]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
Revert "blk-mq: don't use sync workqueue flushing from drivers"
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 {
48         int ddir, bytes, bucket;
49
50         ddir = rq_data_dir(rq);
51         bytes = blk_rq_bytes(rq);
52
53         bucket = ddir + 2*(ilog2(bytes) - 9);
54
55         if (bucket < 0)
56                 return -1;
57         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60         return bucket;
61 }
62
63 /*
64  * Check if any of the ctx's have pending work in this hardware queue
65  */
66 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68         return sbitmap_any_bit_set(&hctx->ctx_map) ||
69                         !list_empty_careful(&hctx->dispatch) ||
70                         blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77                                      struct blk_mq_ctx *ctx)
78 {
79         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
80                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84                                       struct blk_mq_ctx *ctx)
85 {
86         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 }
88
89 void blk_freeze_queue_start(struct request_queue *q)
90 {
91         int freeze_depth;
92
93         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
94         if (freeze_depth == 1) {
95                 percpu_ref_kill(&q->q_usage_counter);
96                 blk_mq_run_hw_queues(q, false);
97         }
98 }
99 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100
101 void blk_mq_freeze_queue_wait(struct request_queue *q)
102 {
103         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106
107 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
108                                      unsigned long timeout)
109 {
110         return wait_event_timeout(q->mq_freeze_wq,
111                                         percpu_ref_is_zero(&q->q_usage_counter),
112                                         timeout);
113 }
114 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115
116 /*
117  * Guarantee no request is in use, so we can change any data structure of
118  * the queue afterward.
119  */
120 void blk_freeze_queue(struct request_queue *q)
121 {
122         /*
123          * In the !blk_mq case we are only calling this to kill the
124          * q_usage_counter, otherwise this increases the freeze depth
125          * and waits for it to return to zero.  For this reason there is
126          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
127          * exported to drivers as the only user for unfreeze is blk_mq.
128          */
129         blk_freeze_queue_start(q);
130         blk_mq_freeze_queue_wait(q);
131 }
132
133 void blk_mq_freeze_queue(struct request_queue *q)
134 {
135         /*
136          * ...just an alias to keep freeze and unfreeze actions balanced
137          * in the blk_mq_* namespace
138          */
139         blk_freeze_queue(q);
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142
143 void blk_mq_unfreeze_queue(struct request_queue *q)
144 {
145         int freeze_depth;
146
147         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
148         WARN_ON_ONCE(freeze_depth < 0);
149         if (!freeze_depth) {
150                 percpu_ref_reinit(&q->q_usage_counter);
151                 wake_up_all(&q->mq_freeze_wq);
152         }
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155
156 /**
157  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
158  * @q: request queue.
159  *
160  * Note: this function does not prevent that the struct request end_io()
161  * callback function is invoked. Once this function is returned, we make
162  * sure no dispatch can happen until the queue is unquiesced via
163  * blk_mq_unquiesce_queue().
164  */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169         bool rcu = false;
170
171         blk_mq_quiesce_queue_nowait(q);
172
173         queue_for_each_hw_ctx(q, hctx, i) {
174                 if (hctx->flags & BLK_MQ_F_BLOCKING)
175                         synchronize_srcu(&hctx->queue_rq_srcu);
176                 else
177                         rcu = true;
178         }
179         if (rcu)
180                 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 /*
185  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
186  * @q: request queue.
187  *
188  * This function recovers queue into the state before quiescing
189  * which is done by blk_mq_quiesce_queue.
190  */
191 void blk_mq_unquiesce_queue(struct request_queue *q)
192 {
193         spin_lock_irq(q->queue_lock);
194         queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
195         spin_unlock_irq(q->queue_lock);
196
197         /* dispatch requests which are inserted during quiescing */
198         blk_mq_run_hw_queues(q, true);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
201
202 void blk_mq_wake_waiters(struct request_queue *q)
203 {
204         struct blk_mq_hw_ctx *hctx;
205         unsigned int i;
206
207         queue_for_each_hw_ctx(q, hctx, i)
208                 if (blk_mq_hw_queue_mapped(hctx))
209                         blk_mq_tag_wakeup_all(hctx->tags, true);
210
211         /*
212          * If we are called because the queue has now been marked as
213          * dying, we need to ensure that processes currently waiting on
214          * the queue are notified as well.
215          */
216         wake_up_all(&q->mq_freeze_wq);
217 }
218
219 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
220 {
221         return blk_mq_has_free_tags(hctx->tags);
222 }
223 EXPORT_SYMBOL(blk_mq_can_queue);
224
225 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
226                 unsigned int tag, unsigned int op)
227 {
228         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
229         struct request *rq = tags->static_rqs[tag];
230
231         if (data->flags & BLK_MQ_REQ_INTERNAL) {
232                 rq->tag = -1;
233                 rq->internal_tag = tag;
234         } else {
235                 if (blk_mq_tag_busy(data->hctx)) {
236                         rq->rq_flags = RQF_MQ_INFLIGHT;
237                         atomic_inc(&data->hctx->nr_active);
238                 }
239                 rq->tag = tag;
240                 rq->internal_tag = -1;
241                 data->hctx->tags->rqs[rq->tag] = rq;
242         }
243
244         INIT_LIST_HEAD(&rq->queuelist);
245         /* csd/requeue_work/fifo_time is initialized before use */
246         rq->q = data->q;
247         rq->mq_ctx = data->ctx;
248         rq->cmd_flags = op;
249         if (blk_queue_io_stat(data->q))
250                 rq->rq_flags |= RQF_IO_STAT;
251         /* do not touch atomic flags, it needs atomic ops against the timer */
252         rq->cpu = -1;
253         INIT_HLIST_NODE(&rq->hash);
254         RB_CLEAR_NODE(&rq->rb_node);
255         rq->rq_disk = NULL;
256         rq->part = NULL;
257         rq->start_time = jiffies;
258 #ifdef CONFIG_BLK_CGROUP
259         rq->rl = NULL;
260         set_start_time_ns(rq);
261         rq->io_start_time_ns = 0;
262 #endif
263         rq->nr_phys_segments = 0;
264 #if defined(CONFIG_BLK_DEV_INTEGRITY)
265         rq->nr_integrity_segments = 0;
266 #endif
267         rq->special = NULL;
268         /* tag was already set */
269         rq->extra_len = 0;
270
271         INIT_LIST_HEAD(&rq->timeout_list);
272         rq->timeout = 0;
273
274         rq->end_io = NULL;
275         rq->end_io_data = NULL;
276         rq->next_rq = NULL;
277
278         data->ctx->rq_dispatched[op_is_sync(op)]++;
279         return rq;
280 }
281
282 static struct request *blk_mq_get_request(struct request_queue *q,
283                 struct bio *bio, unsigned int op,
284                 struct blk_mq_alloc_data *data)
285 {
286         struct elevator_queue *e = q->elevator;
287         struct request *rq;
288         unsigned int tag;
289
290         blk_queue_enter_live(q);
291         data->q = q;
292         if (likely(!data->ctx))
293                 data->ctx = blk_mq_get_ctx(q);
294         if (likely(!data->hctx))
295                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
296
297         if (e) {
298                 data->flags |= BLK_MQ_REQ_INTERNAL;
299
300                 /*
301                  * Flush requests are special and go directly to the
302                  * dispatch list.
303                  */
304                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
305                         e->type->ops.mq.limit_depth(op, data);
306         }
307
308         tag = blk_mq_get_tag(data);
309         if (tag == BLK_MQ_TAG_FAIL) {
310                 blk_queue_exit(q);
311                 return NULL;
312         }
313
314         rq = blk_mq_rq_ctx_init(data, tag, op);
315         if (!op_is_flush(op)) {
316                 rq->elv.icq = NULL;
317                 if (e && e->type->ops.mq.prepare_request) {
318                         if (e->type->icq_cache && rq_ioc(bio))
319                                 blk_mq_sched_assign_ioc(rq, bio);
320
321                         e->type->ops.mq.prepare_request(rq, bio);
322                         rq->rq_flags |= RQF_ELVPRIV;
323                 }
324         }
325         data->hctx->queued++;
326         return rq;
327 }
328
329 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
330                 unsigned int flags)
331 {
332         struct blk_mq_alloc_data alloc_data = { .flags = flags };
333         struct request *rq;
334         int ret;
335
336         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
337         if (ret)
338                 return ERR_PTR(ret);
339
340         rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
341
342         blk_mq_put_ctx(alloc_data.ctx);
343         blk_queue_exit(q);
344
345         if (!rq)
346                 return ERR_PTR(-EWOULDBLOCK);
347
348         rq->__data_len = 0;
349         rq->__sector = (sector_t) -1;
350         rq->bio = rq->biotail = NULL;
351         return rq;
352 }
353 EXPORT_SYMBOL(blk_mq_alloc_request);
354
355 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
356                 unsigned int flags, unsigned int hctx_idx)
357 {
358         struct blk_mq_alloc_data alloc_data = { .flags = flags };
359         struct request *rq;
360         unsigned int cpu;
361         int ret;
362
363         /*
364          * If the tag allocator sleeps we could get an allocation for a
365          * different hardware context.  No need to complicate the low level
366          * allocator for this for the rare use case of a command tied to
367          * a specific queue.
368          */
369         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
370                 return ERR_PTR(-EINVAL);
371
372         if (hctx_idx >= q->nr_hw_queues)
373                 return ERR_PTR(-EIO);
374
375         ret = blk_queue_enter(q, true);
376         if (ret)
377                 return ERR_PTR(ret);
378
379         /*
380          * Check if the hardware context is actually mapped to anything.
381          * If not tell the caller that it should skip this queue.
382          */
383         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
384         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
385                 blk_queue_exit(q);
386                 return ERR_PTR(-EXDEV);
387         }
388         cpu = cpumask_first(alloc_data.hctx->cpumask);
389         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
390
391         rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
392
393         blk_queue_exit(q);
394
395         if (!rq)
396                 return ERR_PTR(-EWOULDBLOCK);
397
398         return rq;
399 }
400 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
401
402 void blk_mq_free_request(struct request *rq)
403 {
404         struct request_queue *q = rq->q;
405         struct elevator_queue *e = q->elevator;
406         struct blk_mq_ctx *ctx = rq->mq_ctx;
407         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
408         const int sched_tag = rq->internal_tag;
409
410         if (rq->rq_flags & RQF_ELVPRIV) {
411                 if (e && e->type->ops.mq.finish_request)
412                         e->type->ops.mq.finish_request(rq);
413                 if (rq->elv.icq) {
414                         put_io_context(rq->elv.icq->ioc);
415                         rq->elv.icq = NULL;
416                 }
417         }
418
419         ctx->rq_completed[rq_is_sync(rq)]++;
420         if (rq->rq_flags & RQF_MQ_INFLIGHT)
421                 atomic_dec(&hctx->nr_active);
422
423         wbt_done(q->rq_wb, &rq->issue_stat);
424         rq->rq_flags = 0;
425
426         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
427         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
428         if (rq->tag != -1)
429                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
430         if (sched_tag != -1)
431                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
432         blk_mq_sched_restart(hctx);
433         blk_queue_exit(q);
434 }
435 EXPORT_SYMBOL_GPL(blk_mq_free_request);
436
437 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
438 {
439         blk_account_io_done(rq);
440
441         if (rq->end_io) {
442                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
443                 rq->end_io(rq, error);
444         } else {
445                 if (unlikely(blk_bidi_rq(rq)))
446                         blk_mq_free_request(rq->next_rq);
447                 blk_mq_free_request(rq);
448         }
449 }
450 EXPORT_SYMBOL(__blk_mq_end_request);
451
452 void blk_mq_end_request(struct request *rq, blk_status_t error)
453 {
454         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
455                 BUG();
456         __blk_mq_end_request(rq, error);
457 }
458 EXPORT_SYMBOL(blk_mq_end_request);
459
460 static void __blk_mq_complete_request_remote(void *data)
461 {
462         struct request *rq = data;
463
464         rq->q->softirq_done_fn(rq);
465 }
466
467 static void __blk_mq_complete_request(struct request *rq)
468 {
469         struct blk_mq_ctx *ctx = rq->mq_ctx;
470         bool shared = false;
471         int cpu;
472
473         if (rq->internal_tag != -1)
474                 blk_mq_sched_completed_request(rq);
475         if (rq->rq_flags & RQF_STATS) {
476                 blk_mq_poll_stats_start(rq->q);
477                 blk_stat_add(rq);
478         }
479
480         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
481                 rq->q->softirq_done_fn(rq);
482                 return;
483         }
484
485         cpu = get_cpu();
486         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
487                 shared = cpus_share_cache(cpu, ctx->cpu);
488
489         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
490                 rq->csd.func = __blk_mq_complete_request_remote;
491                 rq->csd.info = rq;
492                 rq->csd.flags = 0;
493                 smp_call_function_single_async(ctx->cpu, &rq->csd);
494         } else {
495                 rq->q->softirq_done_fn(rq);
496         }
497         put_cpu();
498 }
499
500 /**
501  * blk_mq_complete_request - end I/O on a request
502  * @rq:         the request being processed
503  *
504  * Description:
505  *      Ends all I/O on a request. It does not handle partial completions.
506  *      The actual completion happens out-of-order, through a IPI handler.
507  **/
508 void blk_mq_complete_request(struct request *rq)
509 {
510         struct request_queue *q = rq->q;
511
512         if (unlikely(blk_should_fake_timeout(q)))
513                 return;
514         if (!blk_mark_rq_complete(rq))
515                 __blk_mq_complete_request(rq);
516 }
517 EXPORT_SYMBOL(blk_mq_complete_request);
518
519 int blk_mq_request_started(struct request *rq)
520 {
521         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
522 }
523 EXPORT_SYMBOL_GPL(blk_mq_request_started);
524
525 void blk_mq_start_request(struct request *rq)
526 {
527         struct request_queue *q = rq->q;
528
529         blk_mq_sched_started_request(rq);
530
531         trace_block_rq_issue(q, rq);
532
533         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
534                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
535                 rq->rq_flags |= RQF_STATS;
536                 wbt_issue(q->rq_wb, &rq->issue_stat);
537         }
538
539         blk_add_timer(rq);
540
541         /*
542          * Ensure that ->deadline is visible before set the started
543          * flag and clear the completed flag.
544          */
545         smp_mb__before_atomic();
546
547         /*
548          * Mark us as started and clear complete. Complete might have been
549          * set if requeue raced with timeout, which then marked it as
550          * complete. So be sure to clear complete again when we start
551          * the request, otherwise we'll ignore the completion event.
552          */
553         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
554                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
555         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
556                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
557
558         if (q->dma_drain_size && blk_rq_bytes(rq)) {
559                 /*
560                  * Make sure space for the drain appears.  We know we can do
561                  * this because max_hw_segments has been adjusted to be one
562                  * fewer than the device can handle.
563                  */
564                 rq->nr_phys_segments++;
565         }
566 }
567 EXPORT_SYMBOL(blk_mq_start_request);
568
569 /*
570  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
571  * flag isn't set yet, so there may be race with timeout handler,
572  * but given rq->deadline is just set in .queue_rq() under
573  * this situation, the race won't be possible in reality because
574  * rq->timeout should be set as big enough to cover the window
575  * between blk_mq_start_request() called from .queue_rq() and
576  * clearing REQ_ATOM_STARTED here.
577  */
578 static void __blk_mq_requeue_request(struct request *rq)
579 {
580         struct request_queue *q = rq->q;
581
582         trace_block_rq_requeue(q, rq);
583         wbt_requeue(q->rq_wb, &rq->issue_stat);
584         blk_mq_sched_requeue_request(rq);
585
586         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
587                 if (q->dma_drain_size && blk_rq_bytes(rq))
588                         rq->nr_phys_segments--;
589         }
590 }
591
592 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
593 {
594         __blk_mq_requeue_request(rq);
595
596         BUG_ON(blk_queued_rq(rq));
597         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
598 }
599 EXPORT_SYMBOL(blk_mq_requeue_request);
600
601 static void blk_mq_requeue_work(struct work_struct *work)
602 {
603         struct request_queue *q =
604                 container_of(work, struct request_queue, requeue_work.work);
605         LIST_HEAD(rq_list);
606         struct request *rq, *next;
607         unsigned long flags;
608
609         spin_lock_irqsave(&q->requeue_lock, flags);
610         list_splice_init(&q->requeue_list, &rq_list);
611         spin_unlock_irqrestore(&q->requeue_lock, flags);
612
613         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
614                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
615                         continue;
616
617                 rq->rq_flags &= ~RQF_SOFTBARRIER;
618                 list_del_init(&rq->queuelist);
619                 blk_mq_sched_insert_request(rq, true, false, false, true);
620         }
621
622         while (!list_empty(&rq_list)) {
623                 rq = list_entry(rq_list.next, struct request, queuelist);
624                 list_del_init(&rq->queuelist);
625                 blk_mq_sched_insert_request(rq, false, false, false, true);
626         }
627
628         blk_mq_run_hw_queues(q, false);
629 }
630
631 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
632                                 bool kick_requeue_list)
633 {
634         struct request_queue *q = rq->q;
635         unsigned long flags;
636
637         /*
638          * We abuse this flag that is otherwise used by the I/O scheduler to
639          * request head insertation from the workqueue.
640          */
641         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
642
643         spin_lock_irqsave(&q->requeue_lock, flags);
644         if (at_head) {
645                 rq->rq_flags |= RQF_SOFTBARRIER;
646                 list_add(&rq->queuelist, &q->requeue_list);
647         } else {
648                 list_add_tail(&rq->queuelist, &q->requeue_list);
649         }
650         spin_unlock_irqrestore(&q->requeue_lock, flags);
651
652         if (kick_requeue_list)
653                 blk_mq_kick_requeue_list(q);
654 }
655 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
656
657 void blk_mq_kick_requeue_list(struct request_queue *q)
658 {
659         kblockd_schedule_delayed_work(&q->requeue_work, 0);
660 }
661 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
662
663 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
664                                     unsigned long msecs)
665 {
666         kblockd_schedule_delayed_work(&q->requeue_work,
667                                       msecs_to_jiffies(msecs));
668 }
669 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
670
671 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
672 {
673         if (tag < tags->nr_tags) {
674                 prefetch(tags->rqs[tag]);
675                 return tags->rqs[tag];
676         }
677
678         return NULL;
679 }
680 EXPORT_SYMBOL(blk_mq_tag_to_rq);
681
682 struct blk_mq_timeout_data {
683         unsigned long next;
684         unsigned int next_set;
685 };
686
687 void blk_mq_rq_timed_out(struct request *req, bool reserved)
688 {
689         const struct blk_mq_ops *ops = req->q->mq_ops;
690         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
691
692         /*
693          * We know that complete is set at this point. If STARTED isn't set
694          * anymore, then the request isn't active and the "timeout" should
695          * just be ignored. This can happen due to the bitflag ordering.
696          * Timeout first checks if STARTED is set, and if it is, assumes
697          * the request is active. But if we race with completion, then
698          * both flags will get cleared. So check here again, and ignore
699          * a timeout event with a request that isn't active.
700          */
701         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
702                 return;
703
704         if (ops->timeout)
705                 ret = ops->timeout(req, reserved);
706
707         switch (ret) {
708         case BLK_EH_HANDLED:
709                 __blk_mq_complete_request(req);
710                 break;
711         case BLK_EH_RESET_TIMER:
712                 blk_add_timer(req);
713                 blk_clear_rq_complete(req);
714                 break;
715         case BLK_EH_NOT_HANDLED:
716                 break;
717         default:
718                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
719                 break;
720         }
721 }
722
723 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
724                 struct request *rq, void *priv, bool reserved)
725 {
726         struct blk_mq_timeout_data *data = priv;
727
728         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
729                 return;
730
731         /*
732          * The rq being checked may have been freed and reallocated
733          * out already here, we avoid this race by checking rq->deadline
734          * and REQ_ATOM_COMPLETE flag together:
735          *
736          * - if rq->deadline is observed as new value because of
737          *   reusing, the rq won't be timed out because of timing.
738          * - if rq->deadline is observed as previous value,
739          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
740          *   because we put a barrier between setting rq->deadline
741          *   and clearing the flag in blk_mq_start_request(), so
742          *   this rq won't be timed out too.
743          */
744         if (time_after_eq(jiffies, rq->deadline)) {
745                 if (!blk_mark_rq_complete(rq))
746                         blk_mq_rq_timed_out(rq, reserved);
747         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
748                 data->next = rq->deadline;
749                 data->next_set = 1;
750         }
751 }
752
753 static void blk_mq_timeout_work(struct work_struct *work)
754 {
755         struct request_queue *q =
756                 container_of(work, struct request_queue, timeout_work);
757         struct blk_mq_timeout_data data = {
758                 .next           = 0,
759                 .next_set       = 0,
760         };
761         int i;
762
763         /* A deadlock might occur if a request is stuck requiring a
764          * timeout at the same time a queue freeze is waiting
765          * completion, since the timeout code would not be able to
766          * acquire the queue reference here.
767          *
768          * That's why we don't use blk_queue_enter here; instead, we use
769          * percpu_ref_tryget directly, because we need to be able to
770          * obtain a reference even in the short window between the queue
771          * starting to freeze, by dropping the first reference in
772          * blk_freeze_queue_start, and the moment the last request is
773          * consumed, marked by the instant q_usage_counter reaches
774          * zero.
775          */
776         if (!percpu_ref_tryget(&q->q_usage_counter))
777                 return;
778
779         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
780
781         if (data.next_set) {
782                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
783                 mod_timer(&q->timeout, data.next);
784         } else {
785                 struct blk_mq_hw_ctx *hctx;
786
787                 queue_for_each_hw_ctx(q, hctx, i) {
788                         /* the hctx may be unmapped, so check it here */
789                         if (blk_mq_hw_queue_mapped(hctx))
790                                 blk_mq_tag_idle(hctx);
791                 }
792         }
793         blk_queue_exit(q);
794 }
795
796 struct flush_busy_ctx_data {
797         struct blk_mq_hw_ctx *hctx;
798         struct list_head *list;
799 };
800
801 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
802 {
803         struct flush_busy_ctx_data *flush_data = data;
804         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
805         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
806
807         sbitmap_clear_bit(sb, bitnr);
808         spin_lock(&ctx->lock);
809         list_splice_tail_init(&ctx->rq_list, flush_data->list);
810         spin_unlock(&ctx->lock);
811         return true;
812 }
813
814 /*
815  * Process software queues that have been marked busy, splicing them
816  * to the for-dispatch
817  */
818 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
819 {
820         struct flush_busy_ctx_data data = {
821                 .hctx = hctx,
822                 .list = list,
823         };
824
825         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
826 }
827 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
828
829 static inline unsigned int queued_to_index(unsigned int queued)
830 {
831         if (!queued)
832                 return 0;
833
834         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
835 }
836
837 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
838                            bool wait)
839 {
840         struct blk_mq_alloc_data data = {
841                 .q = rq->q,
842                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
843                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
844         };
845
846         might_sleep_if(wait);
847
848         if (rq->tag != -1)
849                 goto done;
850
851         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
852                 data.flags |= BLK_MQ_REQ_RESERVED;
853
854         rq->tag = blk_mq_get_tag(&data);
855         if (rq->tag >= 0) {
856                 if (blk_mq_tag_busy(data.hctx)) {
857                         rq->rq_flags |= RQF_MQ_INFLIGHT;
858                         atomic_inc(&data.hctx->nr_active);
859                 }
860                 data.hctx->tags->rqs[rq->tag] = rq;
861         }
862
863 done:
864         if (hctx)
865                 *hctx = data.hctx;
866         return rq->tag != -1;
867 }
868
869 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
870                                     struct request *rq)
871 {
872         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
873         rq->tag = -1;
874
875         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
876                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
877                 atomic_dec(&hctx->nr_active);
878         }
879 }
880
881 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
882                                        struct request *rq)
883 {
884         if (rq->tag == -1 || rq->internal_tag == -1)
885                 return;
886
887         __blk_mq_put_driver_tag(hctx, rq);
888 }
889
890 static void blk_mq_put_driver_tag(struct request *rq)
891 {
892         struct blk_mq_hw_ctx *hctx;
893
894         if (rq->tag == -1 || rq->internal_tag == -1)
895                 return;
896
897         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
898         __blk_mq_put_driver_tag(hctx, rq);
899 }
900
901 /*
902  * If we fail getting a driver tag because all the driver tags are already
903  * assigned and on the dispatch list, BUT the first entry does not have a
904  * tag, then we could deadlock. For that case, move entries with assigned
905  * driver tags to the front, leaving the set of tagged requests in the
906  * same order, and the untagged set in the same order.
907  */
908 static bool reorder_tags_to_front(struct list_head *list)
909 {
910         struct request *rq, *tmp, *first = NULL;
911
912         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
913                 if (rq == first)
914                         break;
915                 if (rq->tag != -1) {
916                         list_move(&rq->queuelist, list);
917                         if (!first)
918                                 first = rq;
919                 }
920         }
921
922         return first != NULL;
923 }
924
925 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
926                                 void *key)
927 {
928         struct blk_mq_hw_ctx *hctx;
929
930         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
931
932         list_del(&wait->task_list);
933         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
934         blk_mq_run_hw_queue(hctx, true);
935         return 1;
936 }
937
938 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
939 {
940         struct sbq_wait_state *ws;
941
942         /*
943          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
944          * The thread which wins the race to grab this bit adds the hardware
945          * queue to the wait queue.
946          */
947         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
948             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
949                 return false;
950
951         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
952         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
953
954         /*
955          * As soon as this returns, it's no longer safe to fiddle with
956          * hctx->dispatch_wait, since a completion can wake up the wait queue
957          * and unlock the bit.
958          */
959         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
960         return true;
961 }
962
963 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
964 {
965         struct blk_mq_hw_ctx *hctx;
966         struct request *rq;
967         int errors, queued;
968
969         if (list_empty(list))
970                 return false;
971
972         /*
973          * Now process all the entries, sending them to the driver.
974          */
975         errors = queued = 0;
976         do {
977                 struct blk_mq_queue_data bd;
978                 blk_status_t ret;
979
980                 rq = list_first_entry(list, struct request, queuelist);
981                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
982                         if (!queued && reorder_tags_to_front(list))
983                                 continue;
984
985                         /*
986                          * The initial allocation attempt failed, so we need to
987                          * rerun the hardware queue when a tag is freed.
988                          */
989                         if (!blk_mq_dispatch_wait_add(hctx))
990                                 break;
991
992                         /*
993                          * It's possible that a tag was freed in the window
994                          * between the allocation failure and adding the
995                          * hardware queue to the wait queue.
996                          */
997                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
998                                 break;
999                 }
1000
1001                 list_del_init(&rq->queuelist);
1002
1003                 bd.rq = rq;
1004
1005                 /*
1006                  * Flag last if we have no more requests, or if we have more
1007                  * but can't assign a driver tag to it.
1008                  */
1009                 if (list_empty(list))
1010                         bd.last = true;
1011                 else {
1012                         struct request *nxt;
1013
1014                         nxt = list_first_entry(list, struct request, queuelist);
1015                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1016                 }
1017
1018                 ret = q->mq_ops->queue_rq(hctx, &bd);
1019                 if (ret == BLK_STS_RESOURCE) {
1020                         blk_mq_put_driver_tag_hctx(hctx, rq);
1021                         list_add(&rq->queuelist, list);
1022                         __blk_mq_requeue_request(rq);
1023                         break;
1024                 }
1025
1026                 if (unlikely(ret != BLK_STS_OK)) {
1027                         errors++;
1028                         blk_mq_end_request(rq, BLK_STS_IOERR);
1029                         continue;
1030                 }
1031
1032                 queued++;
1033         } while (!list_empty(list));
1034
1035         hctx->dispatched[queued_to_index(queued)]++;
1036
1037         /*
1038          * Any items that need requeuing? Stuff them into hctx->dispatch,
1039          * that is where we will continue on next queue run.
1040          */
1041         if (!list_empty(list)) {
1042                 /*
1043                  * If an I/O scheduler has been configured and we got a driver
1044                  * tag for the next request already, free it again.
1045                  */
1046                 rq = list_first_entry(list, struct request, queuelist);
1047                 blk_mq_put_driver_tag(rq);
1048
1049                 spin_lock(&hctx->lock);
1050                 list_splice_init(list, &hctx->dispatch);
1051                 spin_unlock(&hctx->lock);
1052
1053                 /*
1054                  * If SCHED_RESTART was set by the caller of this function and
1055                  * it is no longer set that means that it was cleared by another
1056                  * thread and hence that a queue rerun is needed.
1057                  *
1058                  * If TAG_WAITING is set that means that an I/O scheduler has
1059                  * been configured and another thread is waiting for a driver
1060                  * tag. To guarantee fairness, do not rerun this hardware queue
1061                  * but let the other thread grab the driver tag.
1062                  *
1063                  * If no I/O scheduler has been configured it is possible that
1064                  * the hardware queue got stopped and restarted before requests
1065                  * were pushed back onto the dispatch list. Rerun the queue to
1066                  * avoid starvation. Notes:
1067                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1068                  *   been stopped before rerunning a queue.
1069                  * - Some but not all block drivers stop a queue before
1070                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1071                  *   and dm-rq.
1072                  */
1073                 if (!blk_mq_sched_needs_restart(hctx) &&
1074                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1075                         blk_mq_run_hw_queue(hctx, true);
1076         }
1077
1078         return (queued + errors) != 0;
1079 }
1080
1081 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1082 {
1083         int srcu_idx;
1084
1085         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1086                 cpu_online(hctx->next_cpu));
1087
1088         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1089                 rcu_read_lock();
1090                 blk_mq_sched_dispatch_requests(hctx);
1091                 rcu_read_unlock();
1092         } else {
1093                 might_sleep();
1094
1095                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1096                 blk_mq_sched_dispatch_requests(hctx);
1097                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1098         }
1099 }
1100
1101 /*
1102  * It'd be great if the workqueue API had a way to pass
1103  * in a mask and had some smarts for more clever placement.
1104  * For now we just round-robin here, switching for every
1105  * BLK_MQ_CPU_WORK_BATCH queued items.
1106  */
1107 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1108 {
1109         if (hctx->queue->nr_hw_queues == 1)
1110                 return WORK_CPU_UNBOUND;
1111
1112         if (--hctx->next_cpu_batch <= 0) {
1113                 int next_cpu;
1114
1115                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1116                 if (next_cpu >= nr_cpu_ids)
1117                         next_cpu = cpumask_first(hctx->cpumask);
1118
1119                 hctx->next_cpu = next_cpu;
1120                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1121         }
1122
1123         return hctx->next_cpu;
1124 }
1125
1126 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1127                                         unsigned long msecs)
1128 {
1129         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1130                      !blk_mq_hw_queue_mapped(hctx)))
1131                 return;
1132
1133         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1134                 int cpu = get_cpu();
1135                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1136                         __blk_mq_run_hw_queue(hctx);
1137                         put_cpu();
1138                         return;
1139                 }
1140
1141                 put_cpu();
1142         }
1143
1144         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1145                                          &hctx->run_work,
1146                                          msecs_to_jiffies(msecs));
1147 }
1148
1149 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1150 {
1151         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1152 }
1153 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1154
1155 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1156 {
1157         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1158 }
1159 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1160
1161 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1162 {
1163         struct blk_mq_hw_ctx *hctx;
1164         int i;
1165
1166         queue_for_each_hw_ctx(q, hctx, i) {
1167                 if (!blk_mq_hctx_has_pending(hctx) ||
1168                     blk_mq_hctx_stopped(hctx))
1169                         continue;
1170
1171                 blk_mq_run_hw_queue(hctx, async);
1172         }
1173 }
1174 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1175
1176 /**
1177  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1178  * @q: request queue.
1179  *
1180  * The caller is responsible for serializing this function against
1181  * blk_mq_{start,stop}_hw_queue().
1182  */
1183 bool blk_mq_queue_stopped(struct request_queue *q)
1184 {
1185         struct blk_mq_hw_ctx *hctx;
1186         int i;
1187
1188         queue_for_each_hw_ctx(q, hctx, i)
1189                 if (blk_mq_hctx_stopped(hctx))
1190                         return true;
1191
1192         return false;
1193 }
1194 EXPORT_SYMBOL(blk_mq_queue_stopped);
1195
1196 /*
1197  * This function is often used for pausing .queue_rq() by driver when
1198  * there isn't enough resource or some conditions aren't satisfied, and
1199  * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1200  *
1201  * We do not guarantee that dispatch can be drained or blocked
1202  * after blk_mq_stop_hw_queue() returns. Please use
1203  * blk_mq_quiesce_queue() for that requirement.
1204  */
1205 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1206 {
1207         cancel_delayed_work(&hctx->run_work);
1208
1209         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1210 }
1211 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1212
1213 /*
1214  * This function is often used for pausing .queue_rq() by driver when
1215  * there isn't enough resource or some conditions aren't satisfied, and
1216  * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1217  *
1218  * We do not guarantee that dispatch can be drained or blocked
1219  * after blk_mq_stop_hw_queues() returns. Please use
1220  * blk_mq_quiesce_queue() for that requirement.
1221  */
1222 void blk_mq_stop_hw_queues(struct request_queue *q)
1223 {
1224         struct blk_mq_hw_ctx *hctx;
1225         int i;
1226
1227         queue_for_each_hw_ctx(q, hctx, i)
1228                 blk_mq_stop_hw_queue(hctx);
1229 }
1230 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1231
1232 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1233 {
1234         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1235
1236         blk_mq_run_hw_queue(hctx, false);
1237 }
1238 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1239
1240 void blk_mq_start_hw_queues(struct request_queue *q)
1241 {
1242         struct blk_mq_hw_ctx *hctx;
1243         int i;
1244
1245         queue_for_each_hw_ctx(q, hctx, i)
1246                 blk_mq_start_hw_queue(hctx);
1247 }
1248 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1249
1250 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1251 {
1252         if (!blk_mq_hctx_stopped(hctx))
1253                 return;
1254
1255         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1256         blk_mq_run_hw_queue(hctx, async);
1257 }
1258 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1259
1260 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1261 {
1262         struct blk_mq_hw_ctx *hctx;
1263         int i;
1264
1265         queue_for_each_hw_ctx(q, hctx, i)
1266                 blk_mq_start_stopped_hw_queue(hctx, async);
1267 }
1268 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1269
1270 static void blk_mq_run_work_fn(struct work_struct *work)
1271 {
1272         struct blk_mq_hw_ctx *hctx;
1273
1274         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1275
1276         /*
1277          * If we are stopped, don't run the queue. The exception is if
1278          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1279          * the STOPPED bit and run it.
1280          */
1281         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1282                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1283                         return;
1284
1285                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1286                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1287         }
1288
1289         __blk_mq_run_hw_queue(hctx);
1290 }
1291
1292
1293 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1294 {
1295         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1296                 return;
1297
1298         /*
1299          * Stop the hw queue, then modify currently delayed work.
1300          * This should prevent us from running the queue prematurely.
1301          * Mark the queue as auto-clearing STOPPED when it runs.
1302          */
1303         blk_mq_stop_hw_queue(hctx);
1304         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1305         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1306                                         &hctx->run_work,
1307                                         msecs_to_jiffies(msecs));
1308 }
1309 EXPORT_SYMBOL(blk_mq_delay_queue);
1310
1311 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1312                                             struct request *rq,
1313                                             bool at_head)
1314 {
1315         struct blk_mq_ctx *ctx = rq->mq_ctx;
1316
1317         trace_block_rq_insert(hctx->queue, rq);
1318
1319         if (at_head)
1320                 list_add(&rq->queuelist, &ctx->rq_list);
1321         else
1322                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1323 }
1324
1325 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1326                              bool at_head)
1327 {
1328         struct blk_mq_ctx *ctx = rq->mq_ctx;
1329
1330         __blk_mq_insert_req_list(hctx, rq, at_head);
1331         blk_mq_hctx_mark_pending(hctx, ctx);
1332 }
1333
1334 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1335                             struct list_head *list)
1336
1337 {
1338         /*
1339          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1340          * offline now
1341          */
1342         spin_lock(&ctx->lock);
1343         while (!list_empty(list)) {
1344                 struct request *rq;
1345
1346                 rq = list_first_entry(list, struct request, queuelist);
1347                 BUG_ON(rq->mq_ctx != ctx);
1348                 list_del_init(&rq->queuelist);
1349                 __blk_mq_insert_req_list(hctx, rq, false);
1350         }
1351         blk_mq_hctx_mark_pending(hctx, ctx);
1352         spin_unlock(&ctx->lock);
1353 }
1354
1355 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1356 {
1357         struct request *rqa = container_of(a, struct request, queuelist);
1358         struct request *rqb = container_of(b, struct request, queuelist);
1359
1360         return !(rqa->mq_ctx < rqb->mq_ctx ||
1361                  (rqa->mq_ctx == rqb->mq_ctx &&
1362                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1363 }
1364
1365 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1366 {
1367         struct blk_mq_ctx *this_ctx;
1368         struct request_queue *this_q;
1369         struct request *rq;
1370         LIST_HEAD(list);
1371         LIST_HEAD(ctx_list);
1372         unsigned int depth;
1373
1374         list_splice_init(&plug->mq_list, &list);
1375
1376         list_sort(NULL, &list, plug_ctx_cmp);
1377
1378         this_q = NULL;
1379         this_ctx = NULL;
1380         depth = 0;
1381
1382         while (!list_empty(&list)) {
1383                 rq = list_entry_rq(list.next);
1384                 list_del_init(&rq->queuelist);
1385                 BUG_ON(!rq->q);
1386                 if (rq->mq_ctx != this_ctx) {
1387                         if (this_ctx) {
1388                                 trace_block_unplug(this_q, depth, from_schedule);
1389                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1390                                                                 &ctx_list,
1391                                                                 from_schedule);
1392                         }
1393
1394                         this_ctx = rq->mq_ctx;
1395                         this_q = rq->q;
1396                         depth = 0;
1397                 }
1398
1399                 depth++;
1400                 list_add_tail(&rq->queuelist, &ctx_list);
1401         }
1402
1403         /*
1404          * If 'this_ctx' is set, we know we have entries to complete
1405          * on 'ctx_list'. Do those.
1406          */
1407         if (this_ctx) {
1408                 trace_block_unplug(this_q, depth, from_schedule);
1409                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1410                                                 from_schedule);
1411         }
1412 }
1413
1414 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1415 {
1416         blk_init_request_from_bio(rq, bio);
1417
1418         blk_account_io_start(rq, true);
1419 }
1420
1421 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1422 {
1423         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1424                 !blk_queue_nomerges(hctx->queue);
1425 }
1426
1427 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1428                                    struct blk_mq_ctx *ctx,
1429                                    struct request *rq)
1430 {
1431         spin_lock(&ctx->lock);
1432         __blk_mq_insert_request(hctx, rq, false);
1433         spin_unlock(&ctx->lock);
1434 }
1435
1436 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1437 {
1438         if (rq->tag != -1)
1439                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1440
1441         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1442 }
1443
1444 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1445                                         struct request *rq,
1446                                         blk_qc_t *cookie, bool may_sleep)
1447 {
1448         struct request_queue *q = rq->q;
1449         struct blk_mq_queue_data bd = {
1450                 .rq = rq,
1451                 .last = true,
1452         };
1453         blk_qc_t new_cookie;
1454         blk_status_t ret;
1455         bool run_queue = true;
1456
1457         /* RCU or SRCU read lock is needed before checking quiesced flag */
1458         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1459                 run_queue = false;
1460                 goto insert;
1461         }
1462
1463         if (q->elevator)
1464                 goto insert;
1465
1466         if (!blk_mq_get_driver_tag(rq, NULL, false))
1467                 goto insert;
1468
1469         new_cookie = request_to_qc_t(hctx, rq);
1470
1471         /*
1472          * For OK queue, we are done. For error, kill it. Any other
1473          * error (busy), just add it to our list as we previously
1474          * would have done
1475          */
1476         ret = q->mq_ops->queue_rq(hctx, &bd);
1477         switch (ret) {
1478         case BLK_STS_OK:
1479                 *cookie = new_cookie;
1480                 return;
1481         case BLK_STS_RESOURCE:
1482                 __blk_mq_requeue_request(rq);
1483                 goto insert;
1484         default:
1485                 *cookie = BLK_QC_T_NONE;
1486                 blk_mq_end_request(rq, ret);
1487                 return;
1488         }
1489
1490 insert:
1491         blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1492 }
1493
1494 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1495                 struct request *rq, blk_qc_t *cookie)
1496 {
1497         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1498                 rcu_read_lock();
1499                 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1500                 rcu_read_unlock();
1501         } else {
1502                 unsigned int srcu_idx;
1503
1504                 might_sleep();
1505
1506                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1507                 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1508                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1509         }
1510 }
1511
1512 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1513 {
1514         const int is_sync = op_is_sync(bio->bi_opf);
1515         const int is_flush_fua = op_is_flush(bio->bi_opf);
1516         struct blk_mq_alloc_data data = { .flags = 0 };
1517         struct request *rq;
1518         unsigned int request_count = 0;
1519         struct blk_plug *plug;
1520         struct request *same_queue_rq = NULL;
1521         blk_qc_t cookie;
1522         unsigned int wb_acct;
1523
1524         blk_queue_bounce(q, &bio);
1525
1526         blk_queue_split(q, &bio);
1527
1528         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1529                 bio_io_error(bio);
1530                 return BLK_QC_T_NONE;
1531         }
1532
1533         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1534             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1535                 return BLK_QC_T_NONE;
1536
1537         if (blk_mq_sched_bio_merge(q, bio))
1538                 return BLK_QC_T_NONE;
1539
1540         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1541
1542         trace_block_getrq(q, bio, bio->bi_opf);
1543
1544         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1545         if (unlikely(!rq)) {
1546                 __wbt_done(q->rq_wb, wb_acct);
1547                 return BLK_QC_T_NONE;
1548         }
1549
1550         wbt_track(&rq->issue_stat, wb_acct);
1551
1552         cookie = request_to_qc_t(data.hctx, rq);
1553
1554         plug = current->plug;
1555         if (unlikely(is_flush_fua)) {
1556                 blk_mq_put_ctx(data.ctx);
1557                 blk_mq_bio_to_request(rq, bio);
1558                 if (q->elevator) {
1559                         blk_mq_sched_insert_request(rq, false, true, true,
1560                                         true);
1561                 } else {
1562                         blk_insert_flush(rq);
1563                         blk_mq_run_hw_queue(data.hctx, true);
1564                 }
1565         } else if (plug && q->nr_hw_queues == 1) {
1566                 struct request *last = NULL;
1567
1568                 blk_mq_put_ctx(data.ctx);
1569                 blk_mq_bio_to_request(rq, bio);
1570
1571                 /*
1572                  * @request_count may become stale because of schedule
1573                  * out, so check the list again.
1574                  */
1575                 if (list_empty(&plug->mq_list))
1576                         request_count = 0;
1577                 else if (blk_queue_nomerges(q))
1578                         request_count = blk_plug_queued_count(q);
1579
1580                 if (!request_count)
1581                         trace_block_plug(q);
1582                 else
1583                         last = list_entry_rq(plug->mq_list.prev);
1584
1585                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1586                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1587                         blk_flush_plug_list(plug, false);
1588                         trace_block_plug(q);
1589                 }
1590
1591                 list_add_tail(&rq->queuelist, &plug->mq_list);
1592         } else if (plug && !blk_queue_nomerges(q)) {
1593                 blk_mq_bio_to_request(rq, bio);
1594
1595                 /*
1596                  * We do limited plugging. If the bio can be merged, do that.
1597                  * Otherwise the existing request in the plug list will be
1598                  * issued. So the plug list will have one request at most
1599                  * The plug list might get flushed before this. If that happens,
1600                  * the plug list is empty, and same_queue_rq is invalid.
1601                  */
1602                 if (list_empty(&plug->mq_list))
1603                         same_queue_rq = NULL;
1604                 if (same_queue_rq)
1605                         list_del_init(&same_queue_rq->queuelist);
1606                 list_add_tail(&rq->queuelist, &plug->mq_list);
1607
1608                 blk_mq_put_ctx(data.ctx);
1609
1610                 if (same_queue_rq) {
1611                         data.hctx = blk_mq_map_queue(q,
1612                                         same_queue_rq->mq_ctx->cpu);
1613                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1614                                         &cookie);
1615                 }
1616         } else if (q->nr_hw_queues > 1 && is_sync) {
1617                 blk_mq_put_ctx(data.ctx);
1618                 blk_mq_bio_to_request(rq, bio);
1619                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1620         } else if (q->elevator) {
1621                 blk_mq_put_ctx(data.ctx);
1622                 blk_mq_bio_to_request(rq, bio);
1623                 blk_mq_sched_insert_request(rq, false, true, true, true);
1624         } else {
1625                 blk_mq_put_ctx(data.ctx);
1626                 blk_mq_bio_to_request(rq, bio);
1627                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1628                 blk_mq_run_hw_queue(data.hctx, true);
1629         }
1630
1631         return cookie;
1632 }
1633
1634 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1635                      unsigned int hctx_idx)
1636 {
1637         struct page *page;
1638
1639         if (tags->rqs && set->ops->exit_request) {
1640                 int i;
1641
1642                 for (i = 0; i < tags->nr_tags; i++) {
1643                         struct request *rq = tags->static_rqs[i];
1644
1645                         if (!rq)
1646                                 continue;
1647                         set->ops->exit_request(set, rq, hctx_idx);
1648                         tags->static_rqs[i] = NULL;
1649                 }
1650         }
1651
1652         while (!list_empty(&tags->page_list)) {
1653                 page = list_first_entry(&tags->page_list, struct page, lru);
1654                 list_del_init(&page->lru);
1655                 /*
1656                  * Remove kmemleak object previously allocated in
1657                  * blk_mq_init_rq_map().
1658                  */
1659                 kmemleak_free(page_address(page));
1660                 __free_pages(page, page->private);
1661         }
1662 }
1663
1664 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1665 {
1666         kfree(tags->rqs);
1667         tags->rqs = NULL;
1668         kfree(tags->static_rqs);
1669         tags->static_rqs = NULL;
1670
1671         blk_mq_free_tags(tags);
1672 }
1673
1674 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1675                                         unsigned int hctx_idx,
1676                                         unsigned int nr_tags,
1677                                         unsigned int reserved_tags)
1678 {
1679         struct blk_mq_tags *tags;
1680         int node;
1681
1682         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1683         if (node == NUMA_NO_NODE)
1684                 node = set->numa_node;
1685
1686         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1687                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1688         if (!tags)
1689                 return NULL;
1690
1691         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1692                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1693                                  node);
1694         if (!tags->rqs) {
1695                 blk_mq_free_tags(tags);
1696                 return NULL;
1697         }
1698
1699         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1700                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1701                                  node);
1702         if (!tags->static_rqs) {
1703                 kfree(tags->rqs);
1704                 blk_mq_free_tags(tags);
1705                 return NULL;
1706         }
1707
1708         return tags;
1709 }
1710
1711 static size_t order_to_size(unsigned int order)
1712 {
1713         return (size_t)PAGE_SIZE << order;
1714 }
1715
1716 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1717                      unsigned int hctx_idx, unsigned int depth)
1718 {
1719         unsigned int i, j, entries_per_page, max_order = 4;
1720         size_t rq_size, left;
1721         int node;
1722
1723         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1724         if (node == NUMA_NO_NODE)
1725                 node = set->numa_node;
1726
1727         INIT_LIST_HEAD(&tags->page_list);
1728
1729         /*
1730          * rq_size is the size of the request plus driver payload, rounded
1731          * to the cacheline size
1732          */
1733         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1734                                 cache_line_size());
1735         left = rq_size * depth;
1736
1737         for (i = 0; i < depth; ) {
1738                 int this_order = max_order;
1739                 struct page *page;
1740                 int to_do;
1741                 void *p;
1742
1743                 while (this_order && left < order_to_size(this_order - 1))
1744                         this_order--;
1745
1746                 do {
1747                         page = alloc_pages_node(node,
1748                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1749                                 this_order);
1750                         if (page)
1751                                 break;
1752                         if (!this_order--)
1753                                 break;
1754                         if (order_to_size(this_order) < rq_size)
1755                                 break;
1756                 } while (1);
1757
1758                 if (!page)
1759                         goto fail;
1760
1761                 page->private = this_order;
1762                 list_add_tail(&page->lru, &tags->page_list);
1763
1764                 p = page_address(page);
1765                 /*
1766                  * Allow kmemleak to scan these pages as they contain pointers
1767                  * to additional allocations like via ops->init_request().
1768                  */
1769                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1770                 entries_per_page = order_to_size(this_order) / rq_size;
1771                 to_do = min(entries_per_page, depth - i);
1772                 left -= to_do * rq_size;
1773                 for (j = 0; j < to_do; j++) {
1774                         struct request *rq = p;
1775
1776                         tags->static_rqs[i] = rq;
1777                         if (set->ops->init_request) {
1778                                 if (set->ops->init_request(set, rq, hctx_idx,
1779                                                 node)) {
1780                                         tags->static_rqs[i] = NULL;
1781                                         goto fail;
1782                                 }
1783                         }
1784
1785                         p += rq_size;
1786                         i++;
1787                 }
1788         }
1789         return 0;
1790
1791 fail:
1792         blk_mq_free_rqs(set, tags, hctx_idx);
1793         return -ENOMEM;
1794 }
1795
1796 /*
1797  * 'cpu' is going away. splice any existing rq_list entries from this
1798  * software queue to the hw queue dispatch list, and ensure that it
1799  * gets run.
1800  */
1801 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1802 {
1803         struct blk_mq_hw_ctx *hctx;
1804         struct blk_mq_ctx *ctx;
1805         LIST_HEAD(tmp);
1806
1807         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1808         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1809
1810         spin_lock(&ctx->lock);
1811         if (!list_empty(&ctx->rq_list)) {
1812                 list_splice_init(&ctx->rq_list, &tmp);
1813                 blk_mq_hctx_clear_pending(hctx, ctx);
1814         }
1815         spin_unlock(&ctx->lock);
1816
1817         if (list_empty(&tmp))
1818                 return 0;
1819
1820         spin_lock(&hctx->lock);
1821         list_splice_tail_init(&tmp, &hctx->dispatch);
1822         spin_unlock(&hctx->lock);
1823
1824         blk_mq_run_hw_queue(hctx, true);
1825         return 0;
1826 }
1827
1828 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1829 {
1830         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1831                                             &hctx->cpuhp_dead);
1832 }
1833
1834 /* hctx->ctxs will be freed in queue's release handler */
1835 static void blk_mq_exit_hctx(struct request_queue *q,
1836                 struct blk_mq_tag_set *set,
1837                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1838 {
1839         blk_mq_debugfs_unregister_hctx(hctx);
1840
1841         blk_mq_tag_idle(hctx);
1842
1843         if (set->ops->exit_request)
1844                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1845
1846         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1847
1848         if (set->ops->exit_hctx)
1849                 set->ops->exit_hctx(hctx, hctx_idx);
1850
1851         if (hctx->flags & BLK_MQ_F_BLOCKING)
1852                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1853
1854         blk_mq_remove_cpuhp(hctx);
1855         blk_free_flush_queue(hctx->fq);
1856         sbitmap_free(&hctx->ctx_map);
1857 }
1858
1859 static void blk_mq_exit_hw_queues(struct request_queue *q,
1860                 struct blk_mq_tag_set *set, int nr_queue)
1861 {
1862         struct blk_mq_hw_ctx *hctx;
1863         unsigned int i;
1864
1865         queue_for_each_hw_ctx(q, hctx, i) {
1866                 if (i == nr_queue)
1867                         break;
1868                 blk_mq_exit_hctx(q, set, hctx, i);
1869         }
1870 }
1871
1872 static int blk_mq_init_hctx(struct request_queue *q,
1873                 struct blk_mq_tag_set *set,
1874                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1875 {
1876         int node;
1877
1878         node = hctx->numa_node;
1879         if (node == NUMA_NO_NODE)
1880                 node = hctx->numa_node = set->numa_node;
1881
1882         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1883         spin_lock_init(&hctx->lock);
1884         INIT_LIST_HEAD(&hctx->dispatch);
1885         hctx->queue = q;
1886         hctx->queue_num = hctx_idx;
1887         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1888
1889         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1890
1891         hctx->tags = set->tags[hctx_idx];
1892
1893         /*
1894          * Allocate space for all possible cpus to avoid allocation at
1895          * runtime
1896          */
1897         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1898                                         GFP_KERNEL, node);
1899         if (!hctx->ctxs)
1900                 goto unregister_cpu_notifier;
1901
1902         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1903                               node))
1904                 goto free_ctxs;
1905
1906         hctx->nr_ctx = 0;
1907
1908         if (set->ops->init_hctx &&
1909             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1910                 goto free_bitmap;
1911
1912         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1913                 goto exit_hctx;
1914
1915         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1916         if (!hctx->fq)
1917                 goto sched_exit_hctx;
1918
1919         if (set->ops->init_request &&
1920             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1921                                    node))
1922                 goto free_fq;
1923
1924         if (hctx->flags & BLK_MQ_F_BLOCKING)
1925                 init_srcu_struct(&hctx->queue_rq_srcu);
1926
1927         blk_mq_debugfs_register_hctx(q, hctx);
1928
1929         return 0;
1930
1931  free_fq:
1932         kfree(hctx->fq);
1933  sched_exit_hctx:
1934         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1935  exit_hctx:
1936         if (set->ops->exit_hctx)
1937                 set->ops->exit_hctx(hctx, hctx_idx);
1938  free_bitmap:
1939         sbitmap_free(&hctx->ctx_map);
1940  free_ctxs:
1941         kfree(hctx->ctxs);
1942  unregister_cpu_notifier:
1943         blk_mq_remove_cpuhp(hctx);
1944         return -1;
1945 }
1946
1947 static void blk_mq_init_cpu_queues(struct request_queue *q,
1948                                    unsigned int nr_hw_queues)
1949 {
1950         unsigned int i;
1951
1952         for_each_possible_cpu(i) {
1953                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1954                 struct blk_mq_hw_ctx *hctx;
1955
1956                 __ctx->cpu = i;
1957                 spin_lock_init(&__ctx->lock);
1958                 INIT_LIST_HEAD(&__ctx->rq_list);
1959                 __ctx->queue = q;
1960
1961                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1962                 if (!cpu_online(i))
1963                         continue;
1964
1965                 hctx = blk_mq_map_queue(q, i);
1966
1967                 /*
1968                  * Set local node, IFF we have more than one hw queue. If
1969                  * not, we remain on the home node of the device
1970                  */
1971                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1972                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1973         }
1974 }
1975
1976 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1977 {
1978         int ret = 0;
1979
1980         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1981                                         set->queue_depth, set->reserved_tags);
1982         if (!set->tags[hctx_idx])
1983                 return false;
1984
1985         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1986                                 set->queue_depth);
1987         if (!ret)
1988                 return true;
1989
1990         blk_mq_free_rq_map(set->tags[hctx_idx]);
1991         set->tags[hctx_idx] = NULL;
1992         return false;
1993 }
1994
1995 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1996                                          unsigned int hctx_idx)
1997 {
1998         if (set->tags[hctx_idx]) {
1999                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2000                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2001                 set->tags[hctx_idx] = NULL;
2002         }
2003 }
2004
2005 static void blk_mq_map_swqueue(struct request_queue *q,
2006                                const struct cpumask *online_mask)
2007 {
2008         unsigned int i, hctx_idx;
2009         struct blk_mq_hw_ctx *hctx;
2010         struct blk_mq_ctx *ctx;
2011         struct blk_mq_tag_set *set = q->tag_set;
2012
2013         /*
2014          * Avoid others reading imcomplete hctx->cpumask through sysfs
2015          */
2016         mutex_lock(&q->sysfs_lock);
2017
2018         queue_for_each_hw_ctx(q, hctx, i) {
2019                 cpumask_clear(hctx->cpumask);
2020                 hctx->nr_ctx = 0;
2021         }
2022
2023         /*
2024          * Map software to hardware queues
2025          */
2026         for_each_possible_cpu(i) {
2027                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2028                 if (!cpumask_test_cpu(i, online_mask))
2029                         continue;
2030
2031                 hctx_idx = q->mq_map[i];
2032                 /* unmapped hw queue can be remapped after CPU topo changed */
2033                 if (!set->tags[hctx_idx] &&
2034                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2035                         /*
2036                          * If tags initialization fail for some hctx,
2037                          * that hctx won't be brought online.  In this
2038                          * case, remap the current ctx to hctx[0] which
2039                          * is guaranteed to always have tags allocated
2040                          */
2041                         q->mq_map[i] = 0;
2042                 }
2043
2044                 ctx = per_cpu_ptr(q->queue_ctx, i);
2045                 hctx = blk_mq_map_queue(q, i);
2046
2047                 cpumask_set_cpu(i, hctx->cpumask);
2048                 ctx->index_hw = hctx->nr_ctx;
2049                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2050         }
2051
2052         mutex_unlock(&q->sysfs_lock);
2053
2054         queue_for_each_hw_ctx(q, hctx, i) {
2055                 /*
2056                  * If no software queues are mapped to this hardware queue,
2057                  * disable it and free the request entries.
2058                  */
2059                 if (!hctx->nr_ctx) {
2060                         /* Never unmap queue 0.  We need it as a
2061                          * fallback in case of a new remap fails
2062                          * allocation
2063                          */
2064                         if (i && set->tags[i])
2065                                 blk_mq_free_map_and_requests(set, i);
2066
2067                         hctx->tags = NULL;
2068                         continue;
2069                 }
2070
2071                 hctx->tags = set->tags[i];
2072                 WARN_ON(!hctx->tags);
2073
2074                 /*
2075                  * Set the map size to the number of mapped software queues.
2076                  * This is more accurate and more efficient than looping
2077                  * over all possibly mapped software queues.
2078                  */
2079                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2080
2081                 /*
2082                  * Initialize batch roundrobin counts
2083                  */
2084                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2085                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2086         }
2087 }
2088
2089 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2090 {
2091         struct blk_mq_hw_ctx *hctx;
2092         int i;
2093
2094         queue_for_each_hw_ctx(q, hctx, i) {
2095                 if (shared)
2096                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2097                 else
2098                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2099         }
2100 }
2101
2102 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2103 {
2104         struct request_queue *q;
2105
2106         lockdep_assert_held(&set->tag_list_lock);
2107
2108         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2109                 blk_mq_freeze_queue(q);
2110                 queue_set_hctx_shared(q, shared);
2111                 blk_mq_unfreeze_queue(q);
2112         }
2113 }
2114
2115 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2116 {
2117         struct blk_mq_tag_set *set = q->tag_set;
2118
2119         mutex_lock(&set->tag_list_lock);
2120         list_del_rcu(&q->tag_set_list);
2121         INIT_LIST_HEAD(&q->tag_set_list);
2122         if (list_is_singular(&set->tag_list)) {
2123                 /* just transitioned to unshared */
2124                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2125                 /* update existing queue */
2126                 blk_mq_update_tag_set_depth(set, false);
2127         }
2128         mutex_unlock(&set->tag_list_lock);
2129
2130         synchronize_rcu();
2131 }
2132
2133 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2134                                      struct request_queue *q)
2135 {
2136         q->tag_set = set;
2137
2138         mutex_lock(&set->tag_list_lock);
2139
2140         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2141         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2142                 set->flags |= BLK_MQ_F_TAG_SHARED;
2143                 /* update existing queue */
2144                 blk_mq_update_tag_set_depth(set, true);
2145         }
2146         if (set->flags & BLK_MQ_F_TAG_SHARED)
2147                 queue_set_hctx_shared(q, true);
2148         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2149
2150         mutex_unlock(&set->tag_list_lock);
2151 }
2152
2153 /*
2154  * It is the actual release handler for mq, but we do it from
2155  * request queue's release handler for avoiding use-after-free
2156  * and headache because q->mq_kobj shouldn't have been introduced,
2157  * but we can't group ctx/kctx kobj without it.
2158  */
2159 void blk_mq_release(struct request_queue *q)
2160 {
2161         struct blk_mq_hw_ctx *hctx;
2162         unsigned int i;
2163
2164         /* hctx kobj stays in hctx */
2165         queue_for_each_hw_ctx(q, hctx, i) {
2166                 if (!hctx)
2167                         continue;
2168                 kobject_put(&hctx->kobj);
2169         }
2170
2171         q->mq_map = NULL;
2172
2173         kfree(q->queue_hw_ctx);
2174
2175         /*
2176          * release .mq_kobj and sw queue's kobject now because
2177          * both share lifetime with request queue.
2178          */
2179         blk_mq_sysfs_deinit(q);
2180
2181         free_percpu(q->queue_ctx);
2182 }
2183
2184 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2185 {
2186         struct request_queue *uninit_q, *q;
2187
2188         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2189         if (!uninit_q)
2190                 return ERR_PTR(-ENOMEM);
2191
2192         q = blk_mq_init_allocated_queue(set, uninit_q);
2193         if (IS_ERR(q))
2194                 blk_cleanup_queue(uninit_q);
2195
2196         return q;
2197 }
2198 EXPORT_SYMBOL(blk_mq_init_queue);
2199
2200 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2201                                                 struct request_queue *q)
2202 {
2203         int i, j;
2204         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2205
2206         blk_mq_sysfs_unregister(q);
2207         for (i = 0; i < set->nr_hw_queues; i++) {
2208                 int node;
2209
2210                 if (hctxs[i])
2211                         continue;
2212
2213                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2214                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2215                                         GFP_KERNEL, node);
2216                 if (!hctxs[i])
2217                         break;
2218
2219                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2220                                                 node)) {
2221                         kfree(hctxs[i]);
2222                         hctxs[i] = NULL;
2223                         break;
2224                 }
2225
2226                 atomic_set(&hctxs[i]->nr_active, 0);
2227                 hctxs[i]->numa_node = node;
2228                 hctxs[i]->queue_num = i;
2229
2230                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2231                         free_cpumask_var(hctxs[i]->cpumask);
2232                         kfree(hctxs[i]);
2233                         hctxs[i] = NULL;
2234                         break;
2235                 }
2236                 blk_mq_hctx_kobj_init(hctxs[i]);
2237         }
2238         for (j = i; j < q->nr_hw_queues; j++) {
2239                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2240
2241                 if (hctx) {
2242                         if (hctx->tags)
2243                                 blk_mq_free_map_and_requests(set, j);
2244                         blk_mq_exit_hctx(q, set, hctx, j);
2245                         kobject_put(&hctx->kobj);
2246                         hctxs[j] = NULL;
2247
2248                 }
2249         }
2250         q->nr_hw_queues = i;
2251         blk_mq_sysfs_register(q);
2252 }
2253
2254 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2255                                                   struct request_queue *q)
2256 {
2257         /* mark the queue as mq asap */
2258         q->mq_ops = set->ops;
2259
2260         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2261                                              blk_mq_poll_stats_bkt,
2262                                              BLK_MQ_POLL_STATS_BKTS, q);
2263         if (!q->poll_cb)
2264                 goto err_exit;
2265
2266         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2267         if (!q->queue_ctx)
2268                 goto err_exit;
2269
2270         /* init q->mq_kobj and sw queues' kobjects */
2271         blk_mq_sysfs_init(q);
2272
2273         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2274                                                 GFP_KERNEL, set->numa_node);
2275         if (!q->queue_hw_ctx)
2276                 goto err_percpu;
2277
2278         q->mq_map = set->mq_map;
2279
2280         blk_mq_realloc_hw_ctxs(set, q);
2281         if (!q->nr_hw_queues)
2282                 goto err_hctxs;
2283
2284         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2285         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2286
2287         q->nr_queues = nr_cpu_ids;
2288
2289         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2290
2291         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2292                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2293
2294         q->sg_reserved_size = INT_MAX;
2295
2296         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2297         INIT_LIST_HEAD(&q->requeue_list);
2298         spin_lock_init(&q->requeue_lock);
2299
2300         blk_queue_make_request(q, blk_mq_make_request);
2301
2302         /*
2303          * Do this after blk_queue_make_request() overrides it...
2304          */
2305         q->nr_requests = set->queue_depth;
2306
2307         /*
2308          * Default to classic polling
2309          */
2310         q->poll_nsec = -1;
2311
2312         if (set->ops->complete)
2313                 blk_queue_softirq_done(q, set->ops->complete);
2314
2315         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2316
2317         get_online_cpus();
2318         mutex_lock(&all_q_mutex);
2319
2320         list_add_tail(&q->all_q_node, &all_q_list);
2321         blk_mq_add_queue_tag_set(set, q);
2322         blk_mq_map_swqueue(q, cpu_online_mask);
2323
2324         mutex_unlock(&all_q_mutex);
2325         put_online_cpus();
2326
2327         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2328                 int ret;
2329
2330                 ret = blk_mq_sched_init(q);
2331                 if (ret)
2332                         return ERR_PTR(ret);
2333         }
2334
2335         return q;
2336
2337 err_hctxs:
2338         kfree(q->queue_hw_ctx);
2339 err_percpu:
2340         free_percpu(q->queue_ctx);
2341 err_exit:
2342         q->mq_ops = NULL;
2343         return ERR_PTR(-ENOMEM);
2344 }
2345 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2346
2347 void blk_mq_free_queue(struct request_queue *q)
2348 {
2349         struct blk_mq_tag_set   *set = q->tag_set;
2350
2351         mutex_lock(&all_q_mutex);
2352         list_del_init(&q->all_q_node);
2353         mutex_unlock(&all_q_mutex);
2354
2355         blk_mq_del_queue_tag_set(q);
2356
2357         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2358 }
2359
2360 /* Basically redo blk_mq_init_queue with queue frozen */
2361 static void blk_mq_queue_reinit(struct request_queue *q,
2362                                 const struct cpumask *online_mask)
2363 {
2364         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2365
2366         blk_mq_debugfs_unregister_hctxs(q);
2367         blk_mq_sysfs_unregister(q);
2368
2369         /*
2370          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2371          * we should change hctx numa_node according to new topology (this
2372          * involves free and re-allocate memory, worthy doing?)
2373          */
2374
2375         blk_mq_map_swqueue(q, online_mask);
2376
2377         blk_mq_sysfs_register(q);
2378         blk_mq_debugfs_register_hctxs(q);
2379 }
2380
2381 /*
2382  * New online cpumask which is going to be set in this hotplug event.
2383  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2384  * one-by-one and dynamically allocating this could result in a failure.
2385  */
2386 static struct cpumask cpuhp_online_new;
2387
2388 static void blk_mq_queue_reinit_work(void)
2389 {
2390         struct request_queue *q;
2391
2392         mutex_lock(&all_q_mutex);
2393         /*
2394          * We need to freeze and reinit all existing queues.  Freezing
2395          * involves synchronous wait for an RCU grace period and doing it
2396          * one by one may take a long time.  Start freezing all queues in
2397          * one swoop and then wait for the completions so that freezing can
2398          * take place in parallel.
2399          */
2400         list_for_each_entry(q, &all_q_list, all_q_node)
2401                 blk_freeze_queue_start(q);
2402         list_for_each_entry(q, &all_q_list, all_q_node)
2403                 blk_mq_freeze_queue_wait(q);
2404
2405         list_for_each_entry(q, &all_q_list, all_q_node)
2406                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2407
2408         list_for_each_entry(q, &all_q_list, all_q_node)
2409                 blk_mq_unfreeze_queue(q);
2410
2411         mutex_unlock(&all_q_mutex);
2412 }
2413
2414 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2415 {
2416         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2417         blk_mq_queue_reinit_work();
2418         return 0;
2419 }
2420
2421 /*
2422  * Before hotadded cpu starts handling requests, new mappings must be
2423  * established.  Otherwise, these requests in hw queue might never be
2424  * dispatched.
2425  *
2426  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2427  * for CPU0, and ctx1 for CPU1).
2428  *
2429  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2430  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2431  *
2432  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2433  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2434  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2435  * ignored.
2436  */
2437 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2438 {
2439         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2440         cpumask_set_cpu(cpu, &cpuhp_online_new);
2441         blk_mq_queue_reinit_work();
2442         return 0;
2443 }
2444
2445 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2446 {
2447         int i;
2448
2449         for (i = 0; i < set->nr_hw_queues; i++)
2450                 if (!__blk_mq_alloc_rq_map(set, i))
2451                         goto out_unwind;
2452
2453         return 0;
2454
2455 out_unwind:
2456         while (--i >= 0)
2457                 blk_mq_free_rq_map(set->tags[i]);
2458
2459         return -ENOMEM;
2460 }
2461
2462 /*
2463  * Allocate the request maps associated with this tag_set. Note that this
2464  * may reduce the depth asked for, if memory is tight. set->queue_depth
2465  * will be updated to reflect the allocated depth.
2466  */
2467 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2468 {
2469         unsigned int depth;
2470         int err;
2471
2472         depth = set->queue_depth;
2473         do {
2474                 err = __blk_mq_alloc_rq_maps(set);
2475                 if (!err)
2476                         break;
2477
2478                 set->queue_depth >>= 1;
2479                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2480                         err = -ENOMEM;
2481                         break;
2482                 }
2483         } while (set->queue_depth);
2484
2485         if (!set->queue_depth || err) {
2486                 pr_err("blk-mq: failed to allocate request map\n");
2487                 return -ENOMEM;
2488         }
2489
2490         if (depth != set->queue_depth)
2491                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2492                                                 depth, set->queue_depth);
2493
2494         return 0;
2495 }
2496
2497 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2498 {
2499         if (set->ops->map_queues)
2500                 return set->ops->map_queues(set);
2501         else
2502                 return blk_mq_map_queues(set);
2503 }
2504
2505 /*
2506  * Alloc a tag set to be associated with one or more request queues.
2507  * May fail with EINVAL for various error conditions. May adjust the
2508  * requested depth down, if if it too large. In that case, the set
2509  * value will be stored in set->queue_depth.
2510  */
2511 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2512 {
2513         int ret;
2514
2515         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2516
2517         if (!set->nr_hw_queues)
2518                 return -EINVAL;
2519         if (!set->queue_depth)
2520                 return -EINVAL;
2521         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2522                 return -EINVAL;
2523
2524         if (!set->ops->queue_rq)
2525                 return -EINVAL;
2526
2527         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2528                 pr_info("blk-mq: reduced tag depth to %u\n",
2529                         BLK_MQ_MAX_DEPTH);
2530                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2531         }
2532
2533         /*
2534          * If a crashdump is active, then we are potentially in a very
2535          * memory constrained environment. Limit us to 1 queue and
2536          * 64 tags to prevent using too much memory.
2537          */
2538         if (is_kdump_kernel()) {
2539                 set->nr_hw_queues = 1;
2540                 set->queue_depth = min(64U, set->queue_depth);
2541         }
2542         /*
2543          * There is no use for more h/w queues than cpus.
2544          */
2545         if (set->nr_hw_queues > nr_cpu_ids)
2546                 set->nr_hw_queues = nr_cpu_ids;
2547
2548         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2549                                  GFP_KERNEL, set->numa_node);
2550         if (!set->tags)
2551                 return -ENOMEM;
2552
2553         ret = -ENOMEM;
2554         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2555                         GFP_KERNEL, set->numa_node);
2556         if (!set->mq_map)
2557                 goto out_free_tags;
2558
2559         ret = blk_mq_update_queue_map(set);
2560         if (ret)
2561                 goto out_free_mq_map;
2562
2563         ret = blk_mq_alloc_rq_maps(set);
2564         if (ret)
2565                 goto out_free_mq_map;
2566
2567         mutex_init(&set->tag_list_lock);
2568         INIT_LIST_HEAD(&set->tag_list);
2569
2570         return 0;
2571
2572 out_free_mq_map:
2573         kfree(set->mq_map);
2574         set->mq_map = NULL;
2575 out_free_tags:
2576         kfree(set->tags);
2577         set->tags = NULL;
2578         return ret;
2579 }
2580 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2581
2582 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2583 {
2584         int i;
2585
2586         for (i = 0; i < nr_cpu_ids; i++)
2587                 blk_mq_free_map_and_requests(set, i);
2588
2589         kfree(set->mq_map);
2590         set->mq_map = NULL;
2591
2592         kfree(set->tags);
2593         set->tags = NULL;
2594 }
2595 EXPORT_SYMBOL(blk_mq_free_tag_set);
2596
2597 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2598 {
2599         struct blk_mq_tag_set *set = q->tag_set;
2600         struct blk_mq_hw_ctx *hctx;
2601         int i, ret;
2602
2603         if (!set)
2604                 return -EINVAL;
2605
2606         blk_mq_freeze_queue(q);
2607
2608         ret = 0;
2609         queue_for_each_hw_ctx(q, hctx, i) {
2610                 if (!hctx->tags)
2611                         continue;
2612                 /*
2613                  * If we're using an MQ scheduler, just update the scheduler
2614                  * queue depth. This is similar to what the old code would do.
2615                  */
2616                 if (!hctx->sched_tags) {
2617                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2618                                                         min(nr, set->queue_depth),
2619                                                         false);
2620                 } else {
2621                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2622                                                         nr, true);
2623                 }
2624                 if (ret)
2625                         break;
2626         }
2627
2628         if (!ret)
2629                 q->nr_requests = nr;
2630
2631         blk_mq_unfreeze_queue(q);
2632
2633         return ret;
2634 }
2635
2636 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2637                                                         int nr_hw_queues)
2638 {
2639         struct request_queue *q;
2640
2641         lockdep_assert_held(&set->tag_list_lock);
2642
2643         if (nr_hw_queues > nr_cpu_ids)
2644                 nr_hw_queues = nr_cpu_ids;
2645         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2646                 return;
2647
2648         list_for_each_entry(q, &set->tag_list, tag_set_list)
2649                 blk_mq_freeze_queue(q);
2650
2651         set->nr_hw_queues = nr_hw_queues;
2652         blk_mq_update_queue_map(set);
2653         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2654                 blk_mq_realloc_hw_ctxs(set, q);
2655                 blk_mq_queue_reinit(q, cpu_online_mask);
2656         }
2657
2658         list_for_each_entry(q, &set->tag_list, tag_set_list)
2659                 blk_mq_unfreeze_queue(q);
2660 }
2661
2662 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2663 {
2664         mutex_lock(&set->tag_list_lock);
2665         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2666         mutex_unlock(&set->tag_list_lock);
2667 }
2668 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2669
2670 /* Enable polling stats and return whether they were already enabled. */
2671 static bool blk_poll_stats_enable(struct request_queue *q)
2672 {
2673         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2674             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2675                 return true;
2676         blk_stat_add_callback(q, q->poll_cb);
2677         return false;
2678 }
2679
2680 static void blk_mq_poll_stats_start(struct request_queue *q)
2681 {
2682         /*
2683          * We don't arm the callback if polling stats are not enabled or the
2684          * callback is already active.
2685          */
2686         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2687             blk_stat_is_active(q->poll_cb))
2688                 return;
2689
2690         blk_stat_activate_msecs(q->poll_cb, 100);
2691 }
2692
2693 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2694 {
2695         struct request_queue *q = cb->data;
2696         int bucket;
2697
2698         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2699                 if (cb->stat[bucket].nr_samples)
2700                         q->poll_stat[bucket] = cb->stat[bucket];
2701         }
2702 }
2703
2704 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2705                                        struct blk_mq_hw_ctx *hctx,
2706                                        struct request *rq)
2707 {
2708         unsigned long ret = 0;
2709         int bucket;
2710
2711         /*
2712          * If stats collection isn't on, don't sleep but turn it on for
2713          * future users
2714          */
2715         if (!blk_poll_stats_enable(q))
2716                 return 0;
2717
2718         /*
2719          * As an optimistic guess, use half of the mean service time
2720          * for this type of request. We can (and should) make this smarter.
2721          * For instance, if the completion latencies are tight, we can
2722          * get closer than just half the mean. This is especially
2723          * important on devices where the completion latencies are longer
2724          * than ~10 usec. We do use the stats for the relevant IO size
2725          * if available which does lead to better estimates.
2726          */
2727         bucket = blk_mq_poll_stats_bkt(rq);
2728         if (bucket < 0)
2729                 return ret;
2730
2731         if (q->poll_stat[bucket].nr_samples)
2732                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2733
2734         return ret;
2735 }
2736
2737 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2738                                      struct blk_mq_hw_ctx *hctx,
2739                                      struct request *rq)
2740 {
2741         struct hrtimer_sleeper hs;
2742         enum hrtimer_mode mode;
2743         unsigned int nsecs;
2744         ktime_t kt;
2745
2746         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2747                 return false;
2748
2749         /*
2750          * poll_nsec can be:
2751          *
2752          * -1:  don't ever hybrid sleep
2753          *  0:  use half of prev avg
2754          * >0:  use this specific value
2755          */
2756         if (q->poll_nsec == -1)
2757                 return false;
2758         else if (q->poll_nsec > 0)
2759                 nsecs = q->poll_nsec;
2760         else
2761                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2762
2763         if (!nsecs)
2764                 return false;
2765
2766         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2767
2768         /*
2769          * This will be replaced with the stats tracking code, using
2770          * 'avg_completion_time / 2' as the pre-sleep target.
2771          */
2772         kt = nsecs;
2773
2774         mode = HRTIMER_MODE_REL;
2775         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2776         hrtimer_set_expires(&hs.timer, kt);
2777
2778         hrtimer_init_sleeper(&hs, current);
2779         do {
2780                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2781                         break;
2782                 set_current_state(TASK_UNINTERRUPTIBLE);
2783                 hrtimer_start_expires(&hs.timer, mode);
2784                 if (hs.task)
2785                         io_schedule();
2786                 hrtimer_cancel(&hs.timer);
2787                 mode = HRTIMER_MODE_ABS;
2788         } while (hs.task && !signal_pending(current));
2789
2790         __set_current_state(TASK_RUNNING);
2791         destroy_hrtimer_on_stack(&hs.timer);
2792         return true;
2793 }
2794
2795 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2796 {
2797         struct request_queue *q = hctx->queue;
2798         long state;
2799
2800         /*
2801          * If we sleep, have the caller restart the poll loop to reset
2802          * the state. Like for the other success return cases, the
2803          * caller is responsible for checking if the IO completed. If
2804          * the IO isn't complete, we'll get called again and will go
2805          * straight to the busy poll loop.
2806          */
2807         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2808                 return true;
2809
2810         hctx->poll_considered++;
2811
2812         state = current->state;
2813         while (!need_resched()) {
2814                 int ret;
2815
2816                 hctx->poll_invoked++;
2817
2818                 ret = q->mq_ops->poll(hctx, rq->tag);
2819                 if (ret > 0) {
2820                         hctx->poll_success++;
2821                         set_current_state(TASK_RUNNING);
2822                         return true;
2823                 }
2824
2825                 if (signal_pending_state(state, current))
2826                         set_current_state(TASK_RUNNING);
2827
2828                 if (current->state == TASK_RUNNING)
2829                         return true;
2830                 if (ret < 0)
2831                         break;
2832                 cpu_relax();
2833         }
2834
2835         return false;
2836 }
2837
2838 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2839 {
2840         struct blk_mq_hw_ctx *hctx;
2841         struct blk_plug *plug;
2842         struct request *rq;
2843
2844         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2845             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2846                 return false;
2847
2848         plug = current->plug;
2849         if (plug)
2850                 blk_flush_plug_list(plug, false);
2851
2852         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2853         if (!blk_qc_t_is_internal(cookie))
2854                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2855         else {
2856                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2857                 /*
2858                  * With scheduling, if the request has completed, we'll
2859                  * get a NULL return here, as we clear the sched tag when
2860                  * that happens. The request still remains valid, like always,
2861                  * so we should be safe with just the NULL check.
2862                  */
2863                 if (!rq)
2864                         return false;
2865         }
2866
2867         return __blk_mq_poll(hctx, rq);
2868 }
2869 EXPORT_SYMBOL_GPL(blk_mq_poll);
2870
2871 void blk_mq_disable_hotplug(void)
2872 {
2873         mutex_lock(&all_q_mutex);
2874 }
2875
2876 void blk_mq_enable_hotplug(void)
2877 {
2878         mutex_unlock(&all_q_mutex);
2879 }
2880
2881 static int __init blk_mq_init(void)
2882 {
2883         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2884                                 blk_mq_hctx_notify_dead);
2885
2886         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2887                                   blk_mq_queue_reinit_prepare,
2888                                   blk_mq_queue_reinit_dead);
2889         return 0;
2890 }
2891 subsys_initcall(blk_mq_init);