]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
blk-mq-sched: unify request prepare methods
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49         int ddir, bytes, bucket;
50
51         ddir = rq_data_dir(rq);
52         bytes = blk_rq_bytes(rq);
53
54         bucket = ddir + 2*(ilog2(bytes) - 9);
55
56         if (bucket < 0)
57                 return -1;
58         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61         return bucket;
62 }
63
64 /*
65  * Check if any of the ctx's have pending work in this hardware queue
66  */
67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69         return sbitmap_any_bit_set(&hctx->ctx_map) ||
70                         !list_empty_careful(&hctx->dispatch) ||
71                         blk_mq_sched_has_work(hctx);
72 }
73
74 /*
75  * Mark this ctx as having pending work in this hardware queue
76  */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78                                      struct blk_mq_ctx *ctx)
79 {
80         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85                                       struct blk_mq_ctx *ctx)
86 {
87         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 }
89
90 void blk_freeze_queue_start(struct request_queue *q)
91 {
92         int freeze_depth;
93
94         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95         if (freeze_depth == 1) {
96                 percpu_ref_kill(&q->q_usage_counter);
97                 blk_mq_run_hw_queues(q, false);
98         }
99 }
100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101
102 void blk_mq_freeze_queue_wait(struct request_queue *q)
103 {
104         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105 }
106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107
108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109                                      unsigned long timeout)
110 {
111         return wait_event_timeout(q->mq_freeze_wq,
112                                         percpu_ref_is_zero(&q->q_usage_counter),
113                                         timeout);
114 }
115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116
117 /*
118  * Guarantee no request is in use, so we can change any data structure of
119  * the queue afterward.
120  */
121 void blk_freeze_queue(struct request_queue *q)
122 {
123         /*
124          * In the !blk_mq case we are only calling this to kill the
125          * q_usage_counter, otherwise this increases the freeze depth
126          * and waits for it to return to zero.  For this reason there is
127          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128          * exported to drivers as the only user for unfreeze is blk_mq.
129          */
130         blk_freeze_queue_start(q);
131         blk_mq_freeze_queue_wait(q);
132 }
133
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136         /*
137          * ...just an alias to keep freeze and unfreeze actions balanced
138          * in the blk_mq_* namespace
139          */
140         blk_freeze_queue(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146         int freeze_depth;
147
148         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149         WARN_ON_ONCE(freeze_depth < 0);
150         if (!freeze_depth) {
151                 percpu_ref_reinit(&q->q_usage_counter);
152                 wake_up_all(&q->mq_freeze_wq);
153         }
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156
157 /**
158  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159  * @q: request queue.
160  *
161  * Note: this function does not prevent that the struct request end_io()
162  * callback function is invoked. Additionally, it is not prevented that
163  * new queue_rq() calls occur unless the queue has been stopped first.
164  */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169         bool rcu = false;
170
171         __blk_mq_stop_hw_queues(q, true);
172
173         queue_for_each_hw_ctx(q, hctx, i) {
174                 if (hctx->flags & BLK_MQ_F_BLOCKING)
175                         synchronize_srcu(&hctx->queue_rq_srcu);
176                 else
177                         rcu = true;
178         }
179         if (rcu)
180                 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 void blk_mq_wake_waiters(struct request_queue *q)
185 {
186         struct blk_mq_hw_ctx *hctx;
187         unsigned int i;
188
189         queue_for_each_hw_ctx(q, hctx, i)
190                 if (blk_mq_hw_queue_mapped(hctx))
191                         blk_mq_tag_wakeup_all(hctx->tags, true);
192
193         /*
194          * If we are called because the queue has now been marked as
195          * dying, we need to ensure that processes currently waiting on
196          * the queue are notified as well.
197          */
198         wake_up_all(&q->mq_freeze_wq);
199 }
200
201 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202 {
203         return blk_mq_has_free_tags(hctx->tags);
204 }
205 EXPORT_SYMBOL(blk_mq_can_queue);
206
207 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
208                 struct request *rq, unsigned int op)
209 {
210         INIT_LIST_HEAD(&rq->queuelist);
211         /* csd/requeue_work/fifo_time is initialized before use */
212         rq->q = q;
213         rq->mq_ctx = ctx;
214         rq->cmd_flags = op;
215         if (blk_queue_io_stat(q))
216                 rq->rq_flags |= RQF_IO_STAT;
217         /* do not touch atomic flags, it needs atomic ops against the timer */
218         rq->cpu = -1;
219         INIT_HLIST_NODE(&rq->hash);
220         RB_CLEAR_NODE(&rq->rb_node);
221         rq->rq_disk = NULL;
222         rq->part = NULL;
223         rq->start_time = jiffies;
224 #ifdef CONFIG_BLK_CGROUP
225         rq->rl = NULL;
226         set_start_time_ns(rq);
227         rq->io_start_time_ns = 0;
228 #endif
229         rq->nr_phys_segments = 0;
230 #if defined(CONFIG_BLK_DEV_INTEGRITY)
231         rq->nr_integrity_segments = 0;
232 #endif
233         rq->special = NULL;
234         /* tag was already set */
235         rq->extra_len = 0;
236
237         INIT_LIST_HEAD(&rq->timeout_list);
238         rq->timeout = 0;
239
240         rq->end_io = NULL;
241         rq->end_io_data = NULL;
242         rq->next_rq = NULL;
243
244         ctx->rq_dispatched[op_is_sync(op)]++;
245 }
246
247 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
248                                        unsigned int op)
249 {
250         struct request *rq;
251         unsigned int tag;
252
253         tag = blk_mq_get_tag(data);
254         if (tag != BLK_MQ_TAG_FAIL) {
255                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
256
257                 rq = tags->static_rqs[tag];
258
259                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
260                         rq->tag = -1;
261                         rq->internal_tag = tag;
262                 } else {
263                         if (blk_mq_tag_busy(data->hctx)) {
264                                 rq->rq_flags = RQF_MQ_INFLIGHT;
265                                 atomic_inc(&data->hctx->nr_active);
266                         }
267                         rq->tag = tag;
268                         rq->internal_tag = -1;
269                         data->hctx->tags->rqs[rq->tag] = rq;
270                 }
271
272                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
273                 return rq;
274         }
275
276         return NULL;
277 }
278 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
279
280 static struct request *blk_mq_get_request(struct request_queue *q,
281                 struct bio *bio, unsigned int op,
282                 struct blk_mq_alloc_data *data)
283 {
284         struct elevator_queue *e = q->elevator;
285         struct request *rq;
286
287         blk_queue_enter_live(q);
288         data->q = q;
289         if (likely(!data->ctx))
290                 data->ctx = blk_mq_get_ctx(q);
291         if (likely(!data->hctx))
292                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
293
294         if (e) {
295                 data->flags |= BLK_MQ_REQ_INTERNAL;
296
297                 /*
298                  * Flush requests are special and go directly to the
299                  * dispatch list.
300                  */
301                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
302                         e->type->ops.mq.limit_depth(op, data);
303         }
304
305         rq = __blk_mq_alloc_request(data, op);
306         if (!rq) {
307                 blk_queue_exit(q);
308                 return NULL;
309         }
310
311         if (!op_is_flush(op)) {
312                 rq->elv.icq = NULL;
313                 if (e && e->type->ops.mq.prepare_request) {
314                         if (e->type->icq_cache && rq_ioc(bio))
315                                 blk_mq_sched_assign_ioc(rq, bio);
316
317                         e->type->ops.mq.prepare_request(rq, bio);
318                         rq->rq_flags |= RQF_ELVPRIV;
319                 }
320         }
321         data->hctx->queued++;
322         return rq;
323 }
324
325 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
326                 unsigned int flags)
327 {
328         struct blk_mq_alloc_data alloc_data = { .flags = flags };
329         struct request *rq;
330         int ret;
331
332         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
333         if (ret)
334                 return ERR_PTR(ret);
335
336         rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
337
338         blk_mq_put_ctx(alloc_data.ctx);
339         blk_queue_exit(q);
340
341         if (!rq)
342                 return ERR_PTR(-EWOULDBLOCK);
343
344         rq->__data_len = 0;
345         rq->__sector = (sector_t) -1;
346         rq->bio = rq->biotail = NULL;
347         return rq;
348 }
349 EXPORT_SYMBOL(blk_mq_alloc_request);
350
351 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
352                 unsigned int flags, unsigned int hctx_idx)
353 {
354         struct blk_mq_alloc_data alloc_data = { .flags = flags };
355         struct request *rq;
356         unsigned int cpu;
357         int ret;
358
359         /*
360          * If the tag allocator sleeps we could get an allocation for a
361          * different hardware context.  No need to complicate the low level
362          * allocator for this for the rare use case of a command tied to
363          * a specific queue.
364          */
365         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
366                 return ERR_PTR(-EINVAL);
367
368         if (hctx_idx >= q->nr_hw_queues)
369                 return ERR_PTR(-EIO);
370
371         ret = blk_queue_enter(q, true);
372         if (ret)
373                 return ERR_PTR(ret);
374
375         /*
376          * Check if the hardware context is actually mapped to anything.
377          * If not tell the caller that it should skip this queue.
378          */
379         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
380         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
381                 blk_queue_exit(q);
382                 return ERR_PTR(-EXDEV);
383         }
384         cpu = cpumask_first(alloc_data.hctx->cpumask);
385         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
386
387         rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
388
389         blk_queue_exit(q);
390
391         if (!rq)
392                 return ERR_PTR(-EWOULDBLOCK);
393
394         return rq;
395 }
396 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
397
398 void blk_mq_free_request(struct request *rq)
399 {
400         struct request_queue *q = rq->q;
401         struct elevator_queue *e = q->elevator;
402         struct blk_mq_ctx *ctx = rq->mq_ctx;
403         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
404         const int sched_tag = rq->internal_tag;
405
406         if (rq->rq_flags & RQF_ELVPRIV) {
407                 if (e && e->type->ops.mq.finish_request)
408                         e->type->ops.mq.finish_request(rq);
409                 if (rq->elv.icq) {
410                         put_io_context(rq->elv.icq->ioc);
411                         rq->elv.icq = NULL;
412                 }
413         }
414
415         ctx->rq_completed[rq_is_sync(rq)]++;
416         if (rq->rq_flags & RQF_MQ_INFLIGHT)
417                 atomic_dec(&hctx->nr_active);
418
419         wbt_done(q->rq_wb, &rq->issue_stat);
420         rq->rq_flags = 0;
421
422         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
423         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
424         if (rq->tag != -1)
425                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
426         if (sched_tag != -1)
427                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
428         blk_mq_sched_restart(hctx);
429         blk_queue_exit(q);
430 }
431 EXPORT_SYMBOL_GPL(blk_mq_free_request);
432
433 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
434 {
435         blk_account_io_done(rq);
436
437         if (rq->end_io) {
438                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
439                 rq->end_io(rq, error);
440         } else {
441                 if (unlikely(blk_bidi_rq(rq)))
442                         blk_mq_free_request(rq->next_rq);
443                 blk_mq_free_request(rq);
444         }
445 }
446 EXPORT_SYMBOL(__blk_mq_end_request);
447
448 void blk_mq_end_request(struct request *rq, blk_status_t error)
449 {
450         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
451                 BUG();
452         __blk_mq_end_request(rq, error);
453 }
454 EXPORT_SYMBOL(blk_mq_end_request);
455
456 static void __blk_mq_complete_request_remote(void *data)
457 {
458         struct request *rq = data;
459
460         rq->q->softirq_done_fn(rq);
461 }
462
463 static void __blk_mq_complete_request(struct request *rq)
464 {
465         struct blk_mq_ctx *ctx = rq->mq_ctx;
466         bool shared = false;
467         int cpu;
468
469         if (rq->internal_tag != -1)
470                 blk_mq_sched_completed_request(rq);
471         if (rq->rq_flags & RQF_STATS) {
472                 blk_mq_poll_stats_start(rq->q);
473                 blk_stat_add(rq);
474         }
475
476         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
477                 rq->q->softirq_done_fn(rq);
478                 return;
479         }
480
481         cpu = get_cpu();
482         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
483                 shared = cpus_share_cache(cpu, ctx->cpu);
484
485         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
486                 rq->csd.func = __blk_mq_complete_request_remote;
487                 rq->csd.info = rq;
488                 rq->csd.flags = 0;
489                 smp_call_function_single_async(ctx->cpu, &rq->csd);
490         } else {
491                 rq->q->softirq_done_fn(rq);
492         }
493         put_cpu();
494 }
495
496 /**
497  * blk_mq_complete_request - end I/O on a request
498  * @rq:         the request being processed
499  *
500  * Description:
501  *      Ends all I/O on a request. It does not handle partial completions.
502  *      The actual completion happens out-of-order, through a IPI handler.
503  **/
504 void blk_mq_complete_request(struct request *rq)
505 {
506         struct request_queue *q = rq->q;
507
508         if (unlikely(blk_should_fake_timeout(q)))
509                 return;
510         if (!blk_mark_rq_complete(rq))
511                 __blk_mq_complete_request(rq);
512 }
513 EXPORT_SYMBOL(blk_mq_complete_request);
514
515 int blk_mq_request_started(struct request *rq)
516 {
517         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
518 }
519 EXPORT_SYMBOL_GPL(blk_mq_request_started);
520
521 void blk_mq_start_request(struct request *rq)
522 {
523         struct request_queue *q = rq->q;
524
525         blk_mq_sched_started_request(rq);
526
527         trace_block_rq_issue(q, rq);
528
529         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
530                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
531                 rq->rq_flags |= RQF_STATS;
532                 wbt_issue(q->rq_wb, &rq->issue_stat);
533         }
534
535         blk_add_timer(rq);
536
537         /*
538          * Ensure that ->deadline is visible before set the started
539          * flag and clear the completed flag.
540          */
541         smp_mb__before_atomic();
542
543         /*
544          * Mark us as started and clear complete. Complete might have been
545          * set if requeue raced with timeout, which then marked it as
546          * complete. So be sure to clear complete again when we start
547          * the request, otherwise we'll ignore the completion event.
548          */
549         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
550                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
551         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
552                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
553
554         if (q->dma_drain_size && blk_rq_bytes(rq)) {
555                 /*
556                  * Make sure space for the drain appears.  We know we can do
557                  * this because max_hw_segments has been adjusted to be one
558                  * fewer than the device can handle.
559                  */
560                 rq->nr_phys_segments++;
561         }
562 }
563 EXPORT_SYMBOL(blk_mq_start_request);
564
565 /*
566  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
567  * flag isn't set yet, so there may be race with timeout handler,
568  * but given rq->deadline is just set in .queue_rq() under
569  * this situation, the race won't be possible in reality because
570  * rq->timeout should be set as big enough to cover the window
571  * between blk_mq_start_request() called from .queue_rq() and
572  * clearing REQ_ATOM_STARTED here.
573  */
574 static void __blk_mq_requeue_request(struct request *rq)
575 {
576         struct request_queue *q = rq->q;
577
578         trace_block_rq_requeue(q, rq);
579         wbt_requeue(q->rq_wb, &rq->issue_stat);
580         blk_mq_sched_requeue_request(rq);
581
582         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
583                 if (q->dma_drain_size && blk_rq_bytes(rq))
584                         rq->nr_phys_segments--;
585         }
586 }
587
588 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
589 {
590         __blk_mq_requeue_request(rq);
591
592         BUG_ON(blk_queued_rq(rq));
593         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
594 }
595 EXPORT_SYMBOL(blk_mq_requeue_request);
596
597 static void blk_mq_requeue_work(struct work_struct *work)
598 {
599         struct request_queue *q =
600                 container_of(work, struct request_queue, requeue_work.work);
601         LIST_HEAD(rq_list);
602         struct request *rq, *next;
603         unsigned long flags;
604
605         spin_lock_irqsave(&q->requeue_lock, flags);
606         list_splice_init(&q->requeue_list, &rq_list);
607         spin_unlock_irqrestore(&q->requeue_lock, flags);
608
609         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
610                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
611                         continue;
612
613                 rq->rq_flags &= ~RQF_SOFTBARRIER;
614                 list_del_init(&rq->queuelist);
615                 blk_mq_sched_insert_request(rq, true, false, false, true);
616         }
617
618         while (!list_empty(&rq_list)) {
619                 rq = list_entry(rq_list.next, struct request, queuelist);
620                 list_del_init(&rq->queuelist);
621                 blk_mq_sched_insert_request(rq, false, false, false, true);
622         }
623
624         blk_mq_run_hw_queues(q, false);
625 }
626
627 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
628                                 bool kick_requeue_list)
629 {
630         struct request_queue *q = rq->q;
631         unsigned long flags;
632
633         /*
634          * We abuse this flag that is otherwise used by the I/O scheduler to
635          * request head insertation from the workqueue.
636          */
637         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
638
639         spin_lock_irqsave(&q->requeue_lock, flags);
640         if (at_head) {
641                 rq->rq_flags |= RQF_SOFTBARRIER;
642                 list_add(&rq->queuelist, &q->requeue_list);
643         } else {
644                 list_add_tail(&rq->queuelist, &q->requeue_list);
645         }
646         spin_unlock_irqrestore(&q->requeue_lock, flags);
647
648         if (kick_requeue_list)
649                 blk_mq_kick_requeue_list(q);
650 }
651 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
652
653 void blk_mq_kick_requeue_list(struct request_queue *q)
654 {
655         kblockd_schedule_delayed_work(&q->requeue_work, 0);
656 }
657 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
658
659 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
660                                     unsigned long msecs)
661 {
662         kblockd_schedule_delayed_work(&q->requeue_work,
663                                       msecs_to_jiffies(msecs));
664 }
665 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
666
667 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
668 {
669         if (tag < tags->nr_tags) {
670                 prefetch(tags->rqs[tag]);
671                 return tags->rqs[tag];
672         }
673
674         return NULL;
675 }
676 EXPORT_SYMBOL(blk_mq_tag_to_rq);
677
678 struct blk_mq_timeout_data {
679         unsigned long next;
680         unsigned int next_set;
681 };
682
683 void blk_mq_rq_timed_out(struct request *req, bool reserved)
684 {
685         const struct blk_mq_ops *ops = req->q->mq_ops;
686         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
687
688         /*
689          * We know that complete is set at this point. If STARTED isn't set
690          * anymore, then the request isn't active and the "timeout" should
691          * just be ignored. This can happen due to the bitflag ordering.
692          * Timeout first checks if STARTED is set, and if it is, assumes
693          * the request is active. But if we race with completion, then
694          * both flags will get cleared. So check here again, and ignore
695          * a timeout event with a request that isn't active.
696          */
697         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
698                 return;
699
700         if (ops->timeout)
701                 ret = ops->timeout(req, reserved);
702
703         switch (ret) {
704         case BLK_EH_HANDLED:
705                 __blk_mq_complete_request(req);
706                 break;
707         case BLK_EH_RESET_TIMER:
708                 blk_add_timer(req);
709                 blk_clear_rq_complete(req);
710                 break;
711         case BLK_EH_NOT_HANDLED:
712                 break;
713         default:
714                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
715                 break;
716         }
717 }
718
719 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
720                 struct request *rq, void *priv, bool reserved)
721 {
722         struct blk_mq_timeout_data *data = priv;
723
724         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
725                 return;
726
727         /*
728          * The rq being checked may have been freed and reallocated
729          * out already here, we avoid this race by checking rq->deadline
730          * and REQ_ATOM_COMPLETE flag together:
731          *
732          * - if rq->deadline is observed as new value because of
733          *   reusing, the rq won't be timed out because of timing.
734          * - if rq->deadline is observed as previous value,
735          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
736          *   because we put a barrier between setting rq->deadline
737          *   and clearing the flag in blk_mq_start_request(), so
738          *   this rq won't be timed out too.
739          */
740         if (time_after_eq(jiffies, rq->deadline)) {
741                 if (!blk_mark_rq_complete(rq))
742                         blk_mq_rq_timed_out(rq, reserved);
743         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
744                 data->next = rq->deadline;
745                 data->next_set = 1;
746         }
747 }
748
749 static void blk_mq_timeout_work(struct work_struct *work)
750 {
751         struct request_queue *q =
752                 container_of(work, struct request_queue, timeout_work);
753         struct blk_mq_timeout_data data = {
754                 .next           = 0,
755                 .next_set       = 0,
756         };
757         int i;
758
759         /* A deadlock might occur if a request is stuck requiring a
760          * timeout at the same time a queue freeze is waiting
761          * completion, since the timeout code would not be able to
762          * acquire the queue reference here.
763          *
764          * That's why we don't use blk_queue_enter here; instead, we use
765          * percpu_ref_tryget directly, because we need to be able to
766          * obtain a reference even in the short window between the queue
767          * starting to freeze, by dropping the first reference in
768          * blk_freeze_queue_start, and the moment the last request is
769          * consumed, marked by the instant q_usage_counter reaches
770          * zero.
771          */
772         if (!percpu_ref_tryget(&q->q_usage_counter))
773                 return;
774
775         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
776
777         if (data.next_set) {
778                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
779                 mod_timer(&q->timeout, data.next);
780         } else {
781                 struct blk_mq_hw_ctx *hctx;
782
783                 queue_for_each_hw_ctx(q, hctx, i) {
784                         /* the hctx may be unmapped, so check it here */
785                         if (blk_mq_hw_queue_mapped(hctx))
786                                 blk_mq_tag_idle(hctx);
787                 }
788         }
789         blk_queue_exit(q);
790 }
791
792 struct flush_busy_ctx_data {
793         struct blk_mq_hw_ctx *hctx;
794         struct list_head *list;
795 };
796
797 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
798 {
799         struct flush_busy_ctx_data *flush_data = data;
800         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
801         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
802
803         sbitmap_clear_bit(sb, bitnr);
804         spin_lock(&ctx->lock);
805         list_splice_tail_init(&ctx->rq_list, flush_data->list);
806         spin_unlock(&ctx->lock);
807         return true;
808 }
809
810 /*
811  * Process software queues that have been marked busy, splicing them
812  * to the for-dispatch
813  */
814 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
815 {
816         struct flush_busy_ctx_data data = {
817                 .hctx = hctx,
818                 .list = list,
819         };
820
821         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
822 }
823 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
824
825 static inline unsigned int queued_to_index(unsigned int queued)
826 {
827         if (!queued)
828                 return 0;
829
830         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
831 }
832
833 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
834                            bool wait)
835 {
836         struct blk_mq_alloc_data data = {
837                 .q = rq->q,
838                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
839                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
840         };
841
842         might_sleep_if(wait);
843
844         if (rq->tag != -1)
845                 goto done;
846
847         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
848                 data.flags |= BLK_MQ_REQ_RESERVED;
849
850         rq->tag = blk_mq_get_tag(&data);
851         if (rq->tag >= 0) {
852                 if (blk_mq_tag_busy(data.hctx)) {
853                         rq->rq_flags |= RQF_MQ_INFLIGHT;
854                         atomic_inc(&data.hctx->nr_active);
855                 }
856                 data.hctx->tags->rqs[rq->tag] = rq;
857         }
858
859 done:
860         if (hctx)
861                 *hctx = data.hctx;
862         return rq->tag != -1;
863 }
864
865 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
866                                     struct request *rq)
867 {
868         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
869         rq->tag = -1;
870
871         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
872                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
873                 atomic_dec(&hctx->nr_active);
874         }
875 }
876
877 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
878                                        struct request *rq)
879 {
880         if (rq->tag == -1 || rq->internal_tag == -1)
881                 return;
882
883         __blk_mq_put_driver_tag(hctx, rq);
884 }
885
886 static void blk_mq_put_driver_tag(struct request *rq)
887 {
888         struct blk_mq_hw_ctx *hctx;
889
890         if (rq->tag == -1 || rq->internal_tag == -1)
891                 return;
892
893         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
894         __blk_mq_put_driver_tag(hctx, rq);
895 }
896
897 /*
898  * If we fail getting a driver tag because all the driver tags are already
899  * assigned and on the dispatch list, BUT the first entry does not have a
900  * tag, then we could deadlock. For that case, move entries with assigned
901  * driver tags to the front, leaving the set of tagged requests in the
902  * same order, and the untagged set in the same order.
903  */
904 static bool reorder_tags_to_front(struct list_head *list)
905 {
906         struct request *rq, *tmp, *first = NULL;
907
908         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
909                 if (rq == first)
910                         break;
911                 if (rq->tag != -1) {
912                         list_move(&rq->queuelist, list);
913                         if (!first)
914                                 first = rq;
915                 }
916         }
917
918         return first != NULL;
919 }
920
921 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
922                                 void *key)
923 {
924         struct blk_mq_hw_ctx *hctx;
925
926         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
927
928         list_del(&wait->task_list);
929         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
930         blk_mq_run_hw_queue(hctx, true);
931         return 1;
932 }
933
934 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
935 {
936         struct sbq_wait_state *ws;
937
938         /*
939          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
940          * The thread which wins the race to grab this bit adds the hardware
941          * queue to the wait queue.
942          */
943         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
944             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
945                 return false;
946
947         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
948         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
949
950         /*
951          * As soon as this returns, it's no longer safe to fiddle with
952          * hctx->dispatch_wait, since a completion can wake up the wait queue
953          * and unlock the bit.
954          */
955         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
956         return true;
957 }
958
959 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
960 {
961         struct blk_mq_hw_ctx *hctx;
962         struct request *rq;
963         int errors, queued;
964
965         if (list_empty(list))
966                 return false;
967
968         /*
969          * Now process all the entries, sending them to the driver.
970          */
971         errors = queued = 0;
972         do {
973                 struct blk_mq_queue_data bd;
974                 blk_status_t ret;
975
976                 rq = list_first_entry(list, struct request, queuelist);
977                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
978                         if (!queued && reorder_tags_to_front(list))
979                                 continue;
980
981                         /*
982                          * The initial allocation attempt failed, so we need to
983                          * rerun the hardware queue when a tag is freed.
984                          */
985                         if (!blk_mq_dispatch_wait_add(hctx))
986                                 break;
987
988                         /*
989                          * It's possible that a tag was freed in the window
990                          * between the allocation failure and adding the
991                          * hardware queue to the wait queue.
992                          */
993                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
994                                 break;
995                 }
996
997                 list_del_init(&rq->queuelist);
998
999                 bd.rq = rq;
1000
1001                 /*
1002                  * Flag last if we have no more requests, or if we have more
1003                  * but can't assign a driver tag to it.
1004                  */
1005                 if (list_empty(list))
1006                         bd.last = true;
1007                 else {
1008                         struct request *nxt;
1009
1010                         nxt = list_first_entry(list, struct request, queuelist);
1011                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1012                 }
1013
1014                 ret = q->mq_ops->queue_rq(hctx, &bd);
1015                 if (ret == BLK_STS_RESOURCE) {
1016                         blk_mq_put_driver_tag_hctx(hctx, rq);
1017                         list_add(&rq->queuelist, list);
1018                         __blk_mq_requeue_request(rq);
1019                         break;
1020                 }
1021
1022                 if (unlikely(ret != BLK_STS_OK)) {
1023                         errors++;
1024                         blk_mq_end_request(rq, BLK_STS_IOERR);
1025                         continue;
1026                 }
1027
1028                 queued++;
1029         } while (!list_empty(list));
1030
1031         hctx->dispatched[queued_to_index(queued)]++;
1032
1033         /*
1034          * Any items that need requeuing? Stuff them into hctx->dispatch,
1035          * that is where we will continue on next queue run.
1036          */
1037         if (!list_empty(list)) {
1038                 /*
1039                  * If an I/O scheduler has been configured and we got a driver
1040                  * tag for the next request already, free it again.
1041                  */
1042                 rq = list_first_entry(list, struct request, queuelist);
1043                 blk_mq_put_driver_tag(rq);
1044
1045                 spin_lock(&hctx->lock);
1046                 list_splice_init(list, &hctx->dispatch);
1047                 spin_unlock(&hctx->lock);
1048
1049                 /*
1050                  * If SCHED_RESTART was set by the caller of this function and
1051                  * it is no longer set that means that it was cleared by another
1052                  * thread and hence that a queue rerun is needed.
1053                  *
1054                  * If TAG_WAITING is set that means that an I/O scheduler has
1055                  * been configured and another thread is waiting for a driver
1056                  * tag. To guarantee fairness, do not rerun this hardware queue
1057                  * but let the other thread grab the driver tag.
1058                  *
1059                  * If no I/O scheduler has been configured it is possible that
1060                  * the hardware queue got stopped and restarted before requests
1061                  * were pushed back onto the dispatch list. Rerun the queue to
1062                  * avoid starvation. Notes:
1063                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1064                  *   been stopped before rerunning a queue.
1065                  * - Some but not all block drivers stop a queue before
1066                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1067                  *   and dm-rq.
1068                  */
1069                 if (!blk_mq_sched_needs_restart(hctx) &&
1070                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1071                         blk_mq_run_hw_queue(hctx, true);
1072         }
1073
1074         return (queued + errors) != 0;
1075 }
1076
1077 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1078 {
1079         int srcu_idx;
1080
1081         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1082                 cpu_online(hctx->next_cpu));
1083
1084         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1085                 rcu_read_lock();
1086                 blk_mq_sched_dispatch_requests(hctx);
1087                 rcu_read_unlock();
1088         } else {
1089                 might_sleep();
1090
1091                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1092                 blk_mq_sched_dispatch_requests(hctx);
1093                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1094         }
1095 }
1096
1097 /*
1098  * It'd be great if the workqueue API had a way to pass
1099  * in a mask and had some smarts for more clever placement.
1100  * For now we just round-robin here, switching for every
1101  * BLK_MQ_CPU_WORK_BATCH queued items.
1102  */
1103 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1104 {
1105         if (hctx->queue->nr_hw_queues == 1)
1106                 return WORK_CPU_UNBOUND;
1107
1108         if (--hctx->next_cpu_batch <= 0) {
1109                 int next_cpu;
1110
1111                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1112                 if (next_cpu >= nr_cpu_ids)
1113                         next_cpu = cpumask_first(hctx->cpumask);
1114
1115                 hctx->next_cpu = next_cpu;
1116                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1117         }
1118
1119         return hctx->next_cpu;
1120 }
1121
1122 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1123                                         unsigned long msecs)
1124 {
1125         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1126                      !blk_mq_hw_queue_mapped(hctx)))
1127                 return;
1128
1129         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1130                 int cpu = get_cpu();
1131                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1132                         __blk_mq_run_hw_queue(hctx);
1133                         put_cpu();
1134                         return;
1135                 }
1136
1137                 put_cpu();
1138         }
1139
1140         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1141                                          &hctx->run_work,
1142                                          msecs_to_jiffies(msecs));
1143 }
1144
1145 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1146 {
1147         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1148 }
1149 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1150
1151 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1152 {
1153         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1154 }
1155 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1156
1157 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1158 {
1159         struct blk_mq_hw_ctx *hctx;
1160         int i;
1161
1162         queue_for_each_hw_ctx(q, hctx, i) {
1163                 if (!blk_mq_hctx_has_pending(hctx) ||
1164                     blk_mq_hctx_stopped(hctx))
1165                         continue;
1166
1167                 blk_mq_run_hw_queue(hctx, async);
1168         }
1169 }
1170 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1171
1172 /**
1173  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1174  * @q: request queue.
1175  *
1176  * The caller is responsible for serializing this function against
1177  * blk_mq_{start,stop}_hw_queue().
1178  */
1179 bool blk_mq_queue_stopped(struct request_queue *q)
1180 {
1181         struct blk_mq_hw_ctx *hctx;
1182         int i;
1183
1184         queue_for_each_hw_ctx(q, hctx, i)
1185                 if (blk_mq_hctx_stopped(hctx))
1186                         return true;
1187
1188         return false;
1189 }
1190 EXPORT_SYMBOL(blk_mq_queue_stopped);
1191
1192 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1193 {
1194         if (sync)
1195                 cancel_delayed_work_sync(&hctx->run_work);
1196         else
1197                 cancel_delayed_work(&hctx->run_work);
1198
1199         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1200 }
1201
1202 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1203 {
1204         __blk_mq_stop_hw_queue(hctx, false);
1205 }
1206 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1207
1208 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1209 {
1210         struct blk_mq_hw_ctx *hctx;
1211         int i;
1212
1213         queue_for_each_hw_ctx(q, hctx, i)
1214                 __blk_mq_stop_hw_queue(hctx, sync);
1215 }
1216
1217 void blk_mq_stop_hw_queues(struct request_queue *q)
1218 {
1219         __blk_mq_stop_hw_queues(q, false);
1220 }
1221 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1222
1223 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1224 {
1225         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1226
1227         blk_mq_run_hw_queue(hctx, false);
1228 }
1229 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1230
1231 void blk_mq_start_hw_queues(struct request_queue *q)
1232 {
1233         struct blk_mq_hw_ctx *hctx;
1234         int i;
1235
1236         queue_for_each_hw_ctx(q, hctx, i)
1237                 blk_mq_start_hw_queue(hctx);
1238 }
1239 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1240
1241 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1242 {
1243         if (!blk_mq_hctx_stopped(hctx))
1244                 return;
1245
1246         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1247         blk_mq_run_hw_queue(hctx, async);
1248 }
1249 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1250
1251 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1252 {
1253         struct blk_mq_hw_ctx *hctx;
1254         int i;
1255
1256         queue_for_each_hw_ctx(q, hctx, i)
1257                 blk_mq_start_stopped_hw_queue(hctx, async);
1258 }
1259 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1260
1261 static void blk_mq_run_work_fn(struct work_struct *work)
1262 {
1263         struct blk_mq_hw_ctx *hctx;
1264
1265         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1266
1267         /*
1268          * If we are stopped, don't run the queue. The exception is if
1269          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1270          * the STOPPED bit and run it.
1271          */
1272         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1273                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1274                         return;
1275
1276                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1277                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1278         }
1279
1280         __blk_mq_run_hw_queue(hctx);
1281 }
1282
1283
1284 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1285 {
1286         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1287                 return;
1288
1289         /*
1290          * Stop the hw queue, then modify currently delayed work.
1291          * This should prevent us from running the queue prematurely.
1292          * Mark the queue as auto-clearing STOPPED when it runs.
1293          */
1294         blk_mq_stop_hw_queue(hctx);
1295         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1296         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1297                                         &hctx->run_work,
1298                                         msecs_to_jiffies(msecs));
1299 }
1300 EXPORT_SYMBOL(blk_mq_delay_queue);
1301
1302 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1303                                             struct request *rq,
1304                                             bool at_head)
1305 {
1306         struct blk_mq_ctx *ctx = rq->mq_ctx;
1307
1308         trace_block_rq_insert(hctx->queue, rq);
1309
1310         if (at_head)
1311                 list_add(&rq->queuelist, &ctx->rq_list);
1312         else
1313                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1314 }
1315
1316 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1317                              bool at_head)
1318 {
1319         struct blk_mq_ctx *ctx = rq->mq_ctx;
1320
1321         __blk_mq_insert_req_list(hctx, rq, at_head);
1322         blk_mq_hctx_mark_pending(hctx, ctx);
1323 }
1324
1325 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1326                             struct list_head *list)
1327
1328 {
1329         /*
1330          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1331          * offline now
1332          */
1333         spin_lock(&ctx->lock);
1334         while (!list_empty(list)) {
1335                 struct request *rq;
1336
1337                 rq = list_first_entry(list, struct request, queuelist);
1338                 BUG_ON(rq->mq_ctx != ctx);
1339                 list_del_init(&rq->queuelist);
1340                 __blk_mq_insert_req_list(hctx, rq, false);
1341         }
1342         blk_mq_hctx_mark_pending(hctx, ctx);
1343         spin_unlock(&ctx->lock);
1344 }
1345
1346 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1347 {
1348         struct request *rqa = container_of(a, struct request, queuelist);
1349         struct request *rqb = container_of(b, struct request, queuelist);
1350
1351         return !(rqa->mq_ctx < rqb->mq_ctx ||
1352                  (rqa->mq_ctx == rqb->mq_ctx &&
1353                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1354 }
1355
1356 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1357 {
1358         struct blk_mq_ctx *this_ctx;
1359         struct request_queue *this_q;
1360         struct request *rq;
1361         LIST_HEAD(list);
1362         LIST_HEAD(ctx_list);
1363         unsigned int depth;
1364
1365         list_splice_init(&plug->mq_list, &list);
1366
1367         list_sort(NULL, &list, plug_ctx_cmp);
1368
1369         this_q = NULL;
1370         this_ctx = NULL;
1371         depth = 0;
1372
1373         while (!list_empty(&list)) {
1374                 rq = list_entry_rq(list.next);
1375                 list_del_init(&rq->queuelist);
1376                 BUG_ON(!rq->q);
1377                 if (rq->mq_ctx != this_ctx) {
1378                         if (this_ctx) {
1379                                 trace_block_unplug(this_q, depth, from_schedule);
1380                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1381                                                                 &ctx_list,
1382                                                                 from_schedule);
1383                         }
1384
1385                         this_ctx = rq->mq_ctx;
1386                         this_q = rq->q;
1387                         depth = 0;
1388                 }
1389
1390                 depth++;
1391                 list_add_tail(&rq->queuelist, &ctx_list);
1392         }
1393
1394         /*
1395          * If 'this_ctx' is set, we know we have entries to complete
1396          * on 'ctx_list'. Do those.
1397          */
1398         if (this_ctx) {
1399                 trace_block_unplug(this_q, depth, from_schedule);
1400                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1401                                                 from_schedule);
1402         }
1403 }
1404
1405 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1406 {
1407         blk_init_request_from_bio(rq, bio);
1408
1409         blk_account_io_start(rq, true);
1410 }
1411
1412 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1413 {
1414         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1415                 !blk_queue_nomerges(hctx->queue);
1416 }
1417
1418 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1419                                    struct blk_mq_ctx *ctx,
1420                                    struct request *rq)
1421 {
1422         spin_lock(&ctx->lock);
1423         __blk_mq_insert_request(hctx, rq, false);
1424         spin_unlock(&ctx->lock);
1425 }
1426
1427 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1428 {
1429         if (rq->tag != -1)
1430                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1431
1432         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1433 }
1434
1435 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1436                                         struct request *rq,
1437                                         blk_qc_t *cookie, bool may_sleep)
1438 {
1439         struct request_queue *q = rq->q;
1440         struct blk_mq_queue_data bd = {
1441                 .rq = rq,
1442                 .last = true,
1443         };
1444         blk_qc_t new_cookie;
1445         blk_status_t ret;
1446         bool run_queue = true;
1447
1448         if (blk_mq_hctx_stopped(hctx)) {
1449                 run_queue = false;
1450                 goto insert;
1451         }
1452
1453         if (q->elevator)
1454                 goto insert;
1455
1456         if (!blk_mq_get_driver_tag(rq, NULL, false))
1457                 goto insert;
1458
1459         new_cookie = request_to_qc_t(hctx, rq);
1460
1461         /*
1462          * For OK queue, we are done. For error, kill it. Any other
1463          * error (busy), just add it to our list as we previously
1464          * would have done
1465          */
1466         ret = q->mq_ops->queue_rq(hctx, &bd);
1467         switch (ret) {
1468         case BLK_STS_OK:
1469                 *cookie = new_cookie;
1470                 return;
1471         case BLK_STS_RESOURCE:
1472                 __blk_mq_requeue_request(rq);
1473                 goto insert;
1474         default:
1475                 *cookie = BLK_QC_T_NONE;
1476                 blk_mq_end_request(rq, ret);
1477                 return;
1478         }
1479
1480 insert:
1481         blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1482 }
1483
1484 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1485                 struct request *rq, blk_qc_t *cookie)
1486 {
1487         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1488                 rcu_read_lock();
1489                 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1490                 rcu_read_unlock();
1491         } else {
1492                 unsigned int srcu_idx;
1493
1494                 might_sleep();
1495
1496                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1497                 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1498                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1499         }
1500 }
1501
1502 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1503 {
1504         const int is_sync = op_is_sync(bio->bi_opf);
1505         const int is_flush_fua = op_is_flush(bio->bi_opf);
1506         struct blk_mq_alloc_data data = { .flags = 0 };
1507         struct request *rq;
1508         unsigned int request_count = 0;
1509         struct blk_plug *plug;
1510         struct request *same_queue_rq = NULL;
1511         blk_qc_t cookie;
1512         unsigned int wb_acct;
1513
1514         blk_queue_bounce(q, &bio);
1515
1516         blk_queue_split(q, &bio, q->bio_split);
1517
1518         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1519                 bio_io_error(bio);
1520                 return BLK_QC_T_NONE;
1521         }
1522
1523         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1524             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1525                 return BLK_QC_T_NONE;
1526
1527         if (blk_mq_sched_bio_merge(q, bio))
1528                 return BLK_QC_T_NONE;
1529
1530         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1531
1532         trace_block_getrq(q, bio, bio->bi_opf);
1533
1534         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1535         if (unlikely(!rq)) {
1536                 __wbt_done(q->rq_wb, wb_acct);
1537                 return BLK_QC_T_NONE;
1538         }
1539
1540         wbt_track(&rq->issue_stat, wb_acct);
1541
1542         cookie = request_to_qc_t(data.hctx, rq);
1543
1544         plug = current->plug;
1545         if (unlikely(is_flush_fua)) {
1546                 blk_mq_put_ctx(data.ctx);
1547                 blk_mq_bio_to_request(rq, bio);
1548                 if (q->elevator) {
1549                         blk_mq_sched_insert_request(rq, false, true, true,
1550                                         true);
1551                 } else {
1552                         blk_insert_flush(rq);
1553                         blk_mq_run_hw_queue(data.hctx, true);
1554                 }
1555         } else if (plug && q->nr_hw_queues == 1) {
1556                 struct request *last = NULL;
1557
1558                 blk_mq_put_ctx(data.ctx);
1559                 blk_mq_bio_to_request(rq, bio);
1560
1561                 /*
1562                  * @request_count may become stale because of schedule
1563                  * out, so check the list again.
1564                  */
1565                 if (list_empty(&plug->mq_list))
1566                         request_count = 0;
1567                 else if (blk_queue_nomerges(q))
1568                         request_count = blk_plug_queued_count(q);
1569
1570                 if (!request_count)
1571                         trace_block_plug(q);
1572                 else
1573                         last = list_entry_rq(plug->mq_list.prev);
1574
1575                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1576                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1577                         blk_flush_plug_list(plug, false);
1578                         trace_block_plug(q);
1579                 }
1580
1581                 list_add_tail(&rq->queuelist, &plug->mq_list);
1582         } else if (plug && !blk_queue_nomerges(q)) {
1583                 blk_mq_bio_to_request(rq, bio);
1584
1585                 /*
1586                  * We do limited plugging. If the bio can be merged, do that.
1587                  * Otherwise the existing request in the plug list will be
1588                  * issued. So the plug list will have one request at most
1589                  * The plug list might get flushed before this. If that happens,
1590                  * the plug list is empty, and same_queue_rq is invalid.
1591                  */
1592                 if (list_empty(&plug->mq_list))
1593                         same_queue_rq = NULL;
1594                 if (same_queue_rq)
1595                         list_del_init(&same_queue_rq->queuelist);
1596                 list_add_tail(&rq->queuelist, &plug->mq_list);
1597
1598                 blk_mq_put_ctx(data.ctx);
1599
1600                 if (same_queue_rq) {
1601                         data.hctx = blk_mq_map_queue(q,
1602                                         same_queue_rq->mq_ctx->cpu);
1603                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1604                                         &cookie);
1605                 }
1606         } else if (q->nr_hw_queues > 1 && is_sync) {
1607                 blk_mq_put_ctx(data.ctx);
1608                 blk_mq_bio_to_request(rq, bio);
1609                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1610         } else if (q->elevator) {
1611                 blk_mq_put_ctx(data.ctx);
1612                 blk_mq_bio_to_request(rq, bio);
1613                 blk_mq_sched_insert_request(rq, false, true, true, true);
1614         } else {
1615                 blk_mq_put_ctx(data.ctx);
1616                 blk_mq_bio_to_request(rq, bio);
1617                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1618                 blk_mq_run_hw_queue(data.hctx, true);
1619         }
1620
1621         return cookie;
1622 }
1623
1624 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1625                      unsigned int hctx_idx)
1626 {
1627         struct page *page;
1628
1629         if (tags->rqs && set->ops->exit_request) {
1630                 int i;
1631
1632                 for (i = 0; i < tags->nr_tags; i++) {
1633                         struct request *rq = tags->static_rqs[i];
1634
1635                         if (!rq)
1636                                 continue;
1637                         set->ops->exit_request(set, rq, hctx_idx);
1638                         tags->static_rqs[i] = NULL;
1639                 }
1640         }
1641
1642         while (!list_empty(&tags->page_list)) {
1643                 page = list_first_entry(&tags->page_list, struct page, lru);
1644                 list_del_init(&page->lru);
1645                 /*
1646                  * Remove kmemleak object previously allocated in
1647                  * blk_mq_init_rq_map().
1648                  */
1649                 kmemleak_free(page_address(page));
1650                 __free_pages(page, page->private);
1651         }
1652 }
1653
1654 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1655 {
1656         kfree(tags->rqs);
1657         tags->rqs = NULL;
1658         kfree(tags->static_rqs);
1659         tags->static_rqs = NULL;
1660
1661         blk_mq_free_tags(tags);
1662 }
1663
1664 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1665                                         unsigned int hctx_idx,
1666                                         unsigned int nr_tags,
1667                                         unsigned int reserved_tags)
1668 {
1669         struct blk_mq_tags *tags;
1670         int node;
1671
1672         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1673         if (node == NUMA_NO_NODE)
1674                 node = set->numa_node;
1675
1676         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1677                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1678         if (!tags)
1679                 return NULL;
1680
1681         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1682                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1683                                  node);
1684         if (!tags->rqs) {
1685                 blk_mq_free_tags(tags);
1686                 return NULL;
1687         }
1688
1689         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1690                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1691                                  node);
1692         if (!tags->static_rqs) {
1693                 kfree(tags->rqs);
1694                 blk_mq_free_tags(tags);
1695                 return NULL;
1696         }
1697
1698         return tags;
1699 }
1700
1701 static size_t order_to_size(unsigned int order)
1702 {
1703         return (size_t)PAGE_SIZE << order;
1704 }
1705
1706 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1707                      unsigned int hctx_idx, unsigned int depth)
1708 {
1709         unsigned int i, j, entries_per_page, max_order = 4;
1710         size_t rq_size, left;
1711         int node;
1712
1713         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1714         if (node == NUMA_NO_NODE)
1715                 node = set->numa_node;
1716
1717         INIT_LIST_HEAD(&tags->page_list);
1718
1719         /*
1720          * rq_size is the size of the request plus driver payload, rounded
1721          * to the cacheline size
1722          */
1723         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1724                                 cache_line_size());
1725         left = rq_size * depth;
1726
1727         for (i = 0; i < depth; ) {
1728                 int this_order = max_order;
1729                 struct page *page;
1730                 int to_do;
1731                 void *p;
1732
1733                 while (this_order && left < order_to_size(this_order - 1))
1734                         this_order--;
1735
1736                 do {
1737                         page = alloc_pages_node(node,
1738                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1739                                 this_order);
1740                         if (page)
1741                                 break;
1742                         if (!this_order--)
1743                                 break;
1744                         if (order_to_size(this_order) < rq_size)
1745                                 break;
1746                 } while (1);
1747
1748                 if (!page)
1749                         goto fail;
1750
1751                 page->private = this_order;
1752                 list_add_tail(&page->lru, &tags->page_list);
1753
1754                 p = page_address(page);
1755                 /*
1756                  * Allow kmemleak to scan these pages as they contain pointers
1757                  * to additional allocations like via ops->init_request().
1758                  */
1759                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1760                 entries_per_page = order_to_size(this_order) / rq_size;
1761                 to_do = min(entries_per_page, depth - i);
1762                 left -= to_do * rq_size;
1763                 for (j = 0; j < to_do; j++) {
1764                         struct request *rq = p;
1765
1766                         tags->static_rqs[i] = rq;
1767                         if (set->ops->init_request) {
1768                                 if (set->ops->init_request(set, rq, hctx_idx,
1769                                                 node)) {
1770                                         tags->static_rqs[i] = NULL;
1771                                         goto fail;
1772                                 }
1773                         }
1774
1775                         p += rq_size;
1776                         i++;
1777                 }
1778         }
1779         return 0;
1780
1781 fail:
1782         blk_mq_free_rqs(set, tags, hctx_idx);
1783         return -ENOMEM;
1784 }
1785
1786 /*
1787  * 'cpu' is going away. splice any existing rq_list entries from this
1788  * software queue to the hw queue dispatch list, and ensure that it
1789  * gets run.
1790  */
1791 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1792 {
1793         struct blk_mq_hw_ctx *hctx;
1794         struct blk_mq_ctx *ctx;
1795         LIST_HEAD(tmp);
1796
1797         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1798         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1799
1800         spin_lock(&ctx->lock);
1801         if (!list_empty(&ctx->rq_list)) {
1802                 list_splice_init(&ctx->rq_list, &tmp);
1803                 blk_mq_hctx_clear_pending(hctx, ctx);
1804         }
1805         spin_unlock(&ctx->lock);
1806
1807         if (list_empty(&tmp))
1808                 return 0;
1809
1810         spin_lock(&hctx->lock);
1811         list_splice_tail_init(&tmp, &hctx->dispatch);
1812         spin_unlock(&hctx->lock);
1813
1814         blk_mq_run_hw_queue(hctx, true);
1815         return 0;
1816 }
1817
1818 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1819 {
1820         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1821                                             &hctx->cpuhp_dead);
1822 }
1823
1824 /* hctx->ctxs will be freed in queue's release handler */
1825 static void blk_mq_exit_hctx(struct request_queue *q,
1826                 struct blk_mq_tag_set *set,
1827                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1828 {
1829         blk_mq_debugfs_unregister_hctx(hctx);
1830
1831         blk_mq_tag_idle(hctx);
1832
1833         if (set->ops->exit_request)
1834                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1835
1836         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1837
1838         if (set->ops->exit_hctx)
1839                 set->ops->exit_hctx(hctx, hctx_idx);
1840
1841         if (hctx->flags & BLK_MQ_F_BLOCKING)
1842                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1843
1844         blk_mq_remove_cpuhp(hctx);
1845         blk_free_flush_queue(hctx->fq);
1846         sbitmap_free(&hctx->ctx_map);
1847 }
1848
1849 static void blk_mq_exit_hw_queues(struct request_queue *q,
1850                 struct blk_mq_tag_set *set, int nr_queue)
1851 {
1852         struct blk_mq_hw_ctx *hctx;
1853         unsigned int i;
1854
1855         queue_for_each_hw_ctx(q, hctx, i) {
1856                 if (i == nr_queue)
1857                         break;
1858                 blk_mq_exit_hctx(q, set, hctx, i);
1859         }
1860 }
1861
1862 static int blk_mq_init_hctx(struct request_queue *q,
1863                 struct blk_mq_tag_set *set,
1864                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1865 {
1866         int node;
1867
1868         node = hctx->numa_node;
1869         if (node == NUMA_NO_NODE)
1870                 node = hctx->numa_node = set->numa_node;
1871
1872         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1873         spin_lock_init(&hctx->lock);
1874         INIT_LIST_HEAD(&hctx->dispatch);
1875         hctx->queue = q;
1876         hctx->queue_num = hctx_idx;
1877         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1878
1879         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1880
1881         hctx->tags = set->tags[hctx_idx];
1882
1883         /*
1884          * Allocate space for all possible cpus to avoid allocation at
1885          * runtime
1886          */
1887         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1888                                         GFP_KERNEL, node);
1889         if (!hctx->ctxs)
1890                 goto unregister_cpu_notifier;
1891
1892         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1893                               node))
1894                 goto free_ctxs;
1895
1896         hctx->nr_ctx = 0;
1897
1898         if (set->ops->init_hctx &&
1899             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1900                 goto free_bitmap;
1901
1902         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1903                 goto exit_hctx;
1904
1905         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1906         if (!hctx->fq)
1907                 goto sched_exit_hctx;
1908
1909         if (set->ops->init_request &&
1910             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1911                                    node))
1912                 goto free_fq;
1913
1914         if (hctx->flags & BLK_MQ_F_BLOCKING)
1915                 init_srcu_struct(&hctx->queue_rq_srcu);
1916
1917         blk_mq_debugfs_register_hctx(q, hctx);
1918
1919         return 0;
1920
1921  free_fq:
1922         kfree(hctx->fq);
1923  sched_exit_hctx:
1924         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1925  exit_hctx:
1926         if (set->ops->exit_hctx)
1927                 set->ops->exit_hctx(hctx, hctx_idx);
1928  free_bitmap:
1929         sbitmap_free(&hctx->ctx_map);
1930  free_ctxs:
1931         kfree(hctx->ctxs);
1932  unregister_cpu_notifier:
1933         blk_mq_remove_cpuhp(hctx);
1934         return -1;
1935 }
1936
1937 static void blk_mq_init_cpu_queues(struct request_queue *q,
1938                                    unsigned int nr_hw_queues)
1939 {
1940         unsigned int i;
1941
1942         for_each_possible_cpu(i) {
1943                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1944                 struct blk_mq_hw_ctx *hctx;
1945
1946                 __ctx->cpu = i;
1947                 spin_lock_init(&__ctx->lock);
1948                 INIT_LIST_HEAD(&__ctx->rq_list);
1949                 __ctx->queue = q;
1950
1951                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1952                 if (!cpu_online(i))
1953                         continue;
1954
1955                 hctx = blk_mq_map_queue(q, i);
1956
1957                 /*
1958                  * Set local node, IFF we have more than one hw queue. If
1959                  * not, we remain on the home node of the device
1960                  */
1961                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1962                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1963         }
1964 }
1965
1966 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1967 {
1968         int ret = 0;
1969
1970         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1971                                         set->queue_depth, set->reserved_tags);
1972         if (!set->tags[hctx_idx])
1973                 return false;
1974
1975         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1976                                 set->queue_depth);
1977         if (!ret)
1978                 return true;
1979
1980         blk_mq_free_rq_map(set->tags[hctx_idx]);
1981         set->tags[hctx_idx] = NULL;
1982         return false;
1983 }
1984
1985 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1986                                          unsigned int hctx_idx)
1987 {
1988         if (set->tags[hctx_idx]) {
1989                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1990                 blk_mq_free_rq_map(set->tags[hctx_idx]);
1991                 set->tags[hctx_idx] = NULL;
1992         }
1993 }
1994
1995 static void blk_mq_map_swqueue(struct request_queue *q,
1996                                const struct cpumask *online_mask)
1997 {
1998         unsigned int i, hctx_idx;
1999         struct blk_mq_hw_ctx *hctx;
2000         struct blk_mq_ctx *ctx;
2001         struct blk_mq_tag_set *set = q->tag_set;
2002
2003         /*
2004          * Avoid others reading imcomplete hctx->cpumask through sysfs
2005          */
2006         mutex_lock(&q->sysfs_lock);
2007
2008         queue_for_each_hw_ctx(q, hctx, i) {
2009                 cpumask_clear(hctx->cpumask);
2010                 hctx->nr_ctx = 0;
2011         }
2012
2013         /*
2014          * Map software to hardware queues
2015          */
2016         for_each_possible_cpu(i) {
2017                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2018                 if (!cpumask_test_cpu(i, online_mask))
2019                         continue;
2020
2021                 hctx_idx = q->mq_map[i];
2022                 /* unmapped hw queue can be remapped after CPU topo changed */
2023                 if (!set->tags[hctx_idx] &&
2024                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2025                         /*
2026                          * If tags initialization fail for some hctx,
2027                          * that hctx won't be brought online.  In this
2028                          * case, remap the current ctx to hctx[0] which
2029                          * is guaranteed to always have tags allocated
2030                          */
2031                         q->mq_map[i] = 0;
2032                 }
2033
2034                 ctx = per_cpu_ptr(q->queue_ctx, i);
2035                 hctx = blk_mq_map_queue(q, i);
2036
2037                 cpumask_set_cpu(i, hctx->cpumask);
2038                 ctx->index_hw = hctx->nr_ctx;
2039                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2040         }
2041
2042         mutex_unlock(&q->sysfs_lock);
2043
2044         queue_for_each_hw_ctx(q, hctx, i) {
2045                 /*
2046                  * If no software queues are mapped to this hardware queue,
2047                  * disable it and free the request entries.
2048                  */
2049                 if (!hctx->nr_ctx) {
2050                         /* Never unmap queue 0.  We need it as a
2051                          * fallback in case of a new remap fails
2052                          * allocation
2053                          */
2054                         if (i && set->tags[i])
2055                                 blk_mq_free_map_and_requests(set, i);
2056
2057                         hctx->tags = NULL;
2058                         continue;
2059                 }
2060
2061                 hctx->tags = set->tags[i];
2062                 WARN_ON(!hctx->tags);
2063
2064                 /*
2065                  * Set the map size to the number of mapped software queues.
2066                  * This is more accurate and more efficient than looping
2067                  * over all possibly mapped software queues.
2068                  */
2069                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2070
2071                 /*
2072                  * Initialize batch roundrobin counts
2073                  */
2074                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2075                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2076         }
2077 }
2078
2079 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2080 {
2081         struct blk_mq_hw_ctx *hctx;
2082         int i;
2083
2084         queue_for_each_hw_ctx(q, hctx, i) {
2085                 if (shared)
2086                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2087                 else
2088                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2089         }
2090 }
2091
2092 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2093 {
2094         struct request_queue *q;
2095
2096         lockdep_assert_held(&set->tag_list_lock);
2097
2098         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2099                 blk_mq_freeze_queue(q);
2100                 queue_set_hctx_shared(q, shared);
2101                 blk_mq_unfreeze_queue(q);
2102         }
2103 }
2104
2105 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2106 {
2107         struct blk_mq_tag_set *set = q->tag_set;
2108
2109         mutex_lock(&set->tag_list_lock);
2110         list_del_rcu(&q->tag_set_list);
2111         INIT_LIST_HEAD(&q->tag_set_list);
2112         if (list_is_singular(&set->tag_list)) {
2113                 /* just transitioned to unshared */
2114                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2115                 /* update existing queue */
2116                 blk_mq_update_tag_set_depth(set, false);
2117         }
2118         mutex_unlock(&set->tag_list_lock);
2119
2120         synchronize_rcu();
2121 }
2122
2123 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2124                                      struct request_queue *q)
2125 {
2126         q->tag_set = set;
2127
2128         mutex_lock(&set->tag_list_lock);
2129
2130         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2131         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2132                 set->flags |= BLK_MQ_F_TAG_SHARED;
2133                 /* update existing queue */
2134                 blk_mq_update_tag_set_depth(set, true);
2135         }
2136         if (set->flags & BLK_MQ_F_TAG_SHARED)
2137                 queue_set_hctx_shared(q, true);
2138         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2139
2140         mutex_unlock(&set->tag_list_lock);
2141 }
2142
2143 /*
2144  * It is the actual release handler for mq, but we do it from
2145  * request queue's release handler for avoiding use-after-free
2146  * and headache because q->mq_kobj shouldn't have been introduced,
2147  * but we can't group ctx/kctx kobj without it.
2148  */
2149 void blk_mq_release(struct request_queue *q)
2150 {
2151         struct blk_mq_hw_ctx *hctx;
2152         unsigned int i;
2153
2154         /* hctx kobj stays in hctx */
2155         queue_for_each_hw_ctx(q, hctx, i) {
2156                 if (!hctx)
2157                         continue;
2158                 kobject_put(&hctx->kobj);
2159         }
2160
2161         q->mq_map = NULL;
2162
2163         kfree(q->queue_hw_ctx);
2164
2165         /*
2166          * release .mq_kobj and sw queue's kobject now because
2167          * both share lifetime with request queue.
2168          */
2169         blk_mq_sysfs_deinit(q);
2170
2171         free_percpu(q->queue_ctx);
2172 }
2173
2174 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2175 {
2176         struct request_queue *uninit_q, *q;
2177
2178         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2179         if (!uninit_q)
2180                 return ERR_PTR(-ENOMEM);
2181
2182         q = blk_mq_init_allocated_queue(set, uninit_q);
2183         if (IS_ERR(q))
2184                 blk_cleanup_queue(uninit_q);
2185
2186         return q;
2187 }
2188 EXPORT_SYMBOL(blk_mq_init_queue);
2189
2190 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2191                                                 struct request_queue *q)
2192 {
2193         int i, j;
2194         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2195
2196         blk_mq_sysfs_unregister(q);
2197         for (i = 0; i < set->nr_hw_queues; i++) {
2198                 int node;
2199
2200                 if (hctxs[i])
2201                         continue;
2202
2203                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2204                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2205                                         GFP_KERNEL, node);
2206                 if (!hctxs[i])
2207                         break;
2208
2209                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2210                                                 node)) {
2211                         kfree(hctxs[i]);
2212                         hctxs[i] = NULL;
2213                         break;
2214                 }
2215
2216                 atomic_set(&hctxs[i]->nr_active, 0);
2217                 hctxs[i]->numa_node = node;
2218                 hctxs[i]->queue_num = i;
2219
2220                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2221                         free_cpumask_var(hctxs[i]->cpumask);
2222                         kfree(hctxs[i]);
2223                         hctxs[i] = NULL;
2224                         break;
2225                 }
2226                 blk_mq_hctx_kobj_init(hctxs[i]);
2227         }
2228         for (j = i; j < q->nr_hw_queues; j++) {
2229                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2230
2231                 if (hctx) {
2232                         if (hctx->tags)
2233                                 blk_mq_free_map_and_requests(set, j);
2234                         blk_mq_exit_hctx(q, set, hctx, j);
2235                         kobject_put(&hctx->kobj);
2236                         hctxs[j] = NULL;
2237
2238                 }
2239         }
2240         q->nr_hw_queues = i;
2241         blk_mq_sysfs_register(q);
2242 }
2243
2244 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2245                                                   struct request_queue *q)
2246 {
2247         /* mark the queue as mq asap */
2248         q->mq_ops = set->ops;
2249
2250         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2251                                              blk_mq_poll_stats_bkt,
2252                                              BLK_MQ_POLL_STATS_BKTS, q);
2253         if (!q->poll_cb)
2254                 goto err_exit;
2255
2256         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2257         if (!q->queue_ctx)
2258                 goto err_exit;
2259
2260         /* init q->mq_kobj and sw queues' kobjects */
2261         blk_mq_sysfs_init(q);
2262
2263         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2264                                                 GFP_KERNEL, set->numa_node);
2265         if (!q->queue_hw_ctx)
2266                 goto err_percpu;
2267
2268         q->mq_map = set->mq_map;
2269
2270         blk_mq_realloc_hw_ctxs(set, q);
2271         if (!q->nr_hw_queues)
2272                 goto err_hctxs;
2273
2274         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2275         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2276
2277         q->nr_queues = nr_cpu_ids;
2278
2279         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2280
2281         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2282                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2283
2284         q->sg_reserved_size = INT_MAX;
2285
2286         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2287         INIT_LIST_HEAD(&q->requeue_list);
2288         spin_lock_init(&q->requeue_lock);
2289
2290         blk_queue_make_request(q, blk_mq_make_request);
2291
2292         /*
2293          * Do this after blk_queue_make_request() overrides it...
2294          */
2295         q->nr_requests = set->queue_depth;
2296
2297         /*
2298          * Default to classic polling
2299          */
2300         q->poll_nsec = -1;
2301
2302         if (set->ops->complete)
2303                 blk_queue_softirq_done(q, set->ops->complete);
2304
2305         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2306
2307         get_online_cpus();
2308         mutex_lock(&all_q_mutex);
2309
2310         list_add_tail(&q->all_q_node, &all_q_list);
2311         blk_mq_add_queue_tag_set(set, q);
2312         blk_mq_map_swqueue(q, cpu_online_mask);
2313
2314         mutex_unlock(&all_q_mutex);
2315         put_online_cpus();
2316
2317         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2318                 int ret;
2319
2320                 ret = blk_mq_sched_init(q);
2321                 if (ret)
2322                         return ERR_PTR(ret);
2323         }
2324
2325         return q;
2326
2327 err_hctxs:
2328         kfree(q->queue_hw_ctx);
2329 err_percpu:
2330         free_percpu(q->queue_ctx);
2331 err_exit:
2332         q->mq_ops = NULL;
2333         return ERR_PTR(-ENOMEM);
2334 }
2335 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2336
2337 void blk_mq_free_queue(struct request_queue *q)
2338 {
2339         struct blk_mq_tag_set   *set = q->tag_set;
2340
2341         mutex_lock(&all_q_mutex);
2342         list_del_init(&q->all_q_node);
2343         mutex_unlock(&all_q_mutex);
2344
2345         blk_mq_del_queue_tag_set(q);
2346
2347         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2348 }
2349
2350 /* Basically redo blk_mq_init_queue with queue frozen */
2351 static void blk_mq_queue_reinit(struct request_queue *q,
2352                                 const struct cpumask *online_mask)
2353 {
2354         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2355
2356         blk_mq_debugfs_unregister_hctxs(q);
2357         blk_mq_sysfs_unregister(q);
2358
2359         /*
2360          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2361          * we should change hctx numa_node according to new topology (this
2362          * involves free and re-allocate memory, worthy doing?)
2363          */
2364
2365         blk_mq_map_swqueue(q, online_mask);
2366
2367         blk_mq_sysfs_register(q);
2368         blk_mq_debugfs_register_hctxs(q);
2369 }
2370
2371 /*
2372  * New online cpumask which is going to be set in this hotplug event.
2373  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2374  * one-by-one and dynamically allocating this could result in a failure.
2375  */
2376 static struct cpumask cpuhp_online_new;
2377
2378 static void blk_mq_queue_reinit_work(void)
2379 {
2380         struct request_queue *q;
2381
2382         mutex_lock(&all_q_mutex);
2383         /*
2384          * We need to freeze and reinit all existing queues.  Freezing
2385          * involves synchronous wait for an RCU grace period and doing it
2386          * one by one may take a long time.  Start freezing all queues in
2387          * one swoop and then wait for the completions so that freezing can
2388          * take place in parallel.
2389          */
2390         list_for_each_entry(q, &all_q_list, all_q_node)
2391                 blk_freeze_queue_start(q);
2392         list_for_each_entry(q, &all_q_list, all_q_node)
2393                 blk_mq_freeze_queue_wait(q);
2394
2395         list_for_each_entry(q, &all_q_list, all_q_node)
2396                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2397
2398         list_for_each_entry(q, &all_q_list, all_q_node)
2399                 blk_mq_unfreeze_queue(q);
2400
2401         mutex_unlock(&all_q_mutex);
2402 }
2403
2404 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2405 {
2406         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2407         blk_mq_queue_reinit_work();
2408         return 0;
2409 }
2410
2411 /*
2412  * Before hotadded cpu starts handling requests, new mappings must be
2413  * established.  Otherwise, these requests in hw queue might never be
2414  * dispatched.
2415  *
2416  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2417  * for CPU0, and ctx1 for CPU1).
2418  *
2419  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2420  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2421  *
2422  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2423  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2424  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2425  * ignored.
2426  */
2427 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2428 {
2429         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2430         cpumask_set_cpu(cpu, &cpuhp_online_new);
2431         blk_mq_queue_reinit_work();
2432         return 0;
2433 }
2434
2435 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2436 {
2437         int i;
2438
2439         for (i = 0; i < set->nr_hw_queues; i++)
2440                 if (!__blk_mq_alloc_rq_map(set, i))
2441                         goto out_unwind;
2442
2443         return 0;
2444
2445 out_unwind:
2446         while (--i >= 0)
2447                 blk_mq_free_rq_map(set->tags[i]);
2448
2449         return -ENOMEM;
2450 }
2451
2452 /*
2453  * Allocate the request maps associated with this tag_set. Note that this
2454  * may reduce the depth asked for, if memory is tight. set->queue_depth
2455  * will be updated to reflect the allocated depth.
2456  */
2457 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2458 {
2459         unsigned int depth;
2460         int err;
2461
2462         depth = set->queue_depth;
2463         do {
2464                 err = __blk_mq_alloc_rq_maps(set);
2465                 if (!err)
2466                         break;
2467
2468                 set->queue_depth >>= 1;
2469                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2470                         err = -ENOMEM;
2471                         break;
2472                 }
2473         } while (set->queue_depth);
2474
2475         if (!set->queue_depth || err) {
2476                 pr_err("blk-mq: failed to allocate request map\n");
2477                 return -ENOMEM;
2478         }
2479
2480         if (depth != set->queue_depth)
2481                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2482                                                 depth, set->queue_depth);
2483
2484         return 0;
2485 }
2486
2487 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2488 {
2489         if (set->ops->map_queues)
2490                 return set->ops->map_queues(set);
2491         else
2492                 return blk_mq_map_queues(set);
2493 }
2494
2495 /*
2496  * Alloc a tag set to be associated with one or more request queues.
2497  * May fail with EINVAL for various error conditions. May adjust the
2498  * requested depth down, if if it too large. In that case, the set
2499  * value will be stored in set->queue_depth.
2500  */
2501 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2502 {
2503         int ret;
2504
2505         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2506
2507         if (!set->nr_hw_queues)
2508                 return -EINVAL;
2509         if (!set->queue_depth)
2510                 return -EINVAL;
2511         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2512                 return -EINVAL;
2513
2514         if (!set->ops->queue_rq)
2515                 return -EINVAL;
2516
2517         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2518                 pr_info("blk-mq: reduced tag depth to %u\n",
2519                         BLK_MQ_MAX_DEPTH);
2520                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2521         }
2522
2523         /*
2524          * If a crashdump is active, then we are potentially in a very
2525          * memory constrained environment. Limit us to 1 queue and
2526          * 64 tags to prevent using too much memory.
2527          */
2528         if (is_kdump_kernel()) {
2529                 set->nr_hw_queues = 1;
2530                 set->queue_depth = min(64U, set->queue_depth);
2531         }
2532         /*
2533          * There is no use for more h/w queues than cpus.
2534          */
2535         if (set->nr_hw_queues > nr_cpu_ids)
2536                 set->nr_hw_queues = nr_cpu_ids;
2537
2538         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2539                                  GFP_KERNEL, set->numa_node);
2540         if (!set->tags)
2541                 return -ENOMEM;
2542
2543         ret = -ENOMEM;
2544         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2545                         GFP_KERNEL, set->numa_node);
2546         if (!set->mq_map)
2547                 goto out_free_tags;
2548
2549         ret = blk_mq_update_queue_map(set);
2550         if (ret)
2551                 goto out_free_mq_map;
2552
2553         ret = blk_mq_alloc_rq_maps(set);
2554         if (ret)
2555                 goto out_free_mq_map;
2556
2557         mutex_init(&set->tag_list_lock);
2558         INIT_LIST_HEAD(&set->tag_list);
2559
2560         return 0;
2561
2562 out_free_mq_map:
2563         kfree(set->mq_map);
2564         set->mq_map = NULL;
2565 out_free_tags:
2566         kfree(set->tags);
2567         set->tags = NULL;
2568         return ret;
2569 }
2570 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2571
2572 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2573 {
2574         int i;
2575
2576         for (i = 0; i < nr_cpu_ids; i++)
2577                 blk_mq_free_map_and_requests(set, i);
2578
2579         kfree(set->mq_map);
2580         set->mq_map = NULL;
2581
2582         kfree(set->tags);
2583         set->tags = NULL;
2584 }
2585 EXPORT_SYMBOL(blk_mq_free_tag_set);
2586
2587 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2588 {
2589         struct blk_mq_tag_set *set = q->tag_set;
2590         struct blk_mq_hw_ctx *hctx;
2591         int i, ret;
2592
2593         if (!set)
2594                 return -EINVAL;
2595
2596         blk_mq_freeze_queue(q);
2597
2598         ret = 0;
2599         queue_for_each_hw_ctx(q, hctx, i) {
2600                 if (!hctx->tags)
2601                         continue;
2602                 /*
2603                  * If we're using an MQ scheduler, just update the scheduler
2604                  * queue depth. This is similar to what the old code would do.
2605                  */
2606                 if (!hctx->sched_tags) {
2607                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2608                                                         min(nr, set->queue_depth),
2609                                                         false);
2610                 } else {
2611                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2612                                                         nr, true);
2613                 }
2614                 if (ret)
2615                         break;
2616         }
2617
2618         if (!ret)
2619                 q->nr_requests = nr;
2620
2621         blk_mq_unfreeze_queue(q);
2622
2623         return ret;
2624 }
2625
2626 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2627                                                         int nr_hw_queues)
2628 {
2629         struct request_queue *q;
2630
2631         lockdep_assert_held(&set->tag_list_lock);
2632
2633         if (nr_hw_queues > nr_cpu_ids)
2634                 nr_hw_queues = nr_cpu_ids;
2635         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2636                 return;
2637
2638         list_for_each_entry(q, &set->tag_list, tag_set_list)
2639                 blk_mq_freeze_queue(q);
2640
2641         set->nr_hw_queues = nr_hw_queues;
2642         blk_mq_update_queue_map(set);
2643         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2644                 blk_mq_realloc_hw_ctxs(set, q);
2645                 blk_mq_queue_reinit(q, cpu_online_mask);
2646         }
2647
2648         list_for_each_entry(q, &set->tag_list, tag_set_list)
2649                 blk_mq_unfreeze_queue(q);
2650 }
2651
2652 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2653 {
2654         mutex_lock(&set->tag_list_lock);
2655         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2656         mutex_unlock(&set->tag_list_lock);
2657 }
2658 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2659
2660 /* Enable polling stats and return whether they were already enabled. */
2661 static bool blk_poll_stats_enable(struct request_queue *q)
2662 {
2663         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2664             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2665                 return true;
2666         blk_stat_add_callback(q, q->poll_cb);
2667         return false;
2668 }
2669
2670 static void blk_mq_poll_stats_start(struct request_queue *q)
2671 {
2672         /*
2673          * We don't arm the callback if polling stats are not enabled or the
2674          * callback is already active.
2675          */
2676         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2677             blk_stat_is_active(q->poll_cb))
2678                 return;
2679
2680         blk_stat_activate_msecs(q->poll_cb, 100);
2681 }
2682
2683 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2684 {
2685         struct request_queue *q = cb->data;
2686         int bucket;
2687
2688         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2689                 if (cb->stat[bucket].nr_samples)
2690                         q->poll_stat[bucket] = cb->stat[bucket];
2691         }
2692 }
2693
2694 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2695                                        struct blk_mq_hw_ctx *hctx,
2696                                        struct request *rq)
2697 {
2698         unsigned long ret = 0;
2699         int bucket;
2700
2701         /*
2702          * If stats collection isn't on, don't sleep but turn it on for
2703          * future users
2704          */
2705         if (!blk_poll_stats_enable(q))
2706                 return 0;
2707
2708         /*
2709          * As an optimistic guess, use half of the mean service time
2710          * for this type of request. We can (and should) make this smarter.
2711          * For instance, if the completion latencies are tight, we can
2712          * get closer than just half the mean. This is especially
2713          * important on devices where the completion latencies are longer
2714          * than ~10 usec. We do use the stats for the relevant IO size
2715          * if available which does lead to better estimates.
2716          */
2717         bucket = blk_mq_poll_stats_bkt(rq);
2718         if (bucket < 0)
2719                 return ret;
2720
2721         if (q->poll_stat[bucket].nr_samples)
2722                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2723
2724         return ret;
2725 }
2726
2727 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2728                                      struct blk_mq_hw_ctx *hctx,
2729                                      struct request *rq)
2730 {
2731         struct hrtimer_sleeper hs;
2732         enum hrtimer_mode mode;
2733         unsigned int nsecs;
2734         ktime_t kt;
2735
2736         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2737                 return false;
2738
2739         /*
2740          * poll_nsec can be:
2741          *
2742          * -1:  don't ever hybrid sleep
2743          *  0:  use half of prev avg
2744          * >0:  use this specific value
2745          */
2746         if (q->poll_nsec == -1)
2747                 return false;
2748         else if (q->poll_nsec > 0)
2749                 nsecs = q->poll_nsec;
2750         else
2751                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2752
2753         if (!nsecs)
2754                 return false;
2755
2756         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2757
2758         /*
2759          * This will be replaced with the stats tracking code, using
2760          * 'avg_completion_time / 2' as the pre-sleep target.
2761          */
2762         kt = nsecs;
2763
2764         mode = HRTIMER_MODE_REL;
2765         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2766         hrtimer_set_expires(&hs.timer, kt);
2767
2768         hrtimer_init_sleeper(&hs, current);
2769         do {
2770                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2771                         break;
2772                 set_current_state(TASK_UNINTERRUPTIBLE);
2773                 hrtimer_start_expires(&hs.timer, mode);
2774                 if (hs.task)
2775                         io_schedule();
2776                 hrtimer_cancel(&hs.timer);
2777                 mode = HRTIMER_MODE_ABS;
2778         } while (hs.task && !signal_pending(current));
2779
2780         __set_current_state(TASK_RUNNING);
2781         destroy_hrtimer_on_stack(&hs.timer);
2782         return true;
2783 }
2784
2785 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2786 {
2787         struct request_queue *q = hctx->queue;
2788         long state;
2789
2790         /*
2791          * If we sleep, have the caller restart the poll loop to reset
2792          * the state. Like for the other success return cases, the
2793          * caller is responsible for checking if the IO completed. If
2794          * the IO isn't complete, we'll get called again and will go
2795          * straight to the busy poll loop.
2796          */
2797         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2798                 return true;
2799
2800         hctx->poll_considered++;
2801
2802         state = current->state;
2803         while (!need_resched()) {
2804                 int ret;
2805
2806                 hctx->poll_invoked++;
2807
2808                 ret = q->mq_ops->poll(hctx, rq->tag);
2809                 if (ret > 0) {
2810                         hctx->poll_success++;
2811                         set_current_state(TASK_RUNNING);
2812                         return true;
2813                 }
2814
2815                 if (signal_pending_state(state, current))
2816                         set_current_state(TASK_RUNNING);
2817
2818                 if (current->state == TASK_RUNNING)
2819                         return true;
2820                 if (ret < 0)
2821                         break;
2822                 cpu_relax();
2823         }
2824
2825         return false;
2826 }
2827
2828 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2829 {
2830         struct blk_mq_hw_ctx *hctx;
2831         struct blk_plug *plug;
2832         struct request *rq;
2833
2834         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2835             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2836                 return false;
2837
2838         plug = current->plug;
2839         if (plug)
2840                 blk_flush_plug_list(plug, false);
2841
2842         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2843         if (!blk_qc_t_is_internal(cookie))
2844                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2845         else {
2846                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2847                 /*
2848                  * With scheduling, if the request has completed, we'll
2849                  * get a NULL return here, as we clear the sched tag when
2850                  * that happens. The request still remains valid, like always,
2851                  * so we should be safe with just the NULL check.
2852                  */
2853                 if (!rq)
2854                         return false;
2855         }
2856
2857         return __blk_mq_poll(hctx, rq);
2858 }
2859 EXPORT_SYMBOL_GPL(blk_mq_poll);
2860
2861 void blk_mq_disable_hotplug(void)
2862 {
2863         mutex_lock(&all_q_mutex);
2864 }
2865
2866 void blk_mq_enable_hotplug(void)
2867 {
2868         mutex_unlock(&all_q_mutex);
2869 }
2870
2871 static int __init blk_mq_init(void)
2872 {
2873         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2874                                 blk_mq_hctx_notify_dead);
2875
2876         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2877                                   blk_mq_queue_reinit_prepare,
2878                                   blk_mq_queue_reinit_dead);
2879         return 0;
2880 }
2881 subsys_initcall(blk_mq_init);