]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-throttle.c
blk-throttle: output some debug info in trace
[karo-tx-linux.git] / block / blk-throttle.c
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over a slice and after that slice is renewed */
22 #define DFL_THROTL_SLICE_HD (HZ / 10)
23 #define DFL_THROTL_SLICE_SSD (HZ / 50)
24 #define MAX_THROTL_SLICE (HZ)
25 #define DFL_IDLE_THRESHOLD_SSD (1000L) /* 1 ms */
26 #define DFL_IDLE_THRESHOLD_HD (100L * 1000) /* 100 ms */
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 /* default latency target is 0, eg, guarantee IO latency by default */
29 #define DFL_LATENCY_TARGET (0)
30
31 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
32
33 static struct blkcg_policy blkcg_policy_throtl;
34
35 /* A workqueue to queue throttle related work */
36 static struct workqueue_struct *kthrotld_workqueue;
37
38 /*
39  * To implement hierarchical throttling, throtl_grps form a tree and bios
40  * are dispatched upwards level by level until they reach the top and get
41  * issued.  When dispatching bios from the children and local group at each
42  * level, if the bios are dispatched into a single bio_list, there's a risk
43  * of a local or child group which can queue many bios at once filling up
44  * the list starving others.
45  *
46  * To avoid such starvation, dispatched bios are queued separately
47  * according to where they came from.  When they are again dispatched to
48  * the parent, they're popped in round-robin order so that no single source
49  * hogs the dispatch window.
50  *
51  * throtl_qnode is used to keep the queued bios separated by their sources.
52  * Bios are queued to throtl_qnode which in turn is queued to
53  * throtl_service_queue and then dispatched in round-robin order.
54  *
55  * It's also used to track the reference counts on blkg's.  A qnode always
56  * belongs to a throtl_grp and gets queued on itself or the parent, so
57  * incrementing the reference of the associated throtl_grp when a qnode is
58  * queued and decrementing when dequeued is enough to keep the whole blkg
59  * tree pinned while bios are in flight.
60  */
61 struct throtl_qnode {
62         struct list_head        node;           /* service_queue->queued[] */
63         struct bio_list         bios;           /* queued bios */
64         struct throtl_grp       *tg;            /* tg this qnode belongs to */
65 };
66
67 struct throtl_service_queue {
68         struct throtl_service_queue *parent_sq; /* the parent service_queue */
69
70         /*
71          * Bios queued directly to this service_queue or dispatched from
72          * children throtl_grp's.
73          */
74         struct list_head        queued[2];      /* throtl_qnode [READ/WRITE] */
75         unsigned int            nr_queued[2];   /* number of queued bios */
76
77         /*
78          * RB tree of active children throtl_grp's, which are sorted by
79          * their ->disptime.
80          */
81         struct rb_root          pending_tree;   /* RB tree of active tgs */
82         struct rb_node          *first_pending; /* first node in the tree */
83         unsigned int            nr_pending;     /* # queued in the tree */
84         unsigned long           first_pending_disptime; /* disptime of the first tg */
85         struct timer_list       pending_timer;  /* fires on first_pending_disptime */
86 };
87
88 enum tg_state_flags {
89         THROTL_TG_PENDING       = 1 << 0,       /* on parent's pending tree */
90         THROTL_TG_WAS_EMPTY     = 1 << 1,       /* bio_lists[] became non-empty */
91 };
92
93 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
94
95 enum {
96         LIMIT_LOW,
97         LIMIT_MAX,
98         LIMIT_CNT,
99 };
100
101 struct throtl_grp {
102         /* must be the first member */
103         struct blkg_policy_data pd;
104
105         /* active throtl group service_queue member */
106         struct rb_node rb_node;
107
108         /* throtl_data this group belongs to */
109         struct throtl_data *td;
110
111         /* this group's service queue */
112         struct throtl_service_queue service_queue;
113
114         /*
115          * qnode_on_self is used when bios are directly queued to this
116          * throtl_grp so that local bios compete fairly with bios
117          * dispatched from children.  qnode_on_parent is used when bios are
118          * dispatched from this throtl_grp into its parent and will compete
119          * with the sibling qnode_on_parents and the parent's
120          * qnode_on_self.
121          */
122         struct throtl_qnode qnode_on_self[2];
123         struct throtl_qnode qnode_on_parent[2];
124
125         /*
126          * Dispatch time in jiffies. This is the estimated time when group
127          * will unthrottle and is ready to dispatch more bio. It is used as
128          * key to sort active groups in service tree.
129          */
130         unsigned long disptime;
131
132         unsigned int flags;
133
134         /* are there any throtl rules between this group and td? */
135         bool has_rules[2];
136
137         /* internally used bytes per second rate limits */
138         uint64_t bps[2][LIMIT_CNT];
139         /* user configured bps limits */
140         uint64_t bps_conf[2][LIMIT_CNT];
141
142         /* internally used IOPS limits */
143         unsigned int iops[2][LIMIT_CNT];
144         /* user configured IOPS limits */
145         unsigned int iops_conf[2][LIMIT_CNT];
146
147         /* Number of bytes disptached in current slice */
148         uint64_t bytes_disp[2];
149         /* Number of bio's dispatched in current slice */
150         unsigned int io_disp[2];
151
152         unsigned long last_low_overflow_time[2];
153
154         uint64_t last_bytes_disp[2];
155         unsigned int last_io_disp[2];
156
157         unsigned long last_check_time;
158
159         unsigned long latency_target; /* us */
160         unsigned long latency_target_conf; /* us */
161         /* When did we start a new slice */
162         unsigned long slice_start[2];
163         unsigned long slice_end[2];
164
165         unsigned long last_finish_time; /* ns / 1024 */
166         unsigned long checked_last_finish_time; /* ns / 1024 */
167         unsigned long avg_idletime; /* ns / 1024 */
168         unsigned long idletime_threshold; /* us */
169         unsigned long idletime_threshold_conf; /* us */
170
171         unsigned int bio_cnt; /* total bios */
172         unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
173         unsigned long bio_cnt_reset_time;
174 };
175
176 /* We measure latency for request size from <= 4k to >= 1M */
177 #define LATENCY_BUCKET_SIZE 9
178
179 struct latency_bucket {
180         unsigned long total_latency; /* ns / 1024 */
181         int samples;
182 };
183
184 struct avg_latency_bucket {
185         unsigned long latency; /* ns / 1024 */
186         bool valid;
187 };
188
189 struct throtl_data
190 {
191         /* service tree for active throtl groups */
192         struct throtl_service_queue service_queue;
193
194         struct request_queue *queue;
195
196         /* Total Number of queued bios on READ and WRITE lists */
197         unsigned int nr_queued[2];
198
199         unsigned int throtl_slice;
200
201         /* Work for dispatching throttled bios */
202         struct work_struct dispatch_work;
203         unsigned int limit_index;
204         bool limit_valid[LIMIT_CNT];
205
206         unsigned long dft_idletime_threshold; /* us */
207
208         unsigned long low_upgrade_time;
209         unsigned long low_downgrade_time;
210
211         unsigned int scale;
212
213         struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
214         struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
215         struct latency_bucket __percpu *latency_buckets;
216         unsigned long last_calculate_time;
217
218         bool track_bio_latency;
219 };
220
221 static void throtl_pending_timer_fn(unsigned long arg);
222
223 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
224 {
225         return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
226 }
227
228 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
229 {
230         return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
231 }
232
233 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
234 {
235         return pd_to_blkg(&tg->pd);
236 }
237
238 /**
239  * sq_to_tg - return the throl_grp the specified service queue belongs to
240  * @sq: the throtl_service_queue of interest
241  *
242  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
243  * embedded in throtl_data, %NULL is returned.
244  */
245 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
246 {
247         if (sq && sq->parent_sq)
248                 return container_of(sq, struct throtl_grp, service_queue);
249         else
250                 return NULL;
251 }
252
253 /**
254  * sq_to_td - return throtl_data the specified service queue belongs to
255  * @sq: the throtl_service_queue of interest
256  *
257  * A service_queue can be embedded in either a throtl_grp or throtl_data.
258  * Determine the associated throtl_data accordingly and return it.
259  */
260 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
261 {
262         struct throtl_grp *tg = sq_to_tg(sq);
263
264         if (tg)
265                 return tg->td;
266         else
267                 return container_of(sq, struct throtl_data, service_queue);
268 }
269
270 /*
271  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
272  * make the IO dispatch more smooth.
273  * Scale up: linearly scale up according to lapsed time since upgrade. For
274  *           every throtl_slice, the limit scales up 1/2 .low limit till the
275  *           limit hits .max limit
276  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
277  */
278 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
279 {
280         /* arbitrary value to avoid too big scale */
281         if (td->scale < 4096 && time_after_eq(jiffies,
282             td->low_upgrade_time + td->scale * td->throtl_slice))
283                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
284
285         return low + (low >> 1) * td->scale;
286 }
287
288 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
289 {
290         struct blkcg_gq *blkg = tg_to_blkg(tg);
291         struct throtl_data *td;
292         uint64_t ret;
293
294         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
295                 return U64_MAX;
296
297         td = tg->td;
298         ret = tg->bps[rw][td->limit_index];
299         if (ret == 0 && td->limit_index == LIMIT_LOW)
300                 return tg->bps[rw][LIMIT_MAX];
301
302         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
303             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
304                 uint64_t adjusted;
305
306                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
307                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
308         }
309         return ret;
310 }
311
312 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
313 {
314         struct blkcg_gq *blkg = tg_to_blkg(tg);
315         struct throtl_data *td;
316         unsigned int ret;
317
318         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
319                 return UINT_MAX;
320         td = tg->td;
321         ret = tg->iops[rw][td->limit_index];
322         if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
323                 return tg->iops[rw][LIMIT_MAX];
324
325         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
326             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
327                 uint64_t adjusted;
328
329                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
330                 if (adjusted > UINT_MAX)
331                         adjusted = UINT_MAX;
332                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
333         }
334         return ret;
335 }
336
337 #define request_bucket_index(sectors) \
338         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
339
340 /**
341  * throtl_log - log debug message via blktrace
342  * @sq: the service_queue being reported
343  * @fmt: printf format string
344  * @args: printf args
345  *
346  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
347  * throtl_grp; otherwise, just "throtl".
348  */
349 #define throtl_log(sq, fmt, args...)    do {                            \
350         struct throtl_grp *__tg = sq_to_tg((sq));                       \
351         struct throtl_data *__td = sq_to_td((sq));                      \
352                                                                         \
353         (void)__td;                                                     \
354         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
355                 break;                                                  \
356         if ((__tg)) {                                                   \
357                 char __pbuf[128];                                       \
358                                                                         \
359                 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));    \
360                 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
361         } else {                                                        \
362                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
363         }                                                               \
364 } while (0)
365
366 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
367 {
368         INIT_LIST_HEAD(&qn->node);
369         bio_list_init(&qn->bios);
370         qn->tg = tg;
371 }
372
373 /**
374  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
375  * @bio: bio being added
376  * @qn: qnode to add bio to
377  * @queued: the service_queue->queued[] list @qn belongs to
378  *
379  * Add @bio to @qn and put @qn on @queued if it's not already on.
380  * @qn->tg's reference count is bumped when @qn is activated.  See the
381  * comment on top of throtl_qnode definition for details.
382  */
383 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
384                                  struct list_head *queued)
385 {
386         bio_list_add(&qn->bios, bio);
387         if (list_empty(&qn->node)) {
388                 list_add_tail(&qn->node, queued);
389                 blkg_get(tg_to_blkg(qn->tg));
390         }
391 }
392
393 /**
394  * throtl_peek_queued - peek the first bio on a qnode list
395  * @queued: the qnode list to peek
396  */
397 static struct bio *throtl_peek_queued(struct list_head *queued)
398 {
399         struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
400         struct bio *bio;
401
402         if (list_empty(queued))
403                 return NULL;
404
405         bio = bio_list_peek(&qn->bios);
406         WARN_ON_ONCE(!bio);
407         return bio;
408 }
409
410 /**
411  * throtl_pop_queued - pop the first bio form a qnode list
412  * @queued: the qnode list to pop a bio from
413  * @tg_to_put: optional out argument for throtl_grp to put
414  *
415  * Pop the first bio from the qnode list @queued.  After popping, the first
416  * qnode is removed from @queued if empty or moved to the end of @queued so
417  * that the popping order is round-robin.
418  *
419  * When the first qnode is removed, its associated throtl_grp should be put
420  * too.  If @tg_to_put is NULL, this function automatically puts it;
421  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
422  * responsible for putting it.
423  */
424 static struct bio *throtl_pop_queued(struct list_head *queued,
425                                      struct throtl_grp **tg_to_put)
426 {
427         struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
428         struct bio *bio;
429
430         if (list_empty(queued))
431                 return NULL;
432
433         bio = bio_list_pop(&qn->bios);
434         WARN_ON_ONCE(!bio);
435
436         if (bio_list_empty(&qn->bios)) {
437                 list_del_init(&qn->node);
438                 if (tg_to_put)
439                         *tg_to_put = qn->tg;
440                 else
441                         blkg_put(tg_to_blkg(qn->tg));
442         } else {
443                 list_move_tail(&qn->node, queued);
444         }
445
446         return bio;
447 }
448
449 /* init a service_queue, assumes the caller zeroed it */
450 static void throtl_service_queue_init(struct throtl_service_queue *sq)
451 {
452         INIT_LIST_HEAD(&sq->queued[0]);
453         INIT_LIST_HEAD(&sq->queued[1]);
454         sq->pending_tree = RB_ROOT;
455         setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
456                     (unsigned long)sq);
457 }
458
459 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
460 {
461         struct throtl_grp *tg;
462         int rw;
463
464         tg = kzalloc_node(sizeof(*tg), gfp, node);
465         if (!tg)
466                 return NULL;
467
468         throtl_service_queue_init(&tg->service_queue);
469
470         for (rw = READ; rw <= WRITE; rw++) {
471                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
472                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
473         }
474
475         RB_CLEAR_NODE(&tg->rb_node);
476         tg->bps[READ][LIMIT_MAX] = U64_MAX;
477         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
478         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
479         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
480         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
481         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
482         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
483         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
484         /* LIMIT_LOW will have default value 0 */
485
486         tg->latency_target = DFL_LATENCY_TARGET;
487         tg->latency_target_conf = DFL_LATENCY_TARGET;
488
489         return &tg->pd;
490 }
491
492 static void throtl_pd_init(struct blkg_policy_data *pd)
493 {
494         struct throtl_grp *tg = pd_to_tg(pd);
495         struct blkcg_gq *blkg = tg_to_blkg(tg);
496         struct throtl_data *td = blkg->q->td;
497         struct throtl_service_queue *sq = &tg->service_queue;
498
499         /*
500          * If on the default hierarchy, we switch to properly hierarchical
501          * behavior where limits on a given throtl_grp are applied to the
502          * whole subtree rather than just the group itself.  e.g. If 16M
503          * read_bps limit is set on the root group, the whole system can't
504          * exceed 16M for the device.
505          *
506          * If not on the default hierarchy, the broken flat hierarchy
507          * behavior is retained where all throtl_grps are treated as if
508          * they're all separate root groups right below throtl_data.
509          * Limits of a group don't interact with limits of other groups
510          * regardless of the position of the group in the hierarchy.
511          */
512         sq->parent_sq = &td->service_queue;
513         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
514                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
515         tg->td = td;
516
517         tg->idletime_threshold = td->dft_idletime_threshold;
518         tg->idletime_threshold_conf = td->dft_idletime_threshold;
519 }
520
521 /*
522  * Set has_rules[] if @tg or any of its parents have limits configured.
523  * This doesn't require walking up to the top of the hierarchy as the
524  * parent's has_rules[] is guaranteed to be correct.
525  */
526 static void tg_update_has_rules(struct throtl_grp *tg)
527 {
528         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
529         struct throtl_data *td = tg->td;
530         int rw;
531
532         for (rw = READ; rw <= WRITE; rw++)
533                 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
534                         (td->limit_valid[td->limit_index] &&
535                          (tg_bps_limit(tg, rw) != U64_MAX ||
536                           tg_iops_limit(tg, rw) != UINT_MAX));
537 }
538
539 static void throtl_pd_online(struct blkg_policy_data *pd)
540 {
541         struct throtl_grp *tg = pd_to_tg(pd);
542         /*
543          * We don't want new groups to escape the limits of its ancestors.
544          * Update has_rules[] after a new group is brought online.
545          */
546         tg_update_has_rules(tg);
547 }
548
549 static void blk_throtl_update_limit_valid(struct throtl_data *td)
550 {
551         struct cgroup_subsys_state *pos_css;
552         struct blkcg_gq *blkg;
553         bool low_valid = false;
554
555         rcu_read_lock();
556         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
557                 struct throtl_grp *tg = blkg_to_tg(blkg);
558
559                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
560                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
561                         low_valid = true;
562         }
563         rcu_read_unlock();
564
565         td->limit_valid[LIMIT_LOW] = low_valid;
566 }
567
568 static void throtl_upgrade_state(struct throtl_data *td);
569 static void throtl_pd_offline(struct blkg_policy_data *pd)
570 {
571         struct throtl_grp *tg = pd_to_tg(pd);
572
573         tg->bps[READ][LIMIT_LOW] = 0;
574         tg->bps[WRITE][LIMIT_LOW] = 0;
575         tg->iops[READ][LIMIT_LOW] = 0;
576         tg->iops[WRITE][LIMIT_LOW] = 0;
577
578         blk_throtl_update_limit_valid(tg->td);
579
580         if (!tg->td->limit_valid[tg->td->limit_index])
581                 throtl_upgrade_state(tg->td);
582 }
583
584 static void throtl_pd_free(struct blkg_policy_data *pd)
585 {
586         struct throtl_grp *tg = pd_to_tg(pd);
587
588         del_timer_sync(&tg->service_queue.pending_timer);
589         kfree(tg);
590 }
591
592 static struct throtl_grp *
593 throtl_rb_first(struct throtl_service_queue *parent_sq)
594 {
595         /* Service tree is empty */
596         if (!parent_sq->nr_pending)
597                 return NULL;
598
599         if (!parent_sq->first_pending)
600                 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
601
602         if (parent_sq->first_pending)
603                 return rb_entry_tg(parent_sq->first_pending);
604
605         return NULL;
606 }
607
608 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
609 {
610         rb_erase(n, root);
611         RB_CLEAR_NODE(n);
612 }
613
614 static void throtl_rb_erase(struct rb_node *n,
615                             struct throtl_service_queue *parent_sq)
616 {
617         if (parent_sq->first_pending == n)
618                 parent_sq->first_pending = NULL;
619         rb_erase_init(n, &parent_sq->pending_tree);
620         --parent_sq->nr_pending;
621 }
622
623 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
624 {
625         struct throtl_grp *tg;
626
627         tg = throtl_rb_first(parent_sq);
628         if (!tg)
629                 return;
630
631         parent_sq->first_pending_disptime = tg->disptime;
632 }
633
634 static void tg_service_queue_add(struct throtl_grp *tg)
635 {
636         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
637         struct rb_node **node = &parent_sq->pending_tree.rb_node;
638         struct rb_node *parent = NULL;
639         struct throtl_grp *__tg;
640         unsigned long key = tg->disptime;
641         int left = 1;
642
643         while (*node != NULL) {
644                 parent = *node;
645                 __tg = rb_entry_tg(parent);
646
647                 if (time_before(key, __tg->disptime))
648                         node = &parent->rb_left;
649                 else {
650                         node = &parent->rb_right;
651                         left = 0;
652                 }
653         }
654
655         if (left)
656                 parent_sq->first_pending = &tg->rb_node;
657
658         rb_link_node(&tg->rb_node, parent, node);
659         rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
660 }
661
662 static void __throtl_enqueue_tg(struct throtl_grp *tg)
663 {
664         tg_service_queue_add(tg);
665         tg->flags |= THROTL_TG_PENDING;
666         tg->service_queue.parent_sq->nr_pending++;
667 }
668
669 static void throtl_enqueue_tg(struct throtl_grp *tg)
670 {
671         if (!(tg->flags & THROTL_TG_PENDING))
672                 __throtl_enqueue_tg(tg);
673 }
674
675 static void __throtl_dequeue_tg(struct throtl_grp *tg)
676 {
677         throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
678         tg->flags &= ~THROTL_TG_PENDING;
679 }
680
681 static void throtl_dequeue_tg(struct throtl_grp *tg)
682 {
683         if (tg->flags & THROTL_TG_PENDING)
684                 __throtl_dequeue_tg(tg);
685 }
686
687 /* Call with queue lock held */
688 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
689                                           unsigned long expires)
690 {
691         unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
692
693         /*
694          * Since we are adjusting the throttle limit dynamically, the sleep
695          * time calculated according to previous limit might be invalid. It's
696          * possible the cgroup sleep time is very long and no other cgroups
697          * have IO running so notify the limit changes. Make sure the cgroup
698          * doesn't sleep too long to avoid the missed notification.
699          */
700         if (time_after(expires, max_expire))
701                 expires = max_expire;
702         mod_timer(&sq->pending_timer, expires);
703         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
704                    expires - jiffies, jiffies);
705 }
706
707 /**
708  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
709  * @sq: the service_queue to schedule dispatch for
710  * @force: force scheduling
711  *
712  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
713  * dispatch time of the first pending child.  Returns %true if either timer
714  * is armed or there's no pending child left.  %false if the current
715  * dispatch window is still open and the caller should continue
716  * dispatching.
717  *
718  * If @force is %true, the dispatch timer is always scheduled and this
719  * function is guaranteed to return %true.  This is to be used when the
720  * caller can't dispatch itself and needs to invoke pending_timer
721  * unconditionally.  Note that forced scheduling is likely to induce short
722  * delay before dispatch starts even if @sq->first_pending_disptime is not
723  * in the future and thus shouldn't be used in hot paths.
724  */
725 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
726                                           bool force)
727 {
728         /* any pending children left? */
729         if (!sq->nr_pending)
730                 return true;
731
732         update_min_dispatch_time(sq);
733
734         /* is the next dispatch time in the future? */
735         if (force || time_after(sq->first_pending_disptime, jiffies)) {
736                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
737                 return true;
738         }
739
740         /* tell the caller to continue dispatching */
741         return false;
742 }
743
744 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
745                 bool rw, unsigned long start)
746 {
747         tg->bytes_disp[rw] = 0;
748         tg->io_disp[rw] = 0;
749
750         /*
751          * Previous slice has expired. We must have trimmed it after last
752          * bio dispatch. That means since start of last slice, we never used
753          * that bandwidth. Do try to make use of that bandwidth while giving
754          * credit.
755          */
756         if (time_after_eq(start, tg->slice_start[rw]))
757                 tg->slice_start[rw] = start;
758
759         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
760         throtl_log(&tg->service_queue,
761                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
762                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
763                    tg->slice_end[rw], jiffies);
764 }
765
766 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
767 {
768         tg->bytes_disp[rw] = 0;
769         tg->io_disp[rw] = 0;
770         tg->slice_start[rw] = jiffies;
771         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
772         throtl_log(&tg->service_queue,
773                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
774                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
775                    tg->slice_end[rw], jiffies);
776 }
777
778 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
779                                         unsigned long jiffy_end)
780 {
781         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
782 }
783
784 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
785                                        unsigned long jiffy_end)
786 {
787         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
788         throtl_log(&tg->service_queue,
789                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
790                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
791                    tg->slice_end[rw], jiffies);
792 }
793
794 /* Determine if previously allocated or extended slice is complete or not */
795 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
796 {
797         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
798                 return false;
799
800         return 1;
801 }
802
803 /* Trim the used slices and adjust slice start accordingly */
804 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
805 {
806         unsigned long nr_slices, time_elapsed, io_trim;
807         u64 bytes_trim, tmp;
808
809         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
810
811         /*
812          * If bps are unlimited (-1), then time slice don't get
813          * renewed. Don't try to trim the slice if slice is used. A new
814          * slice will start when appropriate.
815          */
816         if (throtl_slice_used(tg, rw))
817                 return;
818
819         /*
820          * A bio has been dispatched. Also adjust slice_end. It might happen
821          * that initially cgroup limit was very low resulting in high
822          * slice_end, but later limit was bumped up and bio was dispached
823          * sooner, then we need to reduce slice_end. A high bogus slice_end
824          * is bad because it does not allow new slice to start.
825          */
826
827         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
828
829         time_elapsed = jiffies - tg->slice_start[rw];
830
831         nr_slices = time_elapsed / tg->td->throtl_slice;
832
833         if (!nr_slices)
834                 return;
835         tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
836         do_div(tmp, HZ);
837         bytes_trim = tmp;
838
839         io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
840                 HZ;
841
842         if (!bytes_trim && !io_trim)
843                 return;
844
845         if (tg->bytes_disp[rw] >= bytes_trim)
846                 tg->bytes_disp[rw] -= bytes_trim;
847         else
848                 tg->bytes_disp[rw] = 0;
849
850         if (tg->io_disp[rw] >= io_trim)
851                 tg->io_disp[rw] -= io_trim;
852         else
853                 tg->io_disp[rw] = 0;
854
855         tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
856
857         throtl_log(&tg->service_queue,
858                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
859                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
860                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
861 }
862
863 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
864                                   unsigned long *wait)
865 {
866         bool rw = bio_data_dir(bio);
867         unsigned int io_allowed;
868         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
869         u64 tmp;
870
871         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
872
873         /* Slice has just started. Consider one slice interval */
874         if (!jiffy_elapsed)
875                 jiffy_elapsed_rnd = tg->td->throtl_slice;
876
877         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
878
879         /*
880          * jiffy_elapsed_rnd should not be a big value as minimum iops can be
881          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
882          * will allow dispatch after 1 second and after that slice should
883          * have been trimmed.
884          */
885
886         tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
887         do_div(tmp, HZ);
888
889         if (tmp > UINT_MAX)
890                 io_allowed = UINT_MAX;
891         else
892                 io_allowed = tmp;
893
894         if (tg->io_disp[rw] + 1 <= io_allowed) {
895                 if (wait)
896                         *wait = 0;
897                 return true;
898         }
899
900         /* Calc approx time to dispatch */
901         jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
902
903         if (jiffy_wait > jiffy_elapsed)
904                 jiffy_wait = jiffy_wait - jiffy_elapsed;
905         else
906                 jiffy_wait = 1;
907
908         if (wait)
909                 *wait = jiffy_wait;
910         return 0;
911 }
912
913 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
914                                  unsigned long *wait)
915 {
916         bool rw = bio_data_dir(bio);
917         u64 bytes_allowed, extra_bytes, tmp;
918         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
919
920         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
921
922         /* Slice has just started. Consider one slice interval */
923         if (!jiffy_elapsed)
924                 jiffy_elapsed_rnd = tg->td->throtl_slice;
925
926         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
927
928         tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
929         do_div(tmp, HZ);
930         bytes_allowed = tmp;
931
932         if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
933                 if (wait)
934                         *wait = 0;
935                 return true;
936         }
937
938         /* Calc approx time to dispatch */
939         extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
940         jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
941
942         if (!jiffy_wait)
943                 jiffy_wait = 1;
944
945         /*
946          * This wait time is without taking into consideration the rounding
947          * up we did. Add that time also.
948          */
949         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
950         if (wait)
951                 *wait = jiffy_wait;
952         return 0;
953 }
954
955 /*
956  * Returns whether one can dispatch a bio or not. Also returns approx number
957  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
958  */
959 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
960                             unsigned long *wait)
961 {
962         bool rw = bio_data_dir(bio);
963         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
964
965         /*
966          * Currently whole state machine of group depends on first bio
967          * queued in the group bio list. So one should not be calling
968          * this function with a different bio if there are other bios
969          * queued.
970          */
971         BUG_ON(tg->service_queue.nr_queued[rw] &&
972                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
973
974         /* If tg->bps = -1, then BW is unlimited */
975         if (tg_bps_limit(tg, rw) == U64_MAX &&
976             tg_iops_limit(tg, rw) == UINT_MAX) {
977                 if (wait)
978                         *wait = 0;
979                 return true;
980         }
981
982         /*
983          * If previous slice expired, start a new one otherwise renew/extend
984          * existing slice to make sure it is at least throtl_slice interval
985          * long since now. New slice is started only for empty throttle group.
986          * If there is queued bio, that means there should be an active
987          * slice and it should be extended instead.
988          */
989         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
990                 throtl_start_new_slice(tg, rw);
991         else {
992                 if (time_before(tg->slice_end[rw],
993                     jiffies + tg->td->throtl_slice))
994                         throtl_extend_slice(tg, rw,
995                                 jiffies + tg->td->throtl_slice);
996         }
997
998         if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
999             tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1000                 if (wait)
1001                         *wait = 0;
1002                 return 1;
1003         }
1004
1005         max_wait = max(bps_wait, iops_wait);
1006
1007         if (wait)
1008                 *wait = max_wait;
1009
1010         if (time_before(tg->slice_end[rw], jiffies + max_wait))
1011                 throtl_extend_slice(tg, rw, jiffies + max_wait);
1012
1013         return 0;
1014 }
1015
1016 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1017 {
1018         bool rw = bio_data_dir(bio);
1019
1020         /* Charge the bio to the group */
1021         tg->bytes_disp[rw] += bio->bi_iter.bi_size;
1022         tg->io_disp[rw]++;
1023         tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
1024         tg->last_io_disp[rw]++;
1025
1026         /*
1027          * BIO_THROTTLED is used to prevent the same bio to be throttled
1028          * more than once as a throttled bio will go through blk-throtl the
1029          * second time when it eventually gets issued.  Set it when a bio
1030          * is being charged to a tg.
1031          */
1032         if (!bio_flagged(bio, BIO_THROTTLED))
1033                 bio_set_flag(bio, BIO_THROTTLED);
1034 }
1035
1036 /**
1037  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1038  * @bio: bio to add
1039  * @qn: qnode to use
1040  * @tg: the target throtl_grp
1041  *
1042  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1043  * tg->qnode_on_self[] is used.
1044  */
1045 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1046                               struct throtl_grp *tg)
1047 {
1048         struct throtl_service_queue *sq = &tg->service_queue;
1049         bool rw = bio_data_dir(bio);
1050
1051         if (!qn)
1052                 qn = &tg->qnode_on_self[rw];
1053
1054         /*
1055          * If @tg doesn't currently have any bios queued in the same
1056          * direction, queueing @bio can change when @tg should be
1057          * dispatched.  Mark that @tg was empty.  This is automatically
1058          * cleaered on the next tg_update_disptime().
1059          */
1060         if (!sq->nr_queued[rw])
1061                 tg->flags |= THROTL_TG_WAS_EMPTY;
1062
1063         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1064
1065         sq->nr_queued[rw]++;
1066         throtl_enqueue_tg(tg);
1067 }
1068
1069 static void tg_update_disptime(struct throtl_grp *tg)
1070 {
1071         struct throtl_service_queue *sq = &tg->service_queue;
1072         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1073         struct bio *bio;
1074
1075         bio = throtl_peek_queued(&sq->queued[READ]);
1076         if (bio)
1077                 tg_may_dispatch(tg, bio, &read_wait);
1078
1079         bio = throtl_peek_queued(&sq->queued[WRITE]);
1080         if (bio)
1081                 tg_may_dispatch(tg, bio, &write_wait);
1082
1083         min_wait = min(read_wait, write_wait);
1084         disptime = jiffies + min_wait;
1085
1086         /* Update dispatch time */
1087         throtl_dequeue_tg(tg);
1088         tg->disptime = disptime;
1089         throtl_enqueue_tg(tg);
1090
1091         /* see throtl_add_bio_tg() */
1092         tg->flags &= ~THROTL_TG_WAS_EMPTY;
1093 }
1094
1095 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1096                                         struct throtl_grp *parent_tg, bool rw)
1097 {
1098         if (throtl_slice_used(parent_tg, rw)) {
1099                 throtl_start_new_slice_with_credit(parent_tg, rw,
1100                                 child_tg->slice_start[rw]);
1101         }
1102
1103 }
1104
1105 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1106 {
1107         struct throtl_service_queue *sq = &tg->service_queue;
1108         struct throtl_service_queue *parent_sq = sq->parent_sq;
1109         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1110         struct throtl_grp *tg_to_put = NULL;
1111         struct bio *bio;
1112
1113         /*
1114          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1115          * from @tg may put its reference and @parent_sq might end up
1116          * getting released prematurely.  Remember the tg to put and put it
1117          * after @bio is transferred to @parent_sq.
1118          */
1119         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1120         sq->nr_queued[rw]--;
1121
1122         throtl_charge_bio(tg, bio);
1123
1124         /*
1125          * If our parent is another tg, we just need to transfer @bio to
1126          * the parent using throtl_add_bio_tg().  If our parent is
1127          * @td->service_queue, @bio is ready to be issued.  Put it on its
1128          * bio_lists[] and decrease total number queued.  The caller is
1129          * responsible for issuing these bios.
1130          */
1131         if (parent_tg) {
1132                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1133                 start_parent_slice_with_credit(tg, parent_tg, rw);
1134         } else {
1135                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1136                                      &parent_sq->queued[rw]);
1137                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1138                 tg->td->nr_queued[rw]--;
1139         }
1140
1141         throtl_trim_slice(tg, rw);
1142
1143         if (tg_to_put)
1144                 blkg_put(tg_to_blkg(tg_to_put));
1145 }
1146
1147 static int throtl_dispatch_tg(struct throtl_grp *tg)
1148 {
1149         struct throtl_service_queue *sq = &tg->service_queue;
1150         unsigned int nr_reads = 0, nr_writes = 0;
1151         unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1152         unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1153         struct bio *bio;
1154
1155         /* Try to dispatch 75% READS and 25% WRITES */
1156
1157         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1158                tg_may_dispatch(tg, bio, NULL)) {
1159
1160                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1161                 nr_reads++;
1162
1163                 if (nr_reads >= max_nr_reads)
1164                         break;
1165         }
1166
1167         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1168                tg_may_dispatch(tg, bio, NULL)) {
1169
1170                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1171                 nr_writes++;
1172
1173                 if (nr_writes >= max_nr_writes)
1174                         break;
1175         }
1176
1177         return nr_reads + nr_writes;
1178 }
1179
1180 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1181 {
1182         unsigned int nr_disp = 0;
1183
1184         while (1) {
1185                 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1186                 struct throtl_service_queue *sq = &tg->service_queue;
1187
1188                 if (!tg)
1189                         break;
1190
1191                 if (time_before(jiffies, tg->disptime))
1192                         break;
1193
1194                 throtl_dequeue_tg(tg);
1195
1196                 nr_disp += throtl_dispatch_tg(tg);
1197
1198                 if (sq->nr_queued[0] || sq->nr_queued[1])
1199                         tg_update_disptime(tg);
1200
1201                 if (nr_disp >= throtl_quantum)
1202                         break;
1203         }
1204
1205         return nr_disp;
1206 }
1207
1208 static bool throtl_can_upgrade(struct throtl_data *td,
1209         struct throtl_grp *this_tg);
1210 /**
1211  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1212  * @arg: the throtl_service_queue being serviced
1213  *
1214  * This timer is armed when a child throtl_grp with active bio's become
1215  * pending and queued on the service_queue's pending_tree and expires when
1216  * the first child throtl_grp should be dispatched.  This function
1217  * dispatches bio's from the children throtl_grps to the parent
1218  * service_queue.
1219  *
1220  * If the parent's parent is another throtl_grp, dispatching is propagated
1221  * by either arming its pending_timer or repeating dispatch directly.  If
1222  * the top-level service_tree is reached, throtl_data->dispatch_work is
1223  * kicked so that the ready bio's are issued.
1224  */
1225 static void throtl_pending_timer_fn(unsigned long arg)
1226 {
1227         struct throtl_service_queue *sq = (void *)arg;
1228         struct throtl_grp *tg = sq_to_tg(sq);
1229         struct throtl_data *td = sq_to_td(sq);
1230         struct request_queue *q = td->queue;
1231         struct throtl_service_queue *parent_sq;
1232         bool dispatched;
1233         int ret;
1234
1235         spin_lock_irq(q->queue_lock);
1236         if (throtl_can_upgrade(td, NULL))
1237                 throtl_upgrade_state(td);
1238
1239 again:
1240         parent_sq = sq->parent_sq;
1241         dispatched = false;
1242
1243         while (true) {
1244                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1245                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1246                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1247
1248                 ret = throtl_select_dispatch(sq);
1249                 if (ret) {
1250                         throtl_log(sq, "bios disp=%u", ret);
1251                         dispatched = true;
1252                 }
1253
1254                 if (throtl_schedule_next_dispatch(sq, false))
1255                         break;
1256
1257                 /* this dispatch windows is still open, relax and repeat */
1258                 spin_unlock_irq(q->queue_lock);
1259                 cpu_relax();
1260                 spin_lock_irq(q->queue_lock);
1261         }
1262
1263         if (!dispatched)
1264                 goto out_unlock;
1265
1266         if (parent_sq) {
1267                 /* @parent_sq is another throl_grp, propagate dispatch */
1268                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1269                         tg_update_disptime(tg);
1270                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1271                                 /* window is already open, repeat dispatching */
1272                                 sq = parent_sq;
1273                                 tg = sq_to_tg(sq);
1274                                 goto again;
1275                         }
1276                 }
1277         } else {
1278                 /* reached the top-level, queue issueing */
1279                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1280         }
1281 out_unlock:
1282         spin_unlock_irq(q->queue_lock);
1283 }
1284
1285 /**
1286  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1287  * @work: work item being executed
1288  *
1289  * This function is queued for execution when bio's reach the bio_lists[]
1290  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1291  * function.
1292  */
1293 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1294 {
1295         struct throtl_data *td = container_of(work, struct throtl_data,
1296                                               dispatch_work);
1297         struct throtl_service_queue *td_sq = &td->service_queue;
1298         struct request_queue *q = td->queue;
1299         struct bio_list bio_list_on_stack;
1300         struct bio *bio;
1301         struct blk_plug plug;
1302         int rw;
1303
1304         bio_list_init(&bio_list_on_stack);
1305
1306         spin_lock_irq(q->queue_lock);
1307         for (rw = READ; rw <= WRITE; rw++)
1308                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1309                         bio_list_add(&bio_list_on_stack, bio);
1310         spin_unlock_irq(q->queue_lock);
1311
1312         if (!bio_list_empty(&bio_list_on_stack)) {
1313                 blk_start_plug(&plug);
1314                 while((bio = bio_list_pop(&bio_list_on_stack)))
1315                         generic_make_request(bio);
1316                 blk_finish_plug(&plug);
1317         }
1318 }
1319
1320 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1321                               int off)
1322 {
1323         struct throtl_grp *tg = pd_to_tg(pd);
1324         u64 v = *(u64 *)((void *)tg + off);
1325
1326         if (v == U64_MAX)
1327                 return 0;
1328         return __blkg_prfill_u64(sf, pd, v);
1329 }
1330
1331 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1332                                int off)
1333 {
1334         struct throtl_grp *tg = pd_to_tg(pd);
1335         unsigned int v = *(unsigned int *)((void *)tg + off);
1336
1337         if (v == UINT_MAX)
1338                 return 0;
1339         return __blkg_prfill_u64(sf, pd, v);
1340 }
1341
1342 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1343 {
1344         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1345                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1346         return 0;
1347 }
1348
1349 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1350 {
1351         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1352                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1353         return 0;
1354 }
1355
1356 static void tg_conf_updated(struct throtl_grp *tg)
1357 {
1358         struct throtl_service_queue *sq = &tg->service_queue;
1359         struct cgroup_subsys_state *pos_css;
1360         struct blkcg_gq *blkg;
1361
1362         throtl_log(&tg->service_queue,
1363                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1364                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1365                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1366
1367         /*
1368          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1369          * considered to have rules if either the tg itself or any of its
1370          * ancestors has rules.  This identifies groups without any
1371          * restrictions in the whole hierarchy and allows them to bypass
1372          * blk-throttle.
1373          */
1374         blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg)) {
1375                 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1376                 struct throtl_grp *parent_tg;
1377
1378                 tg_update_has_rules(this_tg);
1379                 /* ignore root/second level */
1380                 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1381                     !blkg->parent->parent)
1382                         continue;
1383                 parent_tg = blkg_to_tg(blkg->parent);
1384                 /*
1385                  * make sure all children has lower idle time threshold and
1386                  * higher latency target
1387                  */
1388                 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1389                                 parent_tg->idletime_threshold);
1390                 this_tg->latency_target = max(this_tg->latency_target,
1391                                 parent_tg->latency_target);
1392         }
1393
1394         /*
1395          * We're already holding queue_lock and know @tg is valid.  Let's
1396          * apply the new config directly.
1397          *
1398          * Restart the slices for both READ and WRITES. It might happen
1399          * that a group's limit are dropped suddenly and we don't want to
1400          * account recently dispatched IO with new low rate.
1401          */
1402         throtl_start_new_slice(tg, 0);
1403         throtl_start_new_slice(tg, 1);
1404
1405         if (tg->flags & THROTL_TG_PENDING) {
1406                 tg_update_disptime(tg);
1407                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1408         }
1409 }
1410
1411 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1412                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1413 {
1414         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1415         struct blkg_conf_ctx ctx;
1416         struct throtl_grp *tg;
1417         int ret;
1418         u64 v;
1419
1420         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1421         if (ret)
1422                 return ret;
1423
1424         ret = -EINVAL;
1425         if (sscanf(ctx.body, "%llu", &v) != 1)
1426                 goto out_finish;
1427         if (!v)
1428                 v = U64_MAX;
1429
1430         tg = blkg_to_tg(ctx.blkg);
1431
1432         if (is_u64)
1433                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1434         else
1435                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1436
1437         tg_conf_updated(tg);
1438         ret = 0;
1439 out_finish:
1440         blkg_conf_finish(&ctx);
1441         return ret ?: nbytes;
1442 }
1443
1444 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1445                                char *buf, size_t nbytes, loff_t off)
1446 {
1447         return tg_set_conf(of, buf, nbytes, off, true);
1448 }
1449
1450 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1451                                 char *buf, size_t nbytes, loff_t off)
1452 {
1453         return tg_set_conf(of, buf, nbytes, off, false);
1454 }
1455
1456 static struct cftype throtl_legacy_files[] = {
1457         {
1458                 .name = "throttle.read_bps_device",
1459                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1460                 .seq_show = tg_print_conf_u64,
1461                 .write = tg_set_conf_u64,
1462         },
1463         {
1464                 .name = "throttle.write_bps_device",
1465                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1466                 .seq_show = tg_print_conf_u64,
1467                 .write = tg_set_conf_u64,
1468         },
1469         {
1470                 .name = "throttle.read_iops_device",
1471                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1472                 .seq_show = tg_print_conf_uint,
1473                 .write = tg_set_conf_uint,
1474         },
1475         {
1476                 .name = "throttle.write_iops_device",
1477                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1478                 .seq_show = tg_print_conf_uint,
1479                 .write = tg_set_conf_uint,
1480         },
1481         {
1482                 .name = "throttle.io_service_bytes",
1483                 .private = (unsigned long)&blkcg_policy_throtl,
1484                 .seq_show = blkg_print_stat_bytes,
1485         },
1486         {
1487                 .name = "throttle.io_serviced",
1488                 .private = (unsigned long)&blkcg_policy_throtl,
1489                 .seq_show = blkg_print_stat_ios,
1490         },
1491         { }     /* terminate */
1492 };
1493
1494 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1495                          int off)
1496 {
1497         struct throtl_grp *tg = pd_to_tg(pd);
1498         const char *dname = blkg_dev_name(pd->blkg);
1499         char bufs[4][21] = { "max", "max", "max", "max" };
1500         u64 bps_dft;
1501         unsigned int iops_dft;
1502         char idle_time[26] = "";
1503         char latency_time[26] = "";
1504
1505         if (!dname)
1506                 return 0;
1507
1508         if (off == LIMIT_LOW) {
1509                 bps_dft = 0;
1510                 iops_dft = 0;
1511         } else {
1512                 bps_dft = U64_MAX;
1513                 iops_dft = UINT_MAX;
1514         }
1515
1516         if (tg->bps_conf[READ][off] == bps_dft &&
1517             tg->bps_conf[WRITE][off] == bps_dft &&
1518             tg->iops_conf[READ][off] == iops_dft &&
1519             tg->iops_conf[WRITE][off] == iops_dft &&
1520             (off != LIMIT_LOW ||
1521              (tg->idletime_threshold_conf == tg->td->dft_idletime_threshold &&
1522               tg->latency_target_conf == DFL_LATENCY_TARGET)))
1523                 return 0;
1524
1525         if (tg->bps_conf[READ][off] != bps_dft)
1526                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1527                         tg->bps_conf[READ][off]);
1528         if (tg->bps_conf[WRITE][off] != bps_dft)
1529                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1530                         tg->bps_conf[WRITE][off]);
1531         if (tg->iops_conf[READ][off] != iops_dft)
1532                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1533                         tg->iops_conf[READ][off]);
1534         if (tg->iops_conf[WRITE][off] != iops_dft)
1535                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1536                         tg->iops_conf[WRITE][off]);
1537         if (off == LIMIT_LOW) {
1538                 if (tg->idletime_threshold_conf == ULONG_MAX)
1539                         strcpy(idle_time, " idle=max");
1540                 else
1541                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1542                                 tg->idletime_threshold_conf);
1543
1544                 if (tg->latency_target_conf == ULONG_MAX)
1545                         strcpy(latency_time, " latency=max");
1546                 else
1547                         snprintf(latency_time, sizeof(latency_time),
1548                                 " latency=%lu", tg->latency_target_conf);
1549         }
1550
1551         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1552                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1553                    latency_time);
1554         return 0;
1555 }
1556
1557 static int tg_print_limit(struct seq_file *sf, void *v)
1558 {
1559         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1560                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1561         return 0;
1562 }
1563
1564 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1565                           char *buf, size_t nbytes, loff_t off)
1566 {
1567         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1568         struct blkg_conf_ctx ctx;
1569         struct throtl_grp *tg;
1570         u64 v[4];
1571         unsigned long idle_time;
1572         unsigned long latency_time;
1573         int ret;
1574         int index = of_cft(of)->private;
1575
1576         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1577         if (ret)
1578                 return ret;
1579
1580         tg = blkg_to_tg(ctx.blkg);
1581
1582         v[0] = tg->bps_conf[READ][index];
1583         v[1] = tg->bps_conf[WRITE][index];
1584         v[2] = tg->iops_conf[READ][index];
1585         v[3] = tg->iops_conf[WRITE][index];
1586
1587         idle_time = tg->idletime_threshold_conf;
1588         latency_time = tg->latency_target_conf;
1589         while (true) {
1590                 char tok[27];   /* wiops=18446744073709551616 */
1591                 char *p;
1592                 u64 val = U64_MAX;
1593                 int len;
1594
1595                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1596                         break;
1597                 if (tok[0] == '\0')
1598                         break;
1599                 ctx.body += len;
1600
1601                 ret = -EINVAL;
1602                 p = tok;
1603                 strsep(&p, "=");
1604                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1605                         goto out_finish;
1606
1607                 ret = -ERANGE;
1608                 if (!val)
1609                         goto out_finish;
1610
1611                 ret = -EINVAL;
1612                 if (!strcmp(tok, "rbps"))
1613                         v[0] = val;
1614                 else if (!strcmp(tok, "wbps"))
1615                         v[1] = val;
1616                 else if (!strcmp(tok, "riops"))
1617                         v[2] = min_t(u64, val, UINT_MAX);
1618                 else if (!strcmp(tok, "wiops"))
1619                         v[3] = min_t(u64, val, UINT_MAX);
1620                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1621                         idle_time = val;
1622                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1623                         latency_time = val;
1624                 else
1625                         goto out_finish;
1626         }
1627
1628         tg->bps_conf[READ][index] = v[0];
1629         tg->bps_conf[WRITE][index] = v[1];
1630         tg->iops_conf[READ][index] = v[2];
1631         tg->iops_conf[WRITE][index] = v[3];
1632
1633         if (index == LIMIT_MAX) {
1634                 tg->bps[READ][index] = v[0];
1635                 tg->bps[WRITE][index] = v[1];
1636                 tg->iops[READ][index] = v[2];
1637                 tg->iops[WRITE][index] = v[3];
1638         }
1639         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1640                 tg->bps_conf[READ][LIMIT_MAX]);
1641         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1642                 tg->bps_conf[WRITE][LIMIT_MAX]);
1643         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1644                 tg->iops_conf[READ][LIMIT_MAX]);
1645         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1646                 tg->iops_conf[WRITE][LIMIT_MAX]);
1647
1648         if (index == LIMIT_LOW) {
1649                 blk_throtl_update_limit_valid(tg->td);
1650                 if (tg->td->limit_valid[LIMIT_LOW])
1651                         tg->td->limit_index = LIMIT_LOW;
1652                 tg->idletime_threshold_conf = idle_time;
1653                 tg->idletime_threshold = tg->idletime_threshold_conf;
1654                 tg->latency_target_conf = latency_time;
1655                 tg->latency_target = tg->latency_target_conf;
1656         }
1657         tg_conf_updated(tg);
1658         ret = 0;
1659 out_finish:
1660         blkg_conf_finish(&ctx);
1661         return ret ?: nbytes;
1662 }
1663
1664 static struct cftype throtl_files[] = {
1665 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1666         {
1667                 .name = "low",
1668                 .flags = CFTYPE_NOT_ON_ROOT,
1669                 .seq_show = tg_print_limit,
1670                 .write = tg_set_limit,
1671                 .private = LIMIT_LOW,
1672         },
1673 #endif
1674         {
1675                 .name = "max",
1676                 .flags = CFTYPE_NOT_ON_ROOT,
1677                 .seq_show = tg_print_limit,
1678                 .write = tg_set_limit,
1679                 .private = LIMIT_MAX,
1680         },
1681         { }     /* terminate */
1682 };
1683
1684 static void throtl_shutdown_wq(struct request_queue *q)
1685 {
1686         struct throtl_data *td = q->td;
1687
1688         cancel_work_sync(&td->dispatch_work);
1689 }
1690
1691 static struct blkcg_policy blkcg_policy_throtl = {
1692         .dfl_cftypes            = throtl_files,
1693         .legacy_cftypes         = throtl_legacy_files,
1694
1695         .pd_alloc_fn            = throtl_pd_alloc,
1696         .pd_init_fn             = throtl_pd_init,
1697         .pd_online_fn           = throtl_pd_online,
1698         .pd_offline_fn          = throtl_pd_offline,
1699         .pd_free_fn             = throtl_pd_free,
1700 };
1701
1702 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1703 {
1704         unsigned long rtime = jiffies, wtime = jiffies;
1705
1706         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1707                 rtime = tg->last_low_overflow_time[READ];
1708         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1709                 wtime = tg->last_low_overflow_time[WRITE];
1710         return min(rtime, wtime);
1711 }
1712
1713 /* tg should not be an intermediate node */
1714 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1715 {
1716         struct throtl_service_queue *parent_sq;
1717         struct throtl_grp *parent = tg;
1718         unsigned long ret = __tg_last_low_overflow_time(tg);
1719
1720         while (true) {
1721                 parent_sq = parent->service_queue.parent_sq;
1722                 parent = sq_to_tg(parent_sq);
1723                 if (!parent)
1724                         break;
1725
1726                 /*
1727                  * The parent doesn't have low limit, it always reaches low
1728                  * limit. Its overflow time is useless for children
1729                  */
1730                 if (!parent->bps[READ][LIMIT_LOW] &&
1731                     !parent->iops[READ][LIMIT_LOW] &&
1732                     !parent->bps[WRITE][LIMIT_LOW] &&
1733                     !parent->iops[WRITE][LIMIT_LOW])
1734                         continue;
1735                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1736                         ret = __tg_last_low_overflow_time(parent);
1737         }
1738         return ret;
1739 }
1740
1741 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1742 {
1743         /*
1744          * cgroup is idle if:
1745          * - single idle is too long, longer than a fixed value (in case user
1746          *   configure a too big threshold) or 4 times of slice
1747          * - average think time is more than threshold
1748          * - IO latency is largely below threshold
1749          */
1750         unsigned long time = jiffies_to_usecs(4 * tg->td->throtl_slice);
1751         bool ret;
1752
1753         time = min_t(unsigned long, MAX_IDLE_TIME, time);
1754         ret = (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1755                tg->avg_idletime > tg->idletime_threshold ||
1756                (tg->latency_target && tg->bio_cnt &&
1757                 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1758         throtl_log(&tg->service_queue,
1759                 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1760                 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1761                 tg->bio_cnt, ret, tg->td->scale);
1762         return ret;
1763 }
1764
1765 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1766 {
1767         struct throtl_service_queue *sq = &tg->service_queue;
1768         bool read_limit, write_limit;
1769
1770         /*
1771          * if cgroup reaches low limit (if low limit is 0, the cgroup always
1772          * reaches), it's ok to upgrade to next limit
1773          */
1774         read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1775         write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1776         if (!read_limit && !write_limit)
1777                 return true;
1778         if (read_limit && sq->nr_queued[READ] &&
1779             (!write_limit || sq->nr_queued[WRITE]))
1780                 return true;
1781         if (write_limit && sq->nr_queued[WRITE] &&
1782             (!read_limit || sq->nr_queued[READ]))
1783                 return true;
1784
1785         if (time_after_eq(jiffies,
1786                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1787             throtl_tg_is_idle(tg))
1788                 return true;
1789         return false;
1790 }
1791
1792 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1793 {
1794         while (true) {
1795                 if (throtl_tg_can_upgrade(tg))
1796                         return true;
1797                 tg = sq_to_tg(tg->service_queue.parent_sq);
1798                 if (!tg || !tg_to_blkg(tg)->parent)
1799                         return false;
1800         }
1801         return false;
1802 }
1803
1804 static bool throtl_can_upgrade(struct throtl_data *td,
1805         struct throtl_grp *this_tg)
1806 {
1807         struct cgroup_subsys_state *pos_css;
1808         struct blkcg_gq *blkg;
1809
1810         if (td->limit_index != LIMIT_LOW)
1811                 return false;
1812
1813         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1814                 return false;
1815
1816         rcu_read_lock();
1817         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1818                 struct throtl_grp *tg = blkg_to_tg(blkg);
1819
1820                 if (tg == this_tg)
1821                         continue;
1822                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1823                         continue;
1824                 if (!throtl_hierarchy_can_upgrade(tg)) {
1825                         rcu_read_unlock();
1826                         return false;
1827                 }
1828         }
1829         rcu_read_unlock();
1830         return true;
1831 }
1832
1833 static void throtl_upgrade_check(struct throtl_grp *tg)
1834 {
1835         unsigned long now = jiffies;
1836
1837         if (tg->td->limit_index != LIMIT_LOW)
1838                 return;
1839
1840         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1841                 return;
1842
1843         tg->last_check_time = now;
1844
1845         if (!time_after_eq(now,
1846              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1847                 return;
1848
1849         if (throtl_can_upgrade(tg->td, NULL))
1850                 throtl_upgrade_state(tg->td);
1851 }
1852
1853 static void throtl_upgrade_state(struct throtl_data *td)
1854 {
1855         struct cgroup_subsys_state *pos_css;
1856         struct blkcg_gq *blkg;
1857
1858         throtl_log(&td->service_queue, "upgrade to max");
1859         td->limit_index = LIMIT_MAX;
1860         td->low_upgrade_time = jiffies;
1861         td->scale = 0;
1862         rcu_read_lock();
1863         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1864                 struct throtl_grp *tg = blkg_to_tg(blkg);
1865                 struct throtl_service_queue *sq = &tg->service_queue;
1866
1867                 tg->disptime = jiffies - 1;
1868                 throtl_select_dispatch(sq);
1869                 throtl_schedule_next_dispatch(sq, false);
1870         }
1871         rcu_read_unlock();
1872         throtl_select_dispatch(&td->service_queue);
1873         throtl_schedule_next_dispatch(&td->service_queue, false);
1874         queue_work(kthrotld_workqueue, &td->dispatch_work);
1875 }
1876
1877 static void throtl_downgrade_state(struct throtl_data *td, int new)
1878 {
1879         td->scale /= 2;
1880
1881         throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1882         if (td->scale) {
1883                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1884                 return;
1885         }
1886
1887         td->limit_index = new;
1888         td->low_downgrade_time = jiffies;
1889 }
1890
1891 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1892 {
1893         struct throtl_data *td = tg->td;
1894         unsigned long now = jiffies;
1895
1896         /*
1897          * If cgroup is below low limit, consider downgrade and throttle other
1898          * cgroups
1899          */
1900         if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1901             time_after_eq(now, tg_last_low_overflow_time(tg) +
1902                                         td->throtl_slice) &&
1903             (!throtl_tg_is_idle(tg) ||
1904              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1905                 return true;
1906         return false;
1907 }
1908
1909 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1910 {
1911         while (true) {
1912                 if (!throtl_tg_can_downgrade(tg))
1913                         return false;
1914                 tg = sq_to_tg(tg->service_queue.parent_sq);
1915                 if (!tg || !tg_to_blkg(tg)->parent)
1916                         break;
1917         }
1918         return true;
1919 }
1920
1921 static void throtl_downgrade_check(struct throtl_grp *tg)
1922 {
1923         uint64_t bps;
1924         unsigned int iops;
1925         unsigned long elapsed_time;
1926         unsigned long now = jiffies;
1927
1928         if (tg->td->limit_index != LIMIT_MAX ||
1929             !tg->td->limit_valid[LIMIT_LOW])
1930                 return;
1931         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1932                 return;
1933         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1934                 return;
1935
1936         elapsed_time = now - tg->last_check_time;
1937         tg->last_check_time = now;
1938
1939         if (time_before(now, tg_last_low_overflow_time(tg) +
1940                         tg->td->throtl_slice))
1941                 return;
1942
1943         if (tg->bps[READ][LIMIT_LOW]) {
1944                 bps = tg->last_bytes_disp[READ] * HZ;
1945                 do_div(bps, elapsed_time);
1946                 if (bps >= tg->bps[READ][LIMIT_LOW])
1947                         tg->last_low_overflow_time[READ] = now;
1948         }
1949
1950         if (tg->bps[WRITE][LIMIT_LOW]) {
1951                 bps = tg->last_bytes_disp[WRITE] * HZ;
1952                 do_div(bps, elapsed_time);
1953                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1954                         tg->last_low_overflow_time[WRITE] = now;
1955         }
1956
1957         if (tg->iops[READ][LIMIT_LOW]) {
1958                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1959                 if (iops >= tg->iops[READ][LIMIT_LOW])
1960                         tg->last_low_overflow_time[READ] = now;
1961         }
1962
1963         if (tg->iops[WRITE][LIMIT_LOW]) {
1964                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1965                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1966                         tg->last_low_overflow_time[WRITE] = now;
1967         }
1968
1969         /*
1970          * If cgroup is below low limit, consider downgrade and throttle other
1971          * cgroups
1972          */
1973         if (throtl_hierarchy_can_downgrade(tg))
1974                 throtl_downgrade_state(tg->td, LIMIT_LOW);
1975
1976         tg->last_bytes_disp[READ] = 0;
1977         tg->last_bytes_disp[WRITE] = 0;
1978         tg->last_io_disp[READ] = 0;
1979         tg->last_io_disp[WRITE] = 0;
1980 }
1981
1982 static void blk_throtl_update_idletime(struct throtl_grp *tg)
1983 {
1984         unsigned long now = ktime_get_ns() >> 10;
1985         unsigned long last_finish_time = tg->last_finish_time;
1986
1987         if (now <= last_finish_time || last_finish_time == 0 ||
1988             last_finish_time == tg->checked_last_finish_time)
1989                 return;
1990
1991         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1992         tg->checked_last_finish_time = last_finish_time;
1993 }
1994
1995 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1996 static void throtl_update_latency_buckets(struct throtl_data *td)
1997 {
1998         struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
1999         int i, cpu;
2000         unsigned long last_latency = 0;
2001         unsigned long latency;
2002
2003         if (!blk_queue_nonrot(td->queue))
2004                 return;
2005         if (time_before(jiffies, td->last_calculate_time + HZ))
2006                 return;
2007         td->last_calculate_time = jiffies;
2008
2009         memset(avg_latency, 0, sizeof(avg_latency));
2010         for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2011                 struct latency_bucket *tmp = &td->tmp_buckets[i];
2012
2013                 for_each_possible_cpu(cpu) {
2014                         struct latency_bucket *bucket;
2015
2016                         /* this isn't race free, but ok in practice */
2017                         bucket = per_cpu_ptr(td->latency_buckets, cpu);
2018                         tmp->total_latency += bucket[i].total_latency;
2019                         tmp->samples += bucket[i].samples;
2020                         bucket[i].total_latency = 0;
2021                         bucket[i].samples = 0;
2022                 }
2023
2024                 if (tmp->samples >= 32) {
2025                         int samples = tmp->samples;
2026
2027                         latency = tmp->total_latency;
2028
2029                         tmp->total_latency = 0;
2030                         tmp->samples = 0;
2031                         latency /= samples;
2032                         if (latency == 0)
2033                                 continue;
2034                         avg_latency[i].latency = latency;
2035                 }
2036         }
2037
2038         for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2039                 if (!avg_latency[i].latency) {
2040                         if (td->avg_buckets[i].latency < last_latency)
2041                                 td->avg_buckets[i].latency = last_latency;
2042                         continue;
2043                 }
2044
2045                 if (!td->avg_buckets[i].valid)
2046                         latency = avg_latency[i].latency;
2047                 else
2048                         latency = (td->avg_buckets[i].latency * 7 +
2049                                 avg_latency[i].latency) >> 3;
2050
2051                 td->avg_buckets[i].latency = max(latency, last_latency);
2052                 td->avg_buckets[i].valid = true;
2053                 last_latency = td->avg_buckets[i].latency;
2054         }
2055
2056         for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2057                 throtl_log(&td->service_queue,
2058                         "Latency bucket %d: latency=%ld, valid=%d", i,
2059                         td->avg_buckets[i].latency, td->avg_buckets[i].valid);
2060 }
2061 #else
2062 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2063 {
2064 }
2065 #endif
2066
2067 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2068 {
2069 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2070         int ret;
2071
2072         ret = bio_associate_current(bio);
2073         if (ret == 0 || ret == -EBUSY)
2074                 bio->bi_cg_private = tg;
2075         blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2076 #else
2077         bio_associate_current(bio);
2078 #endif
2079 }
2080
2081 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2082                     struct bio *bio)
2083 {
2084         struct throtl_qnode *qn = NULL;
2085         struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2086         struct throtl_service_queue *sq;
2087         bool rw = bio_data_dir(bio);
2088         bool throttled = false;
2089         struct throtl_data *td = tg->td;
2090
2091         WARN_ON_ONCE(!rcu_read_lock_held());
2092
2093         /* see throtl_charge_bio() */
2094         if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2095                 goto out;
2096
2097         spin_lock_irq(q->queue_lock);
2098
2099         throtl_update_latency_buckets(td);
2100
2101         if (unlikely(blk_queue_bypass(q)))
2102                 goto out_unlock;
2103
2104         blk_throtl_assoc_bio(tg, bio);
2105         blk_throtl_update_idletime(tg);
2106
2107         sq = &tg->service_queue;
2108
2109 again:
2110         while (true) {
2111                 if (tg->last_low_overflow_time[rw] == 0)
2112                         tg->last_low_overflow_time[rw] = jiffies;
2113                 throtl_downgrade_check(tg);
2114                 throtl_upgrade_check(tg);
2115                 /* throtl is FIFO - if bios are already queued, should queue */
2116                 if (sq->nr_queued[rw])
2117                         break;
2118
2119                 /* if above limits, break to queue */
2120                 if (!tg_may_dispatch(tg, bio, NULL)) {
2121                         tg->last_low_overflow_time[rw] = jiffies;
2122                         if (throtl_can_upgrade(td, tg)) {
2123                                 throtl_upgrade_state(td);
2124                                 goto again;
2125                         }
2126                         break;
2127                 }
2128
2129                 /* within limits, let's charge and dispatch directly */
2130                 throtl_charge_bio(tg, bio);
2131
2132                 /*
2133                  * We need to trim slice even when bios are not being queued
2134                  * otherwise it might happen that a bio is not queued for
2135                  * a long time and slice keeps on extending and trim is not
2136                  * called for a long time. Now if limits are reduced suddenly
2137                  * we take into account all the IO dispatched so far at new
2138                  * low rate and * newly queued IO gets a really long dispatch
2139                  * time.
2140                  *
2141                  * So keep on trimming slice even if bio is not queued.
2142                  */
2143                 throtl_trim_slice(tg, rw);
2144
2145                 /*
2146                  * @bio passed through this layer without being throttled.
2147                  * Climb up the ladder.  If we''re already at the top, it
2148                  * can be executed directly.
2149                  */
2150                 qn = &tg->qnode_on_parent[rw];
2151                 sq = sq->parent_sq;
2152                 tg = sq_to_tg(sq);
2153                 if (!tg)
2154                         goto out_unlock;
2155         }
2156
2157         /* out-of-limit, queue to @tg */
2158         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2159                    rw == READ ? 'R' : 'W',
2160                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2161                    tg_bps_limit(tg, rw),
2162                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2163                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2164
2165         tg->last_low_overflow_time[rw] = jiffies;
2166
2167         td->nr_queued[rw]++;
2168         throtl_add_bio_tg(bio, qn, tg);
2169         throttled = true;
2170
2171         /*
2172          * Update @tg's dispatch time and force schedule dispatch if @tg
2173          * was empty before @bio.  The forced scheduling isn't likely to
2174          * cause undue delay as @bio is likely to be dispatched directly if
2175          * its @tg's disptime is not in the future.
2176          */
2177         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2178                 tg_update_disptime(tg);
2179                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2180         }
2181
2182 out_unlock:
2183         spin_unlock_irq(q->queue_lock);
2184 out:
2185         /*
2186          * As multiple blk-throtls may stack in the same issue path, we
2187          * don't want bios to leave with the flag set.  Clear the flag if
2188          * being issued.
2189          */
2190         if (!throttled)
2191                 bio_clear_flag(bio, BIO_THROTTLED);
2192
2193 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2194         if (throttled || !td->track_bio_latency)
2195                 bio->bi_issue_stat.stat |= SKIP_LATENCY;
2196 #endif
2197         return throttled;
2198 }
2199
2200 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2201 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2202         int op, unsigned long time)
2203 {
2204         struct latency_bucket *latency;
2205         int index;
2206
2207         if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
2208             !blk_queue_nonrot(td->queue))
2209                 return;
2210
2211         index = request_bucket_index(size);
2212
2213         latency = get_cpu_ptr(td->latency_buckets);
2214         latency[index].total_latency += time;
2215         latency[index].samples++;
2216         put_cpu_ptr(td->latency_buckets);
2217 }
2218
2219 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2220 {
2221         struct request_queue *q = rq->q;
2222         struct throtl_data *td = q->td;
2223
2224         throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2225                 req_op(rq), time_ns >> 10);
2226 }
2227
2228 void blk_throtl_bio_endio(struct bio *bio)
2229 {
2230         struct throtl_grp *tg;
2231         u64 finish_time_ns;
2232         unsigned long finish_time;
2233         unsigned long start_time;
2234         unsigned long lat;
2235
2236         tg = bio->bi_cg_private;
2237         if (!tg)
2238                 return;
2239         bio->bi_cg_private = NULL;
2240
2241         finish_time_ns = ktime_get_ns();
2242         tg->last_finish_time = finish_time_ns >> 10;
2243
2244         start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2245         finish_time = __blk_stat_time(finish_time_ns) >> 10;
2246         if (!start_time || finish_time <= start_time)
2247                 return;
2248
2249         lat = finish_time - start_time;
2250         /* this is only for bio based driver */
2251         if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2252                 throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2253                         bio_op(bio), lat);
2254
2255         if (tg->latency_target) {
2256                 int bucket;
2257                 unsigned int threshold;
2258
2259                 bucket = request_bucket_index(
2260                         blk_stat_size(&bio->bi_issue_stat));
2261                 threshold = tg->td->avg_buckets[bucket].latency +
2262                         tg->latency_target;
2263                 if (lat > threshold)
2264                         tg->bad_bio_cnt++;
2265                 /*
2266                  * Not race free, could get wrong count, which means cgroups
2267                  * will be throttled
2268                  */
2269                 tg->bio_cnt++;
2270         }
2271
2272         if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2273                 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2274                 tg->bio_cnt /= 2;
2275                 tg->bad_bio_cnt /= 2;
2276         }
2277 }
2278 #endif
2279
2280 /*
2281  * Dispatch all bios from all children tg's queued on @parent_sq.  On
2282  * return, @parent_sq is guaranteed to not have any active children tg's
2283  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2284  */
2285 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2286 {
2287         struct throtl_grp *tg;
2288
2289         while ((tg = throtl_rb_first(parent_sq))) {
2290                 struct throtl_service_queue *sq = &tg->service_queue;
2291                 struct bio *bio;
2292
2293                 throtl_dequeue_tg(tg);
2294
2295                 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2296                         tg_dispatch_one_bio(tg, bio_data_dir(bio));
2297                 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2298                         tg_dispatch_one_bio(tg, bio_data_dir(bio));
2299         }
2300 }
2301
2302 /**
2303  * blk_throtl_drain - drain throttled bios
2304  * @q: request_queue to drain throttled bios for
2305  *
2306  * Dispatch all currently throttled bios on @q through ->make_request_fn().
2307  */
2308 void blk_throtl_drain(struct request_queue *q)
2309         __releases(q->queue_lock) __acquires(q->queue_lock)
2310 {
2311         struct throtl_data *td = q->td;
2312         struct blkcg_gq *blkg;
2313         struct cgroup_subsys_state *pos_css;
2314         struct bio *bio;
2315         int rw;
2316
2317         queue_lockdep_assert_held(q);
2318         rcu_read_lock();
2319
2320         /*
2321          * Drain each tg while doing post-order walk on the blkg tree, so
2322          * that all bios are propagated to td->service_queue.  It'd be
2323          * better to walk service_queue tree directly but blkg walk is
2324          * easier.
2325          */
2326         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2327                 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2328
2329         /* finally, transfer bios from top-level tg's into the td */
2330         tg_drain_bios(&td->service_queue);
2331
2332         rcu_read_unlock();
2333         spin_unlock_irq(q->queue_lock);
2334
2335         /* all bios now should be in td->service_queue, issue them */
2336         for (rw = READ; rw <= WRITE; rw++)
2337                 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2338                                                 NULL)))
2339                         generic_make_request(bio);
2340
2341         spin_lock_irq(q->queue_lock);
2342 }
2343
2344 int blk_throtl_init(struct request_queue *q)
2345 {
2346         struct throtl_data *td;
2347         int ret;
2348
2349         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2350         if (!td)
2351                 return -ENOMEM;
2352         td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
2353                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2354         if (!td->latency_buckets) {
2355                 kfree(td);
2356                 return -ENOMEM;
2357         }
2358
2359         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2360         throtl_service_queue_init(&td->service_queue);
2361
2362         q->td = td;
2363         td->queue = q;
2364
2365         td->limit_valid[LIMIT_MAX] = true;
2366         td->limit_index = LIMIT_MAX;
2367         td->low_upgrade_time = jiffies;
2368         td->low_downgrade_time = jiffies;
2369
2370         /* activate policy */
2371         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2372         if (ret) {
2373                 free_percpu(td->latency_buckets);
2374                 kfree(td);
2375         }
2376         return ret;
2377 }
2378
2379 void blk_throtl_exit(struct request_queue *q)
2380 {
2381         BUG_ON(!q->td);
2382         throtl_shutdown_wq(q);
2383         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2384         free_percpu(q->td->latency_buckets);
2385         kfree(q->td);
2386 }
2387
2388 void blk_throtl_register_queue(struct request_queue *q)
2389 {
2390         struct throtl_data *td;
2391         struct cgroup_subsys_state *pos_css;
2392         struct blkcg_gq *blkg;
2393
2394         td = q->td;
2395         BUG_ON(!td);
2396
2397         if (blk_queue_nonrot(q)) {
2398                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2399                 td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_SSD;
2400         } else {
2401                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2402                 td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_HD;
2403         }
2404 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2405         /* if no low limit, use previous default */
2406         td->throtl_slice = DFL_THROTL_SLICE_HD;
2407 #endif
2408
2409         td->track_bio_latency = !q->mq_ops && !q->request_fn;
2410         if (!td->track_bio_latency)
2411                 blk_stat_enable_accounting(q);
2412
2413         /*
2414          * some tg are created before queue is fully initialized, eg, nonrot
2415          * isn't initialized yet
2416          */
2417         rcu_read_lock();
2418         blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
2419                 struct throtl_grp *tg = blkg_to_tg(blkg);
2420
2421                 tg->idletime_threshold = td->dft_idletime_threshold;
2422                 tg->idletime_threshold_conf = td->dft_idletime_threshold;
2423         }
2424         rcu_read_unlock();
2425 }
2426
2427 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2428 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2429 {
2430         if (!q->td)
2431                 return -EINVAL;
2432         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2433 }
2434
2435 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2436         const char *page, size_t count)
2437 {
2438         unsigned long v;
2439         unsigned long t;
2440
2441         if (!q->td)
2442                 return -EINVAL;
2443         if (kstrtoul(page, 10, &v))
2444                 return -EINVAL;
2445         t = msecs_to_jiffies(v);
2446         if (t == 0 || t > MAX_THROTL_SLICE)
2447                 return -EINVAL;
2448         q->td->throtl_slice = t;
2449         return count;
2450 }
2451 #endif
2452
2453 static int __init throtl_init(void)
2454 {
2455         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2456         if (!kthrotld_workqueue)
2457                 panic("Failed to create kthrotld\n");
2458
2459         return blkcg_policy_register(&blkcg_policy_throtl);
2460 }
2461
2462 module_init(throtl_init);