]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
blk-mq: introduce blk_mq_unquiesce_queue
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49         int ddir, bytes, bucket;
50
51         ddir = rq_data_dir(rq);
52         bytes = blk_rq_bytes(rq);
53
54         bucket = ddir + 2*(ilog2(bytes) - 9);
55
56         if (bucket < 0)
57                 return -1;
58         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61         return bucket;
62 }
63
64 /*
65  * Check if any of the ctx's have pending work in this hardware queue
66  */
67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69         return sbitmap_any_bit_set(&hctx->ctx_map) ||
70                         !list_empty_careful(&hctx->dispatch) ||
71                         blk_mq_sched_has_work(hctx);
72 }
73
74 /*
75  * Mark this ctx as having pending work in this hardware queue
76  */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78                                      struct blk_mq_ctx *ctx)
79 {
80         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85                                       struct blk_mq_ctx *ctx)
86 {
87         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 }
89
90 void blk_freeze_queue_start(struct request_queue *q)
91 {
92         int freeze_depth;
93
94         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95         if (freeze_depth == 1) {
96                 percpu_ref_kill(&q->q_usage_counter);
97                 blk_mq_run_hw_queues(q, false);
98         }
99 }
100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101
102 void blk_mq_freeze_queue_wait(struct request_queue *q)
103 {
104         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105 }
106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107
108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109                                      unsigned long timeout)
110 {
111         return wait_event_timeout(q->mq_freeze_wq,
112                                         percpu_ref_is_zero(&q->q_usage_counter),
113                                         timeout);
114 }
115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116
117 /*
118  * Guarantee no request is in use, so we can change any data structure of
119  * the queue afterward.
120  */
121 void blk_freeze_queue(struct request_queue *q)
122 {
123         /*
124          * In the !blk_mq case we are only calling this to kill the
125          * q_usage_counter, otherwise this increases the freeze depth
126          * and waits for it to return to zero.  For this reason there is
127          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128          * exported to drivers as the only user for unfreeze is blk_mq.
129          */
130         blk_freeze_queue_start(q);
131         blk_mq_freeze_queue_wait(q);
132 }
133
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136         /*
137          * ...just an alias to keep freeze and unfreeze actions balanced
138          * in the blk_mq_* namespace
139          */
140         blk_freeze_queue(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146         int freeze_depth;
147
148         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149         WARN_ON_ONCE(freeze_depth < 0);
150         if (!freeze_depth) {
151                 percpu_ref_reinit(&q->q_usage_counter);
152                 wake_up_all(&q->mq_freeze_wq);
153         }
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156
157 /**
158  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159  * @q: request queue.
160  *
161  * Note: this function does not prevent that the struct request end_io()
162  * callback function is invoked. Additionally, it is not prevented that
163  * new queue_rq() calls occur unless the queue has been stopped first.
164  */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169         bool rcu = false;
170
171         __blk_mq_stop_hw_queues(q, true);
172
173         queue_for_each_hw_ctx(q, hctx, i) {
174                 if (hctx->flags & BLK_MQ_F_BLOCKING)
175                         synchronize_srcu(&hctx->queue_rq_srcu);
176                 else
177                         rcu = true;
178         }
179         if (rcu)
180                 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 /*
185  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
186  * @q: request queue.
187  *
188  * This function recovers queue into the state before quiescing
189  * which is done by blk_mq_quiesce_queue.
190  */
191 void blk_mq_unquiesce_queue(struct request_queue *q)
192 {
193         blk_mq_start_stopped_hw_queues(q, true);
194 }
195 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
196
197 void blk_mq_wake_waiters(struct request_queue *q)
198 {
199         struct blk_mq_hw_ctx *hctx;
200         unsigned int i;
201
202         queue_for_each_hw_ctx(q, hctx, i)
203                 if (blk_mq_hw_queue_mapped(hctx))
204                         blk_mq_tag_wakeup_all(hctx->tags, true);
205
206         /*
207          * If we are called because the queue has now been marked as
208          * dying, we need to ensure that processes currently waiting on
209          * the queue are notified as well.
210          */
211         wake_up_all(&q->mq_freeze_wq);
212 }
213
214 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
215 {
216         return blk_mq_has_free_tags(hctx->tags);
217 }
218 EXPORT_SYMBOL(blk_mq_can_queue);
219
220 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
221                 unsigned int tag, unsigned int op)
222 {
223         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
224         struct request *rq = tags->static_rqs[tag];
225
226         if (data->flags & BLK_MQ_REQ_INTERNAL) {
227                 rq->tag = -1;
228                 rq->internal_tag = tag;
229         } else {
230                 if (blk_mq_tag_busy(data->hctx)) {
231                         rq->rq_flags = RQF_MQ_INFLIGHT;
232                         atomic_inc(&data->hctx->nr_active);
233                 }
234                 rq->tag = tag;
235                 rq->internal_tag = -1;
236                 data->hctx->tags->rqs[rq->tag] = rq;
237         }
238
239         INIT_LIST_HEAD(&rq->queuelist);
240         /* csd/requeue_work/fifo_time is initialized before use */
241         rq->q = data->q;
242         rq->mq_ctx = data->ctx;
243         rq->cmd_flags = op;
244         if (blk_queue_io_stat(data->q))
245                 rq->rq_flags |= RQF_IO_STAT;
246         /* do not touch atomic flags, it needs atomic ops against the timer */
247         rq->cpu = -1;
248         INIT_HLIST_NODE(&rq->hash);
249         RB_CLEAR_NODE(&rq->rb_node);
250         rq->rq_disk = NULL;
251         rq->part = NULL;
252         rq->start_time = jiffies;
253 #ifdef CONFIG_BLK_CGROUP
254         rq->rl = NULL;
255         set_start_time_ns(rq);
256         rq->io_start_time_ns = 0;
257 #endif
258         rq->nr_phys_segments = 0;
259 #if defined(CONFIG_BLK_DEV_INTEGRITY)
260         rq->nr_integrity_segments = 0;
261 #endif
262         rq->special = NULL;
263         /* tag was already set */
264         rq->extra_len = 0;
265
266         INIT_LIST_HEAD(&rq->timeout_list);
267         rq->timeout = 0;
268
269         rq->end_io = NULL;
270         rq->end_io_data = NULL;
271         rq->next_rq = NULL;
272
273         data->ctx->rq_dispatched[op_is_sync(op)]++;
274         return rq;
275 }
276
277 static struct request *blk_mq_get_request(struct request_queue *q,
278                 struct bio *bio, unsigned int op,
279                 struct blk_mq_alloc_data *data)
280 {
281         struct elevator_queue *e = q->elevator;
282         struct request *rq;
283         unsigned int tag;
284
285         blk_queue_enter_live(q);
286         data->q = q;
287         if (likely(!data->ctx))
288                 data->ctx = blk_mq_get_ctx(q);
289         if (likely(!data->hctx))
290                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
291
292         if (e) {
293                 data->flags |= BLK_MQ_REQ_INTERNAL;
294
295                 /*
296                  * Flush requests are special and go directly to the
297                  * dispatch list.
298                  */
299                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
300                         e->type->ops.mq.limit_depth(op, data);
301         }
302
303         tag = blk_mq_get_tag(data);
304         if (tag == BLK_MQ_TAG_FAIL) {
305                 blk_queue_exit(q);
306                 return NULL;
307         }
308
309         rq = blk_mq_rq_ctx_init(data, tag, op);
310         if (!op_is_flush(op)) {
311                 rq->elv.icq = NULL;
312                 if (e && e->type->ops.mq.prepare_request) {
313                         if (e->type->icq_cache && rq_ioc(bio))
314                                 blk_mq_sched_assign_ioc(rq, bio);
315
316                         e->type->ops.mq.prepare_request(rq, bio);
317                         rq->rq_flags |= RQF_ELVPRIV;
318                 }
319         }
320         data->hctx->queued++;
321         return rq;
322 }
323
324 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
325                 unsigned int flags)
326 {
327         struct blk_mq_alloc_data alloc_data = { .flags = flags };
328         struct request *rq;
329         int ret;
330
331         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
332         if (ret)
333                 return ERR_PTR(ret);
334
335         rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
336
337         blk_mq_put_ctx(alloc_data.ctx);
338         blk_queue_exit(q);
339
340         if (!rq)
341                 return ERR_PTR(-EWOULDBLOCK);
342
343         rq->__data_len = 0;
344         rq->__sector = (sector_t) -1;
345         rq->bio = rq->biotail = NULL;
346         return rq;
347 }
348 EXPORT_SYMBOL(blk_mq_alloc_request);
349
350 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
351                 unsigned int flags, unsigned int hctx_idx)
352 {
353         struct blk_mq_alloc_data alloc_data = { .flags = flags };
354         struct request *rq;
355         unsigned int cpu;
356         int ret;
357
358         /*
359          * If the tag allocator sleeps we could get an allocation for a
360          * different hardware context.  No need to complicate the low level
361          * allocator for this for the rare use case of a command tied to
362          * a specific queue.
363          */
364         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
365                 return ERR_PTR(-EINVAL);
366
367         if (hctx_idx >= q->nr_hw_queues)
368                 return ERR_PTR(-EIO);
369
370         ret = blk_queue_enter(q, true);
371         if (ret)
372                 return ERR_PTR(ret);
373
374         /*
375          * Check if the hardware context is actually mapped to anything.
376          * If not tell the caller that it should skip this queue.
377          */
378         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
379         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
380                 blk_queue_exit(q);
381                 return ERR_PTR(-EXDEV);
382         }
383         cpu = cpumask_first(alloc_data.hctx->cpumask);
384         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
385
386         rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
387
388         blk_queue_exit(q);
389
390         if (!rq)
391                 return ERR_PTR(-EWOULDBLOCK);
392
393         return rq;
394 }
395 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
396
397 void blk_mq_free_request(struct request *rq)
398 {
399         struct request_queue *q = rq->q;
400         struct elevator_queue *e = q->elevator;
401         struct blk_mq_ctx *ctx = rq->mq_ctx;
402         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
403         const int sched_tag = rq->internal_tag;
404
405         if (rq->rq_flags & RQF_ELVPRIV) {
406                 if (e && e->type->ops.mq.finish_request)
407                         e->type->ops.mq.finish_request(rq);
408                 if (rq->elv.icq) {
409                         put_io_context(rq->elv.icq->ioc);
410                         rq->elv.icq = NULL;
411                 }
412         }
413
414         ctx->rq_completed[rq_is_sync(rq)]++;
415         if (rq->rq_flags & RQF_MQ_INFLIGHT)
416                 atomic_dec(&hctx->nr_active);
417
418         wbt_done(q->rq_wb, &rq->issue_stat);
419         rq->rq_flags = 0;
420
421         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
422         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
423         if (rq->tag != -1)
424                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
425         if (sched_tag != -1)
426                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
427         blk_mq_sched_restart(hctx);
428         blk_queue_exit(q);
429 }
430 EXPORT_SYMBOL_GPL(blk_mq_free_request);
431
432 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
433 {
434         blk_account_io_done(rq);
435
436         if (rq->end_io) {
437                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
438                 rq->end_io(rq, error);
439         } else {
440                 if (unlikely(blk_bidi_rq(rq)))
441                         blk_mq_free_request(rq->next_rq);
442                 blk_mq_free_request(rq);
443         }
444 }
445 EXPORT_SYMBOL(__blk_mq_end_request);
446
447 void blk_mq_end_request(struct request *rq, blk_status_t error)
448 {
449         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
450                 BUG();
451         __blk_mq_end_request(rq, error);
452 }
453 EXPORT_SYMBOL(blk_mq_end_request);
454
455 static void __blk_mq_complete_request_remote(void *data)
456 {
457         struct request *rq = data;
458
459         rq->q->softirq_done_fn(rq);
460 }
461
462 static void __blk_mq_complete_request(struct request *rq)
463 {
464         struct blk_mq_ctx *ctx = rq->mq_ctx;
465         bool shared = false;
466         int cpu;
467
468         if (rq->internal_tag != -1)
469                 blk_mq_sched_completed_request(rq);
470         if (rq->rq_flags & RQF_STATS) {
471                 blk_mq_poll_stats_start(rq->q);
472                 blk_stat_add(rq);
473         }
474
475         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
476                 rq->q->softirq_done_fn(rq);
477                 return;
478         }
479
480         cpu = get_cpu();
481         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
482                 shared = cpus_share_cache(cpu, ctx->cpu);
483
484         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
485                 rq->csd.func = __blk_mq_complete_request_remote;
486                 rq->csd.info = rq;
487                 rq->csd.flags = 0;
488                 smp_call_function_single_async(ctx->cpu, &rq->csd);
489         } else {
490                 rq->q->softirq_done_fn(rq);
491         }
492         put_cpu();
493 }
494
495 /**
496  * blk_mq_complete_request - end I/O on a request
497  * @rq:         the request being processed
498  *
499  * Description:
500  *      Ends all I/O on a request. It does not handle partial completions.
501  *      The actual completion happens out-of-order, through a IPI handler.
502  **/
503 void blk_mq_complete_request(struct request *rq)
504 {
505         struct request_queue *q = rq->q;
506
507         if (unlikely(blk_should_fake_timeout(q)))
508                 return;
509         if (!blk_mark_rq_complete(rq))
510                 __blk_mq_complete_request(rq);
511 }
512 EXPORT_SYMBOL(blk_mq_complete_request);
513
514 int blk_mq_request_started(struct request *rq)
515 {
516         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_request_started);
519
520 void blk_mq_start_request(struct request *rq)
521 {
522         struct request_queue *q = rq->q;
523
524         blk_mq_sched_started_request(rq);
525
526         trace_block_rq_issue(q, rq);
527
528         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
529                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
530                 rq->rq_flags |= RQF_STATS;
531                 wbt_issue(q->rq_wb, &rq->issue_stat);
532         }
533
534         blk_add_timer(rq);
535
536         /*
537          * Ensure that ->deadline is visible before set the started
538          * flag and clear the completed flag.
539          */
540         smp_mb__before_atomic();
541
542         /*
543          * Mark us as started and clear complete. Complete might have been
544          * set if requeue raced with timeout, which then marked it as
545          * complete. So be sure to clear complete again when we start
546          * the request, otherwise we'll ignore the completion event.
547          */
548         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
549                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
550         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
551                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
552
553         if (q->dma_drain_size && blk_rq_bytes(rq)) {
554                 /*
555                  * Make sure space for the drain appears.  We know we can do
556                  * this because max_hw_segments has been adjusted to be one
557                  * fewer than the device can handle.
558                  */
559                 rq->nr_phys_segments++;
560         }
561 }
562 EXPORT_SYMBOL(blk_mq_start_request);
563
564 /*
565  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
566  * flag isn't set yet, so there may be race with timeout handler,
567  * but given rq->deadline is just set in .queue_rq() under
568  * this situation, the race won't be possible in reality because
569  * rq->timeout should be set as big enough to cover the window
570  * between blk_mq_start_request() called from .queue_rq() and
571  * clearing REQ_ATOM_STARTED here.
572  */
573 static void __blk_mq_requeue_request(struct request *rq)
574 {
575         struct request_queue *q = rq->q;
576
577         trace_block_rq_requeue(q, rq);
578         wbt_requeue(q->rq_wb, &rq->issue_stat);
579         blk_mq_sched_requeue_request(rq);
580
581         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
582                 if (q->dma_drain_size && blk_rq_bytes(rq))
583                         rq->nr_phys_segments--;
584         }
585 }
586
587 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
588 {
589         __blk_mq_requeue_request(rq);
590
591         BUG_ON(blk_queued_rq(rq));
592         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
593 }
594 EXPORT_SYMBOL(blk_mq_requeue_request);
595
596 static void blk_mq_requeue_work(struct work_struct *work)
597 {
598         struct request_queue *q =
599                 container_of(work, struct request_queue, requeue_work.work);
600         LIST_HEAD(rq_list);
601         struct request *rq, *next;
602         unsigned long flags;
603
604         spin_lock_irqsave(&q->requeue_lock, flags);
605         list_splice_init(&q->requeue_list, &rq_list);
606         spin_unlock_irqrestore(&q->requeue_lock, flags);
607
608         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
609                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
610                         continue;
611
612                 rq->rq_flags &= ~RQF_SOFTBARRIER;
613                 list_del_init(&rq->queuelist);
614                 blk_mq_sched_insert_request(rq, true, false, false, true);
615         }
616
617         while (!list_empty(&rq_list)) {
618                 rq = list_entry(rq_list.next, struct request, queuelist);
619                 list_del_init(&rq->queuelist);
620                 blk_mq_sched_insert_request(rq, false, false, false, true);
621         }
622
623         blk_mq_run_hw_queues(q, false);
624 }
625
626 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
627                                 bool kick_requeue_list)
628 {
629         struct request_queue *q = rq->q;
630         unsigned long flags;
631
632         /*
633          * We abuse this flag that is otherwise used by the I/O scheduler to
634          * request head insertation from the workqueue.
635          */
636         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
637
638         spin_lock_irqsave(&q->requeue_lock, flags);
639         if (at_head) {
640                 rq->rq_flags |= RQF_SOFTBARRIER;
641                 list_add(&rq->queuelist, &q->requeue_list);
642         } else {
643                 list_add_tail(&rq->queuelist, &q->requeue_list);
644         }
645         spin_unlock_irqrestore(&q->requeue_lock, flags);
646
647         if (kick_requeue_list)
648                 blk_mq_kick_requeue_list(q);
649 }
650 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
651
652 void blk_mq_kick_requeue_list(struct request_queue *q)
653 {
654         kblockd_schedule_delayed_work(&q->requeue_work, 0);
655 }
656 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
657
658 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
659                                     unsigned long msecs)
660 {
661         kblockd_schedule_delayed_work(&q->requeue_work,
662                                       msecs_to_jiffies(msecs));
663 }
664 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
665
666 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
667 {
668         if (tag < tags->nr_tags) {
669                 prefetch(tags->rqs[tag]);
670                 return tags->rqs[tag];
671         }
672
673         return NULL;
674 }
675 EXPORT_SYMBOL(blk_mq_tag_to_rq);
676
677 struct blk_mq_timeout_data {
678         unsigned long next;
679         unsigned int next_set;
680 };
681
682 void blk_mq_rq_timed_out(struct request *req, bool reserved)
683 {
684         const struct blk_mq_ops *ops = req->q->mq_ops;
685         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
686
687         /*
688          * We know that complete is set at this point. If STARTED isn't set
689          * anymore, then the request isn't active and the "timeout" should
690          * just be ignored. This can happen due to the bitflag ordering.
691          * Timeout first checks if STARTED is set, and if it is, assumes
692          * the request is active. But if we race with completion, then
693          * both flags will get cleared. So check here again, and ignore
694          * a timeout event with a request that isn't active.
695          */
696         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
697                 return;
698
699         if (ops->timeout)
700                 ret = ops->timeout(req, reserved);
701
702         switch (ret) {
703         case BLK_EH_HANDLED:
704                 __blk_mq_complete_request(req);
705                 break;
706         case BLK_EH_RESET_TIMER:
707                 blk_add_timer(req);
708                 blk_clear_rq_complete(req);
709                 break;
710         case BLK_EH_NOT_HANDLED:
711                 break;
712         default:
713                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
714                 break;
715         }
716 }
717
718 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
719                 struct request *rq, void *priv, bool reserved)
720 {
721         struct blk_mq_timeout_data *data = priv;
722
723         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
724                 return;
725
726         /*
727          * The rq being checked may have been freed and reallocated
728          * out already here, we avoid this race by checking rq->deadline
729          * and REQ_ATOM_COMPLETE flag together:
730          *
731          * - if rq->deadline is observed as new value because of
732          *   reusing, the rq won't be timed out because of timing.
733          * - if rq->deadline is observed as previous value,
734          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
735          *   because we put a barrier between setting rq->deadline
736          *   and clearing the flag in blk_mq_start_request(), so
737          *   this rq won't be timed out too.
738          */
739         if (time_after_eq(jiffies, rq->deadline)) {
740                 if (!blk_mark_rq_complete(rq))
741                         blk_mq_rq_timed_out(rq, reserved);
742         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
743                 data->next = rq->deadline;
744                 data->next_set = 1;
745         }
746 }
747
748 static void blk_mq_timeout_work(struct work_struct *work)
749 {
750         struct request_queue *q =
751                 container_of(work, struct request_queue, timeout_work);
752         struct blk_mq_timeout_data data = {
753                 .next           = 0,
754                 .next_set       = 0,
755         };
756         int i;
757
758         /* A deadlock might occur if a request is stuck requiring a
759          * timeout at the same time a queue freeze is waiting
760          * completion, since the timeout code would not be able to
761          * acquire the queue reference here.
762          *
763          * That's why we don't use blk_queue_enter here; instead, we use
764          * percpu_ref_tryget directly, because we need to be able to
765          * obtain a reference even in the short window between the queue
766          * starting to freeze, by dropping the first reference in
767          * blk_freeze_queue_start, and the moment the last request is
768          * consumed, marked by the instant q_usage_counter reaches
769          * zero.
770          */
771         if (!percpu_ref_tryget(&q->q_usage_counter))
772                 return;
773
774         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
775
776         if (data.next_set) {
777                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
778                 mod_timer(&q->timeout, data.next);
779         } else {
780                 struct blk_mq_hw_ctx *hctx;
781
782                 queue_for_each_hw_ctx(q, hctx, i) {
783                         /* the hctx may be unmapped, so check it here */
784                         if (blk_mq_hw_queue_mapped(hctx))
785                                 blk_mq_tag_idle(hctx);
786                 }
787         }
788         blk_queue_exit(q);
789 }
790
791 struct flush_busy_ctx_data {
792         struct blk_mq_hw_ctx *hctx;
793         struct list_head *list;
794 };
795
796 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
797 {
798         struct flush_busy_ctx_data *flush_data = data;
799         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
800         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
801
802         sbitmap_clear_bit(sb, bitnr);
803         spin_lock(&ctx->lock);
804         list_splice_tail_init(&ctx->rq_list, flush_data->list);
805         spin_unlock(&ctx->lock);
806         return true;
807 }
808
809 /*
810  * Process software queues that have been marked busy, splicing them
811  * to the for-dispatch
812  */
813 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
814 {
815         struct flush_busy_ctx_data data = {
816                 .hctx = hctx,
817                 .list = list,
818         };
819
820         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
821 }
822 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
823
824 static inline unsigned int queued_to_index(unsigned int queued)
825 {
826         if (!queued)
827                 return 0;
828
829         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
830 }
831
832 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
833                            bool wait)
834 {
835         struct blk_mq_alloc_data data = {
836                 .q = rq->q,
837                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
838                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
839         };
840
841         might_sleep_if(wait);
842
843         if (rq->tag != -1)
844                 goto done;
845
846         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
847                 data.flags |= BLK_MQ_REQ_RESERVED;
848
849         rq->tag = blk_mq_get_tag(&data);
850         if (rq->tag >= 0) {
851                 if (blk_mq_tag_busy(data.hctx)) {
852                         rq->rq_flags |= RQF_MQ_INFLIGHT;
853                         atomic_inc(&data.hctx->nr_active);
854                 }
855                 data.hctx->tags->rqs[rq->tag] = rq;
856         }
857
858 done:
859         if (hctx)
860                 *hctx = data.hctx;
861         return rq->tag != -1;
862 }
863
864 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
865                                     struct request *rq)
866 {
867         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
868         rq->tag = -1;
869
870         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
871                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
872                 atomic_dec(&hctx->nr_active);
873         }
874 }
875
876 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
877                                        struct request *rq)
878 {
879         if (rq->tag == -1 || rq->internal_tag == -1)
880                 return;
881
882         __blk_mq_put_driver_tag(hctx, rq);
883 }
884
885 static void blk_mq_put_driver_tag(struct request *rq)
886 {
887         struct blk_mq_hw_ctx *hctx;
888
889         if (rq->tag == -1 || rq->internal_tag == -1)
890                 return;
891
892         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
893         __blk_mq_put_driver_tag(hctx, rq);
894 }
895
896 /*
897  * If we fail getting a driver tag because all the driver tags are already
898  * assigned and on the dispatch list, BUT the first entry does not have a
899  * tag, then we could deadlock. For that case, move entries with assigned
900  * driver tags to the front, leaving the set of tagged requests in the
901  * same order, and the untagged set in the same order.
902  */
903 static bool reorder_tags_to_front(struct list_head *list)
904 {
905         struct request *rq, *tmp, *first = NULL;
906
907         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
908                 if (rq == first)
909                         break;
910                 if (rq->tag != -1) {
911                         list_move(&rq->queuelist, list);
912                         if (!first)
913                                 first = rq;
914                 }
915         }
916
917         return first != NULL;
918 }
919
920 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
921                                 void *key)
922 {
923         struct blk_mq_hw_ctx *hctx;
924
925         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
926
927         list_del(&wait->task_list);
928         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
929         blk_mq_run_hw_queue(hctx, true);
930         return 1;
931 }
932
933 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
934 {
935         struct sbq_wait_state *ws;
936
937         /*
938          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
939          * The thread which wins the race to grab this bit adds the hardware
940          * queue to the wait queue.
941          */
942         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
943             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
944                 return false;
945
946         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
947         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
948
949         /*
950          * As soon as this returns, it's no longer safe to fiddle with
951          * hctx->dispatch_wait, since a completion can wake up the wait queue
952          * and unlock the bit.
953          */
954         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
955         return true;
956 }
957
958 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
959 {
960         struct blk_mq_hw_ctx *hctx;
961         struct request *rq;
962         int errors, queued;
963
964         if (list_empty(list))
965                 return false;
966
967         /*
968          * Now process all the entries, sending them to the driver.
969          */
970         errors = queued = 0;
971         do {
972                 struct blk_mq_queue_data bd;
973                 blk_status_t ret;
974
975                 rq = list_first_entry(list, struct request, queuelist);
976                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
977                         if (!queued && reorder_tags_to_front(list))
978                                 continue;
979
980                         /*
981                          * The initial allocation attempt failed, so we need to
982                          * rerun the hardware queue when a tag is freed.
983                          */
984                         if (!blk_mq_dispatch_wait_add(hctx))
985                                 break;
986
987                         /*
988                          * It's possible that a tag was freed in the window
989                          * between the allocation failure and adding the
990                          * hardware queue to the wait queue.
991                          */
992                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
993                                 break;
994                 }
995
996                 list_del_init(&rq->queuelist);
997
998                 bd.rq = rq;
999
1000                 /*
1001                  * Flag last if we have no more requests, or if we have more
1002                  * but can't assign a driver tag to it.
1003                  */
1004                 if (list_empty(list))
1005                         bd.last = true;
1006                 else {
1007                         struct request *nxt;
1008
1009                         nxt = list_first_entry(list, struct request, queuelist);
1010                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1011                 }
1012
1013                 ret = q->mq_ops->queue_rq(hctx, &bd);
1014                 if (ret == BLK_STS_RESOURCE) {
1015                         blk_mq_put_driver_tag_hctx(hctx, rq);
1016                         list_add(&rq->queuelist, list);
1017                         __blk_mq_requeue_request(rq);
1018                         break;
1019                 }
1020
1021                 if (unlikely(ret != BLK_STS_OK)) {
1022                         errors++;
1023                         blk_mq_end_request(rq, BLK_STS_IOERR);
1024                         continue;
1025                 }
1026
1027                 queued++;
1028         } while (!list_empty(list));
1029
1030         hctx->dispatched[queued_to_index(queued)]++;
1031
1032         /*
1033          * Any items that need requeuing? Stuff them into hctx->dispatch,
1034          * that is where we will continue on next queue run.
1035          */
1036         if (!list_empty(list)) {
1037                 /*
1038                  * If an I/O scheduler has been configured and we got a driver
1039                  * tag for the next request already, free it again.
1040                  */
1041                 rq = list_first_entry(list, struct request, queuelist);
1042                 blk_mq_put_driver_tag(rq);
1043
1044                 spin_lock(&hctx->lock);
1045                 list_splice_init(list, &hctx->dispatch);
1046                 spin_unlock(&hctx->lock);
1047
1048                 /*
1049                  * If SCHED_RESTART was set by the caller of this function and
1050                  * it is no longer set that means that it was cleared by another
1051                  * thread and hence that a queue rerun is needed.
1052                  *
1053                  * If TAG_WAITING is set that means that an I/O scheduler has
1054                  * been configured and another thread is waiting for a driver
1055                  * tag. To guarantee fairness, do not rerun this hardware queue
1056                  * but let the other thread grab the driver tag.
1057                  *
1058                  * If no I/O scheduler has been configured it is possible that
1059                  * the hardware queue got stopped and restarted before requests
1060                  * were pushed back onto the dispatch list. Rerun the queue to
1061                  * avoid starvation. Notes:
1062                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1063                  *   been stopped before rerunning a queue.
1064                  * - Some but not all block drivers stop a queue before
1065                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1066                  *   and dm-rq.
1067                  */
1068                 if (!blk_mq_sched_needs_restart(hctx) &&
1069                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1070                         blk_mq_run_hw_queue(hctx, true);
1071         }
1072
1073         return (queued + errors) != 0;
1074 }
1075
1076 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1077 {
1078         int srcu_idx;
1079
1080         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1081                 cpu_online(hctx->next_cpu));
1082
1083         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1084                 rcu_read_lock();
1085                 blk_mq_sched_dispatch_requests(hctx);
1086                 rcu_read_unlock();
1087         } else {
1088                 might_sleep();
1089
1090                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1091                 blk_mq_sched_dispatch_requests(hctx);
1092                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1093         }
1094 }
1095
1096 /*
1097  * It'd be great if the workqueue API had a way to pass
1098  * in a mask and had some smarts for more clever placement.
1099  * For now we just round-robin here, switching for every
1100  * BLK_MQ_CPU_WORK_BATCH queued items.
1101  */
1102 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1103 {
1104         if (hctx->queue->nr_hw_queues == 1)
1105                 return WORK_CPU_UNBOUND;
1106
1107         if (--hctx->next_cpu_batch <= 0) {
1108                 int next_cpu;
1109
1110                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1111                 if (next_cpu >= nr_cpu_ids)
1112                         next_cpu = cpumask_first(hctx->cpumask);
1113
1114                 hctx->next_cpu = next_cpu;
1115                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1116         }
1117
1118         return hctx->next_cpu;
1119 }
1120
1121 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1122                                         unsigned long msecs)
1123 {
1124         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1125                      !blk_mq_hw_queue_mapped(hctx)))
1126                 return;
1127
1128         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1129                 int cpu = get_cpu();
1130                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1131                         __blk_mq_run_hw_queue(hctx);
1132                         put_cpu();
1133                         return;
1134                 }
1135
1136                 put_cpu();
1137         }
1138
1139         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1140                                          &hctx->run_work,
1141                                          msecs_to_jiffies(msecs));
1142 }
1143
1144 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1145 {
1146         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1147 }
1148 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1149
1150 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1151 {
1152         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1153 }
1154 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1155
1156 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1157 {
1158         struct blk_mq_hw_ctx *hctx;
1159         int i;
1160
1161         queue_for_each_hw_ctx(q, hctx, i) {
1162                 if (!blk_mq_hctx_has_pending(hctx) ||
1163                     blk_mq_hctx_stopped(hctx))
1164                         continue;
1165
1166                 blk_mq_run_hw_queue(hctx, async);
1167         }
1168 }
1169 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1170
1171 /**
1172  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1173  * @q: request queue.
1174  *
1175  * The caller is responsible for serializing this function against
1176  * blk_mq_{start,stop}_hw_queue().
1177  */
1178 bool blk_mq_queue_stopped(struct request_queue *q)
1179 {
1180         struct blk_mq_hw_ctx *hctx;
1181         int i;
1182
1183         queue_for_each_hw_ctx(q, hctx, i)
1184                 if (blk_mq_hctx_stopped(hctx))
1185                         return true;
1186
1187         return false;
1188 }
1189 EXPORT_SYMBOL(blk_mq_queue_stopped);
1190
1191 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1192 {
1193         if (sync)
1194                 cancel_delayed_work_sync(&hctx->run_work);
1195         else
1196                 cancel_delayed_work(&hctx->run_work);
1197
1198         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1199 }
1200
1201 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1202 {
1203         __blk_mq_stop_hw_queue(hctx, false);
1204 }
1205 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1206
1207 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1208 {
1209         struct blk_mq_hw_ctx *hctx;
1210         int i;
1211
1212         queue_for_each_hw_ctx(q, hctx, i)
1213                 __blk_mq_stop_hw_queue(hctx, sync);
1214 }
1215
1216 void blk_mq_stop_hw_queues(struct request_queue *q)
1217 {
1218         __blk_mq_stop_hw_queues(q, false);
1219 }
1220 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1221
1222 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1223 {
1224         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1225
1226         blk_mq_run_hw_queue(hctx, false);
1227 }
1228 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1229
1230 void blk_mq_start_hw_queues(struct request_queue *q)
1231 {
1232         struct blk_mq_hw_ctx *hctx;
1233         int i;
1234
1235         queue_for_each_hw_ctx(q, hctx, i)
1236                 blk_mq_start_hw_queue(hctx);
1237 }
1238 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1239
1240 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1241 {
1242         if (!blk_mq_hctx_stopped(hctx))
1243                 return;
1244
1245         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1246         blk_mq_run_hw_queue(hctx, async);
1247 }
1248 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1249
1250 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1251 {
1252         struct blk_mq_hw_ctx *hctx;
1253         int i;
1254
1255         queue_for_each_hw_ctx(q, hctx, i)
1256                 blk_mq_start_stopped_hw_queue(hctx, async);
1257 }
1258 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1259
1260 static void blk_mq_run_work_fn(struct work_struct *work)
1261 {
1262         struct blk_mq_hw_ctx *hctx;
1263
1264         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1265
1266         /*
1267          * If we are stopped, don't run the queue. The exception is if
1268          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1269          * the STOPPED bit and run it.
1270          */
1271         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1272                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1273                         return;
1274
1275                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1276                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1277         }
1278
1279         __blk_mq_run_hw_queue(hctx);
1280 }
1281
1282
1283 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1284 {
1285         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1286                 return;
1287
1288         /*
1289          * Stop the hw queue, then modify currently delayed work.
1290          * This should prevent us from running the queue prematurely.
1291          * Mark the queue as auto-clearing STOPPED when it runs.
1292          */
1293         blk_mq_stop_hw_queue(hctx);
1294         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1295         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1296                                         &hctx->run_work,
1297                                         msecs_to_jiffies(msecs));
1298 }
1299 EXPORT_SYMBOL(blk_mq_delay_queue);
1300
1301 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1302                                             struct request *rq,
1303                                             bool at_head)
1304 {
1305         struct blk_mq_ctx *ctx = rq->mq_ctx;
1306
1307         trace_block_rq_insert(hctx->queue, rq);
1308
1309         if (at_head)
1310                 list_add(&rq->queuelist, &ctx->rq_list);
1311         else
1312                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1313 }
1314
1315 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1316                              bool at_head)
1317 {
1318         struct blk_mq_ctx *ctx = rq->mq_ctx;
1319
1320         __blk_mq_insert_req_list(hctx, rq, at_head);
1321         blk_mq_hctx_mark_pending(hctx, ctx);
1322 }
1323
1324 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1325                             struct list_head *list)
1326
1327 {
1328         /*
1329          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1330          * offline now
1331          */
1332         spin_lock(&ctx->lock);
1333         while (!list_empty(list)) {
1334                 struct request *rq;
1335
1336                 rq = list_first_entry(list, struct request, queuelist);
1337                 BUG_ON(rq->mq_ctx != ctx);
1338                 list_del_init(&rq->queuelist);
1339                 __blk_mq_insert_req_list(hctx, rq, false);
1340         }
1341         blk_mq_hctx_mark_pending(hctx, ctx);
1342         spin_unlock(&ctx->lock);
1343 }
1344
1345 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1346 {
1347         struct request *rqa = container_of(a, struct request, queuelist);
1348         struct request *rqb = container_of(b, struct request, queuelist);
1349
1350         return !(rqa->mq_ctx < rqb->mq_ctx ||
1351                  (rqa->mq_ctx == rqb->mq_ctx &&
1352                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1353 }
1354
1355 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1356 {
1357         struct blk_mq_ctx *this_ctx;
1358         struct request_queue *this_q;
1359         struct request *rq;
1360         LIST_HEAD(list);
1361         LIST_HEAD(ctx_list);
1362         unsigned int depth;
1363
1364         list_splice_init(&plug->mq_list, &list);
1365
1366         list_sort(NULL, &list, plug_ctx_cmp);
1367
1368         this_q = NULL;
1369         this_ctx = NULL;
1370         depth = 0;
1371
1372         while (!list_empty(&list)) {
1373                 rq = list_entry_rq(list.next);
1374                 list_del_init(&rq->queuelist);
1375                 BUG_ON(!rq->q);
1376                 if (rq->mq_ctx != this_ctx) {
1377                         if (this_ctx) {
1378                                 trace_block_unplug(this_q, depth, from_schedule);
1379                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1380                                                                 &ctx_list,
1381                                                                 from_schedule);
1382                         }
1383
1384                         this_ctx = rq->mq_ctx;
1385                         this_q = rq->q;
1386                         depth = 0;
1387                 }
1388
1389                 depth++;
1390                 list_add_tail(&rq->queuelist, &ctx_list);
1391         }
1392
1393         /*
1394          * If 'this_ctx' is set, we know we have entries to complete
1395          * on 'ctx_list'. Do those.
1396          */
1397         if (this_ctx) {
1398                 trace_block_unplug(this_q, depth, from_schedule);
1399                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1400                                                 from_schedule);
1401         }
1402 }
1403
1404 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1405 {
1406         blk_init_request_from_bio(rq, bio);
1407
1408         blk_account_io_start(rq, true);
1409 }
1410
1411 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1412 {
1413         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1414                 !blk_queue_nomerges(hctx->queue);
1415 }
1416
1417 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1418                                    struct blk_mq_ctx *ctx,
1419                                    struct request *rq)
1420 {
1421         spin_lock(&ctx->lock);
1422         __blk_mq_insert_request(hctx, rq, false);
1423         spin_unlock(&ctx->lock);
1424 }
1425
1426 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1427 {
1428         if (rq->tag != -1)
1429                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1430
1431         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1432 }
1433
1434 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1435                                         struct request *rq,
1436                                         blk_qc_t *cookie, bool may_sleep)
1437 {
1438         struct request_queue *q = rq->q;
1439         struct blk_mq_queue_data bd = {
1440                 .rq = rq,
1441                 .last = true,
1442         };
1443         blk_qc_t new_cookie;
1444         blk_status_t ret;
1445         bool run_queue = true;
1446
1447         if (blk_mq_hctx_stopped(hctx)) {
1448                 run_queue = false;
1449                 goto insert;
1450         }
1451
1452         if (q->elevator)
1453                 goto insert;
1454
1455         if (!blk_mq_get_driver_tag(rq, NULL, false))
1456                 goto insert;
1457
1458         new_cookie = request_to_qc_t(hctx, rq);
1459
1460         /*
1461          * For OK queue, we are done. For error, kill it. Any other
1462          * error (busy), just add it to our list as we previously
1463          * would have done
1464          */
1465         ret = q->mq_ops->queue_rq(hctx, &bd);
1466         switch (ret) {
1467         case BLK_STS_OK:
1468                 *cookie = new_cookie;
1469                 return;
1470         case BLK_STS_RESOURCE:
1471                 __blk_mq_requeue_request(rq);
1472                 goto insert;
1473         default:
1474                 *cookie = BLK_QC_T_NONE;
1475                 blk_mq_end_request(rq, ret);
1476                 return;
1477         }
1478
1479 insert:
1480         blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1481 }
1482
1483 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1484                 struct request *rq, blk_qc_t *cookie)
1485 {
1486         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1487                 rcu_read_lock();
1488                 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1489                 rcu_read_unlock();
1490         } else {
1491                 unsigned int srcu_idx;
1492
1493                 might_sleep();
1494
1495                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1496                 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1497                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1498         }
1499 }
1500
1501 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1502 {
1503         const int is_sync = op_is_sync(bio->bi_opf);
1504         const int is_flush_fua = op_is_flush(bio->bi_opf);
1505         struct blk_mq_alloc_data data = { .flags = 0 };
1506         struct request *rq;
1507         unsigned int request_count = 0;
1508         struct blk_plug *plug;
1509         struct request *same_queue_rq = NULL;
1510         blk_qc_t cookie;
1511         unsigned int wb_acct;
1512
1513         blk_queue_bounce(q, &bio);
1514
1515         blk_queue_split(q, &bio);
1516
1517         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1518                 bio_io_error(bio);
1519                 return BLK_QC_T_NONE;
1520         }
1521
1522         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1523             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1524                 return BLK_QC_T_NONE;
1525
1526         if (blk_mq_sched_bio_merge(q, bio))
1527                 return BLK_QC_T_NONE;
1528
1529         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1530
1531         trace_block_getrq(q, bio, bio->bi_opf);
1532
1533         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1534         if (unlikely(!rq)) {
1535                 __wbt_done(q->rq_wb, wb_acct);
1536                 return BLK_QC_T_NONE;
1537         }
1538
1539         wbt_track(&rq->issue_stat, wb_acct);
1540
1541         cookie = request_to_qc_t(data.hctx, rq);
1542
1543         plug = current->plug;
1544         if (unlikely(is_flush_fua)) {
1545                 blk_mq_put_ctx(data.ctx);
1546                 blk_mq_bio_to_request(rq, bio);
1547                 if (q->elevator) {
1548                         blk_mq_sched_insert_request(rq, false, true, true,
1549                                         true);
1550                 } else {
1551                         blk_insert_flush(rq);
1552                         blk_mq_run_hw_queue(data.hctx, true);
1553                 }
1554         } else if (plug && q->nr_hw_queues == 1) {
1555                 struct request *last = NULL;
1556
1557                 blk_mq_put_ctx(data.ctx);
1558                 blk_mq_bio_to_request(rq, bio);
1559
1560                 /*
1561                  * @request_count may become stale because of schedule
1562                  * out, so check the list again.
1563                  */
1564                 if (list_empty(&plug->mq_list))
1565                         request_count = 0;
1566                 else if (blk_queue_nomerges(q))
1567                         request_count = blk_plug_queued_count(q);
1568
1569                 if (!request_count)
1570                         trace_block_plug(q);
1571                 else
1572                         last = list_entry_rq(plug->mq_list.prev);
1573
1574                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1575                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1576                         blk_flush_plug_list(plug, false);
1577                         trace_block_plug(q);
1578                 }
1579
1580                 list_add_tail(&rq->queuelist, &plug->mq_list);
1581         } else if (plug && !blk_queue_nomerges(q)) {
1582                 blk_mq_bio_to_request(rq, bio);
1583
1584                 /*
1585                  * We do limited plugging. If the bio can be merged, do that.
1586                  * Otherwise the existing request in the plug list will be
1587                  * issued. So the plug list will have one request at most
1588                  * The plug list might get flushed before this. If that happens,
1589                  * the plug list is empty, and same_queue_rq is invalid.
1590                  */
1591                 if (list_empty(&plug->mq_list))
1592                         same_queue_rq = NULL;
1593                 if (same_queue_rq)
1594                         list_del_init(&same_queue_rq->queuelist);
1595                 list_add_tail(&rq->queuelist, &plug->mq_list);
1596
1597                 blk_mq_put_ctx(data.ctx);
1598
1599                 if (same_queue_rq) {
1600                         data.hctx = blk_mq_map_queue(q,
1601                                         same_queue_rq->mq_ctx->cpu);
1602                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1603                                         &cookie);
1604                 }
1605         } else if (q->nr_hw_queues > 1 && is_sync) {
1606                 blk_mq_put_ctx(data.ctx);
1607                 blk_mq_bio_to_request(rq, bio);
1608                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1609         } else if (q->elevator) {
1610                 blk_mq_put_ctx(data.ctx);
1611                 blk_mq_bio_to_request(rq, bio);
1612                 blk_mq_sched_insert_request(rq, false, true, true, true);
1613         } else {
1614                 blk_mq_put_ctx(data.ctx);
1615                 blk_mq_bio_to_request(rq, bio);
1616                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1617                 blk_mq_run_hw_queue(data.hctx, true);
1618         }
1619
1620         return cookie;
1621 }
1622
1623 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1624                      unsigned int hctx_idx)
1625 {
1626         struct page *page;
1627
1628         if (tags->rqs && set->ops->exit_request) {
1629                 int i;
1630
1631                 for (i = 0; i < tags->nr_tags; i++) {
1632                         struct request *rq = tags->static_rqs[i];
1633
1634                         if (!rq)
1635                                 continue;
1636                         set->ops->exit_request(set, rq, hctx_idx);
1637                         tags->static_rqs[i] = NULL;
1638                 }
1639         }
1640
1641         while (!list_empty(&tags->page_list)) {
1642                 page = list_first_entry(&tags->page_list, struct page, lru);
1643                 list_del_init(&page->lru);
1644                 /*
1645                  * Remove kmemleak object previously allocated in
1646                  * blk_mq_init_rq_map().
1647                  */
1648                 kmemleak_free(page_address(page));
1649                 __free_pages(page, page->private);
1650         }
1651 }
1652
1653 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1654 {
1655         kfree(tags->rqs);
1656         tags->rqs = NULL;
1657         kfree(tags->static_rqs);
1658         tags->static_rqs = NULL;
1659
1660         blk_mq_free_tags(tags);
1661 }
1662
1663 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1664                                         unsigned int hctx_idx,
1665                                         unsigned int nr_tags,
1666                                         unsigned int reserved_tags)
1667 {
1668         struct blk_mq_tags *tags;
1669         int node;
1670
1671         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1672         if (node == NUMA_NO_NODE)
1673                 node = set->numa_node;
1674
1675         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1676                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1677         if (!tags)
1678                 return NULL;
1679
1680         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1681                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1682                                  node);
1683         if (!tags->rqs) {
1684                 blk_mq_free_tags(tags);
1685                 return NULL;
1686         }
1687
1688         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1689                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1690                                  node);
1691         if (!tags->static_rqs) {
1692                 kfree(tags->rqs);
1693                 blk_mq_free_tags(tags);
1694                 return NULL;
1695         }
1696
1697         return tags;
1698 }
1699
1700 static size_t order_to_size(unsigned int order)
1701 {
1702         return (size_t)PAGE_SIZE << order;
1703 }
1704
1705 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1706                      unsigned int hctx_idx, unsigned int depth)
1707 {
1708         unsigned int i, j, entries_per_page, max_order = 4;
1709         size_t rq_size, left;
1710         int node;
1711
1712         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1713         if (node == NUMA_NO_NODE)
1714                 node = set->numa_node;
1715
1716         INIT_LIST_HEAD(&tags->page_list);
1717
1718         /*
1719          * rq_size is the size of the request plus driver payload, rounded
1720          * to the cacheline size
1721          */
1722         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1723                                 cache_line_size());
1724         left = rq_size * depth;
1725
1726         for (i = 0; i < depth; ) {
1727                 int this_order = max_order;
1728                 struct page *page;
1729                 int to_do;
1730                 void *p;
1731
1732                 while (this_order && left < order_to_size(this_order - 1))
1733                         this_order--;
1734
1735                 do {
1736                         page = alloc_pages_node(node,
1737                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1738                                 this_order);
1739                         if (page)
1740                                 break;
1741                         if (!this_order--)
1742                                 break;
1743                         if (order_to_size(this_order) < rq_size)
1744                                 break;
1745                 } while (1);
1746
1747                 if (!page)
1748                         goto fail;
1749
1750                 page->private = this_order;
1751                 list_add_tail(&page->lru, &tags->page_list);
1752
1753                 p = page_address(page);
1754                 /*
1755                  * Allow kmemleak to scan these pages as they contain pointers
1756                  * to additional allocations like via ops->init_request().
1757                  */
1758                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1759                 entries_per_page = order_to_size(this_order) / rq_size;
1760                 to_do = min(entries_per_page, depth - i);
1761                 left -= to_do * rq_size;
1762                 for (j = 0; j < to_do; j++) {
1763                         struct request *rq = p;
1764
1765                         tags->static_rqs[i] = rq;
1766                         if (set->ops->init_request) {
1767                                 if (set->ops->init_request(set, rq, hctx_idx,
1768                                                 node)) {
1769                                         tags->static_rqs[i] = NULL;
1770                                         goto fail;
1771                                 }
1772                         }
1773
1774                         p += rq_size;
1775                         i++;
1776                 }
1777         }
1778         return 0;
1779
1780 fail:
1781         blk_mq_free_rqs(set, tags, hctx_idx);
1782         return -ENOMEM;
1783 }
1784
1785 /*
1786  * 'cpu' is going away. splice any existing rq_list entries from this
1787  * software queue to the hw queue dispatch list, and ensure that it
1788  * gets run.
1789  */
1790 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1791 {
1792         struct blk_mq_hw_ctx *hctx;
1793         struct blk_mq_ctx *ctx;
1794         LIST_HEAD(tmp);
1795
1796         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1797         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1798
1799         spin_lock(&ctx->lock);
1800         if (!list_empty(&ctx->rq_list)) {
1801                 list_splice_init(&ctx->rq_list, &tmp);
1802                 blk_mq_hctx_clear_pending(hctx, ctx);
1803         }
1804         spin_unlock(&ctx->lock);
1805
1806         if (list_empty(&tmp))
1807                 return 0;
1808
1809         spin_lock(&hctx->lock);
1810         list_splice_tail_init(&tmp, &hctx->dispatch);
1811         spin_unlock(&hctx->lock);
1812
1813         blk_mq_run_hw_queue(hctx, true);
1814         return 0;
1815 }
1816
1817 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1818 {
1819         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1820                                             &hctx->cpuhp_dead);
1821 }
1822
1823 /* hctx->ctxs will be freed in queue's release handler */
1824 static void blk_mq_exit_hctx(struct request_queue *q,
1825                 struct blk_mq_tag_set *set,
1826                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1827 {
1828         blk_mq_debugfs_unregister_hctx(hctx);
1829
1830         blk_mq_tag_idle(hctx);
1831
1832         if (set->ops->exit_request)
1833                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1834
1835         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1836
1837         if (set->ops->exit_hctx)
1838                 set->ops->exit_hctx(hctx, hctx_idx);
1839
1840         if (hctx->flags & BLK_MQ_F_BLOCKING)
1841                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1842
1843         blk_mq_remove_cpuhp(hctx);
1844         blk_free_flush_queue(hctx->fq);
1845         sbitmap_free(&hctx->ctx_map);
1846 }
1847
1848 static void blk_mq_exit_hw_queues(struct request_queue *q,
1849                 struct blk_mq_tag_set *set, int nr_queue)
1850 {
1851         struct blk_mq_hw_ctx *hctx;
1852         unsigned int i;
1853
1854         queue_for_each_hw_ctx(q, hctx, i) {
1855                 if (i == nr_queue)
1856                         break;
1857                 blk_mq_exit_hctx(q, set, hctx, i);
1858         }
1859 }
1860
1861 static int blk_mq_init_hctx(struct request_queue *q,
1862                 struct blk_mq_tag_set *set,
1863                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1864 {
1865         int node;
1866
1867         node = hctx->numa_node;
1868         if (node == NUMA_NO_NODE)
1869                 node = hctx->numa_node = set->numa_node;
1870
1871         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1872         spin_lock_init(&hctx->lock);
1873         INIT_LIST_HEAD(&hctx->dispatch);
1874         hctx->queue = q;
1875         hctx->queue_num = hctx_idx;
1876         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1877
1878         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1879
1880         hctx->tags = set->tags[hctx_idx];
1881
1882         /*
1883          * Allocate space for all possible cpus to avoid allocation at
1884          * runtime
1885          */
1886         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1887                                         GFP_KERNEL, node);
1888         if (!hctx->ctxs)
1889                 goto unregister_cpu_notifier;
1890
1891         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1892                               node))
1893                 goto free_ctxs;
1894
1895         hctx->nr_ctx = 0;
1896
1897         if (set->ops->init_hctx &&
1898             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1899                 goto free_bitmap;
1900
1901         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1902                 goto exit_hctx;
1903
1904         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1905         if (!hctx->fq)
1906                 goto sched_exit_hctx;
1907
1908         if (set->ops->init_request &&
1909             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1910                                    node))
1911                 goto free_fq;
1912
1913         if (hctx->flags & BLK_MQ_F_BLOCKING)
1914                 init_srcu_struct(&hctx->queue_rq_srcu);
1915
1916         blk_mq_debugfs_register_hctx(q, hctx);
1917
1918         return 0;
1919
1920  free_fq:
1921         kfree(hctx->fq);
1922  sched_exit_hctx:
1923         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1924  exit_hctx:
1925         if (set->ops->exit_hctx)
1926                 set->ops->exit_hctx(hctx, hctx_idx);
1927  free_bitmap:
1928         sbitmap_free(&hctx->ctx_map);
1929  free_ctxs:
1930         kfree(hctx->ctxs);
1931  unregister_cpu_notifier:
1932         blk_mq_remove_cpuhp(hctx);
1933         return -1;
1934 }
1935
1936 static void blk_mq_init_cpu_queues(struct request_queue *q,
1937                                    unsigned int nr_hw_queues)
1938 {
1939         unsigned int i;
1940
1941         for_each_possible_cpu(i) {
1942                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1943                 struct blk_mq_hw_ctx *hctx;
1944
1945                 __ctx->cpu = i;
1946                 spin_lock_init(&__ctx->lock);
1947                 INIT_LIST_HEAD(&__ctx->rq_list);
1948                 __ctx->queue = q;
1949
1950                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1951                 if (!cpu_online(i))
1952                         continue;
1953
1954                 hctx = blk_mq_map_queue(q, i);
1955
1956                 /*
1957                  * Set local node, IFF we have more than one hw queue. If
1958                  * not, we remain on the home node of the device
1959                  */
1960                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1961                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1962         }
1963 }
1964
1965 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1966 {
1967         int ret = 0;
1968
1969         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1970                                         set->queue_depth, set->reserved_tags);
1971         if (!set->tags[hctx_idx])
1972                 return false;
1973
1974         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1975                                 set->queue_depth);
1976         if (!ret)
1977                 return true;
1978
1979         blk_mq_free_rq_map(set->tags[hctx_idx]);
1980         set->tags[hctx_idx] = NULL;
1981         return false;
1982 }
1983
1984 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1985                                          unsigned int hctx_idx)
1986 {
1987         if (set->tags[hctx_idx]) {
1988                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1989                 blk_mq_free_rq_map(set->tags[hctx_idx]);
1990                 set->tags[hctx_idx] = NULL;
1991         }
1992 }
1993
1994 static void blk_mq_map_swqueue(struct request_queue *q,
1995                                const struct cpumask *online_mask)
1996 {
1997         unsigned int i, hctx_idx;
1998         struct blk_mq_hw_ctx *hctx;
1999         struct blk_mq_ctx *ctx;
2000         struct blk_mq_tag_set *set = q->tag_set;
2001
2002         /*
2003          * Avoid others reading imcomplete hctx->cpumask through sysfs
2004          */
2005         mutex_lock(&q->sysfs_lock);
2006
2007         queue_for_each_hw_ctx(q, hctx, i) {
2008                 cpumask_clear(hctx->cpumask);
2009                 hctx->nr_ctx = 0;
2010         }
2011
2012         /*
2013          * Map software to hardware queues
2014          */
2015         for_each_possible_cpu(i) {
2016                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2017                 if (!cpumask_test_cpu(i, online_mask))
2018                         continue;
2019
2020                 hctx_idx = q->mq_map[i];
2021                 /* unmapped hw queue can be remapped after CPU topo changed */
2022                 if (!set->tags[hctx_idx] &&
2023                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2024                         /*
2025                          * If tags initialization fail for some hctx,
2026                          * that hctx won't be brought online.  In this
2027                          * case, remap the current ctx to hctx[0] which
2028                          * is guaranteed to always have tags allocated
2029                          */
2030                         q->mq_map[i] = 0;
2031                 }
2032
2033                 ctx = per_cpu_ptr(q->queue_ctx, i);
2034                 hctx = blk_mq_map_queue(q, i);
2035
2036                 cpumask_set_cpu(i, hctx->cpumask);
2037                 ctx->index_hw = hctx->nr_ctx;
2038                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2039         }
2040
2041         mutex_unlock(&q->sysfs_lock);
2042
2043         queue_for_each_hw_ctx(q, hctx, i) {
2044                 /*
2045                  * If no software queues are mapped to this hardware queue,
2046                  * disable it and free the request entries.
2047                  */
2048                 if (!hctx->nr_ctx) {
2049                         /* Never unmap queue 0.  We need it as a
2050                          * fallback in case of a new remap fails
2051                          * allocation
2052                          */
2053                         if (i && set->tags[i])
2054                                 blk_mq_free_map_and_requests(set, i);
2055
2056                         hctx->tags = NULL;
2057                         continue;
2058                 }
2059
2060                 hctx->tags = set->tags[i];
2061                 WARN_ON(!hctx->tags);
2062
2063                 /*
2064                  * Set the map size to the number of mapped software queues.
2065                  * This is more accurate and more efficient than looping
2066                  * over all possibly mapped software queues.
2067                  */
2068                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2069
2070                 /*
2071                  * Initialize batch roundrobin counts
2072                  */
2073                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2074                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2075         }
2076 }
2077
2078 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2079 {
2080         struct blk_mq_hw_ctx *hctx;
2081         int i;
2082
2083         queue_for_each_hw_ctx(q, hctx, i) {
2084                 if (shared)
2085                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2086                 else
2087                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2088         }
2089 }
2090
2091 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2092 {
2093         struct request_queue *q;
2094
2095         lockdep_assert_held(&set->tag_list_lock);
2096
2097         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2098                 blk_mq_freeze_queue(q);
2099                 queue_set_hctx_shared(q, shared);
2100                 blk_mq_unfreeze_queue(q);
2101         }
2102 }
2103
2104 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2105 {
2106         struct blk_mq_tag_set *set = q->tag_set;
2107
2108         mutex_lock(&set->tag_list_lock);
2109         list_del_rcu(&q->tag_set_list);
2110         INIT_LIST_HEAD(&q->tag_set_list);
2111         if (list_is_singular(&set->tag_list)) {
2112                 /* just transitioned to unshared */
2113                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2114                 /* update existing queue */
2115                 blk_mq_update_tag_set_depth(set, false);
2116         }
2117         mutex_unlock(&set->tag_list_lock);
2118
2119         synchronize_rcu();
2120 }
2121
2122 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2123                                      struct request_queue *q)
2124 {
2125         q->tag_set = set;
2126
2127         mutex_lock(&set->tag_list_lock);
2128
2129         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2130         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2131                 set->flags |= BLK_MQ_F_TAG_SHARED;
2132                 /* update existing queue */
2133                 blk_mq_update_tag_set_depth(set, true);
2134         }
2135         if (set->flags & BLK_MQ_F_TAG_SHARED)
2136                 queue_set_hctx_shared(q, true);
2137         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2138
2139         mutex_unlock(&set->tag_list_lock);
2140 }
2141
2142 /*
2143  * It is the actual release handler for mq, but we do it from
2144  * request queue's release handler for avoiding use-after-free
2145  * and headache because q->mq_kobj shouldn't have been introduced,
2146  * but we can't group ctx/kctx kobj without it.
2147  */
2148 void blk_mq_release(struct request_queue *q)
2149 {
2150         struct blk_mq_hw_ctx *hctx;
2151         unsigned int i;
2152
2153         /* hctx kobj stays in hctx */
2154         queue_for_each_hw_ctx(q, hctx, i) {
2155                 if (!hctx)
2156                         continue;
2157                 kobject_put(&hctx->kobj);
2158         }
2159
2160         q->mq_map = NULL;
2161
2162         kfree(q->queue_hw_ctx);
2163
2164         /*
2165          * release .mq_kobj and sw queue's kobject now because
2166          * both share lifetime with request queue.
2167          */
2168         blk_mq_sysfs_deinit(q);
2169
2170         free_percpu(q->queue_ctx);
2171 }
2172
2173 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2174 {
2175         struct request_queue *uninit_q, *q;
2176
2177         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2178         if (!uninit_q)
2179                 return ERR_PTR(-ENOMEM);
2180
2181         q = blk_mq_init_allocated_queue(set, uninit_q);
2182         if (IS_ERR(q))
2183                 blk_cleanup_queue(uninit_q);
2184
2185         return q;
2186 }
2187 EXPORT_SYMBOL(blk_mq_init_queue);
2188
2189 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2190                                                 struct request_queue *q)
2191 {
2192         int i, j;
2193         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2194
2195         blk_mq_sysfs_unregister(q);
2196         for (i = 0; i < set->nr_hw_queues; i++) {
2197                 int node;
2198
2199                 if (hctxs[i])
2200                         continue;
2201
2202                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2203                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2204                                         GFP_KERNEL, node);
2205                 if (!hctxs[i])
2206                         break;
2207
2208                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2209                                                 node)) {
2210                         kfree(hctxs[i]);
2211                         hctxs[i] = NULL;
2212                         break;
2213                 }
2214
2215                 atomic_set(&hctxs[i]->nr_active, 0);
2216                 hctxs[i]->numa_node = node;
2217                 hctxs[i]->queue_num = i;
2218
2219                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2220                         free_cpumask_var(hctxs[i]->cpumask);
2221                         kfree(hctxs[i]);
2222                         hctxs[i] = NULL;
2223                         break;
2224                 }
2225                 blk_mq_hctx_kobj_init(hctxs[i]);
2226         }
2227         for (j = i; j < q->nr_hw_queues; j++) {
2228                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2229
2230                 if (hctx) {
2231                         if (hctx->tags)
2232                                 blk_mq_free_map_and_requests(set, j);
2233                         blk_mq_exit_hctx(q, set, hctx, j);
2234                         kobject_put(&hctx->kobj);
2235                         hctxs[j] = NULL;
2236
2237                 }
2238         }
2239         q->nr_hw_queues = i;
2240         blk_mq_sysfs_register(q);
2241 }
2242
2243 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2244                                                   struct request_queue *q)
2245 {
2246         /* mark the queue as mq asap */
2247         q->mq_ops = set->ops;
2248
2249         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2250                                              blk_mq_poll_stats_bkt,
2251                                              BLK_MQ_POLL_STATS_BKTS, q);
2252         if (!q->poll_cb)
2253                 goto err_exit;
2254
2255         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2256         if (!q->queue_ctx)
2257                 goto err_exit;
2258
2259         /* init q->mq_kobj and sw queues' kobjects */
2260         blk_mq_sysfs_init(q);
2261
2262         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2263                                                 GFP_KERNEL, set->numa_node);
2264         if (!q->queue_hw_ctx)
2265                 goto err_percpu;
2266
2267         q->mq_map = set->mq_map;
2268
2269         blk_mq_realloc_hw_ctxs(set, q);
2270         if (!q->nr_hw_queues)
2271                 goto err_hctxs;
2272
2273         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2274         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2275
2276         q->nr_queues = nr_cpu_ids;
2277
2278         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2279
2280         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2281                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2282
2283         q->sg_reserved_size = INT_MAX;
2284
2285         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2286         INIT_LIST_HEAD(&q->requeue_list);
2287         spin_lock_init(&q->requeue_lock);
2288
2289         blk_queue_make_request(q, blk_mq_make_request);
2290
2291         /*
2292          * Do this after blk_queue_make_request() overrides it...
2293          */
2294         q->nr_requests = set->queue_depth;
2295
2296         /*
2297          * Default to classic polling
2298          */
2299         q->poll_nsec = -1;
2300
2301         if (set->ops->complete)
2302                 blk_queue_softirq_done(q, set->ops->complete);
2303
2304         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2305
2306         get_online_cpus();
2307         mutex_lock(&all_q_mutex);
2308
2309         list_add_tail(&q->all_q_node, &all_q_list);
2310         blk_mq_add_queue_tag_set(set, q);
2311         blk_mq_map_swqueue(q, cpu_online_mask);
2312
2313         mutex_unlock(&all_q_mutex);
2314         put_online_cpus();
2315
2316         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2317                 int ret;
2318
2319                 ret = blk_mq_sched_init(q);
2320                 if (ret)
2321                         return ERR_PTR(ret);
2322         }
2323
2324         return q;
2325
2326 err_hctxs:
2327         kfree(q->queue_hw_ctx);
2328 err_percpu:
2329         free_percpu(q->queue_ctx);
2330 err_exit:
2331         q->mq_ops = NULL;
2332         return ERR_PTR(-ENOMEM);
2333 }
2334 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2335
2336 void blk_mq_free_queue(struct request_queue *q)
2337 {
2338         struct blk_mq_tag_set   *set = q->tag_set;
2339
2340         mutex_lock(&all_q_mutex);
2341         list_del_init(&q->all_q_node);
2342         mutex_unlock(&all_q_mutex);
2343
2344         blk_mq_del_queue_tag_set(q);
2345
2346         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2347 }
2348
2349 /* Basically redo blk_mq_init_queue with queue frozen */
2350 static void blk_mq_queue_reinit(struct request_queue *q,
2351                                 const struct cpumask *online_mask)
2352 {
2353         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2354
2355         blk_mq_debugfs_unregister_hctxs(q);
2356         blk_mq_sysfs_unregister(q);
2357
2358         /*
2359          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2360          * we should change hctx numa_node according to new topology (this
2361          * involves free and re-allocate memory, worthy doing?)
2362          */
2363
2364         blk_mq_map_swqueue(q, online_mask);
2365
2366         blk_mq_sysfs_register(q);
2367         blk_mq_debugfs_register_hctxs(q);
2368 }
2369
2370 /*
2371  * New online cpumask which is going to be set in this hotplug event.
2372  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2373  * one-by-one and dynamically allocating this could result in a failure.
2374  */
2375 static struct cpumask cpuhp_online_new;
2376
2377 static void blk_mq_queue_reinit_work(void)
2378 {
2379         struct request_queue *q;
2380
2381         mutex_lock(&all_q_mutex);
2382         /*
2383          * We need to freeze and reinit all existing queues.  Freezing
2384          * involves synchronous wait for an RCU grace period and doing it
2385          * one by one may take a long time.  Start freezing all queues in
2386          * one swoop and then wait for the completions so that freezing can
2387          * take place in parallel.
2388          */
2389         list_for_each_entry(q, &all_q_list, all_q_node)
2390                 blk_freeze_queue_start(q);
2391         list_for_each_entry(q, &all_q_list, all_q_node)
2392                 blk_mq_freeze_queue_wait(q);
2393
2394         list_for_each_entry(q, &all_q_list, all_q_node)
2395                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2396
2397         list_for_each_entry(q, &all_q_list, all_q_node)
2398                 blk_mq_unfreeze_queue(q);
2399
2400         mutex_unlock(&all_q_mutex);
2401 }
2402
2403 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2404 {
2405         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2406         blk_mq_queue_reinit_work();
2407         return 0;
2408 }
2409
2410 /*
2411  * Before hotadded cpu starts handling requests, new mappings must be
2412  * established.  Otherwise, these requests in hw queue might never be
2413  * dispatched.
2414  *
2415  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2416  * for CPU0, and ctx1 for CPU1).
2417  *
2418  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2419  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2420  *
2421  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2422  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2423  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2424  * ignored.
2425  */
2426 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2427 {
2428         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2429         cpumask_set_cpu(cpu, &cpuhp_online_new);
2430         blk_mq_queue_reinit_work();
2431         return 0;
2432 }
2433
2434 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2435 {
2436         int i;
2437
2438         for (i = 0; i < set->nr_hw_queues; i++)
2439                 if (!__blk_mq_alloc_rq_map(set, i))
2440                         goto out_unwind;
2441
2442         return 0;
2443
2444 out_unwind:
2445         while (--i >= 0)
2446                 blk_mq_free_rq_map(set->tags[i]);
2447
2448         return -ENOMEM;
2449 }
2450
2451 /*
2452  * Allocate the request maps associated with this tag_set. Note that this
2453  * may reduce the depth asked for, if memory is tight. set->queue_depth
2454  * will be updated to reflect the allocated depth.
2455  */
2456 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2457 {
2458         unsigned int depth;
2459         int err;
2460
2461         depth = set->queue_depth;
2462         do {
2463                 err = __blk_mq_alloc_rq_maps(set);
2464                 if (!err)
2465                         break;
2466
2467                 set->queue_depth >>= 1;
2468                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2469                         err = -ENOMEM;
2470                         break;
2471                 }
2472         } while (set->queue_depth);
2473
2474         if (!set->queue_depth || err) {
2475                 pr_err("blk-mq: failed to allocate request map\n");
2476                 return -ENOMEM;
2477         }
2478
2479         if (depth != set->queue_depth)
2480                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2481                                                 depth, set->queue_depth);
2482
2483         return 0;
2484 }
2485
2486 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2487 {
2488         if (set->ops->map_queues)
2489                 return set->ops->map_queues(set);
2490         else
2491                 return blk_mq_map_queues(set);
2492 }
2493
2494 /*
2495  * Alloc a tag set to be associated with one or more request queues.
2496  * May fail with EINVAL for various error conditions. May adjust the
2497  * requested depth down, if if it too large. In that case, the set
2498  * value will be stored in set->queue_depth.
2499  */
2500 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2501 {
2502         int ret;
2503
2504         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2505
2506         if (!set->nr_hw_queues)
2507                 return -EINVAL;
2508         if (!set->queue_depth)
2509                 return -EINVAL;
2510         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2511                 return -EINVAL;
2512
2513         if (!set->ops->queue_rq)
2514                 return -EINVAL;
2515
2516         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2517                 pr_info("blk-mq: reduced tag depth to %u\n",
2518                         BLK_MQ_MAX_DEPTH);
2519                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2520         }
2521
2522         /*
2523          * If a crashdump is active, then we are potentially in a very
2524          * memory constrained environment. Limit us to 1 queue and
2525          * 64 tags to prevent using too much memory.
2526          */
2527         if (is_kdump_kernel()) {
2528                 set->nr_hw_queues = 1;
2529                 set->queue_depth = min(64U, set->queue_depth);
2530         }
2531         /*
2532          * There is no use for more h/w queues than cpus.
2533          */
2534         if (set->nr_hw_queues > nr_cpu_ids)
2535                 set->nr_hw_queues = nr_cpu_ids;
2536
2537         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2538                                  GFP_KERNEL, set->numa_node);
2539         if (!set->tags)
2540                 return -ENOMEM;
2541
2542         ret = -ENOMEM;
2543         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2544                         GFP_KERNEL, set->numa_node);
2545         if (!set->mq_map)
2546                 goto out_free_tags;
2547
2548         ret = blk_mq_update_queue_map(set);
2549         if (ret)
2550                 goto out_free_mq_map;
2551
2552         ret = blk_mq_alloc_rq_maps(set);
2553         if (ret)
2554                 goto out_free_mq_map;
2555
2556         mutex_init(&set->tag_list_lock);
2557         INIT_LIST_HEAD(&set->tag_list);
2558
2559         return 0;
2560
2561 out_free_mq_map:
2562         kfree(set->mq_map);
2563         set->mq_map = NULL;
2564 out_free_tags:
2565         kfree(set->tags);
2566         set->tags = NULL;
2567         return ret;
2568 }
2569 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2570
2571 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2572 {
2573         int i;
2574
2575         for (i = 0; i < nr_cpu_ids; i++)
2576                 blk_mq_free_map_and_requests(set, i);
2577
2578         kfree(set->mq_map);
2579         set->mq_map = NULL;
2580
2581         kfree(set->tags);
2582         set->tags = NULL;
2583 }
2584 EXPORT_SYMBOL(blk_mq_free_tag_set);
2585
2586 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2587 {
2588         struct blk_mq_tag_set *set = q->tag_set;
2589         struct blk_mq_hw_ctx *hctx;
2590         int i, ret;
2591
2592         if (!set)
2593                 return -EINVAL;
2594
2595         blk_mq_freeze_queue(q);
2596
2597         ret = 0;
2598         queue_for_each_hw_ctx(q, hctx, i) {
2599                 if (!hctx->tags)
2600                         continue;
2601                 /*
2602                  * If we're using an MQ scheduler, just update the scheduler
2603                  * queue depth. This is similar to what the old code would do.
2604                  */
2605                 if (!hctx->sched_tags) {
2606                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2607                                                         min(nr, set->queue_depth),
2608                                                         false);
2609                 } else {
2610                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2611                                                         nr, true);
2612                 }
2613                 if (ret)
2614                         break;
2615         }
2616
2617         if (!ret)
2618                 q->nr_requests = nr;
2619
2620         blk_mq_unfreeze_queue(q);
2621
2622         return ret;
2623 }
2624
2625 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2626                                                         int nr_hw_queues)
2627 {
2628         struct request_queue *q;
2629
2630         lockdep_assert_held(&set->tag_list_lock);
2631
2632         if (nr_hw_queues > nr_cpu_ids)
2633                 nr_hw_queues = nr_cpu_ids;
2634         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2635                 return;
2636
2637         list_for_each_entry(q, &set->tag_list, tag_set_list)
2638                 blk_mq_freeze_queue(q);
2639
2640         set->nr_hw_queues = nr_hw_queues;
2641         blk_mq_update_queue_map(set);
2642         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2643                 blk_mq_realloc_hw_ctxs(set, q);
2644                 blk_mq_queue_reinit(q, cpu_online_mask);
2645         }
2646
2647         list_for_each_entry(q, &set->tag_list, tag_set_list)
2648                 blk_mq_unfreeze_queue(q);
2649 }
2650
2651 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2652 {
2653         mutex_lock(&set->tag_list_lock);
2654         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2655         mutex_unlock(&set->tag_list_lock);
2656 }
2657 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2658
2659 /* Enable polling stats and return whether they were already enabled. */
2660 static bool blk_poll_stats_enable(struct request_queue *q)
2661 {
2662         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2663             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2664                 return true;
2665         blk_stat_add_callback(q, q->poll_cb);
2666         return false;
2667 }
2668
2669 static void blk_mq_poll_stats_start(struct request_queue *q)
2670 {
2671         /*
2672          * We don't arm the callback if polling stats are not enabled or the
2673          * callback is already active.
2674          */
2675         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2676             blk_stat_is_active(q->poll_cb))
2677                 return;
2678
2679         blk_stat_activate_msecs(q->poll_cb, 100);
2680 }
2681
2682 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2683 {
2684         struct request_queue *q = cb->data;
2685         int bucket;
2686
2687         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2688                 if (cb->stat[bucket].nr_samples)
2689                         q->poll_stat[bucket] = cb->stat[bucket];
2690         }
2691 }
2692
2693 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2694                                        struct blk_mq_hw_ctx *hctx,
2695                                        struct request *rq)
2696 {
2697         unsigned long ret = 0;
2698         int bucket;
2699
2700         /*
2701          * If stats collection isn't on, don't sleep but turn it on for
2702          * future users
2703          */
2704         if (!blk_poll_stats_enable(q))
2705                 return 0;
2706
2707         /*
2708          * As an optimistic guess, use half of the mean service time
2709          * for this type of request. We can (and should) make this smarter.
2710          * For instance, if the completion latencies are tight, we can
2711          * get closer than just half the mean. This is especially
2712          * important on devices where the completion latencies are longer
2713          * than ~10 usec. We do use the stats for the relevant IO size
2714          * if available which does lead to better estimates.
2715          */
2716         bucket = blk_mq_poll_stats_bkt(rq);
2717         if (bucket < 0)
2718                 return ret;
2719
2720         if (q->poll_stat[bucket].nr_samples)
2721                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2722
2723         return ret;
2724 }
2725
2726 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2727                                      struct blk_mq_hw_ctx *hctx,
2728                                      struct request *rq)
2729 {
2730         struct hrtimer_sleeper hs;
2731         enum hrtimer_mode mode;
2732         unsigned int nsecs;
2733         ktime_t kt;
2734
2735         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2736                 return false;
2737
2738         /*
2739          * poll_nsec can be:
2740          *
2741          * -1:  don't ever hybrid sleep
2742          *  0:  use half of prev avg
2743          * >0:  use this specific value
2744          */
2745         if (q->poll_nsec == -1)
2746                 return false;
2747         else if (q->poll_nsec > 0)
2748                 nsecs = q->poll_nsec;
2749         else
2750                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2751
2752         if (!nsecs)
2753                 return false;
2754
2755         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2756
2757         /*
2758          * This will be replaced with the stats tracking code, using
2759          * 'avg_completion_time / 2' as the pre-sleep target.
2760          */
2761         kt = nsecs;
2762
2763         mode = HRTIMER_MODE_REL;
2764         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2765         hrtimer_set_expires(&hs.timer, kt);
2766
2767         hrtimer_init_sleeper(&hs, current);
2768         do {
2769                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2770                         break;
2771                 set_current_state(TASK_UNINTERRUPTIBLE);
2772                 hrtimer_start_expires(&hs.timer, mode);
2773                 if (hs.task)
2774                         io_schedule();
2775                 hrtimer_cancel(&hs.timer);
2776                 mode = HRTIMER_MODE_ABS;
2777         } while (hs.task && !signal_pending(current));
2778
2779         __set_current_state(TASK_RUNNING);
2780         destroy_hrtimer_on_stack(&hs.timer);
2781         return true;
2782 }
2783
2784 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2785 {
2786         struct request_queue *q = hctx->queue;
2787         long state;
2788
2789         /*
2790          * If we sleep, have the caller restart the poll loop to reset
2791          * the state. Like for the other success return cases, the
2792          * caller is responsible for checking if the IO completed. If
2793          * the IO isn't complete, we'll get called again and will go
2794          * straight to the busy poll loop.
2795          */
2796         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2797                 return true;
2798
2799         hctx->poll_considered++;
2800
2801         state = current->state;
2802         while (!need_resched()) {
2803                 int ret;
2804
2805                 hctx->poll_invoked++;
2806
2807                 ret = q->mq_ops->poll(hctx, rq->tag);
2808                 if (ret > 0) {
2809                         hctx->poll_success++;
2810                         set_current_state(TASK_RUNNING);
2811                         return true;
2812                 }
2813
2814                 if (signal_pending_state(state, current))
2815                         set_current_state(TASK_RUNNING);
2816
2817                 if (current->state == TASK_RUNNING)
2818                         return true;
2819                 if (ret < 0)
2820                         break;
2821                 cpu_relax();
2822         }
2823
2824         return false;
2825 }
2826
2827 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2828 {
2829         struct blk_mq_hw_ctx *hctx;
2830         struct blk_plug *plug;
2831         struct request *rq;
2832
2833         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2834             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2835                 return false;
2836
2837         plug = current->plug;
2838         if (plug)
2839                 blk_flush_plug_list(plug, false);
2840
2841         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2842         if (!blk_qc_t_is_internal(cookie))
2843                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2844         else {
2845                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2846                 /*
2847                  * With scheduling, if the request has completed, we'll
2848                  * get a NULL return here, as we clear the sched tag when
2849                  * that happens. The request still remains valid, like always,
2850                  * so we should be safe with just the NULL check.
2851                  */
2852                 if (!rq)
2853                         return false;
2854         }
2855
2856         return __blk_mq_poll(hctx, rq);
2857 }
2858 EXPORT_SYMBOL_GPL(blk_mq_poll);
2859
2860 void blk_mq_disable_hotplug(void)
2861 {
2862         mutex_lock(&all_q_mutex);
2863 }
2864
2865 void blk_mq_enable_hotplug(void)
2866 {
2867         mutex_unlock(&all_q_mutex);
2868 }
2869
2870 static int __init blk_mq_init(void)
2871 {
2872         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2873                                 blk_mq_hctx_notify_dead);
2874
2875         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2876                                   blk_mq_queue_reinit_prepare,
2877                                   blk_mq_queue_reinit_dead);
2878         return 0;
2879 }
2880 subsys_initcall(blk_mq_init);