]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
blk-mq: move update of tags->rqs to __blk_mq_alloc_request()
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 #include "blk-mq-sched.h"
36
37 static DEFINE_MUTEX(all_q_mutex);
38 static LIST_HEAD(all_q_list);
39
40 /*
41  * Check if any of the ctx's have pending work in this hardware queue
42  */
43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 {
45         return sbitmap_any_bit_set(&hctx->ctx_map) ||
46                         !list_empty_careful(&hctx->dispatch) ||
47                         blk_mq_sched_has_work(hctx);
48 }
49
50 /*
51  * Mark this ctx as having pending work in this hardware queue
52  */
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54                                      struct blk_mq_ctx *ctx)
55 {
56         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 }
59
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61                                       struct blk_mq_ctx *ctx)
62 {
63         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 }
65
66 void blk_mq_freeze_queue_start(struct request_queue *q)
67 {
68         int freeze_depth;
69
70         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71         if (freeze_depth == 1) {
72                 percpu_ref_kill(&q->q_usage_counter);
73                 blk_mq_run_hw_queues(q, false);
74         }
75 }
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77
78 static void blk_mq_freeze_queue_wait(struct request_queue *q)
79 {
80         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 }
82
83 /*
84  * Guarantee no request is in use, so we can change any data structure of
85  * the queue afterward.
86  */
87 void blk_freeze_queue(struct request_queue *q)
88 {
89         /*
90          * In the !blk_mq case we are only calling this to kill the
91          * q_usage_counter, otherwise this increases the freeze depth
92          * and waits for it to return to zero.  For this reason there is
93          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94          * exported to drivers as the only user for unfreeze is blk_mq.
95          */
96         blk_mq_freeze_queue_start(q);
97         blk_mq_freeze_queue_wait(q);
98 }
99
100 void blk_mq_freeze_queue(struct request_queue *q)
101 {
102         /*
103          * ...just an alias to keep freeze and unfreeze actions balanced
104          * in the blk_mq_* namespace
105          */
106         blk_freeze_queue(q);
107 }
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109
110 void blk_mq_unfreeze_queue(struct request_queue *q)
111 {
112         int freeze_depth;
113
114         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115         WARN_ON_ONCE(freeze_depth < 0);
116         if (!freeze_depth) {
117                 percpu_ref_reinit(&q->q_usage_counter);
118                 wake_up_all(&q->mq_freeze_wq);
119         }
120 }
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122
123 /**
124  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125  * @q: request queue.
126  *
127  * Note: this function does not prevent that the struct request end_io()
128  * callback function is invoked. Additionally, it is not prevented that
129  * new queue_rq() calls occur unless the queue has been stopped first.
130  */
131 void blk_mq_quiesce_queue(struct request_queue *q)
132 {
133         struct blk_mq_hw_ctx *hctx;
134         unsigned int i;
135         bool rcu = false;
136
137         blk_mq_stop_hw_queues(q);
138
139         queue_for_each_hw_ctx(q, hctx, i) {
140                 if (hctx->flags & BLK_MQ_F_BLOCKING)
141                         synchronize_srcu(&hctx->queue_rq_srcu);
142                 else
143                         rcu = true;
144         }
145         if (rcu)
146                 synchronize_rcu();
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
150 void blk_mq_wake_waiters(struct request_queue *q)
151 {
152         struct blk_mq_hw_ctx *hctx;
153         unsigned int i;
154
155         queue_for_each_hw_ctx(q, hctx, i)
156                 if (blk_mq_hw_queue_mapped(hctx))
157                         blk_mq_tag_wakeup_all(hctx->tags, true);
158
159         /*
160          * If we are called because the queue has now been marked as
161          * dying, we need to ensure that processes currently waiting on
162          * the queue are notified as well.
163          */
164         wake_up_all(&q->mq_freeze_wq);
165 }
166
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168 {
169         return blk_mq_has_free_tags(hctx->tags);
170 }
171 EXPORT_SYMBOL(blk_mq_can_queue);
172
173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174                         struct request *rq, unsigned int op)
175 {
176         INIT_LIST_HEAD(&rq->queuelist);
177         /* csd/requeue_work/fifo_time is initialized before use */
178         rq->q = q;
179         rq->mq_ctx = ctx;
180         rq->cmd_flags = op;
181         if (blk_queue_io_stat(q))
182                 rq->rq_flags |= RQF_IO_STAT;
183         /* do not touch atomic flags, it needs atomic ops against the timer */
184         rq->cpu = -1;
185         INIT_HLIST_NODE(&rq->hash);
186         RB_CLEAR_NODE(&rq->rb_node);
187         rq->rq_disk = NULL;
188         rq->part = NULL;
189         rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191         rq->rl = NULL;
192         set_start_time_ns(rq);
193         rq->io_start_time_ns = 0;
194 #endif
195         rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197         rq->nr_integrity_segments = 0;
198 #endif
199         rq->special = NULL;
200         /* tag was already set */
201         rq->errors = 0;
202         rq->extra_len = 0;
203
204         INIT_LIST_HEAD(&rq->timeout_list);
205         rq->timeout = 0;
206
207         rq->end_io = NULL;
208         rq->end_io_data = NULL;
209         rq->next_rq = NULL;
210
211         ctx->rq_dispatched[op_is_sync(op)]++;
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
214
215 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
216                                        unsigned int op)
217 {
218         struct request *rq;
219         unsigned int tag;
220
221         tag = blk_mq_get_tag(data);
222         if (tag != BLK_MQ_TAG_FAIL) {
223                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
224
225                 rq = tags->static_rqs[tag];
226
227                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
228                         rq->tag = -1;
229                         rq->internal_tag = tag;
230                 } else {
231                         if (blk_mq_tag_busy(data->hctx)) {
232                                 rq->rq_flags = RQF_MQ_INFLIGHT;
233                                 atomic_inc(&data->hctx->nr_active);
234                         }
235                         rq->tag = tag;
236                         rq->internal_tag = -1;
237                         data->hctx->tags->rqs[rq->tag] = rq;
238                 }
239
240                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
241                 return rq;
242         }
243
244         return NULL;
245 }
246 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
247
248 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
249                 unsigned int flags)
250 {
251         struct blk_mq_alloc_data alloc_data = { .flags = flags };
252         struct request *rq;
253         int ret;
254
255         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
256         if (ret)
257                 return ERR_PTR(ret);
258
259         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
260
261         blk_mq_put_ctx(alloc_data.ctx);
262         blk_queue_exit(q);
263
264         if (!rq)
265                 return ERR_PTR(-EWOULDBLOCK);
266
267         rq->__data_len = 0;
268         rq->__sector = (sector_t) -1;
269         rq->bio = rq->biotail = NULL;
270         return rq;
271 }
272 EXPORT_SYMBOL(blk_mq_alloc_request);
273
274 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
275                 unsigned int flags, unsigned int hctx_idx)
276 {
277         struct blk_mq_alloc_data alloc_data = { .flags = flags };
278         struct request *rq;
279         unsigned int cpu;
280         int ret;
281
282         /*
283          * If the tag allocator sleeps we could get an allocation for a
284          * different hardware context.  No need to complicate the low level
285          * allocator for this for the rare use case of a command tied to
286          * a specific queue.
287          */
288         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
289                 return ERR_PTR(-EINVAL);
290
291         if (hctx_idx >= q->nr_hw_queues)
292                 return ERR_PTR(-EIO);
293
294         ret = blk_queue_enter(q, true);
295         if (ret)
296                 return ERR_PTR(ret);
297
298         /*
299          * Check if the hardware context is actually mapped to anything.
300          * If not tell the caller that it should skip this queue.
301          */
302         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
303         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
304                 blk_queue_exit(q);
305                 return ERR_PTR(-EXDEV);
306         }
307         cpu = cpumask_first(alloc_data.hctx->cpumask);
308         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
309
310         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
311
312         blk_mq_put_ctx(alloc_data.ctx);
313         blk_queue_exit(q);
314
315         if (!rq)
316                 return ERR_PTR(-EWOULDBLOCK);
317
318         return rq;
319 }
320 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
321
322 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
323                              struct request *rq)
324 {
325         const int sched_tag = rq->internal_tag;
326         struct request_queue *q = rq->q;
327
328         if (rq->rq_flags & RQF_MQ_INFLIGHT)
329                 atomic_dec(&hctx->nr_active);
330
331         wbt_done(q->rq_wb, &rq->issue_stat);
332         rq->rq_flags = 0;
333
334         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
335         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
336         if (rq->tag != -1)
337                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
338         if (sched_tag != -1)
339                 blk_mq_sched_completed_request(hctx, rq);
340         blk_mq_sched_restart_queues(hctx);
341         blk_queue_exit(q);
342 }
343
344 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
345                                      struct request *rq)
346 {
347         struct blk_mq_ctx *ctx = rq->mq_ctx;
348
349         ctx->rq_completed[rq_is_sync(rq)]++;
350         __blk_mq_finish_request(hctx, ctx, rq);
351 }
352
353 void blk_mq_finish_request(struct request *rq)
354 {
355         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
356 }
357
358 void blk_mq_free_request(struct request *rq)
359 {
360         blk_mq_sched_put_request(rq);
361 }
362 EXPORT_SYMBOL_GPL(blk_mq_free_request);
363
364 inline void __blk_mq_end_request(struct request *rq, int error)
365 {
366         blk_account_io_done(rq);
367
368         if (rq->end_io) {
369                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
370                 rq->end_io(rq, error);
371         } else {
372                 if (unlikely(blk_bidi_rq(rq)))
373                         blk_mq_free_request(rq->next_rq);
374                 blk_mq_free_request(rq);
375         }
376 }
377 EXPORT_SYMBOL(__blk_mq_end_request);
378
379 void blk_mq_end_request(struct request *rq, int error)
380 {
381         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
382                 BUG();
383         __blk_mq_end_request(rq, error);
384 }
385 EXPORT_SYMBOL(blk_mq_end_request);
386
387 static void __blk_mq_complete_request_remote(void *data)
388 {
389         struct request *rq = data;
390
391         rq->q->softirq_done_fn(rq);
392 }
393
394 static void blk_mq_ipi_complete_request(struct request *rq)
395 {
396         struct blk_mq_ctx *ctx = rq->mq_ctx;
397         bool shared = false;
398         int cpu;
399
400         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
401                 rq->q->softirq_done_fn(rq);
402                 return;
403         }
404
405         cpu = get_cpu();
406         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
407                 shared = cpus_share_cache(cpu, ctx->cpu);
408
409         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
410                 rq->csd.func = __blk_mq_complete_request_remote;
411                 rq->csd.info = rq;
412                 rq->csd.flags = 0;
413                 smp_call_function_single_async(ctx->cpu, &rq->csd);
414         } else {
415                 rq->q->softirq_done_fn(rq);
416         }
417         put_cpu();
418 }
419
420 static void blk_mq_stat_add(struct request *rq)
421 {
422         if (rq->rq_flags & RQF_STATS) {
423                 /*
424                  * We could rq->mq_ctx here, but there's less of a risk
425                  * of races if we have the completion event add the stats
426                  * to the local software queue.
427                  */
428                 struct blk_mq_ctx *ctx;
429
430                 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
431                 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
432         }
433 }
434
435 static void __blk_mq_complete_request(struct request *rq)
436 {
437         struct request_queue *q = rq->q;
438
439         blk_mq_stat_add(rq);
440
441         if (!q->softirq_done_fn)
442                 blk_mq_end_request(rq, rq->errors);
443         else
444                 blk_mq_ipi_complete_request(rq);
445 }
446
447 /**
448  * blk_mq_complete_request - end I/O on a request
449  * @rq:         the request being processed
450  *
451  * Description:
452  *      Ends all I/O on a request. It does not handle partial completions.
453  *      The actual completion happens out-of-order, through a IPI handler.
454  **/
455 void blk_mq_complete_request(struct request *rq, int error)
456 {
457         struct request_queue *q = rq->q;
458
459         if (unlikely(blk_should_fake_timeout(q)))
460                 return;
461         if (!blk_mark_rq_complete(rq)) {
462                 rq->errors = error;
463                 __blk_mq_complete_request(rq);
464         }
465 }
466 EXPORT_SYMBOL(blk_mq_complete_request);
467
468 int blk_mq_request_started(struct request *rq)
469 {
470         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
471 }
472 EXPORT_SYMBOL_GPL(blk_mq_request_started);
473
474 void blk_mq_start_request(struct request *rq)
475 {
476         struct request_queue *q = rq->q;
477
478         blk_mq_sched_started_request(rq);
479
480         trace_block_rq_issue(q, rq);
481
482         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
483                 blk_stat_set_issue_time(&rq->issue_stat);
484                 rq->rq_flags |= RQF_STATS;
485                 wbt_issue(q->rq_wb, &rq->issue_stat);
486         }
487
488         blk_add_timer(rq);
489
490         /*
491          * Ensure that ->deadline is visible before set the started
492          * flag and clear the completed flag.
493          */
494         smp_mb__before_atomic();
495
496         /*
497          * Mark us as started and clear complete. Complete might have been
498          * set if requeue raced with timeout, which then marked it as
499          * complete. So be sure to clear complete again when we start
500          * the request, otherwise we'll ignore the completion event.
501          */
502         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
503                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
504         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
505                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
506
507         if (q->dma_drain_size && blk_rq_bytes(rq)) {
508                 /*
509                  * Make sure space for the drain appears.  We know we can do
510                  * this because max_hw_segments has been adjusted to be one
511                  * fewer than the device can handle.
512                  */
513                 rq->nr_phys_segments++;
514         }
515 }
516 EXPORT_SYMBOL(blk_mq_start_request);
517
518 static void __blk_mq_requeue_request(struct request *rq)
519 {
520         struct request_queue *q = rq->q;
521
522         trace_block_rq_requeue(q, rq);
523         wbt_requeue(q->rq_wb, &rq->issue_stat);
524         blk_mq_sched_requeue_request(rq);
525
526         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
527                 if (q->dma_drain_size && blk_rq_bytes(rq))
528                         rq->nr_phys_segments--;
529         }
530 }
531
532 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
533 {
534         __blk_mq_requeue_request(rq);
535
536         BUG_ON(blk_queued_rq(rq));
537         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
538 }
539 EXPORT_SYMBOL(blk_mq_requeue_request);
540
541 static void blk_mq_requeue_work(struct work_struct *work)
542 {
543         struct request_queue *q =
544                 container_of(work, struct request_queue, requeue_work.work);
545         LIST_HEAD(rq_list);
546         struct request *rq, *next;
547         unsigned long flags;
548
549         spin_lock_irqsave(&q->requeue_lock, flags);
550         list_splice_init(&q->requeue_list, &rq_list);
551         spin_unlock_irqrestore(&q->requeue_lock, flags);
552
553         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
554                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
555                         continue;
556
557                 rq->rq_flags &= ~RQF_SOFTBARRIER;
558                 list_del_init(&rq->queuelist);
559                 blk_mq_sched_insert_request(rq, true, false, false, true);
560         }
561
562         while (!list_empty(&rq_list)) {
563                 rq = list_entry(rq_list.next, struct request, queuelist);
564                 list_del_init(&rq->queuelist);
565                 blk_mq_sched_insert_request(rq, false, false, false, true);
566         }
567
568         blk_mq_run_hw_queues(q, false);
569 }
570
571 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
572                                 bool kick_requeue_list)
573 {
574         struct request_queue *q = rq->q;
575         unsigned long flags;
576
577         /*
578          * We abuse this flag that is otherwise used by the I/O scheduler to
579          * request head insertation from the workqueue.
580          */
581         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
582
583         spin_lock_irqsave(&q->requeue_lock, flags);
584         if (at_head) {
585                 rq->rq_flags |= RQF_SOFTBARRIER;
586                 list_add(&rq->queuelist, &q->requeue_list);
587         } else {
588                 list_add_tail(&rq->queuelist, &q->requeue_list);
589         }
590         spin_unlock_irqrestore(&q->requeue_lock, flags);
591
592         if (kick_requeue_list)
593                 blk_mq_kick_requeue_list(q);
594 }
595 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
596
597 void blk_mq_kick_requeue_list(struct request_queue *q)
598 {
599         kblockd_schedule_delayed_work(&q->requeue_work, 0);
600 }
601 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
602
603 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
604                                     unsigned long msecs)
605 {
606         kblockd_schedule_delayed_work(&q->requeue_work,
607                                       msecs_to_jiffies(msecs));
608 }
609 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
610
611 void blk_mq_abort_requeue_list(struct request_queue *q)
612 {
613         unsigned long flags;
614         LIST_HEAD(rq_list);
615
616         spin_lock_irqsave(&q->requeue_lock, flags);
617         list_splice_init(&q->requeue_list, &rq_list);
618         spin_unlock_irqrestore(&q->requeue_lock, flags);
619
620         while (!list_empty(&rq_list)) {
621                 struct request *rq;
622
623                 rq = list_first_entry(&rq_list, struct request, queuelist);
624                 list_del_init(&rq->queuelist);
625                 rq->errors = -EIO;
626                 blk_mq_end_request(rq, rq->errors);
627         }
628 }
629 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
630
631 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
632 {
633         if (tag < tags->nr_tags) {
634                 prefetch(tags->rqs[tag]);
635                 return tags->rqs[tag];
636         }
637
638         return NULL;
639 }
640 EXPORT_SYMBOL(blk_mq_tag_to_rq);
641
642 struct blk_mq_timeout_data {
643         unsigned long next;
644         unsigned int next_set;
645 };
646
647 void blk_mq_rq_timed_out(struct request *req, bool reserved)
648 {
649         const struct blk_mq_ops *ops = req->q->mq_ops;
650         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
651
652         /*
653          * We know that complete is set at this point. If STARTED isn't set
654          * anymore, then the request isn't active and the "timeout" should
655          * just be ignored. This can happen due to the bitflag ordering.
656          * Timeout first checks if STARTED is set, and if it is, assumes
657          * the request is active. But if we race with completion, then
658          * we both flags will get cleared. So check here again, and ignore
659          * a timeout event with a request that isn't active.
660          */
661         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
662                 return;
663
664         if (ops->timeout)
665                 ret = ops->timeout(req, reserved);
666
667         switch (ret) {
668         case BLK_EH_HANDLED:
669                 __blk_mq_complete_request(req);
670                 break;
671         case BLK_EH_RESET_TIMER:
672                 blk_add_timer(req);
673                 blk_clear_rq_complete(req);
674                 break;
675         case BLK_EH_NOT_HANDLED:
676                 break;
677         default:
678                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
679                 break;
680         }
681 }
682
683 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
684                 struct request *rq, void *priv, bool reserved)
685 {
686         struct blk_mq_timeout_data *data = priv;
687
688         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
689                 /*
690                  * If a request wasn't started before the queue was
691                  * marked dying, kill it here or it'll go unnoticed.
692                  */
693                 if (unlikely(blk_queue_dying(rq->q))) {
694                         rq->errors = -EIO;
695                         blk_mq_end_request(rq, rq->errors);
696                 }
697                 return;
698         }
699
700         if (time_after_eq(jiffies, rq->deadline)) {
701                 if (!blk_mark_rq_complete(rq))
702                         blk_mq_rq_timed_out(rq, reserved);
703         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
704                 data->next = rq->deadline;
705                 data->next_set = 1;
706         }
707 }
708
709 static void blk_mq_timeout_work(struct work_struct *work)
710 {
711         struct request_queue *q =
712                 container_of(work, struct request_queue, timeout_work);
713         struct blk_mq_timeout_data data = {
714                 .next           = 0,
715                 .next_set       = 0,
716         };
717         int i;
718
719         /* A deadlock might occur if a request is stuck requiring a
720          * timeout at the same time a queue freeze is waiting
721          * completion, since the timeout code would not be able to
722          * acquire the queue reference here.
723          *
724          * That's why we don't use blk_queue_enter here; instead, we use
725          * percpu_ref_tryget directly, because we need to be able to
726          * obtain a reference even in the short window between the queue
727          * starting to freeze, by dropping the first reference in
728          * blk_mq_freeze_queue_start, and the moment the last request is
729          * consumed, marked by the instant q_usage_counter reaches
730          * zero.
731          */
732         if (!percpu_ref_tryget(&q->q_usage_counter))
733                 return;
734
735         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
736
737         if (data.next_set) {
738                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
739                 mod_timer(&q->timeout, data.next);
740         } else {
741                 struct blk_mq_hw_ctx *hctx;
742
743                 queue_for_each_hw_ctx(q, hctx, i) {
744                         /* the hctx may be unmapped, so check it here */
745                         if (blk_mq_hw_queue_mapped(hctx))
746                                 blk_mq_tag_idle(hctx);
747                 }
748         }
749         blk_queue_exit(q);
750 }
751
752 /*
753  * Reverse check our software queue for entries that we could potentially
754  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
755  * too much time checking for merges.
756  */
757 static bool blk_mq_attempt_merge(struct request_queue *q,
758                                  struct blk_mq_ctx *ctx, struct bio *bio)
759 {
760         struct request *rq;
761         int checked = 8;
762
763         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
764                 bool merged = false;
765
766                 if (!checked--)
767                         break;
768
769                 if (!blk_rq_merge_ok(rq, bio))
770                         continue;
771
772                 switch (blk_try_merge(rq, bio)) {
773                 case ELEVATOR_BACK_MERGE:
774                         if (blk_mq_sched_allow_merge(q, rq, bio))
775                                 merged = bio_attempt_back_merge(q, rq, bio);
776                         break;
777                 case ELEVATOR_FRONT_MERGE:
778                         if (blk_mq_sched_allow_merge(q, rq, bio))
779                                 merged = bio_attempt_front_merge(q, rq, bio);
780                         break;
781                 case ELEVATOR_DISCARD_MERGE:
782                         merged = bio_attempt_discard_merge(q, rq, bio);
783                         break;
784                 default:
785                         continue;
786                 }
787
788                 if (merged)
789                         ctx->rq_merged++;
790                 return merged;
791         }
792
793         return false;
794 }
795
796 struct flush_busy_ctx_data {
797         struct blk_mq_hw_ctx *hctx;
798         struct list_head *list;
799 };
800
801 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
802 {
803         struct flush_busy_ctx_data *flush_data = data;
804         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
805         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
806
807         sbitmap_clear_bit(sb, bitnr);
808         spin_lock(&ctx->lock);
809         list_splice_tail_init(&ctx->rq_list, flush_data->list);
810         spin_unlock(&ctx->lock);
811         return true;
812 }
813
814 /*
815  * Process software queues that have been marked busy, splicing them
816  * to the for-dispatch
817  */
818 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
819 {
820         struct flush_busy_ctx_data data = {
821                 .hctx = hctx,
822                 .list = list,
823         };
824
825         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
826 }
827 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
828
829 static inline unsigned int queued_to_index(unsigned int queued)
830 {
831         if (!queued)
832                 return 0;
833
834         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
835 }
836
837 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
838                            bool wait)
839 {
840         struct blk_mq_alloc_data data = {
841                 .q = rq->q,
842                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
843                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
844         };
845
846         if (rq->tag != -1) {
847 done:
848                 if (hctx)
849                         *hctx = data.hctx;
850                 return true;
851         }
852
853         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
854                 data.flags |= BLK_MQ_REQ_RESERVED;
855
856         rq->tag = blk_mq_get_tag(&data);
857         if (rq->tag >= 0) {
858                 if (blk_mq_tag_busy(data.hctx)) {
859                         rq->rq_flags |= RQF_MQ_INFLIGHT;
860                         atomic_inc(&data.hctx->nr_active);
861                 }
862                 data.hctx->tags->rqs[rq->tag] = rq;
863                 goto done;
864         }
865
866         return false;
867 }
868
869 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
870                                   struct request *rq)
871 {
872         if (rq->tag == -1 || rq->internal_tag == -1)
873                 return;
874
875         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
876         rq->tag = -1;
877
878         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
879                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
880                 atomic_dec(&hctx->nr_active);
881         }
882 }
883
884 /*
885  * If we fail getting a driver tag because all the driver tags are already
886  * assigned and on the dispatch list, BUT the first entry does not have a
887  * tag, then we could deadlock. For that case, move entries with assigned
888  * driver tags to the front, leaving the set of tagged requests in the
889  * same order, and the untagged set in the same order.
890  */
891 static bool reorder_tags_to_front(struct list_head *list)
892 {
893         struct request *rq, *tmp, *first = NULL;
894
895         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
896                 if (rq == first)
897                         break;
898                 if (rq->tag != -1) {
899                         list_move(&rq->queuelist, list);
900                         if (!first)
901                                 first = rq;
902                 }
903         }
904
905         return first != NULL;
906 }
907
908 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
909                                 void *key)
910 {
911         struct blk_mq_hw_ctx *hctx;
912
913         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
914
915         list_del(&wait->task_list);
916         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
917         blk_mq_run_hw_queue(hctx, true);
918         return 1;
919 }
920
921 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
922 {
923         struct sbq_wait_state *ws;
924
925         /*
926          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
927          * The thread which wins the race to grab this bit adds the hardware
928          * queue to the wait queue.
929          */
930         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
931             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
932                 return false;
933
934         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
935         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
936
937         /*
938          * As soon as this returns, it's no longer safe to fiddle with
939          * hctx->dispatch_wait, since a completion can wake up the wait queue
940          * and unlock the bit.
941          */
942         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
943         return true;
944 }
945
946 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
947 {
948         struct request_queue *q = hctx->queue;
949         struct request *rq;
950         LIST_HEAD(driver_list);
951         struct list_head *dptr;
952         int queued, ret = BLK_MQ_RQ_QUEUE_OK;
953
954         /*
955          * Start off with dptr being NULL, so we start the first request
956          * immediately, even if we have more pending.
957          */
958         dptr = NULL;
959
960         /*
961          * Now process all the entries, sending them to the driver.
962          */
963         queued = 0;
964         while (!list_empty(list)) {
965                 struct blk_mq_queue_data bd;
966
967                 rq = list_first_entry(list, struct request, queuelist);
968                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
969                         if (!queued && reorder_tags_to_front(list))
970                                 continue;
971
972                         /*
973                          * The initial allocation attempt failed, so we need to
974                          * rerun the hardware queue when a tag is freed.
975                          */
976                         if (blk_mq_dispatch_wait_add(hctx)) {
977                                 /*
978                                  * It's possible that a tag was freed in the
979                                  * window between the allocation failure and
980                                  * adding the hardware queue to the wait queue.
981                                  */
982                                 if (!blk_mq_get_driver_tag(rq, &hctx, false))
983                                         break;
984                         } else {
985                                 break;
986                         }
987                 }
988
989                 list_del_init(&rq->queuelist);
990
991                 bd.rq = rq;
992                 bd.list = dptr;
993                 bd.last = list_empty(list);
994
995                 ret = q->mq_ops->queue_rq(hctx, &bd);
996                 switch (ret) {
997                 case BLK_MQ_RQ_QUEUE_OK:
998                         queued++;
999                         break;
1000                 case BLK_MQ_RQ_QUEUE_BUSY:
1001                         blk_mq_put_driver_tag(hctx, rq);
1002                         list_add(&rq->queuelist, list);
1003                         __blk_mq_requeue_request(rq);
1004                         break;
1005                 default:
1006                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1007                 case BLK_MQ_RQ_QUEUE_ERROR:
1008                         rq->errors = -EIO;
1009                         blk_mq_end_request(rq, rq->errors);
1010                         break;
1011                 }
1012
1013                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1014                         break;
1015
1016                 /*
1017                  * We've done the first request. If we have more than 1
1018                  * left in the list, set dptr to defer issue.
1019                  */
1020                 if (!dptr && list->next != list->prev)
1021                         dptr = &driver_list;
1022         }
1023
1024         hctx->dispatched[queued_to_index(queued)]++;
1025
1026         /*
1027          * Any items that need requeuing? Stuff them into hctx->dispatch,
1028          * that is where we will continue on next queue run.
1029          */
1030         if (!list_empty(list)) {
1031                 spin_lock(&hctx->lock);
1032                 list_splice_init(list, &hctx->dispatch);
1033                 spin_unlock(&hctx->lock);
1034
1035                 /*
1036                  * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1037                  * it's possible the queue is stopped and restarted again
1038                  * before this. Queue restart will dispatch requests. And since
1039                  * requests in rq_list aren't added into hctx->dispatch yet,
1040                  * the requests in rq_list might get lost.
1041                  *
1042                  * blk_mq_run_hw_queue() already checks the STOPPED bit
1043                  *
1044                  * If RESTART or TAG_WAITING is set, then let completion restart
1045                  * the queue instead of potentially looping here.
1046                  */
1047                 if (!blk_mq_sched_needs_restart(hctx) &&
1048                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1049                         blk_mq_run_hw_queue(hctx, true);
1050         }
1051
1052         return queued != 0;
1053 }
1054
1055 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1056 {
1057         int srcu_idx;
1058
1059         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1060                 cpu_online(hctx->next_cpu));
1061
1062         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1063                 rcu_read_lock();
1064                 blk_mq_sched_dispatch_requests(hctx);
1065                 rcu_read_unlock();
1066         } else {
1067                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1068                 blk_mq_sched_dispatch_requests(hctx);
1069                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1070         }
1071 }
1072
1073 /*
1074  * It'd be great if the workqueue API had a way to pass
1075  * in a mask and had some smarts for more clever placement.
1076  * For now we just round-robin here, switching for every
1077  * BLK_MQ_CPU_WORK_BATCH queued items.
1078  */
1079 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1080 {
1081         if (hctx->queue->nr_hw_queues == 1)
1082                 return WORK_CPU_UNBOUND;
1083
1084         if (--hctx->next_cpu_batch <= 0) {
1085                 int next_cpu;
1086
1087                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1088                 if (next_cpu >= nr_cpu_ids)
1089                         next_cpu = cpumask_first(hctx->cpumask);
1090
1091                 hctx->next_cpu = next_cpu;
1092                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1093         }
1094
1095         return hctx->next_cpu;
1096 }
1097
1098 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1099 {
1100         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1101                      !blk_mq_hw_queue_mapped(hctx)))
1102                 return;
1103
1104         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1105                 int cpu = get_cpu();
1106                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1107                         __blk_mq_run_hw_queue(hctx);
1108                         put_cpu();
1109                         return;
1110                 }
1111
1112                 put_cpu();
1113         }
1114
1115         kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1116 }
1117
1118 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1119 {
1120         struct blk_mq_hw_ctx *hctx;
1121         int i;
1122
1123         queue_for_each_hw_ctx(q, hctx, i) {
1124                 if (!blk_mq_hctx_has_pending(hctx) ||
1125                     blk_mq_hctx_stopped(hctx))
1126                         continue;
1127
1128                 blk_mq_run_hw_queue(hctx, async);
1129         }
1130 }
1131 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1132
1133 /**
1134  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1135  * @q: request queue.
1136  *
1137  * The caller is responsible for serializing this function against
1138  * blk_mq_{start,stop}_hw_queue().
1139  */
1140 bool blk_mq_queue_stopped(struct request_queue *q)
1141 {
1142         struct blk_mq_hw_ctx *hctx;
1143         int i;
1144
1145         queue_for_each_hw_ctx(q, hctx, i)
1146                 if (blk_mq_hctx_stopped(hctx))
1147                         return true;
1148
1149         return false;
1150 }
1151 EXPORT_SYMBOL(blk_mq_queue_stopped);
1152
1153 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1154 {
1155         cancel_work(&hctx->run_work);
1156         cancel_delayed_work(&hctx->delay_work);
1157         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1158 }
1159 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1160
1161 void blk_mq_stop_hw_queues(struct request_queue *q)
1162 {
1163         struct blk_mq_hw_ctx *hctx;
1164         int i;
1165
1166         queue_for_each_hw_ctx(q, hctx, i)
1167                 blk_mq_stop_hw_queue(hctx);
1168 }
1169 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1170
1171 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1172 {
1173         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1174
1175         blk_mq_run_hw_queue(hctx, false);
1176 }
1177 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1178
1179 void blk_mq_start_hw_queues(struct request_queue *q)
1180 {
1181         struct blk_mq_hw_ctx *hctx;
1182         int i;
1183
1184         queue_for_each_hw_ctx(q, hctx, i)
1185                 blk_mq_start_hw_queue(hctx);
1186 }
1187 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1188
1189 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1190 {
1191         if (!blk_mq_hctx_stopped(hctx))
1192                 return;
1193
1194         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1195         blk_mq_run_hw_queue(hctx, async);
1196 }
1197 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1198
1199 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1200 {
1201         struct blk_mq_hw_ctx *hctx;
1202         int i;
1203
1204         queue_for_each_hw_ctx(q, hctx, i)
1205                 blk_mq_start_stopped_hw_queue(hctx, async);
1206 }
1207 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1208
1209 static void blk_mq_run_work_fn(struct work_struct *work)
1210 {
1211         struct blk_mq_hw_ctx *hctx;
1212
1213         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1214
1215         __blk_mq_run_hw_queue(hctx);
1216 }
1217
1218 static void blk_mq_delay_work_fn(struct work_struct *work)
1219 {
1220         struct blk_mq_hw_ctx *hctx;
1221
1222         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1223
1224         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1225                 __blk_mq_run_hw_queue(hctx);
1226 }
1227
1228 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1229 {
1230         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1231                 return;
1232
1233         blk_mq_stop_hw_queue(hctx);
1234         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1235                         &hctx->delay_work, msecs_to_jiffies(msecs));
1236 }
1237 EXPORT_SYMBOL(blk_mq_delay_queue);
1238
1239 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1240                                             struct request *rq,
1241                                             bool at_head)
1242 {
1243         struct blk_mq_ctx *ctx = rq->mq_ctx;
1244
1245         trace_block_rq_insert(hctx->queue, rq);
1246
1247         if (at_head)
1248                 list_add(&rq->queuelist, &ctx->rq_list);
1249         else
1250                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1251 }
1252
1253 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1254                              bool at_head)
1255 {
1256         struct blk_mq_ctx *ctx = rq->mq_ctx;
1257
1258         __blk_mq_insert_req_list(hctx, rq, at_head);
1259         blk_mq_hctx_mark_pending(hctx, ctx);
1260 }
1261
1262 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1263                             struct list_head *list)
1264
1265 {
1266         /*
1267          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1268          * offline now
1269          */
1270         spin_lock(&ctx->lock);
1271         while (!list_empty(list)) {
1272                 struct request *rq;
1273
1274                 rq = list_first_entry(list, struct request, queuelist);
1275                 BUG_ON(rq->mq_ctx != ctx);
1276                 list_del_init(&rq->queuelist);
1277                 __blk_mq_insert_req_list(hctx, rq, false);
1278         }
1279         blk_mq_hctx_mark_pending(hctx, ctx);
1280         spin_unlock(&ctx->lock);
1281 }
1282
1283 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1284 {
1285         struct request *rqa = container_of(a, struct request, queuelist);
1286         struct request *rqb = container_of(b, struct request, queuelist);
1287
1288         return !(rqa->mq_ctx < rqb->mq_ctx ||
1289                  (rqa->mq_ctx == rqb->mq_ctx &&
1290                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1291 }
1292
1293 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1294 {
1295         struct blk_mq_ctx *this_ctx;
1296         struct request_queue *this_q;
1297         struct request *rq;
1298         LIST_HEAD(list);
1299         LIST_HEAD(ctx_list);
1300         unsigned int depth;
1301
1302         list_splice_init(&plug->mq_list, &list);
1303
1304         list_sort(NULL, &list, plug_ctx_cmp);
1305
1306         this_q = NULL;
1307         this_ctx = NULL;
1308         depth = 0;
1309
1310         while (!list_empty(&list)) {
1311                 rq = list_entry_rq(list.next);
1312                 list_del_init(&rq->queuelist);
1313                 BUG_ON(!rq->q);
1314                 if (rq->mq_ctx != this_ctx) {
1315                         if (this_ctx) {
1316                                 trace_block_unplug(this_q, depth, from_schedule);
1317                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1318                                                                 &ctx_list,
1319                                                                 from_schedule);
1320                         }
1321
1322                         this_ctx = rq->mq_ctx;
1323                         this_q = rq->q;
1324                         depth = 0;
1325                 }
1326
1327                 depth++;
1328                 list_add_tail(&rq->queuelist, &ctx_list);
1329         }
1330
1331         /*
1332          * If 'this_ctx' is set, we know we have entries to complete
1333          * on 'ctx_list'. Do those.
1334          */
1335         if (this_ctx) {
1336                 trace_block_unplug(this_q, depth, from_schedule);
1337                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1338                                                 from_schedule);
1339         }
1340 }
1341
1342 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1343 {
1344         init_request_from_bio(rq, bio);
1345
1346         blk_account_io_start(rq, true);
1347 }
1348
1349 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1350 {
1351         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1352                 !blk_queue_nomerges(hctx->queue);
1353 }
1354
1355 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1356                                          struct blk_mq_ctx *ctx,
1357                                          struct request *rq, struct bio *bio)
1358 {
1359         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1360                 blk_mq_bio_to_request(rq, bio);
1361                 spin_lock(&ctx->lock);
1362 insert_rq:
1363                 __blk_mq_insert_request(hctx, rq, false);
1364                 spin_unlock(&ctx->lock);
1365                 return false;
1366         } else {
1367                 struct request_queue *q = hctx->queue;
1368
1369                 spin_lock(&ctx->lock);
1370                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1371                         blk_mq_bio_to_request(rq, bio);
1372                         goto insert_rq;
1373                 }
1374
1375                 spin_unlock(&ctx->lock);
1376                 __blk_mq_finish_request(hctx, ctx, rq);
1377                 return true;
1378         }
1379 }
1380
1381 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1382 {
1383         if (rq->tag != -1)
1384                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1385
1386         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1387 }
1388
1389 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1390 {
1391         struct request_queue *q = rq->q;
1392         struct blk_mq_queue_data bd = {
1393                 .rq = rq,
1394                 .list = NULL,
1395                 .last = 1
1396         };
1397         struct blk_mq_hw_ctx *hctx;
1398         blk_qc_t new_cookie;
1399         int ret;
1400
1401         if (q->elevator)
1402                 goto insert;
1403
1404         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1405                 goto insert;
1406
1407         new_cookie = request_to_qc_t(hctx, rq);
1408
1409         /*
1410          * For OK queue, we are done. For error, kill it. Any other
1411          * error (busy), just add it to our list as we previously
1412          * would have done
1413          */
1414         ret = q->mq_ops->queue_rq(hctx, &bd);
1415         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1416                 *cookie = new_cookie;
1417                 return;
1418         }
1419
1420         __blk_mq_requeue_request(rq);
1421
1422         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1423                 *cookie = BLK_QC_T_NONE;
1424                 rq->errors = -EIO;
1425                 blk_mq_end_request(rq, rq->errors);
1426                 return;
1427         }
1428
1429 insert:
1430         blk_mq_sched_insert_request(rq, false, true, true, false);
1431 }
1432
1433 /*
1434  * Multiple hardware queue variant. This will not use per-process plugs,
1435  * but will attempt to bypass the hctx queueing if we can go straight to
1436  * hardware for SYNC IO.
1437  */
1438 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1439 {
1440         const int is_sync = op_is_sync(bio->bi_opf);
1441         const int is_flush_fua = op_is_flush(bio->bi_opf);
1442         struct blk_mq_alloc_data data = { .flags = 0 };
1443         struct request *rq;
1444         unsigned int request_count = 0, srcu_idx;
1445         struct blk_plug *plug;
1446         struct request *same_queue_rq = NULL;
1447         blk_qc_t cookie;
1448         unsigned int wb_acct;
1449
1450         blk_queue_bounce(q, &bio);
1451
1452         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1453                 bio_io_error(bio);
1454                 return BLK_QC_T_NONE;
1455         }
1456
1457         blk_queue_split(q, &bio, q->bio_split);
1458
1459         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1460             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1461                 return BLK_QC_T_NONE;
1462
1463         if (blk_mq_sched_bio_merge(q, bio))
1464                 return BLK_QC_T_NONE;
1465
1466         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1467
1468         trace_block_getrq(q, bio, bio->bi_opf);
1469
1470         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1471         if (unlikely(!rq)) {
1472                 __wbt_done(q->rq_wb, wb_acct);
1473                 return BLK_QC_T_NONE;
1474         }
1475
1476         wbt_track(&rq->issue_stat, wb_acct);
1477
1478         cookie = request_to_qc_t(data.hctx, rq);
1479
1480         if (unlikely(is_flush_fua)) {
1481                 if (q->elevator)
1482                         goto elv_insert;
1483                 blk_mq_bio_to_request(rq, bio);
1484                 blk_insert_flush(rq);
1485                 goto run_queue;
1486         }
1487
1488         plug = current->plug;
1489         /*
1490          * If the driver supports defer issued based on 'last', then
1491          * queue it up like normal since we can potentially save some
1492          * CPU this way.
1493          */
1494         if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1495             !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1496                 struct request *old_rq = NULL;
1497
1498                 blk_mq_bio_to_request(rq, bio);
1499
1500                 /*
1501                  * We do limited plugging. If the bio can be merged, do that.
1502                  * Otherwise the existing request in the plug list will be
1503                  * issued. So the plug list will have one request at most
1504                  */
1505                 if (plug) {
1506                         /*
1507                          * The plug list might get flushed before this. If that
1508                          * happens, same_queue_rq is invalid and plug list is
1509                          * empty
1510                          */
1511                         if (same_queue_rq && !list_empty(&plug->mq_list)) {
1512                                 old_rq = same_queue_rq;
1513                                 list_del_init(&old_rq->queuelist);
1514                         }
1515                         list_add_tail(&rq->queuelist, &plug->mq_list);
1516                 } else /* is_sync */
1517                         old_rq = rq;
1518                 blk_mq_put_ctx(data.ctx);
1519                 if (!old_rq)
1520                         goto done;
1521
1522                 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1523                         rcu_read_lock();
1524                         blk_mq_try_issue_directly(old_rq, &cookie);
1525                         rcu_read_unlock();
1526                 } else {
1527                         srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1528                         blk_mq_try_issue_directly(old_rq, &cookie);
1529                         srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1530                 }
1531                 goto done;
1532         }
1533
1534         if (q->elevator) {
1535 elv_insert:
1536                 blk_mq_put_ctx(data.ctx);
1537                 blk_mq_bio_to_request(rq, bio);
1538                 blk_mq_sched_insert_request(rq, false, true,
1539                                                 !is_sync || is_flush_fua, true);
1540                 goto done;
1541         }
1542         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1543                 /*
1544                  * For a SYNC request, send it to the hardware immediately. For
1545                  * an ASYNC request, just ensure that we run it later on. The
1546                  * latter allows for merging opportunities and more efficient
1547                  * dispatching.
1548                  */
1549 run_queue:
1550                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1551         }
1552         blk_mq_put_ctx(data.ctx);
1553 done:
1554         return cookie;
1555 }
1556
1557 /*
1558  * Single hardware queue variant. This will attempt to use any per-process
1559  * plug for merging and IO deferral.
1560  */
1561 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1562 {
1563         const int is_sync = op_is_sync(bio->bi_opf);
1564         const int is_flush_fua = op_is_flush(bio->bi_opf);
1565         struct blk_plug *plug;
1566         unsigned int request_count = 0;
1567         struct blk_mq_alloc_data data = { .flags = 0 };
1568         struct request *rq;
1569         blk_qc_t cookie;
1570         unsigned int wb_acct;
1571
1572         blk_queue_bounce(q, &bio);
1573
1574         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1575                 bio_io_error(bio);
1576                 return BLK_QC_T_NONE;
1577         }
1578
1579         blk_queue_split(q, &bio, q->bio_split);
1580
1581         if (!is_flush_fua && !blk_queue_nomerges(q)) {
1582                 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1583                         return BLK_QC_T_NONE;
1584         } else
1585                 request_count = blk_plug_queued_count(q);
1586
1587         if (blk_mq_sched_bio_merge(q, bio))
1588                 return BLK_QC_T_NONE;
1589
1590         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1591
1592         trace_block_getrq(q, bio, bio->bi_opf);
1593
1594         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1595         if (unlikely(!rq)) {
1596                 __wbt_done(q->rq_wb, wb_acct);
1597                 return BLK_QC_T_NONE;
1598         }
1599
1600         wbt_track(&rq->issue_stat, wb_acct);
1601
1602         cookie = request_to_qc_t(data.hctx, rq);
1603
1604         if (unlikely(is_flush_fua)) {
1605                 if (q->elevator)
1606                         goto elv_insert;
1607                 blk_mq_bio_to_request(rq, bio);
1608                 blk_insert_flush(rq);
1609                 goto run_queue;
1610         }
1611
1612         /*
1613          * A task plug currently exists. Since this is completely lockless,
1614          * utilize that to temporarily store requests until the task is
1615          * either done or scheduled away.
1616          */
1617         plug = current->plug;
1618         if (plug) {
1619                 struct request *last = NULL;
1620
1621                 blk_mq_bio_to_request(rq, bio);
1622
1623                 /*
1624                  * @request_count may become stale because of schedule
1625                  * out, so check the list again.
1626                  */
1627                 if (list_empty(&plug->mq_list))
1628                         request_count = 0;
1629                 if (!request_count)
1630                         trace_block_plug(q);
1631                 else
1632                         last = list_entry_rq(plug->mq_list.prev);
1633
1634                 blk_mq_put_ctx(data.ctx);
1635
1636                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1637                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1638                         blk_flush_plug_list(plug, false);
1639                         trace_block_plug(q);
1640                 }
1641
1642                 list_add_tail(&rq->queuelist, &plug->mq_list);
1643                 return cookie;
1644         }
1645
1646         if (q->elevator) {
1647 elv_insert:
1648                 blk_mq_put_ctx(data.ctx);
1649                 blk_mq_bio_to_request(rq, bio);
1650                 blk_mq_sched_insert_request(rq, false, true,
1651                                                 !is_sync || is_flush_fua, true);
1652                 goto done;
1653         }
1654         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1655                 /*
1656                  * For a SYNC request, send it to the hardware immediately. For
1657                  * an ASYNC request, just ensure that we run it later on. The
1658                  * latter allows for merging opportunities and more efficient
1659                  * dispatching.
1660                  */
1661 run_queue:
1662                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1663         }
1664
1665         blk_mq_put_ctx(data.ctx);
1666 done:
1667         return cookie;
1668 }
1669
1670 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1671                      unsigned int hctx_idx)
1672 {
1673         struct page *page;
1674
1675         if (tags->rqs && set->ops->exit_request) {
1676                 int i;
1677
1678                 for (i = 0; i < tags->nr_tags; i++) {
1679                         struct request *rq = tags->static_rqs[i];
1680
1681                         if (!rq)
1682                                 continue;
1683                         set->ops->exit_request(set->driver_data, rq,
1684                                                 hctx_idx, i);
1685                         tags->static_rqs[i] = NULL;
1686                 }
1687         }
1688
1689         while (!list_empty(&tags->page_list)) {
1690                 page = list_first_entry(&tags->page_list, struct page, lru);
1691                 list_del_init(&page->lru);
1692                 /*
1693                  * Remove kmemleak object previously allocated in
1694                  * blk_mq_init_rq_map().
1695                  */
1696                 kmemleak_free(page_address(page));
1697                 __free_pages(page, page->private);
1698         }
1699 }
1700
1701 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1702 {
1703         kfree(tags->rqs);
1704         tags->rqs = NULL;
1705         kfree(tags->static_rqs);
1706         tags->static_rqs = NULL;
1707
1708         blk_mq_free_tags(tags);
1709 }
1710
1711 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1712                                         unsigned int hctx_idx,
1713                                         unsigned int nr_tags,
1714                                         unsigned int reserved_tags)
1715 {
1716         struct blk_mq_tags *tags;
1717         int node;
1718
1719         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1720         if (node == NUMA_NO_NODE)
1721                 node = set->numa_node;
1722
1723         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1724                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1725         if (!tags)
1726                 return NULL;
1727
1728         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1729                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1730                                  node);
1731         if (!tags->rqs) {
1732                 blk_mq_free_tags(tags);
1733                 return NULL;
1734         }
1735
1736         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1737                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1738                                  node);
1739         if (!tags->static_rqs) {
1740                 kfree(tags->rqs);
1741                 blk_mq_free_tags(tags);
1742                 return NULL;
1743         }
1744
1745         return tags;
1746 }
1747
1748 static size_t order_to_size(unsigned int order)
1749 {
1750         return (size_t)PAGE_SIZE << order;
1751 }
1752
1753 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1754                      unsigned int hctx_idx, unsigned int depth)
1755 {
1756         unsigned int i, j, entries_per_page, max_order = 4;
1757         size_t rq_size, left;
1758         int node;
1759
1760         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1761         if (node == NUMA_NO_NODE)
1762                 node = set->numa_node;
1763
1764         INIT_LIST_HEAD(&tags->page_list);
1765
1766         /*
1767          * rq_size is the size of the request plus driver payload, rounded
1768          * to the cacheline size
1769          */
1770         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1771                                 cache_line_size());
1772         left = rq_size * depth;
1773
1774         for (i = 0; i < depth; ) {
1775                 int this_order = max_order;
1776                 struct page *page;
1777                 int to_do;
1778                 void *p;
1779
1780                 while (this_order && left < order_to_size(this_order - 1))
1781                         this_order--;
1782
1783                 do {
1784                         page = alloc_pages_node(node,
1785                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1786                                 this_order);
1787                         if (page)
1788                                 break;
1789                         if (!this_order--)
1790                                 break;
1791                         if (order_to_size(this_order) < rq_size)
1792                                 break;
1793                 } while (1);
1794
1795                 if (!page)
1796                         goto fail;
1797
1798                 page->private = this_order;
1799                 list_add_tail(&page->lru, &tags->page_list);
1800
1801                 p = page_address(page);
1802                 /*
1803                  * Allow kmemleak to scan these pages as they contain pointers
1804                  * to additional allocations like via ops->init_request().
1805                  */
1806                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1807                 entries_per_page = order_to_size(this_order) / rq_size;
1808                 to_do = min(entries_per_page, depth - i);
1809                 left -= to_do * rq_size;
1810                 for (j = 0; j < to_do; j++) {
1811                         struct request *rq = p;
1812
1813                         tags->static_rqs[i] = rq;
1814                         if (set->ops->init_request) {
1815                                 if (set->ops->init_request(set->driver_data,
1816                                                 rq, hctx_idx, i,
1817                                                 node)) {
1818                                         tags->static_rqs[i] = NULL;
1819                                         goto fail;
1820                                 }
1821                         }
1822
1823                         p += rq_size;
1824                         i++;
1825                 }
1826         }
1827         return 0;
1828
1829 fail:
1830         blk_mq_free_rqs(set, tags, hctx_idx);
1831         return -ENOMEM;
1832 }
1833
1834 /*
1835  * 'cpu' is going away. splice any existing rq_list entries from this
1836  * software queue to the hw queue dispatch list, and ensure that it
1837  * gets run.
1838  */
1839 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1840 {
1841         struct blk_mq_hw_ctx *hctx;
1842         struct blk_mq_ctx *ctx;
1843         LIST_HEAD(tmp);
1844
1845         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1846         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1847
1848         spin_lock(&ctx->lock);
1849         if (!list_empty(&ctx->rq_list)) {
1850                 list_splice_init(&ctx->rq_list, &tmp);
1851                 blk_mq_hctx_clear_pending(hctx, ctx);
1852         }
1853         spin_unlock(&ctx->lock);
1854
1855         if (list_empty(&tmp))
1856                 return 0;
1857
1858         spin_lock(&hctx->lock);
1859         list_splice_tail_init(&tmp, &hctx->dispatch);
1860         spin_unlock(&hctx->lock);
1861
1862         blk_mq_run_hw_queue(hctx, true);
1863         return 0;
1864 }
1865
1866 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1867 {
1868         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1869                                             &hctx->cpuhp_dead);
1870 }
1871
1872 /* hctx->ctxs will be freed in queue's release handler */
1873 static void blk_mq_exit_hctx(struct request_queue *q,
1874                 struct blk_mq_tag_set *set,
1875                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1876 {
1877         unsigned flush_start_tag = set->queue_depth;
1878
1879         blk_mq_tag_idle(hctx);
1880
1881         if (set->ops->exit_request)
1882                 set->ops->exit_request(set->driver_data,
1883                                        hctx->fq->flush_rq, hctx_idx,
1884                                        flush_start_tag + hctx_idx);
1885
1886         if (set->ops->exit_hctx)
1887                 set->ops->exit_hctx(hctx, hctx_idx);
1888
1889         if (hctx->flags & BLK_MQ_F_BLOCKING)
1890                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1891
1892         blk_mq_remove_cpuhp(hctx);
1893         blk_free_flush_queue(hctx->fq);
1894         sbitmap_free(&hctx->ctx_map);
1895 }
1896
1897 static void blk_mq_exit_hw_queues(struct request_queue *q,
1898                 struct blk_mq_tag_set *set, int nr_queue)
1899 {
1900         struct blk_mq_hw_ctx *hctx;
1901         unsigned int i;
1902
1903         queue_for_each_hw_ctx(q, hctx, i) {
1904                 if (i == nr_queue)
1905                         break;
1906                 blk_mq_exit_hctx(q, set, hctx, i);
1907         }
1908 }
1909
1910 static void blk_mq_free_hw_queues(struct request_queue *q,
1911                 struct blk_mq_tag_set *set)
1912 {
1913         struct blk_mq_hw_ctx *hctx;
1914         unsigned int i;
1915
1916         queue_for_each_hw_ctx(q, hctx, i)
1917                 free_cpumask_var(hctx->cpumask);
1918 }
1919
1920 static int blk_mq_init_hctx(struct request_queue *q,
1921                 struct blk_mq_tag_set *set,
1922                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1923 {
1924         int node;
1925         unsigned flush_start_tag = set->queue_depth;
1926
1927         node = hctx->numa_node;
1928         if (node == NUMA_NO_NODE)
1929                 node = hctx->numa_node = set->numa_node;
1930
1931         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1932         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1933         spin_lock_init(&hctx->lock);
1934         INIT_LIST_HEAD(&hctx->dispatch);
1935         hctx->queue = q;
1936         hctx->queue_num = hctx_idx;
1937         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1938
1939         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1940
1941         hctx->tags = set->tags[hctx_idx];
1942
1943         /*
1944          * Allocate space for all possible cpus to avoid allocation at
1945          * runtime
1946          */
1947         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1948                                         GFP_KERNEL, node);
1949         if (!hctx->ctxs)
1950                 goto unregister_cpu_notifier;
1951
1952         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1953                               node))
1954                 goto free_ctxs;
1955
1956         hctx->nr_ctx = 0;
1957
1958         if (set->ops->init_hctx &&
1959             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1960                 goto free_bitmap;
1961
1962         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1963         if (!hctx->fq)
1964                 goto exit_hctx;
1965
1966         if (set->ops->init_request &&
1967             set->ops->init_request(set->driver_data,
1968                                    hctx->fq->flush_rq, hctx_idx,
1969                                    flush_start_tag + hctx_idx, node))
1970                 goto free_fq;
1971
1972         if (hctx->flags & BLK_MQ_F_BLOCKING)
1973                 init_srcu_struct(&hctx->queue_rq_srcu);
1974
1975         return 0;
1976
1977  free_fq:
1978         kfree(hctx->fq);
1979  exit_hctx:
1980         if (set->ops->exit_hctx)
1981                 set->ops->exit_hctx(hctx, hctx_idx);
1982  free_bitmap:
1983         sbitmap_free(&hctx->ctx_map);
1984  free_ctxs:
1985         kfree(hctx->ctxs);
1986  unregister_cpu_notifier:
1987         blk_mq_remove_cpuhp(hctx);
1988         return -1;
1989 }
1990
1991 static void blk_mq_init_cpu_queues(struct request_queue *q,
1992                                    unsigned int nr_hw_queues)
1993 {
1994         unsigned int i;
1995
1996         for_each_possible_cpu(i) {
1997                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1998                 struct blk_mq_hw_ctx *hctx;
1999
2000                 memset(__ctx, 0, sizeof(*__ctx));
2001                 __ctx->cpu = i;
2002                 spin_lock_init(&__ctx->lock);
2003                 INIT_LIST_HEAD(&__ctx->rq_list);
2004                 __ctx->queue = q;
2005                 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2006                 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2007
2008                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2009                 if (!cpu_online(i))
2010                         continue;
2011
2012                 hctx = blk_mq_map_queue(q, i);
2013
2014                 /*
2015                  * Set local node, IFF we have more than one hw queue. If
2016                  * not, we remain on the home node of the device
2017                  */
2018                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2019                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2020         }
2021 }
2022
2023 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2024 {
2025         int ret = 0;
2026
2027         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2028                                         set->queue_depth, set->reserved_tags);
2029         if (!set->tags[hctx_idx])
2030                 return false;
2031
2032         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2033                                 set->queue_depth);
2034         if (!ret)
2035                 return true;
2036
2037         blk_mq_free_rq_map(set->tags[hctx_idx]);
2038         set->tags[hctx_idx] = NULL;
2039         return false;
2040 }
2041
2042 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2043                                          unsigned int hctx_idx)
2044 {
2045         if (set->tags[hctx_idx]) {
2046                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2047                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2048                 set->tags[hctx_idx] = NULL;
2049         }
2050 }
2051
2052 static void blk_mq_map_swqueue(struct request_queue *q,
2053                                const struct cpumask *online_mask)
2054 {
2055         unsigned int i, hctx_idx;
2056         struct blk_mq_hw_ctx *hctx;
2057         struct blk_mq_ctx *ctx;
2058         struct blk_mq_tag_set *set = q->tag_set;
2059
2060         /*
2061          * Avoid others reading imcomplete hctx->cpumask through sysfs
2062          */
2063         mutex_lock(&q->sysfs_lock);
2064
2065         queue_for_each_hw_ctx(q, hctx, i) {
2066                 cpumask_clear(hctx->cpumask);
2067                 hctx->nr_ctx = 0;
2068         }
2069
2070         /*
2071          * Map software to hardware queues
2072          */
2073         for_each_possible_cpu(i) {
2074                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2075                 if (!cpumask_test_cpu(i, online_mask))
2076                         continue;
2077
2078                 hctx_idx = q->mq_map[i];
2079                 /* unmapped hw queue can be remapped after CPU topo changed */
2080                 if (!set->tags[hctx_idx] &&
2081                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2082                         /*
2083                          * If tags initialization fail for some hctx,
2084                          * that hctx won't be brought online.  In this
2085                          * case, remap the current ctx to hctx[0] which
2086                          * is guaranteed to always have tags allocated
2087                          */
2088                         q->mq_map[i] = 0;
2089                 }
2090
2091                 ctx = per_cpu_ptr(q->queue_ctx, i);
2092                 hctx = blk_mq_map_queue(q, i);
2093
2094                 cpumask_set_cpu(i, hctx->cpumask);
2095                 ctx->index_hw = hctx->nr_ctx;
2096                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2097         }
2098
2099         mutex_unlock(&q->sysfs_lock);
2100
2101         queue_for_each_hw_ctx(q, hctx, i) {
2102                 /*
2103                  * If no software queues are mapped to this hardware queue,
2104                  * disable it and free the request entries.
2105                  */
2106                 if (!hctx->nr_ctx) {
2107                         /* Never unmap queue 0.  We need it as a
2108                          * fallback in case of a new remap fails
2109                          * allocation
2110                          */
2111                         if (i && set->tags[i])
2112                                 blk_mq_free_map_and_requests(set, i);
2113
2114                         hctx->tags = NULL;
2115                         continue;
2116                 }
2117
2118                 hctx->tags = set->tags[i];
2119                 WARN_ON(!hctx->tags);
2120
2121                 /*
2122                  * Set the map size to the number of mapped software queues.
2123                  * This is more accurate and more efficient than looping
2124                  * over all possibly mapped software queues.
2125                  */
2126                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2127
2128                 /*
2129                  * Initialize batch roundrobin counts
2130                  */
2131                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2132                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2133         }
2134 }
2135
2136 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2137 {
2138         struct blk_mq_hw_ctx *hctx;
2139         int i;
2140
2141         queue_for_each_hw_ctx(q, hctx, i) {
2142                 if (shared)
2143                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2144                 else
2145                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2146         }
2147 }
2148
2149 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2150 {
2151         struct request_queue *q;
2152
2153         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2154                 blk_mq_freeze_queue(q);
2155                 queue_set_hctx_shared(q, shared);
2156                 blk_mq_unfreeze_queue(q);
2157         }
2158 }
2159
2160 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2161 {
2162         struct blk_mq_tag_set *set = q->tag_set;
2163
2164         mutex_lock(&set->tag_list_lock);
2165         list_del_init(&q->tag_set_list);
2166         if (list_is_singular(&set->tag_list)) {
2167                 /* just transitioned to unshared */
2168                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2169                 /* update existing queue */
2170                 blk_mq_update_tag_set_depth(set, false);
2171         }
2172         mutex_unlock(&set->tag_list_lock);
2173 }
2174
2175 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2176                                      struct request_queue *q)
2177 {
2178         q->tag_set = set;
2179
2180         mutex_lock(&set->tag_list_lock);
2181
2182         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2183         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2184                 set->flags |= BLK_MQ_F_TAG_SHARED;
2185                 /* update existing queue */
2186                 blk_mq_update_tag_set_depth(set, true);
2187         }
2188         if (set->flags & BLK_MQ_F_TAG_SHARED)
2189                 queue_set_hctx_shared(q, true);
2190         list_add_tail(&q->tag_set_list, &set->tag_list);
2191
2192         mutex_unlock(&set->tag_list_lock);
2193 }
2194
2195 /*
2196  * It is the actual release handler for mq, but we do it from
2197  * request queue's release handler for avoiding use-after-free
2198  * and headache because q->mq_kobj shouldn't have been introduced,
2199  * but we can't group ctx/kctx kobj without it.
2200  */
2201 void blk_mq_release(struct request_queue *q)
2202 {
2203         struct blk_mq_hw_ctx *hctx;
2204         unsigned int i;
2205
2206         blk_mq_sched_teardown(q);
2207
2208         /* hctx kobj stays in hctx */
2209         queue_for_each_hw_ctx(q, hctx, i) {
2210                 if (!hctx)
2211                         continue;
2212                 kfree(hctx->ctxs);
2213                 kfree(hctx);
2214         }
2215
2216         q->mq_map = NULL;
2217
2218         kfree(q->queue_hw_ctx);
2219
2220         /* ctx kobj stays in queue_ctx */
2221         free_percpu(q->queue_ctx);
2222 }
2223
2224 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2225 {
2226         struct request_queue *uninit_q, *q;
2227
2228         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2229         if (!uninit_q)
2230                 return ERR_PTR(-ENOMEM);
2231
2232         q = blk_mq_init_allocated_queue(set, uninit_q);
2233         if (IS_ERR(q))
2234                 blk_cleanup_queue(uninit_q);
2235
2236         return q;
2237 }
2238 EXPORT_SYMBOL(blk_mq_init_queue);
2239
2240 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2241                                                 struct request_queue *q)
2242 {
2243         int i, j;
2244         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2245
2246         blk_mq_sysfs_unregister(q);
2247         for (i = 0; i < set->nr_hw_queues; i++) {
2248                 int node;
2249
2250                 if (hctxs[i])
2251                         continue;
2252
2253                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2254                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2255                                         GFP_KERNEL, node);
2256                 if (!hctxs[i])
2257                         break;
2258
2259                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2260                                                 node)) {
2261                         kfree(hctxs[i]);
2262                         hctxs[i] = NULL;
2263                         break;
2264                 }
2265
2266                 atomic_set(&hctxs[i]->nr_active, 0);
2267                 hctxs[i]->numa_node = node;
2268                 hctxs[i]->queue_num = i;
2269
2270                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2271                         free_cpumask_var(hctxs[i]->cpumask);
2272                         kfree(hctxs[i]);
2273                         hctxs[i] = NULL;
2274                         break;
2275                 }
2276                 blk_mq_hctx_kobj_init(hctxs[i]);
2277         }
2278         for (j = i; j < q->nr_hw_queues; j++) {
2279                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2280
2281                 if (hctx) {
2282                         if (hctx->tags)
2283                                 blk_mq_free_map_and_requests(set, j);
2284                         blk_mq_exit_hctx(q, set, hctx, j);
2285                         free_cpumask_var(hctx->cpumask);
2286                         kobject_put(&hctx->kobj);
2287                         kfree(hctx->ctxs);
2288                         kfree(hctx);
2289                         hctxs[j] = NULL;
2290
2291                 }
2292         }
2293         q->nr_hw_queues = i;
2294         blk_mq_sysfs_register(q);
2295 }
2296
2297 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2298                                                   struct request_queue *q)
2299 {
2300         /* mark the queue as mq asap */
2301         q->mq_ops = set->ops;
2302
2303         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2304         if (!q->queue_ctx)
2305                 goto err_exit;
2306
2307         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2308                                                 GFP_KERNEL, set->numa_node);
2309         if (!q->queue_hw_ctx)
2310                 goto err_percpu;
2311
2312         q->mq_map = set->mq_map;
2313
2314         blk_mq_realloc_hw_ctxs(set, q);
2315         if (!q->nr_hw_queues)
2316                 goto err_hctxs;
2317
2318         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2319         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2320
2321         q->nr_queues = nr_cpu_ids;
2322
2323         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2324
2325         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2326                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2327
2328         q->sg_reserved_size = INT_MAX;
2329
2330         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2331         INIT_LIST_HEAD(&q->requeue_list);
2332         spin_lock_init(&q->requeue_lock);
2333
2334         if (q->nr_hw_queues > 1)
2335                 blk_queue_make_request(q, blk_mq_make_request);
2336         else
2337                 blk_queue_make_request(q, blk_sq_make_request);
2338
2339         /*
2340          * Do this after blk_queue_make_request() overrides it...
2341          */
2342         q->nr_requests = set->queue_depth;
2343
2344         /*
2345          * Default to classic polling
2346          */
2347         q->poll_nsec = -1;
2348
2349         if (set->ops->complete)
2350                 blk_queue_softirq_done(q, set->ops->complete);
2351
2352         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2353
2354         get_online_cpus();
2355         mutex_lock(&all_q_mutex);
2356
2357         list_add_tail(&q->all_q_node, &all_q_list);
2358         blk_mq_add_queue_tag_set(set, q);
2359         blk_mq_map_swqueue(q, cpu_online_mask);
2360
2361         mutex_unlock(&all_q_mutex);
2362         put_online_cpus();
2363
2364         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2365                 int ret;
2366
2367                 ret = blk_mq_sched_init(q);
2368                 if (ret)
2369                         return ERR_PTR(ret);
2370         }
2371
2372         return q;
2373
2374 err_hctxs:
2375         kfree(q->queue_hw_ctx);
2376 err_percpu:
2377         free_percpu(q->queue_ctx);
2378 err_exit:
2379         q->mq_ops = NULL;
2380         return ERR_PTR(-ENOMEM);
2381 }
2382 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2383
2384 void blk_mq_free_queue(struct request_queue *q)
2385 {
2386         struct blk_mq_tag_set   *set = q->tag_set;
2387
2388         mutex_lock(&all_q_mutex);
2389         list_del_init(&q->all_q_node);
2390         mutex_unlock(&all_q_mutex);
2391
2392         wbt_exit(q);
2393
2394         blk_mq_del_queue_tag_set(q);
2395
2396         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2397         blk_mq_free_hw_queues(q, set);
2398 }
2399
2400 /* Basically redo blk_mq_init_queue with queue frozen */
2401 static void blk_mq_queue_reinit(struct request_queue *q,
2402                                 const struct cpumask *online_mask)
2403 {
2404         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2405
2406         blk_mq_sysfs_unregister(q);
2407
2408         /*
2409          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2410          * we should change hctx numa_node according to new topology (this
2411          * involves free and re-allocate memory, worthy doing?)
2412          */
2413
2414         blk_mq_map_swqueue(q, online_mask);
2415
2416         blk_mq_sysfs_register(q);
2417 }
2418
2419 /*
2420  * New online cpumask which is going to be set in this hotplug event.
2421  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2422  * one-by-one and dynamically allocating this could result in a failure.
2423  */
2424 static struct cpumask cpuhp_online_new;
2425
2426 static void blk_mq_queue_reinit_work(void)
2427 {
2428         struct request_queue *q;
2429
2430         mutex_lock(&all_q_mutex);
2431         /*
2432          * We need to freeze and reinit all existing queues.  Freezing
2433          * involves synchronous wait for an RCU grace period and doing it
2434          * one by one may take a long time.  Start freezing all queues in
2435          * one swoop and then wait for the completions so that freezing can
2436          * take place in parallel.
2437          */
2438         list_for_each_entry(q, &all_q_list, all_q_node)
2439                 blk_mq_freeze_queue_start(q);
2440         list_for_each_entry(q, &all_q_list, all_q_node)
2441                 blk_mq_freeze_queue_wait(q);
2442
2443         list_for_each_entry(q, &all_q_list, all_q_node)
2444                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2445
2446         list_for_each_entry(q, &all_q_list, all_q_node)
2447                 blk_mq_unfreeze_queue(q);
2448
2449         mutex_unlock(&all_q_mutex);
2450 }
2451
2452 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2453 {
2454         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2455         blk_mq_queue_reinit_work();
2456         return 0;
2457 }
2458
2459 /*
2460  * Before hotadded cpu starts handling requests, new mappings must be
2461  * established.  Otherwise, these requests in hw queue might never be
2462  * dispatched.
2463  *
2464  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2465  * for CPU0, and ctx1 for CPU1).
2466  *
2467  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2468  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2469  *
2470  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2471  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2472  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2473  * ignored.
2474  */
2475 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2476 {
2477         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2478         cpumask_set_cpu(cpu, &cpuhp_online_new);
2479         blk_mq_queue_reinit_work();
2480         return 0;
2481 }
2482
2483 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2484 {
2485         int i;
2486
2487         for (i = 0; i < set->nr_hw_queues; i++)
2488                 if (!__blk_mq_alloc_rq_map(set, i))
2489                         goto out_unwind;
2490
2491         return 0;
2492
2493 out_unwind:
2494         while (--i >= 0)
2495                 blk_mq_free_rq_map(set->tags[i]);
2496
2497         return -ENOMEM;
2498 }
2499
2500 /*
2501  * Allocate the request maps associated with this tag_set. Note that this
2502  * may reduce the depth asked for, if memory is tight. set->queue_depth
2503  * will be updated to reflect the allocated depth.
2504  */
2505 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2506 {
2507         unsigned int depth;
2508         int err;
2509
2510         depth = set->queue_depth;
2511         do {
2512                 err = __blk_mq_alloc_rq_maps(set);
2513                 if (!err)
2514                         break;
2515
2516                 set->queue_depth >>= 1;
2517                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2518                         err = -ENOMEM;
2519                         break;
2520                 }
2521         } while (set->queue_depth);
2522
2523         if (!set->queue_depth || err) {
2524                 pr_err("blk-mq: failed to allocate request map\n");
2525                 return -ENOMEM;
2526         }
2527
2528         if (depth != set->queue_depth)
2529                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2530                                                 depth, set->queue_depth);
2531
2532         return 0;
2533 }
2534
2535 /*
2536  * Alloc a tag set to be associated with one or more request queues.
2537  * May fail with EINVAL for various error conditions. May adjust the
2538  * requested depth down, if if it too large. In that case, the set
2539  * value will be stored in set->queue_depth.
2540  */
2541 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2542 {
2543         int ret;
2544
2545         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2546
2547         if (!set->nr_hw_queues)
2548                 return -EINVAL;
2549         if (!set->queue_depth)
2550                 return -EINVAL;
2551         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2552                 return -EINVAL;
2553
2554         if (!set->ops->queue_rq)
2555                 return -EINVAL;
2556
2557         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2558                 pr_info("blk-mq: reduced tag depth to %u\n",
2559                         BLK_MQ_MAX_DEPTH);
2560                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2561         }
2562
2563         /*
2564          * If a crashdump is active, then we are potentially in a very
2565          * memory constrained environment. Limit us to 1 queue and
2566          * 64 tags to prevent using too much memory.
2567          */
2568         if (is_kdump_kernel()) {
2569                 set->nr_hw_queues = 1;
2570                 set->queue_depth = min(64U, set->queue_depth);
2571         }
2572         /*
2573          * There is no use for more h/w queues than cpus.
2574          */
2575         if (set->nr_hw_queues > nr_cpu_ids)
2576                 set->nr_hw_queues = nr_cpu_ids;
2577
2578         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2579                                  GFP_KERNEL, set->numa_node);
2580         if (!set->tags)
2581                 return -ENOMEM;
2582
2583         ret = -ENOMEM;
2584         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2585                         GFP_KERNEL, set->numa_node);
2586         if (!set->mq_map)
2587                 goto out_free_tags;
2588
2589         if (set->ops->map_queues)
2590                 ret = set->ops->map_queues(set);
2591         else
2592                 ret = blk_mq_map_queues(set);
2593         if (ret)
2594                 goto out_free_mq_map;
2595
2596         ret = blk_mq_alloc_rq_maps(set);
2597         if (ret)
2598                 goto out_free_mq_map;
2599
2600         mutex_init(&set->tag_list_lock);
2601         INIT_LIST_HEAD(&set->tag_list);
2602
2603         return 0;
2604
2605 out_free_mq_map:
2606         kfree(set->mq_map);
2607         set->mq_map = NULL;
2608 out_free_tags:
2609         kfree(set->tags);
2610         set->tags = NULL;
2611         return ret;
2612 }
2613 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2614
2615 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2616 {
2617         int i;
2618
2619         for (i = 0; i < nr_cpu_ids; i++)
2620                 blk_mq_free_map_and_requests(set, i);
2621
2622         kfree(set->mq_map);
2623         set->mq_map = NULL;
2624
2625         kfree(set->tags);
2626         set->tags = NULL;
2627 }
2628 EXPORT_SYMBOL(blk_mq_free_tag_set);
2629
2630 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2631 {
2632         struct blk_mq_tag_set *set = q->tag_set;
2633         struct blk_mq_hw_ctx *hctx;
2634         int i, ret;
2635
2636         if (!set)
2637                 return -EINVAL;
2638
2639         blk_mq_freeze_queue(q);
2640         blk_mq_quiesce_queue(q);
2641
2642         ret = 0;
2643         queue_for_each_hw_ctx(q, hctx, i) {
2644                 if (!hctx->tags)
2645                         continue;
2646                 /*
2647                  * If we're using an MQ scheduler, just update the scheduler
2648                  * queue depth. This is similar to what the old code would do.
2649                  */
2650                 if (!hctx->sched_tags) {
2651                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2652                                                         min(nr, set->queue_depth),
2653                                                         false);
2654                 } else {
2655                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2656                                                         nr, true);
2657                 }
2658                 if (ret)
2659                         break;
2660         }
2661
2662         if (!ret)
2663                 q->nr_requests = nr;
2664
2665         blk_mq_unfreeze_queue(q);
2666         blk_mq_start_stopped_hw_queues(q, true);
2667
2668         return ret;
2669 }
2670
2671 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2672 {
2673         struct request_queue *q;
2674
2675         if (nr_hw_queues > nr_cpu_ids)
2676                 nr_hw_queues = nr_cpu_ids;
2677         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2678                 return;
2679
2680         list_for_each_entry(q, &set->tag_list, tag_set_list)
2681                 blk_mq_freeze_queue(q);
2682
2683         set->nr_hw_queues = nr_hw_queues;
2684         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2685                 blk_mq_realloc_hw_ctxs(set, q);
2686
2687                 /*
2688                  * Manually set the make_request_fn as blk_queue_make_request
2689                  * resets a lot of the queue settings.
2690                  */
2691                 if (q->nr_hw_queues > 1)
2692                         q->make_request_fn = blk_mq_make_request;
2693                 else
2694                         q->make_request_fn = blk_sq_make_request;
2695
2696                 blk_mq_queue_reinit(q, cpu_online_mask);
2697         }
2698
2699         list_for_each_entry(q, &set->tag_list, tag_set_list)
2700                 blk_mq_unfreeze_queue(q);
2701 }
2702 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2703
2704 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2705                                        struct blk_mq_hw_ctx *hctx,
2706                                        struct request *rq)
2707 {
2708         struct blk_rq_stat stat[2];
2709         unsigned long ret = 0;
2710
2711         /*
2712          * If stats collection isn't on, don't sleep but turn it on for
2713          * future users
2714          */
2715         if (!blk_stat_enable(q))
2716                 return 0;
2717
2718         /*
2719          * We don't have to do this once per IO, should optimize this
2720          * to just use the current window of stats until it changes
2721          */
2722         memset(&stat, 0, sizeof(stat));
2723         blk_hctx_stat_get(hctx, stat);
2724
2725         /*
2726          * As an optimistic guess, use half of the mean service time
2727          * for this type of request. We can (and should) make this smarter.
2728          * For instance, if the completion latencies are tight, we can
2729          * get closer than just half the mean. This is especially
2730          * important on devices where the completion latencies are longer
2731          * than ~10 usec.
2732          */
2733         if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2734                 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2735         else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2736                 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2737
2738         return ret;
2739 }
2740
2741 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2742                                      struct blk_mq_hw_ctx *hctx,
2743                                      struct request *rq)
2744 {
2745         struct hrtimer_sleeper hs;
2746         enum hrtimer_mode mode;
2747         unsigned int nsecs;
2748         ktime_t kt;
2749
2750         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2751                 return false;
2752
2753         /*
2754          * poll_nsec can be:
2755          *
2756          * -1:  don't ever hybrid sleep
2757          *  0:  use half of prev avg
2758          * >0:  use this specific value
2759          */
2760         if (q->poll_nsec == -1)
2761                 return false;
2762         else if (q->poll_nsec > 0)
2763                 nsecs = q->poll_nsec;
2764         else
2765                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2766
2767         if (!nsecs)
2768                 return false;
2769
2770         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2771
2772         /*
2773          * This will be replaced with the stats tracking code, using
2774          * 'avg_completion_time / 2' as the pre-sleep target.
2775          */
2776         kt = nsecs;
2777
2778         mode = HRTIMER_MODE_REL;
2779         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2780         hrtimer_set_expires(&hs.timer, kt);
2781
2782         hrtimer_init_sleeper(&hs, current);
2783         do {
2784                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2785                         break;
2786                 set_current_state(TASK_UNINTERRUPTIBLE);
2787                 hrtimer_start_expires(&hs.timer, mode);
2788                 if (hs.task)
2789                         io_schedule();
2790                 hrtimer_cancel(&hs.timer);
2791                 mode = HRTIMER_MODE_ABS;
2792         } while (hs.task && !signal_pending(current));
2793
2794         __set_current_state(TASK_RUNNING);
2795         destroy_hrtimer_on_stack(&hs.timer);
2796         return true;
2797 }
2798
2799 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2800 {
2801         struct request_queue *q = hctx->queue;
2802         long state;
2803
2804         /*
2805          * If we sleep, have the caller restart the poll loop to reset
2806          * the state. Like for the other success return cases, the
2807          * caller is responsible for checking if the IO completed. If
2808          * the IO isn't complete, we'll get called again and will go
2809          * straight to the busy poll loop.
2810          */
2811         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2812                 return true;
2813
2814         hctx->poll_considered++;
2815
2816         state = current->state;
2817         while (!need_resched()) {
2818                 int ret;
2819
2820                 hctx->poll_invoked++;
2821
2822                 ret = q->mq_ops->poll(hctx, rq->tag);
2823                 if (ret > 0) {
2824                         hctx->poll_success++;
2825                         set_current_state(TASK_RUNNING);
2826                         return true;
2827                 }
2828
2829                 if (signal_pending_state(state, current))
2830                         set_current_state(TASK_RUNNING);
2831
2832                 if (current->state == TASK_RUNNING)
2833                         return true;
2834                 if (ret < 0)
2835                         break;
2836                 cpu_relax();
2837         }
2838
2839         return false;
2840 }
2841
2842 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2843 {
2844         struct blk_mq_hw_ctx *hctx;
2845         struct blk_plug *plug;
2846         struct request *rq;
2847
2848         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2849             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2850                 return false;
2851
2852         plug = current->plug;
2853         if (plug)
2854                 blk_flush_plug_list(plug, false);
2855
2856         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2857         if (!blk_qc_t_is_internal(cookie))
2858                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2859         else
2860                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2861
2862         return __blk_mq_poll(hctx, rq);
2863 }
2864 EXPORT_SYMBOL_GPL(blk_mq_poll);
2865
2866 void blk_mq_disable_hotplug(void)
2867 {
2868         mutex_lock(&all_q_mutex);
2869 }
2870
2871 void blk_mq_enable_hotplug(void)
2872 {
2873         mutex_unlock(&all_q_mutex);
2874 }
2875
2876 static int __init blk_mq_init(void)
2877 {
2878         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2879                                 blk_mq_hctx_notify_dead);
2880
2881         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2882                                   blk_mq_queue_reinit_prepare,
2883                                   blk_mq_queue_reinit_dead);
2884         return 0;
2885 }
2886 subsys_initcall(blk_mq_init);