERVICES_DATA)
435                         continue;
436                 /* Only reserve where possible:
437                  * - Not within any already allocated areas
438                  * - Not over any memory area (really needed, if above?)
439                  * - Not within any part of the kernel
440                  * - Not the bios reserved area
441                 */
442                 if ((start + size > __pa_symbol(_text)
443                                 && start <= __pa_symbol(_end)) ||
444                         !e820_all_mapped(start, start+size, E820_RAM) ||
445                         memblock_is_region_reserved(start, size)) {
446                         /* Could not reserve, skip it */
447                         md->num_pages = 0;
448                         memblock_dbg("Could not reserve boot range "
449                                         "[0x%010llx-0x%010llx]\n",
450                                                 start, start+size-1);
451                 } else
452                         memblock_reserve(start, size);
453         }
454 }
455
456 void __init efi_unmap_memmap(void)
457 {
458         clear_bit(EFI_MEMMAP, &x86_efi_facility);
459         if (memmap.map) {
460                 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
461                 memmap.map = NULL;
462         }
463 }
464
465 void __init efi_free_boot_services(void)
466 {
467         void *p;
468
469         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
470                 efi_memory_desc_t *md = p;
471                 unsigned long long start = md->phys_addr;
472                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
473
474                 if (md->type != EFI_BOOT_SERVICES_CODE &&
475                     md->type != EFI_BOOT_SERVICES_DATA)
476                         continue;
477
478                 /* Could not reserve boot area */
479                 if (!size)
480                         continue;
481
482                 free_bootmem_late(start, size);
483         }
484
485         efi_unmap_memmap();
486 }
487
488 static int __init efi_systab_init(void *phys)
489 {
490         if (efi_enabled(EFI_64BIT)) {
491                 efi_system_table_64_t *systab64;
492                 struct efi_setup_data *data = NULL;
493                 u64 tmp = 0;
494
495                 if (efi_setup) {
496                         data = early_memremap(efi_setup, sizeof(*data));
497                         if (!data)
498                                 return -ENOMEM;
499                 }
500                 systab64 = early_ioremap((unsigned long)phys,
501                                          sizeof(*systab64));
502                 if (systab64 == NULL) {
503                         pr_err("Couldn't map the system table!\n");
504                         if (data)
505                                 early_iounmap(data, sizeof(*data));
506                         return -ENOMEM;
507                 }
508
509                 efi_systab.hdr = systab64->hdr;
510                 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
511                                               systab64->fw_vendor;
512                 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
513                 efi_systab.fw_revision = systab64->fw_revision;
514                 efi_systab.con_in_handle = systab64->con_in_handle;
515                 tmp |= systab64->con_in_handle;
516                 efi_systab.con_in = systab64->con_in;
517                 tmp |= systab64->con_in;
518                 efi_systab.con_out_handle = systab64->con_out_handle;
519                 tmp |= systab64->con_out_handle;
520                 efi_systab.con_out = systab64->con_out;
521                 tmp |= systab64->con_out;
522                 efi_systab.stderr_handle = systab64->stderr_handle;
523                 tmp |= systab64->stderr_handle;
524                 efi_systab.stderr = systab64->stderr;
525                 tmp |= systab64->stderr;
526                 efi_systab.runtime = data ?
527                                      (void *)(unsigned long)data->runtime :
528                                      (void *)(unsigned long)systab64->runtime;
529                 tmp |= data ? data->runtime : systab64->runtime;
530                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
531                 tmp |= systab64->boottime;
532                 efi_systab.nr_tables = systab64->nr_tables;
533                 efi_systab.tables = data ? (unsigned long)data->tables :
534                                            systab64->tables;
535                 tmp |= data ? data->tables : systab64->tables;
536
537                 early_iounmap(systab64, sizeof(*systab64));
538                 if (data)
539                         early_iounmap(data, sizeof(*data));
540 #ifdef CONFIG_X86_32
541                 if (tmp >> 32) {
542                         pr_err("EFI data located above 4GB, disabling EFI.\n");
543                         return -EINVAL;
544                 }
545 #endif
546         } else {
547                 efi_system_table_32_t *systab32;
548
549                 systab32 = early_ioremap((unsigned long)phys,
550                                          sizeof(*systab32));
551                 if (systab32 == NULL) {
552                         pr_err("Couldn't map the system table!\n");
553                         return -ENOMEM;
554                 }
555
556                 efi_systab.hdr = systab32->hdr;
557                 efi_systab.fw_vendor = systab32->fw_vendor;
558                 efi_systab.fw_revision = systab32->fw_revision;
559                 efi_systab.con_in_handle = systab32->con_in_handle;
560                 efi_systab.con_in = systab32->con_in;
561                 efi_systab.con_out_handle = systab32->con_out_handle;
562                 efi_systab.con_out = systab32->con_out;
563                 efi_systab.stderr_handle = systab32->stderr_handle;
564                 efi_systab.stderr = systab32->stderr;
565                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
566                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
567                 efi_systab.nr_tables = systab32->nr_tables;
568                 efi_systab.tables = systab32->tables;
569
570                 early_iounmap(systab32, sizeof(*systab32));
571         }
572
573         efi.systab = &efi_systab;
574
575         /*
576          * Verify the EFI Table
577          */
578         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
579                 pr_err("System table signature incorrect!\n");
580                 return -EINVAL;
581         }
582         if ((efi.systab->hdr.revision >> 16) == 0)
583                 pr_err("Warning: System table version "
584                        "%d.%02d, expected 1.00 or greater!\n",
585                        efi.systab->hdr.revision >> 16,
586                        efi.systab->hdr.revision & 0xffff);
587
588         return 0;
589 }
590
591 static int __init efi_runtime_init(void)
592 {
593         efi_runtime_services_t *runtime;
594
595         /*
596          * Check out the runtime services table. We need to map
597          * the runtime services table so that we can grab the physical
598          * address of several of the EFI runtime functions, needed to
599          * set the firmware into virtual mode.
600          */
601         runtime = early_ioremap((unsigned long)efi.systab->runtime,
602                                 sizeof(efi_runtime_services_t));
603         if (!runtime) {
604                 pr_err("Could not map the runtime service table!\n");
605                 return -ENOMEM;
606         }
607         /*
608          * We will only need *early* access to the following
609          * two EFI runtime services before set_virtual_address_map
610          * is invoked.
611          */
612         efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
613         efi_phys.set_virtual_address_map =
614                 (efi_set_virtual_address_map_t *)
615                 runtime->set_virtual_address_map;
616         /*
617          * Make efi_get_time can be called before entering
618          * virtual mode.
619          */
620         efi.get_time = phys_efi_get_time;
621         early_iounmap(runtime, sizeof(efi_runtime_services_t));
622
623         return 0;
624 }
625
626 static int __init efi_memmap_init(void)
627 {
628         /* Map the EFI memory map */
629         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
630                                    memmap.nr_map * memmap.desc_size);
631         if (memmap.map == NULL) {
632                 pr_err("Could not map the memory map!\n");
633                 return -ENOMEM;
634         }
635         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
636
637         if (add_efi_memmap)
638                 do_add_efi_memmap();
639
640         return 0;
641 }
642
643 /*
644  * A number of config table entries get remapped to virtual addresses
645  * after entering EFI virtual mode. However, the kexec kernel requires
646  * their physical addresses therefore we pass them via setup_data and
647  * correct those entries to their respective physical addresses here.
648  *
649  * Currently only handles smbios which is necessary for some firmware
650  * implementation.
651  */
652 static int __init efi_reuse_config(u64 tables, int nr_tables)
653 {
654         int i, sz, ret = 0;
655         void *p, *tablep;
656         struct efi_setup_data *data;
657
658         if (!efi_setup)
659                 return 0;
660
661         if (!efi_enabled(EFI_64BIT))
662                 return 0;
663
664         data = early_memremap(efi_setup, sizeof(*data));
665         if (!data) {
666                 ret = -ENOMEM;
667                 goto out;
668         }
669
670         if (!data->smbios)
671                 goto out_memremap;
672
673         sz = sizeof(efi_config_table_64_t);
674
675         p = tablep = early_memremap(tables, nr_tables * sz);
676         if (!p) {
677                 pr_err("Could not map Configuration table!\n");
678                 ret = -ENOMEM;
679                 goto out_memremap;
680         }
681
682         for (i = 0; i < efi.systab->nr_tables; i++) {
683                 efi_guid_t guid;
684
685                 guid = ((efi_config_table_64_t *)p)->guid;
686
687                 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
688                         ((efi_config_table_64_t *)p)->table = data->smbios;
689                 p += sz;
690         }
691         early_iounmap(tablep, nr_tables * sz);
692
693 out_memremap:
694         early_iounmap(data, sizeof(*data));
695 out:
696         return ret;
697 }
698
699 void __init efi_init(void)
700 {
701         efi_char16_t *c16;
702         char vendor[100] = "unknown";
703         int i = 0;
704         void *tmp;
705
706 #ifdef CONFIG_X86_32
707         if (boot_params.efi_info.efi_systab_hi ||
708             boot_params.efi_info.efi_memmap_hi) {
709                 pr_info("Table located above 4GB, disabling EFI.\n");
710                 return;
711         }
712         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
713 #else
714         efi_phys.systab = (efi_system_table_t *)
715                           (boot_params.efi_info.efi_systab |
716                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
717 #endif
718
719         if (efi_systab_init(efi_phys.systab))
720                 return;
721
722         set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
723
724         efi.config_table = (unsigned long)efi.systab->tables;
725         efi.fw_vendor    = (unsigned long)efi.systab->fw_vendor;
726         efi.runtime      = (unsigned long)efi.systab->runtime;
727
728         /*
729          * Show what we know for posterity
730          */
731         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
732         if (c16) {
733                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
734                         vendor[i] = *c16++;
735                 vendor[i] = '\0';
736         } else
737                 pr_err("Could not map the firmware vendor!\n");
738         early_iounmap(tmp, 2);
739
740         pr_info("EFI v%u.%.02u by %s\n",
741                 efi.systab->hdr.revision >> 16,
742                 efi.systab->hdr.revision & 0xffff, vendor);
743
744         if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
745                 return;
746
747         if (efi_config_init(arch_tables))
748                 return;
749
750         set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
751
752         /*
753          * Note: We currently don't support runtime services on an EFI
754          * that doesn't match the kernel 32/64-bit mode.
755          */
756
757         if (!efi_is_native())
758                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
759         else {
760                 if (disable_runtime || efi_runtime_init())
761                         return;
762                 set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
763         }
764         if (efi_memmap_init())
765                 return;
766
767         set_bit(EFI_MEMMAP, &x86_efi_facility);
768
769         print_efi_memmap();
770 }
771
772 void __init efi_late_init(void)
773 {
774         efi_bgrt_init();
775 }
776
777 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
778 {
779         u64 addr, npages;
780
781         addr = md->virt_addr;
782         npages = md->num_pages;
783
784         memrange_efi_to_native(&addr, &npages);
785
786         if (executable)
787                 set_memory_x(addr, npages);
788         else
789                 set_memory_nx(addr, npages);
790 }
791
792 void __init runtime_code_page_mkexec(void)
793 {
794         efi_memory_desc_t *md;
795         void *p;
796
797         /* Make EFI runtime service code area executable */
798         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
799                 md = p;
800
801                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
802                         continue;
803
804                 efi_set_executable(md, true);
805         }
806 }
807
808 void efi_memory_uc(u64 addr, unsigned long size)
809 {
810         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
811         u64 npages;
812
813         npages = round_up(size, page_shift) / page_shift;
814         memrange_efi_to_native(&addr, &npages);
815         set_memory_uc(addr, npages);
816 }
817
818 void __init old_map_region(efi_memory_desc_t *md)
819 {
820         u64 start_pfn, end_pfn, end;
821         unsigned long size;
822         void *va;
823
824         start_pfn = PFN_DOWN(md->phys_addr);
825         size      = md->num_pages << PAGE_SHIFT;
826         end       = md->phys_addr + size;
827         end_pfn   = PFN_UP(end);
828
829         if (pfn_range_is_mapped(start_pfn, end_pfn)) {
830                 va = __va(md->phys_addr);
831
832                 if (!(md->attribute & EFI_MEMORY_WB))
833                         efi_memory_uc((u64)(unsigned long)va, size);
834         } else
835                 va = efi_ioremap(md->phys_addr, size,
836                                  md->type, md->attribute);
837
838         md->virt_addr = (u64) (unsigned long) va;
839         if (!va)
840                 pr_err("ioremap of 0x%llX failed!\n",
841                        (unsigned long long)md->phys_addr);
842 }
843
844 /* Merge contiguous regions of the same type and attribute */
845 static void __init efi_merge_regions(void)
846 {
847         void *p;
848         efi_memory_desc_t *md, *prev_md = NULL;
849
850         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
851                 u64 prev_size;
852                 md = p;
853
854                 if (!prev_md) {
855                         prev_md = md;
856                         continue;
857                 }
858
859                 if (prev_md->type != md->type ||
860                     prev_md->attribute != md->attribute) {
861                         prev_md = md;
862                         continue;
863                 }
864
865                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
866
867                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
868                         prev_md->num_pages += md->num_pages;
869                         md->type = EFI_RESERVED_TYPE;
870                         md->attribute = 0;
871                         continue;
872                 }
873                 prev_md = md;
874         }
875 }
876
877 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
878 {
879         unsigned long size;
880         u64 end, systab;
881
882         size = md->num_pages << EFI_PAGE_SHIFT;
883         end = md->phys_addr + size;
884         systab = (u64)(unsigned long)efi_phys.systab;
885         if (md->phys_addr <= systab && systab < end) {
886                 systab += md->virt_addr - md->phys_addr;
887                 efi.systab = (efi_system_table_t *)(unsigned long)systab;
888         }
889 }
890
891 static int __init save_runtime_map(void)
892 {
893         efi_memory_desc_t *md;
894         void *tmp, *p, *q = NULL;
895         int count = 0;
896
897         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
898                 md = p;
899
900                 if (!(md->attribute & EFI_MEMORY_RUNTIME) ||
901                     (md->type == EFI_BOOT_SERVICES_CODE) ||
902                     (md->type == EFI_BOOT_SERVICES_DATA))
903                         continue;
904                 tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL);
905                 if (!tmp)
906                         goto out;
907                 q = tmp;
908
909                 memcpy(q + count * memmap.desc_size, md, memmap.desc_size);
910                 count++;
911         }
912
913         efi_runtime_map_setup(q, count, memmap.desc_size);
914
915         return 0;
916 out:
917         kfree(q);
918         return -ENOMEM;
919 }
920
921 /*
922  * Map efi regions which were passed via setup_data. The virt_addr is a fixed
923  * addr which was used in first kernel of a kexec boot.
924  */
925 static void __init efi_map_regions_fixed(void)
926 {
927         void *p;
928         efi_memory_desc_t *md;
929
930         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
931                 md = p;
932                 efi_map_region_fixed(md); /* FIXME: add error handling */
933                 get_systab_virt_addr(md);
934         }
935
936 }
937
938 /*
939  * Map efi memory ranges for runtime serivce and update new_memmap with virtual
940  * addresses.
941  */
942 static void * __init efi_map_regions(int *count)
943 {
944         efi_memory_desc_t *md;
945         void *p, *tmp, *new_memmap = NULL;
946
947         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
948                 md = p;
949                 if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
950 #ifdef CONFIG_X86_64
951                         if (md->type != EFI_BOOT_SERVICES_CODE &&
952                             md->type != EFI_BOOT_SERVICES_DATA)
953 #endif
954                                 continue;
955                 }
956
957                 efi_map_region(md);
958                 get_systab_virt_addr(md);
959
960                 tmp = krealloc(new_memmap, (*count + 1) * memmap.desc_size,
961                                GFP_KERNEL);
962                 if (!tmp)
963                         goto out;
964                 new_memmap = tmp;
965                 memcpy(new_memmap + (*count * memmap.desc_size), md,
966                        memmap.desc_size);
967                 (*count)++;
968         }
969
970         return new_memmap;
971 out:
972         kfree(new_memmap);
973         return NULL;
974 }
975
976 /*
977  * This function will switch the EFI runtime services to virtual mode.
978  * Essentially, we look through the EFI memmap and map every region that
979  * has the runtime attribute bit set in its memory descriptor into the
980  * ->trampoline_pgd page table using a top-down VA allocation scheme.
981  *
982  * The old method which used to update that memory descriptor with the
983  * virtual address obtained from ioremap() is still supported when the
984  * kernel is booted with efi=old_map on its command line. Same old
985  * method enabled the runtime services to be called without having to
986  * thunk back into physical mode for every invocation.
987  *
988  * The new method does a pagetable switch in a preemption-safe manner
989  * so that we're in a different address space when calling a runtime
990  * function. For function arguments passing we do copy the PGDs of the
991  * kernel page table into ->trampoline_pgd prior to each call.
992  *
993  * Specially for kexec boot, efi runtime maps in previous kernel should
994  * be passed in via setup_data. In that case runtime ranges will be mapped
995  * to the same virtual addresses as the first kernel.
996  */
997 void __init efi_enter_virtual_mode(void)
998 {
999         efi_status_t status;
1000         void *new_memmap = NULL;
1001         int err, count = 0;
1002
1003         efi.systab = NULL;
1004
1005         if (efi_setup) {
1006                 efi_map_regions_fixed();
1007         } else {
1008                 efi_merge_regions();
1009                 new_memmap = efi_map_regions(&count);
1010                 if (!new_memmap) {
1011                         pr_err("Error reallocating memory, EFI runtime non-functional!\n");
1012                         return;
1013                 }
1014         }
1015
1016         err = save_runtime_map();
1017         if (err)
1018                 pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
1019
1020         BUG_ON(!efi.systab);
1021
1022         efi_setup_page_tables();
1023         efi_sync_low_kernel_mappings();
1024
1025         if (!efi_setup) {
1026                 status = phys_efi_set_virtual_address_map(
1027                         memmap.desc_size * count,
1028                         memmap.desc_size,
1029                         memmap.desc_version,
1030                         (efi_memory_desc_t *)__pa(new_memmap));
1031
1032                 if (status != EFI_SUCCESS) {
1033                         pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
1034                                  status);
1035                         panic("EFI call to SetVirtualAddressMap() failed!");
1036                 }
1037         }
1038
1039         /*
1040          * Now that EFI is in virtual mode, update the function
1041          * pointers in the runtime service table to the new virtual addresses.
1042          *
1043          * Call EFI services through wrapper functions.
1044          */
1045         efi.runtime_version = efi_systab.hdr.revision;
1046         efi.get_time = virt_efi_get_time;
1047         efi.set_time = virt_efi_set_time;
1048         efi.get_wakeup_time = virt_efi_get_wakeup_time;
1049         efi.set_wakeup_time = virt_efi_set_wakeup_time;
1050         efi.get_variable = virt_efi_get_variable;
1051         efi.get_next_variable = virt_efi_get_next_variable;
1052         efi.set_variable = virt_efi_set_variable;
1053         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
1054         efi.reset_system = virt_efi_reset_system;
1055         efi.set_virtual_address_map = NULL;
1056         efi.query_variable_info = virt_efi_query_variable_info;
1057         efi.update_capsule = virt_efi_update_capsule;
1058         efi.query_capsule_caps = virt_efi_query_capsule_caps;
1059
1060         efi_runtime_mkexec();
1061
1062         kfree(new_memmap);
1063
1064         /* clean DUMMY object */
1065         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1066                          EFI_VARIABLE_NON_VOLATILE |
1067                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
1068                          EFI_VARIABLE_RUNTIME_ACCESS,
1069                          0, NULL);
1070 }
1071
1072 /*
1073  * Convenience functions to obtain memory types and attributes
1074  */
1075 u32 efi_mem_type(unsigned long phys_addr)
1076 {
1077         efi_memory_desc_t *md;
1078         void *p;
1079
1080         if (!efi_enabled(EFI_MEMMAP))
1081                 return 0;
1082
1083         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1084                 md = p;
1085                 if ((md->phys_addr <= phys_addr) &&
1086                     (phys_addr < (md->phys_addr +
1087                                   (md->num_pages << EFI_PAGE_SHIFT))))
1088                         return md->type;
1089         }
1090         return 0;
1091 }
1092
1093 u64 efi_mem_attributes(unsigned long phys_addr)
1094 {
1095         efi_memory_desc_t *md;
1096         void *p;
1097
1098         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1099                 md = p;
1100                 if ((md->phys_addr <= phys_addr) &&
1101                     (phys_addr < (md->phys_addr +
1102                                   (md->num_pages << EFI_PAGE_SHIFT))))
1103                         return md->attribute;
1104         }
1105         return 0;
1106 }
1107
1108 /*
1109  * Some firmware has serious problems when using more than 50% of the EFI
1110  * variable store, i.e. it triggers bugs that can brick machines. Ensure that
1111  * we never use more than this safe limit.
1112  *
1113  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
1114  * store.
1115  */
1116 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
1117 {
1118         efi_status_t status;
1119         u64 storage_size, remaining_size, max_size;
1120
1121         if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
1122                 return 0;
1123
1124         status = efi.query_variable_info(attributes, &storage_size,
1125                                          &remaining_size, &max_size);
1126         if (status != EFI_SUCCESS)
1127                 return status;
1128
1129         /*
1130          * Some firmware implementations refuse to boot if there's insufficient
1131          * space in the variable store. We account for that by refusing the
1132          * write if permitting it would reduce the available space to under
1133          * 5KB. This figure was provided by Samsung, so should be safe.
1134          */
1135         if ((remaining_size - size < EFI_MIN_RESERVE) &&
1136                 !efi_no_storage_paranoia) {
1137
1138                 /*
1139                  * Triggering garbage collection may require that the firmware
1140                  * generate a real EFI_OUT_OF_RESOURCES error. We can force
1141                  * that by attempting to use more space than is available.
1142                  */
1143                 unsigned long dummy_size = remaining_size + 1024;
1144                 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
1145
1146                 if (!dummy)
1147                         return EFI_OUT_OF_RESOURCES;
1148
1149                 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1150                                           EFI_VARIABLE_NON_VOLATILE |
1151                                           EFI_VARIABLE_BOOTSERVICE_ACCESS |
1152                                           EFI_VARIABLE_RUNTIME_ACCESS,
1153                                           dummy_size, dummy);
1154
1155                 if (status == EFI_SUCCESS) {
1156                         /*
1157                          * This should have failed, so if it didn't make sure
1158                          * that we delete it...
1159                          */
1160                         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1161                                          EFI_VARIABLE_NON_VOLATILE |
1162                                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
1163                                          EFI_VARIABLE_RUNTIME_ACCESS,
1164                                          0, dummy);
1165                 }
1166
1167                 kfree(dummy);
1168
1169                 /*
1170                  * The runtime code may now have triggered a garbage collection
1171                  * run, so check the variable info again
1172                  */
1173                 status = efi.query_variable_info(attributes, &storage_size,
1174                                                  &remaining_size, &max_size);
1175
1176                 if (status != EFI_SUCCESS)
1177                         return status;
1178
1179                 /*
1180                  * There still isn't enough room, so return an error
1181                  */
1182                 if (remaining_size - size < EFI_MIN_RESERVE)
1183                         return EFI_OUT_OF_RESOURCES;
1184         }
1185
1186         return EFI_SUCCESS;
1187 }
1188 EXPORT_SYMBOL_GPL(efi_query_variable_store);
1189
1190 static int __init parse_efi_cmdline(char *str)
1191 {
1192         if (*str == '=')
1193                 str++;
1194
1195         if (!strncmp(str, "old_map", 7))
1196                 set_bit(EFI_OLD_MEMMAP, &x86_efi_facility);
1197
1198         return 0;
1199 }
1200 early_param("efi", parse_efi_cmdline);