]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/cfq-iosched.c
blkcg: let blkcg core handle policy private data allocation
[karo-tx-linux.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "cfq.h"
19
20 static struct blkio_policy_type blkio_policy_cfq;
21
22 /*
23  * tunables
24  */
25 /* max queue in one round of service */
26 static const int cfq_quantum = 8;
27 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max = 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty = 2;
32 static const int cfq_slice_sync = HZ / 10;
33 static int cfq_slice_async = HZ / 25;
34 static const int cfq_slice_async_rq = 2;
35 static int cfq_slice_idle = HZ / 125;
36 static int cfq_group_idle = HZ / 125;
37 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
38 static const int cfq_hist_divisor = 4;
39
40 /*
41  * offset from end of service tree
42  */
43 #define CFQ_IDLE_DELAY          (HZ / 5)
44
45 /*
46  * below this threshold, we consider thinktime immediate
47  */
48 #define CFQ_MIN_TT              (2)
49
50 #define CFQ_SLICE_SCALE         (5)
51 #define CFQ_HW_QUEUE_MIN        (5)
52 #define CFQ_SERVICE_SHIFT       12
53
54 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
55 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
56 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
57 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
58
59 #define RQ_CIC(rq)              icq_to_cic((rq)->elv.icq)
60 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elv.priv[0])
61 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elv.priv[1])
62
63 static struct kmem_cache *cfq_pool;
64
65 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples)   ((samples) > 80)
70 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
71
72 struct cfq_ttime {
73         unsigned long last_end_request;
74
75         unsigned long ttime_total;
76         unsigned long ttime_samples;
77         unsigned long ttime_mean;
78 };
79
80 /*
81  * Most of our rbtree usage is for sorting with min extraction, so
82  * if we cache the leftmost node we don't have to walk down the tree
83  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
84  * move this into the elevator for the rq sorting as well.
85  */
86 struct cfq_rb_root {
87         struct rb_root rb;
88         struct rb_node *left;
89         unsigned count;
90         unsigned total_weight;
91         u64 min_vdisktime;
92         struct cfq_ttime ttime;
93 };
94 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, \
95                         .ttime = {.last_end_request = jiffies,},}
96
97 /*
98  * Per process-grouping structure
99  */
100 struct cfq_queue {
101         /* reference count */
102         int ref;
103         /* various state flags, see below */
104         unsigned int flags;
105         /* parent cfq_data */
106         struct cfq_data *cfqd;
107         /* service_tree member */
108         struct rb_node rb_node;
109         /* service_tree key */
110         unsigned long rb_key;
111         /* prio tree member */
112         struct rb_node p_node;
113         /* prio tree root we belong to, if any */
114         struct rb_root *p_root;
115         /* sorted list of pending requests */
116         struct rb_root sort_list;
117         /* if fifo isn't expired, next request to serve */
118         struct request *next_rq;
119         /* requests queued in sort_list */
120         int queued[2];
121         /* currently allocated requests */
122         int allocated[2];
123         /* fifo list of requests in sort_list */
124         struct list_head fifo;
125
126         /* time when queue got scheduled in to dispatch first request. */
127         unsigned long dispatch_start;
128         unsigned int allocated_slice;
129         unsigned int slice_dispatch;
130         /* time when first request from queue completed and slice started. */
131         unsigned long slice_start;
132         unsigned long slice_end;
133         long slice_resid;
134
135         /* pending priority requests */
136         int prio_pending;
137         /* number of requests that are on the dispatch list or inside driver */
138         int dispatched;
139
140         /* io prio of this group */
141         unsigned short ioprio, org_ioprio;
142         unsigned short ioprio_class;
143
144         pid_t pid;
145
146         u32 seek_history;
147         sector_t last_request_pos;
148
149         struct cfq_rb_root *service_tree;
150         struct cfq_queue *new_cfqq;
151         struct cfq_group *cfqg;
152         /* Number of sectors dispatched from queue in single dispatch round */
153         unsigned long nr_sectors;
154 };
155
156 /*
157  * First index in the service_trees.
158  * IDLE is handled separately, so it has negative index
159  */
160 enum wl_prio_t {
161         BE_WORKLOAD = 0,
162         RT_WORKLOAD = 1,
163         IDLE_WORKLOAD = 2,
164         CFQ_PRIO_NR,
165 };
166
167 /*
168  * Second index in the service_trees.
169  */
170 enum wl_type_t {
171         ASYNC_WORKLOAD = 0,
172         SYNC_NOIDLE_WORKLOAD = 1,
173         SYNC_WORKLOAD = 2
174 };
175
176 /* This is per cgroup per device grouping structure */
177 struct cfq_group {
178         /* group service_tree member */
179         struct rb_node rb_node;
180
181         /* group service_tree key */
182         u64 vdisktime;
183         unsigned int weight;
184         unsigned int new_weight;
185         bool needs_update;
186
187         /* number of cfqq currently on this group */
188         int nr_cfqq;
189
190         /*
191          * Per group busy queues average. Useful for workload slice calc. We
192          * create the array for each prio class but at run time it is used
193          * only for RT and BE class and slot for IDLE class remains unused.
194          * This is primarily done to avoid confusion and a gcc warning.
195          */
196         unsigned int busy_queues_avg[CFQ_PRIO_NR];
197         /*
198          * rr lists of queues with requests. We maintain service trees for
199          * RT and BE classes. These trees are subdivided in subclasses
200          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
201          * class there is no subclassification and all the cfq queues go on
202          * a single tree service_tree_idle.
203          * Counts are embedded in the cfq_rb_root
204          */
205         struct cfq_rb_root service_trees[2][3];
206         struct cfq_rb_root service_tree_idle;
207
208         unsigned long saved_workload_slice;
209         enum wl_type_t saved_workload;
210         enum wl_prio_t saved_serving_prio;
211 #ifdef CONFIG_CFQ_GROUP_IOSCHED
212         struct hlist_node cfqd_node;
213         int ref;
214 #endif
215         /* number of requests that are on the dispatch list or inside driver */
216         int dispatched;
217         struct cfq_ttime ttime;
218 };
219
220 struct cfq_io_cq {
221         struct io_cq            icq;            /* must be the first member */
222         struct cfq_queue        *cfqq[2];
223         struct cfq_ttime        ttime;
224 };
225
226 /*
227  * Per block device queue structure
228  */
229 struct cfq_data {
230         struct request_queue *queue;
231         /* Root service tree for cfq_groups */
232         struct cfq_rb_root grp_service_tree;
233         struct cfq_group *root_group;
234
235         /*
236          * The priority currently being served
237          */
238         enum wl_prio_t serving_prio;
239         enum wl_type_t serving_type;
240         unsigned long workload_expires;
241         struct cfq_group *serving_group;
242
243         /*
244          * Each priority tree is sorted by next_request position.  These
245          * trees are used when determining if two or more queues are
246          * interleaving requests (see cfq_close_cooperator).
247          */
248         struct rb_root prio_trees[CFQ_PRIO_LISTS];
249
250         unsigned int busy_queues;
251         unsigned int busy_sync_queues;
252
253         int rq_in_driver;
254         int rq_in_flight[2];
255
256         /*
257          * queue-depth detection
258          */
259         int rq_queued;
260         int hw_tag;
261         /*
262          * hw_tag can be
263          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
264          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
265          *  0 => no NCQ
266          */
267         int hw_tag_est_depth;
268         unsigned int hw_tag_samples;
269
270         /*
271          * idle window management
272          */
273         struct timer_list idle_slice_timer;
274         struct work_struct unplug_work;
275
276         struct cfq_queue *active_queue;
277         struct cfq_io_cq *active_cic;
278
279         /*
280          * async queue for each priority case
281          */
282         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
283         struct cfq_queue *async_idle_cfqq;
284
285         sector_t last_position;
286
287         /*
288          * tunables, see top of file
289          */
290         unsigned int cfq_quantum;
291         unsigned int cfq_fifo_expire[2];
292         unsigned int cfq_back_penalty;
293         unsigned int cfq_back_max;
294         unsigned int cfq_slice[2];
295         unsigned int cfq_slice_async_rq;
296         unsigned int cfq_slice_idle;
297         unsigned int cfq_group_idle;
298         unsigned int cfq_latency;
299
300         /*
301          * Fallback dummy cfqq for extreme OOM conditions
302          */
303         struct cfq_queue oom_cfqq;
304
305         unsigned long last_delayed_sync;
306
307         /* List of cfq groups being managed on this device*/
308         struct hlist_head cfqg_list;
309
310         /* Number of groups which are on blkcg->blkg_list */
311         unsigned int nr_blkcg_linked_grps;
312 };
313
314 static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
315 {
316         return blkg_to_pdata(blkg, &blkio_policy_cfq);
317 }
318
319 static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
320 {
321         return pdata_to_blkg(cfqg, &blkio_policy_cfq);
322 }
323
324 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
325
326 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
327                                             enum wl_prio_t prio,
328                                             enum wl_type_t type)
329 {
330         if (!cfqg)
331                 return NULL;
332
333         if (prio == IDLE_WORKLOAD)
334                 return &cfqg->service_tree_idle;
335
336         return &cfqg->service_trees[prio][type];
337 }
338
339 enum cfqq_state_flags {
340         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
341         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
342         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
343         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
344         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
345         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
346         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
347         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
348         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
349         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
350         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
351         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
352         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
353 };
354
355 #define CFQ_CFQQ_FNS(name)                                              \
356 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
357 {                                                                       \
358         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
359 }                                                                       \
360 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
361 {                                                                       \
362         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
363 }                                                                       \
364 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
365 {                                                                       \
366         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
367 }
368
369 CFQ_CFQQ_FNS(on_rr);
370 CFQ_CFQQ_FNS(wait_request);
371 CFQ_CFQQ_FNS(must_dispatch);
372 CFQ_CFQQ_FNS(must_alloc_slice);
373 CFQ_CFQQ_FNS(fifo_expire);
374 CFQ_CFQQ_FNS(idle_window);
375 CFQ_CFQQ_FNS(prio_changed);
376 CFQ_CFQQ_FNS(slice_new);
377 CFQ_CFQQ_FNS(sync);
378 CFQ_CFQQ_FNS(coop);
379 CFQ_CFQQ_FNS(split_coop);
380 CFQ_CFQQ_FNS(deep);
381 CFQ_CFQQ_FNS(wait_busy);
382 #undef CFQ_CFQQ_FNS
383
384 #ifdef CONFIG_CFQ_GROUP_IOSCHED
385 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
386         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
387                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
388                         blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
389
390 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
391         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
392                         blkg_path(cfqg_to_blkg((cfqg))), ##args)        \
393
394 #else
395 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
396         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
397 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0)
398 #endif
399 #define cfq_log(cfqd, fmt, args...)     \
400         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
401
402 /* Traverses through cfq group service trees */
403 #define for_each_cfqg_st(cfqg, i, j, st) \
404         for (i = 0; i <= IDLE_WORKLOAD; i++) \
405                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
406                         : &cfqg->service_tree_idle; \
407                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
408                         (i == IDLE_WORKLOAD && j == 0); \
409                         j++, st = i < IDLE_WORKLOAD ? \
410                         &cfqg->service_trees[i][j]: NULL) \
411
412 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
413         struct cfq_ttime *ttime, bool group_idle)
414 {
415         unsigned long slice;
416         if (!sample_valid(ttime->ttime_samples))
417                 return false;
418         if (group_idle)
419                 slice = cfqd->cfq_group_idle;
420         else
421                 slice = cfqd->cfq_slice_idle;
422         return ttime->ttime_mean > slice;
423 }
424
425 static inline bool iops_mode(struct cfq_data *cfqd)
426 {
427         /*
428          * If we are not idling on queues and it is a NCQ drive, parallel
429          * execution of requests is on and measuring time is not possible
430          * in most of the cases until and unless we drive shallower queue
431          * depths and that becomes a performance bottleneck. In such cases
432          * switch to start providing fairness in terms of number of IOs.
433          */
434         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
435                 return true;
436         else
437                 return false;
438 }
439
440 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
441 {
442         if (cfq_class_idle(cfqq))
443                 return IDLE_WORKLOAD;
444         if (cfq_class_rt(cfqq))
445                 return RT_WORKLOAD;
446         return BE_WORKLOAD;
447 }
448
449
450 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
451 {
452         if (!cfq_cfqq_sync(cfqq))
453                 return ASYNC_WORKLOAD;
454         if (!cfq_cfqq_idle_window(cfqq))
455                 return SYNC_NOIDLE_WORKLOAD;
456         return SYNC_WORKLOAD;
457 }
458
459 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
460                                         struct cfq_data *cfqd,
461                                         struct cfq_group *cfqg)
462 {
463         if (wl == IDLE_WORKLOAD)
464                 return cfqg->service_tree_idle.count;
465
466         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
467                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
468                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
469 }
470
471 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
472                                         struct cfq_group *cfqg)
473 {
474         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
475                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
476 }
477
478 static void cfq_dispatch_insert(struct request_queue *, struct request *);
479 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
480                                        struct io_context *, gfp_t);
481
482 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
483 {
484         /* cic->icq is the first member, %NULL will convert to %NULL */
485         return container_of(icq, struct cfq_io_cq, icq);
486 }
487
488 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
489                                                struct io_context *ioc)
490 {
491         if (ioc)
492                 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
493         return NULL;
494 }
495
496 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
497 {
498         return cic->cfqq[is_sync];
499 }
500
501 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
502                                 bool is_sync)
503 {
504         cic->cfqq[is_sync] = cfqq;
505 }
506
507 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
508 {
509         return cic->icq.q->elevator->elevator_data;
510 }
511
512 /*
513  * We regard a request as SYNC, if it's either a read or has the SYNC bit
514  * set (in which case it could also be direct WRITE).
515  */
516 static inline bool cfq_bio_sync(struct bio *bio)
517 {
518         return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
519 }
520
521 /*
522  * scheduler run of queue, if there are requests pending and no one in the
523  * driver that will restart queueing
524  */
525 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
526 {
527         if (cfqd->busy_queues) {
528                 cfq_log(cfqd, "schedule dispatch");
529                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
530         }
531 }
532
533 /*
534  * Scale schedule slice based on io priority. Use the sync time slice only
535  * if a queue is marked sync and has sync io queued. A sync queue with async
536  * io only, should not get full sync slice length.
537  */
538 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
539                                  unsigned short prio)
540 {
541         const int base_slice = cfqd->cfq_slice[sync];
542
543         WARN_ON(prio >= IOPRIO_BE_NR);
544
545         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
546 }
547
548 static inline int
549 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
550 {
551         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
552 }
553
554 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
555 {
556         u64 d = delta << CFQ_SERVICE_SHIFT;
557
558         d = d * BLKIO_WEIGHT_DEFAULT;
559         do_div(d, cfqg->weight);
560         return d;
561 }
562
563 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
564 {
565         s64 delta = (s64)(vdisktime - min_vdisktime);
566         if (delta > 0)
567                 min_vdisktime = vdisktime;
568
569         return min_vdisktime;
570 }
571
572 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
573 {
574         s64 delta = (s64)(vdisktime - min_vdisktime);
575         if (delta < 0)
576                 min_vdisktime = vdisktime;
577
578         return min_vdisktime;
579 }
580
581 static void update_min_vdisktime(struct cfq_rb_root *st)
582 {
583         struct cfq_group *cfqg;
584
585         if (st->left) {
586                 cfqg = rb_entry_cfqg(st->left);
587                 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
588                                                   cfqg->vdisktime);
589         }
590 }
591
592 /*
593  * get averaged number of queues of RT/BE priority.
594  * average is updated, with a formula that gives more weight to higher numbers,
595  * to quickly follows sudden increases and decrease slowly
596  */
597
598 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
599                                         struct cfq_group *cfqg, bool rt)
600 {
601         unsigned min_q, max_q;
602         unsigned mult  = cfq_hist_divisor - 1;
603         unsigned round = cfq_hist_divisor / 2;
604         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
605
606         min_q = min(cfqg->busy_queues_avg[rt], busy);
607         max_q = max(cfqg->busy_queues_avg[rt], busy);
608         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
609                 cfq_hist_divisor;
610         return cfqg->busy_queues_avg[rt];
611 }
612
613 static inline unsigned
614 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
615 {
616         struct cfq_rb_root *st = &cfqd->grp_service_tree;
617
618         return cfq_target_latency * cfqg->weight / st->total_weight;
619 }
620
621 static inline unsigned
622 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
623 {
624         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
625         if (cfqd->cfq_latency) {
626                 /*
627                  * interested queues (we consider only the ones with the same
628                  * priority class in the cfq group)
629                  */
630                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
631                                                 cfq_class_rt(cfqq));
632                 unsigned sync_slice = cfqd->cfq_slice[1];
633                 unsigned expect_latency = sync_slice * iq;
634                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
635
636                 if (expect_latency > group_slice) {
637                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
638                         /* scale low_slice according to IO priority
639                          * and sync vs async */
640                         unsigned low_slice =
641                                 min(slice, base_low_slice * slice / sync_slice);
642                         /* the adapted slice value is scaled to fit all iqs
643                          * into the target latency */
644                         slice = max(slice * group_slice / expect_latency,
645                                     low_slice);
646                 }
647         }
648         return slice;
649 }
650
651 static inline void
652 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
653 {
654         unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
655
656         cfqq->slice_start = jiffies;
657         cfqq->slice_end = jiffies + slice;
658         cfqq->allocated_slice = slice;
659         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
660 }
661
662 /*
663  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
664  * isn't valid until the first request from the dispatch is activated
665  * and the slice time set.
666  */
667 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
668 {
669         if (cfq_cfqq_slice_new(cfqq))
670                 return false;
671         if (time_before(jiffies, cfqq->slice_end))
672                 return false;
673
674         return true;
675 }
676
677 /*
678  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
679  * We choose the request that is closest to the head right now. Distance
680  * behind the head is penalized and only allowed to a certain extent.
681  */
682 static struct request *
683 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
684 {
685         sector_t s1, s2, d1 = 0, d2 = 0;
686         unsigned long back_max;
687 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
688 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
689         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
690
691         if (rq1 == NULL || rq1 == rq2)
692                 return rq2;
693         if (rq2 == NULL)
694                 return rq1;
695
696         if (rq_is_sync(rq1) != rq_is_sync(rq2))
697                 return rq_is_sync(rq1) ? rq1 : rq2;
698
699         if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
700                 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
701
702         s1 = blk_rq_pos(rq1);
703         s2 = blk_rq_pos(rq2);
704
705         /*
706          * by definition, 1KiB is 2 sectors
707          */
708         back_max = cfqd->cfq_back_max * 2;
709
710         /*
711          * Strict one way elevator _except_ in the case where we allow
712          * short backward seeks which are biased as twice the cost of a
713          * similar forward seek.
714          */
715         if (s1 >= last)
716                 d1 = s1 - last;
717         else if (s1 + back_max >= last)
718                 d1 = (last - s1) * cfqd->cfq_back_penalty;
719         else
720                 wrap |= CFQ_RQ1_WRAP;
721
722         if (s2 >= last)
723                 d2 = s2 - last;
724         else if (s2 + back_max >= last)
725                 d2 = (last - s2) * cfqd->cfq_back_penalty;
726         else
727                 wrap |= CFQ_RQ2_WRAP;
728
729         /* Found required data */
730
731         /*
732          * By doing switch() on the bit mask "wrap" we avoid having to
733          * check two variables for all permutations: --> faster!
734          */
735         switch (wrap) {
736         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
737                 if (d1 < d2)
738                         return rq1;
739                 else if (d2 < d1)
740                         return rq2;
741                 else {
742                         if (s1 >= s2)
743                                 return rq1;
744                         else
745                                 return rq2;
746                 }
747
748         case CFQ_RQ2_WRAP:
749                 return rq1;
750         case CFQ_RQ1_WRAP:
751                 return rq2;
752         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
753         default:
754                 /*
755                  * Since both rqs are wrapped,
756                  * start with the one that's further behind head
757                  * (--> only *one* back seek required),
758                  * since back seek takes more time than forward.
759                  */
760                 if (s1 <= s2)
761                         return rq1;
762                 else
763                         return rq2;
764         }
765 }
766
767 /*
768  * The below is leftmost cache rbtree addon
769  */
770 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
771 {
772         /* Service tree is empty */
773         if (!root->count)
774                 return NULL;
775
776         if (!root->left)
777                 root->left = rb_first(&root->rb);
778
779         if (root->left)
780                 return rb_entry(root->left, struct cfq_queue, rb_node);
781
782         return NULL;
783 }
784
785 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
786 {
787         if (!root->left)
788                 root->left = rb_first(&root->rb);
789
790         if (root->left)
791                 return rb_entry_cfqg(root->left);
792
793         return NULL;
794 }
795
796 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
797 {
798         rb_erase(n, root);
799         RB_CLEAR_NODE(n);
800 }
801
802 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
803 {
804         if (root->left == n)
805                 root->left = NULL;
806         rb_erase_init(n, &root->rb);
807         --root->count;
808 }
809
810 /*
811  * would be nice to take fifo expire time into account as well
812  */
813 static struct request *
814 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
815                   struct request *last)
816 {
817         struct rb_node *rbnext = rb_next(&last->rb_node);
818         struct rb_node *rbprev = rb_prev(&last->rb_node);
819         struct request *next = NULL, *prev = NULL;
820
821         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
822
823         if (rbprev)
824                 prev = rb_entry_rq(rbprev);
825
826         if (rbnext)
827                 next = rb_entry_rq(rbnext);
828         else {
829                 rbnext = rb_first(&cfqq->sort_list);
830                 if (rbnext && rbnext != &last->rb_node)
831                         next = rb_entry_rq(rbnext);
832         }
833
834         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
835 }
836
837 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
838                                       struct cfq_queue *cfqq)
839 {
840         /*
841          * just an approximation, should be ok.
842          */
843         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
844                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
845 }
846
847 static inline s64
848 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
849 {
850         return cfqg->vdisktime - st->min_vdisktime;
851 }
852
853 static void
854 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
855 {
856         struct rb_node **node = &st->rb.rb_node;
857         struct rb_node *parent = NULL;
858         struct cfq_group *__cfqg;
859         s64 key = cfqg_key(st, cfqg);
860         int left = 1;
861
862         while (*node != NULL) {
863                 parent = *node;
864                 __cfqg = rb_entry_cfqg(parent);
865
866                 if (key < cfqg_key(st, __cfqg))
867                         node = &parent->rb_left;
868                 else {
869                         node = &parent->rb_right;
870                         left = 0;
871                 }
872         }
873
874         if (left)
875                 st->left = &cfqg->rb_node;
876
877         rb_link_node(&cfqg->rb_node, parent, node);
878         rb_insert_color(&cfqg->rb_node, &st->rb);
879 }
880
881 static void
882 cfq_update_group_weight(struct cfq_group *cfqg)
883 {
884         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
885         if (cfqg->needs_update) {
886                 cfqg->weight = cfqg->new_weight;
887                 cfqg->needs_update = false;
888         }
889 }
890
891 static void
892 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
893 {
894         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
895
896         cfq_update_group_weight(cfqg);
897         __cfq_group_service_tree_add(st, cfqg);
898         st->total_weight += cfqg->weight;
899 }
900
901 static void
902 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
903 {
904         struct cfq_rb_root *st = &cfqd->grp_service_tree;
905         struct cfq_group *__cfqg;
906         struct rb_node *n;
907
908         cfqg->nr_cfqq++;
909         if (!RB_EMPTY_NODE(&cfqg->rb_node))
910                 return;
911
912         /*
913          * Currently put the group at the end. Later implement something
914          * so that groups get lesser vtime based on their weights, so that
915          * if group does not loose all if it was not continuously backlogged.
916          */
917         n = rb_last(&st->rb);
918         if (n) {
919                 __cfqg = rb_entry_cfqg(n);
920                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
921         } else
922                 cfqg->vdisktime = st->min_vdisktime;
923         cfq_group_service_tree_add(st, cfqg);
924 }
925
926 static void
927 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
928 {
929         st->total_weight -= cfqg->weight;
930         if (!RB_EMPTY_NODE(&cfqg->rb_node))
931                 cfq_rb_erase(&cfqg->rb_node, st);
932 }
933
934 static void
935 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
936 {
937         struct cfq_rb_root *st = &cfqd->grp_service_tree;
938
939         BUG_ON(cfqg->nr_cfqq < 1);
940         cfqg->nr_cfqq--;
941
942         /* If there are other cfq queues under this group, don't delete it */
943         if (cfqg->nr_cfqq)
944                 return;
945
946         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
947         cfq_group_service_tree_del(st, cfqg);
948         cfqg->saved_workload_slice = 0;
949         cfq_blkiocg_update_dequeue_stats(cfqg_to_blkg(cfqg), 1);
950 }
951
952 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
953                                                 unsigned int *unaccounted_time)
954 {
955         unsigned int slice_used;
956
957         /*
958          * Queue got expired before even a single request completed or
959          * got expired immediately after first request completion.
960          */
961         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
962                 /*
963                  * Also charge the seek time incurred to the group, otherwise
964                  * if there are mutiple queues in the group, each can dispatch
965                  * a single request on seeky media and cause lots of seek time
966                  * and group will never know it.
967                  */
968                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
969                                         1);
970         } else {
971                 slice_used = jiffies - cfqq->slice_start;
972                 if (slice_used > cfqq->allocated_slice) {
973                         *unaccounted_time = slice_used - cfqq->allocated_slice;
974                         slice_used = cfqq->allocated_slice;
975                 }
976                 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
977                         *unaccounted_time += cfqq->slice_start -
978                                         cfqq->dispatch_start;
979         }
980
981         return slice_used;
982 }
983
984 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
985                                 struct cfq_queue *cfqq)
986 {
987         struct cfq_rb_root *st = &cfqd->grp_service_tree;
988         unsigned int used_sl, charge, unaccounted_sl = 0;
989         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
990                         - cfqg->service_tree_idle.count;
991
992         BUG_ON(nr_sync < 0);
993         used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
994
995         if (iops_mode(cfqd))
996                 charge = cfqq->slice_dispatch;
997         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
998                 charge = cfqq->allocated_slice;
999
1000         /* Can't update vdisktime while group is on service tree */
1001         cfq_group_service_tree_del(st, cfqg);
1002         cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
1003         /* If a new weight was requested, update now, off tree */
1004         cfq_group_service_tree_add(st, cfqg);
1005
1006         /* This group is being expired. Save the context */
1007         if (time_after(cfqd->workload_expires, jiffies)) {
1008                 cfqg->saved_workload_slice = cfqd->workload_expires
1009                                                 - jiffies;
1010                 cfqg->saved_workload = cfqd->serving_type;
1011                 cfqg->saved_serving_prio = cfqd->serving_prio;
1012         } else
1013                 cfqg->saved_workload_slice = 0;
1014
1015         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1016                                         st->min_vdisktime);
1017         cfq_log_cfqq(cfqq->cfqd, cfqq,
1018                      "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1019                      used_sl, cfqq->slice_dispatch, charge,
1020                      iops_mode(cfqd), cfqq->nr_sectors);
1021         cfq_blkiocg_update_timeslice_used(cfqg_to_blkg(cfqg), used_sl,
1022                                           unaccounted_sl);
1023         cfq_blkiocg_set_start_empty_time(cfqg_to_blkg(cfqg));
1024 }
1025
1026 /**
1027  * cfq_init_cfqg_base - initialize base part of a cfq_group
1028  * @cfqg: cfq_group to initialize
1029  *
1030  * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1031  * is enabled or not.
1032  */
1033 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1034 {
1035         struct cfq_rb_root *st;
1036         int i, j;
1037
1038         for_each_cfqg_st(cfqg, i, j, st)
1039                 *st = CFQ_RB_ROOT;
1040         RB_CLEAR_NODE(&cfqg->rb_node);
1041
1042         cfqg->ttime.last_end_request = jiffies;
1043 }
1044
1045 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1046 static void cfq_update_blkio_group_weight(struct request_queue *q,
1047                                           struct blkio_group *blkg,
1048                                           unsigned int weight)
1049 {
1050         struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1051
1052         cfqg->new_weight = weight;
1053         cfqg->needs_update = true;
1054 }
1055
1056 static void cfq_link_blkio_group(struct request_queue *q,
1057                                  struct blkio_group *blkg)
1058 {
1059         struct cfq_data *cfqd = q->elevator->elevator_data;
1060         struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1061
1062         cfqd->nr_blkcg_linked_grps++;
1063
1064         /* Add group on cfqd list */
1065         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1066 }
1067
1068 static void cfq_init_blkio_group(struct blkio_group *blkg)
1069 {
1070         struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1071
1072         cfq_init_cfqg_base(cfqg);
1073         cfqg->weight = blkg->blkcg->weight;
1074
1075         /*
1076          * Take the initial reference that will be released on destroy
1077          * This can be thought of a joint reference by cgroup and
1078          * elevator which will be dropped by either elevator exit
1079          * or cgroup deletion path depending on who is exiting first.
1080          */
1081         cfqg->ref = 1;
1082 }
1083
1084 /*
1085  * Search for the cfq group current task belongs to. request_queue lock must
1086  * be held.
1087  */
1088 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1089                                                 struct blkio_cgroup *blkcg)
1090 {
1091         struct request_queue *q = cfqd->queue;
1092         struct cfq_group *cfqg = NULL;
1093
1094         /* avoid lookup for the common case where there's no blkio cgroup */
1095         if (blkcg == &blkio_root_cgroup) {
1096                 cfqg = cfqd->root_group;
1097         } else {
1098                 struct blkio_group *blkg;
1099
1100                 blkg = blkg_lookup_create(blkcg, q, BLKIO_POLICY_PROP, false);
1101                 if (!IS_ERR(blkg))
1102                         cfqg = blkg_to_cfqg(blkg);
1103         }
1104
1105         return cfqg;
1106 }
1107
1108 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1109 {
1110         cfqg->ref++;
1111         return cfqg;
1112 }
1113
1114 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1115 {
1116         /* Currently, all async queues are mapped to root group */
1117         if (!cfq_cfqq_sync(cfqq))
1118                 cfqg = cfqq->cfqd->root_group;
1119
1120         cfqq->cfqg = cfqg;
1121         /* cfqq reference on cfqg */
1122         cfqq->cfqg->ref++;
1123 }
1124
1125 static void cfq_put_cfqg(struct cfq_group *cfqg)
1126 {
1127         struct blkio_group *blkg = cfqg_to_blkg(cfqg);
1128         struct cfq_rb_root *st;
1129         int i, j;
1130
1131         BUG_ON(cfqg->ref <= 0);
1132         cfqg->ref--;
1133         if (cfqg->ref)
1134                 return;
1135
1136         /* release the extra blkcg reference this blkg has been holding */
1137         css_put(&blkg->blkcg->css);
1138
1139         for_each_cfqg_st(cfqg, i, j, st)
1140                 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1141         free_percpu(blkg->stats_cpu);
1142         kfree(blkg->pd);
1143         kfree(blkg);
1144 }
1145
1146 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1147 {
1148         /* Something wrong if we are trying to remove same group twice */
1149         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1150
1151         hlist_del_init(&cfqg->cfqd_node);
1152
1153         BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1154         cfqd->nr_blkcg_linked_grps--;
1155
1156         /*
1157          * Put the reference taken at the time of creation so that when all
1158          * queues are gone, group can be destroyed.
1159          */
1160         cfq_put_cfqg(cfqg);
1161 }
1162
1163 static bool cfq_release_cfq_groups(struct cfq_data *cfqd)
1164 {
1165         struct hlist_node *pos, *n;
1166         struct cfq_group *cfqg;
1167         bool empty = true;
1168
1169         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1170                 /*
1171                  * If cgroup removal path got to blk_group first and removed
1172                  * it from cgroup list, then it will take care of destroying
1173                  * cfqg also.
1174                  */
1175                 if (!cfq_blkiocg_del_blkio_group(cfqg_to_blkg(cfqg)))
1176                         cfq_destroy_cfqg(cfqd, cfqg);
1177                 else
1178                         empty = false;
1179         }
1180         return empty;
1181 }
1182
1183 /*
1184  * Blk cgroup controller notification saying that blkio_group object is being
1185  * delinked as associated cgroup object is going away. That also means that
1186  * no new IO will come in this group. So get rid of this group as soon as
1187  * any pending IO in the group is finished.
1188  *
1189  * This function is called under rcu_read_lock(). key is the rcu protected
1190  * pointer. That means @q is a valid request_queue pointer as long as we
1191  * are rcu read lock.
1192  *
1193  * @q was fetched from blkio_group under blkio_cgroup->lock. That means
1194  * it should not be NULL as even if elevator was exiting, cgroup deltion
1195  * path got to it first.
1196  */
1197 static void cfq_unlink_blkio_group(struct request_queue *q,
1198                                    struct blkio_group *blkg)
1199 {
1200         struct cfq_data *cfqd = q->elevator->elevator_data;
1201         unsigned long flags;
1202
1203         spin_lock_irqsave(q->queue_lock, flags);
1204         cfq_destroy_cfqg(cfqd, blkg_to_cfqg(blkg));
1205         spin_unlock_irqrestore(q->queue_lock, flags);
1206 }
1207
1208 static struct elevator_type iosched_cfq;
1209
1210 static bool cfq_clear_queue(struct request_queue *q)
1211 {
1212         lockdep_assert_held(q->queue_lock);
1213
1214         /* shoot down blkgs iff the current elevator is cfq */
1215         if (!q->elevator || q->elevator->type != &iosched_cfq)
1216                 return true;
1217
1218         return cfq_release_cfq_groups(q->elevator->elevator_data);
1219 }
1220
1221 #else /* GROUP_IOSCHED */
1222 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1223                                                 struct blkio_cgroup *blkcg)
1224 {
1225         return cfqd->root_group;
1226 }
1227
1228 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1229 {
1230         return cfqg;
1231 }
1232
1233 static inline void
1234 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1235         cfqq->cfqg = cfqg;
1236 }
1237
1238 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1239 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1240
1241 #endif /* GROUP_IOSCHED */
1242
1243 /*
1244  * The cfqd->service_trees holds all pending cfq_queue's that have
1245  * requests waiting to be processed. It is sorted in the order that
1246  * we will service the queues.
1247  */
1248 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1249                                  bool add_front)
1250 {
1251         struct rb_node **p, *parent;
1252         struct cfq_queue *__cfqq;
1253         unsigned long rb_key;
1254         struct cfq_rb_root *service_tree;
1255         int left;
1256         int new_cfqq = 1;
1257
1258         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1259                                                 cfqq_type(cfqq));
1260         if (cfq_class_idle(cfqq)) {
1261                 rb_key = CFQ_IDLE_DELAY;
1262                 parent = rb_last(&service_tree->rb);
1263                 if (parent && parent != &cfqq->rb_node) {
1264                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1265                         rb_key += __cfqq->rb_key;
1266                 } else
1267                         rb_key += jiffies;
1268         } else if (!add_front) {
1269                 /*
1270                  * Get our rb key offset. Subtract any residual slice
1271                  * value carried from last service. A negative resid
1272                  * count indicates slice overrun, and this should position
1273                  * the next service time further away in the tree.
1274                  */
1275                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1276                 rb_key -= cfqq->slice_resid;
1277                 cfqq->slice_resid = 0;
1278         } else {
1279                 rb_key = -HZ;
1280                 __cfqq = cfq_rb_first(service_tree);
1281                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1282         }
1283
1284         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1285                 new_cfqq = 0;
1286                 /*
1287                  * same position, nothing more to do
1288                  */
1289                 if (rb_key == cfqq->rb_key &&
1290                     cfqq->service_tree == service_tree)
1291                         return;
1292
1293                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1294                 cfqq->service_tree = NULL;
1295         }
1296
1297         left = 1;
1298         parent = NULL;
1299         cfqq->service_tree = service_tree;
1300         p = &service_tree->rb.rb_node;
1301         while (*p) {
1302                 struct rb_node **n;
1303
1304                 parent = *p;
1305                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1306
1307                 /*
1308                  * sort by key, that represents service time.
1309                  */
1310                 if (time_before(rb_key, __cfqq->rb_key))
1311                         n = &(*p)->rb_left;
1312                 else {
1313                         n = &(*p)->rb_right;
1314                         left = 0;
1315                 }
1316
1317                 p = n;
1318         }
1319
1320         if (left)
1321                 service_tree->left = &cfqq->rb_node;
1322
1323         cfqq->rb_key = rb_key;
1324         rb_link_node(&cfqq->rb_node, parent, p);
1325         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1326         service_tree->count++;
1327         if (add_front || !new_cfqq)
1328                 return;
1329         cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1330 }
1331
1332 static struct cfq_queue *
1333 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1334                      sector_t sector, struct rb_node **ret_parent,
1335                      struct rb_node ***rb_link)
1336 {
1337         struct rb_node **p, *parent;
1338         struct cfq_queue *cfqq = NULL;
1339
1340         parent = NULL;
1341         p = &root->rb_node;
1342         while (*p) {
1343                 struct rb_node **n;
1344
1345                 parent = *p;
1346                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1347
1348                 /*
1349                  * Sort strictly based on sector.  Smallest to the left,
1350                  * largest to the right.
1351                  */
1352                 if (sector > blk_rq_pos(cfqq->next_rq))
1353                         n = &(*p)->rb_right;
1354                 else if (sector < blk_rq_pos(cfqq->next_rq))
1355                         n = &(*p)->rb_left;
1356                 else
1357                         break;
1358                 p = n;
1359                 cfqq = NULL;
1360         }
1361
1362         *ret_parent = parent;
1363         if (rb_link)
1364                 *rb_link = p;
1365         return cfqq;
1366 }
1367
1368 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1369 {
1370         struct rb_node **p, *parent;
1371         struct cfq_queue *__cfqq;
1372
1373         if (cfqq->p_root) {
1374                 rb_erase(&cfqq->p_node, cfqq->p_root);
1375                 cfqq->p_root = NULL;
1376         }
1377
1378         if (cfq_class_idle(cfqq))
1379                 return;
1380         if (!cfqq->next_rq)
1381                 return;
1382
1383         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1384         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1385                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1386         if (!__cfqq) {
1387                 rb_link_node(&cfqq->p_node, parent, p);
1388                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1389         } else
1390                 cfqq->p_root = NULL;
1391 }
1392
1393 /*
1394  * Update cfqq's position in the service tree.
1395  */
1396 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1397 {
1398         /*
1399          * Resorting requires the cfqq to be on the RR list already.
1400          */
1401         if (cfq_cfqq_on_rr(cfqq)) {
1402                 cfq_service_tree_add(cfqd, cfqq, 0);
1403                 cfq_prio_tree_add(cfqd, cfqq);
1404         }
1405 }
1406
1407 /*
1408  * add to busy list of queues for service, trying to be fair in ordering
1409  * the pending list according to last request service
1410  */
1411 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1412 {
1413         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1414         BUG_ON(cfq_cfqq_on_rr(cfqq));
1415         cfq_mark_cfqq_on_rr(cfqq);
1416         cfqd->busy_queues++;
1417         if (cfq_cfqq_sync(cfqq))
1418                 cfqd->busy_sync_queues++;
1419
1420         cfq_resort_rr_list(cfqd, cfqq);
1421 }
1422
1423 /*
1424  * Called when the cfqq no longer has requests pending, remove it from
1425  * the service tree.
1426  */
1427 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1428 {
1429         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1430         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1431         cfq_clear_cfqq_on_rr(cfqq);
1432
1433         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1434                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1435                 cfqq->service_tree = NULL;
1436         }
1437         if (cfqq->p_root) {
1438                 rb_erase(&cfqq->p_node, cfqq->p_root);
1439                 cfqq->p_root = NULL;
1440         }
1441
1442         cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1443         BUG_ON(!cfqd->busy_queues);
1444         cfqd->busy_queues--;
1445         if (cfq_cfqq_sync(cfqq))
1446                 cfqd->busy_sync_queues--;
1447 }
1448
1449 /*
1450  * rb tree support functions
1451  */
1452 static void cfq_del_rq_rb(struct request *rq)
1453 {
1454         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1455         const int sync = rq_is_sync(rq);
1456
1457         BUG_ON(!cfqq->queued[sync]);
1458         cfqq->queued[sync]--;
1459
1460         elv_rb_del(&cfqq->sort_list, rq);
1461
1462         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1463                 /*
1464                  * Queue will be deleted from service tree when we actually
1465                  * expire it later. Right now just remove it from prio tree
1466                  * as it is empty.
1467                  */
1468                 if (cfqq->p_root) {
1469                         rb_erase(&cfqq->p_node, cfqq->p_root);
1470                         cfqq->p_root = NULL;
1471                 }
1472         }
1473 }
1474
1475 static void cfq_add_rq_rb(struct request *rq)
1476 {
1477         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1478         struct cfq_data *cfqd = cfqq->cfqd;
1479         struct request *prev;
1480
1481         cfqq->queued[rq_is_sync(rq)]++;
1482
1483         elv_rb_add(&cfqq->sort_list, rq);
1484
1485         if (!cfq_cfqq_on_rr(cfqq))
1486                 cfq_add_cfqq_rr(cfqd, cfqq);
1487
1488         /*
1489          * check if this request is a better next-serve candidate
1490          */
1491         prev = cfqq->next_rq;
1492         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1493
1494         /*
1495          * adjust priority tree position, if ->next_rq changes
1496          */
1497         if (prev != cfqq->next_rq)
1498                 cfq_prio_tree_add(cfqd, cfqq);
1499
1500         BUG_ON(!cfqq->next_rq);
1501 }
1502
1503 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1504 {
1505         elv_rb_del(&cfqq->sort_list, rq);
1506         cfqq->queued[rq_is_sync(rq)]--;
1507         cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1508                                         rq_data_dir(rq), rq_is_sync(rq));
1509         cfq_add_rq_rb(rq);
1510         cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1511                                         cfqg_to_blkg(cfqq->cfqd->serving_group),
1512                                         rq_data_dir(rq), rq_is_sync(rq));
1513 }
1514
1515 static struct request *
1516 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1517 {
1518         struct task_struct *tsk = current;
1519         struct cfq_io_cq *cic;
1520         struct cfq_queue *cfqq;
1521
1522         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1523         if (!cic)
1524                 return NULL;
1525
1526         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1527         if (cfqq) {
1528                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1529
1530                 return elv_rb_find(&cfqq->sort_list, sector);
1531         }
1532
1533         return NULL;
1534 }
1535
1536 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1537 {
1538         struct cfq_data *cfqd = q->elevator->elevator_data;
1539
1540         cfqd->rq_in_driver++;
1541         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1542                                                 cfqd->rq_in_driver);
1543
1544         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1545 }
1546
1547 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1548 {
1549         struct cfq_data *cfqd = q->elevator->elevator_data;
1550
1551         WARN_ON(!cfqd->rq_in_driver);
1552         cfqd->rq_in_driver--;
1553         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1554                                                 cfqd->rq_in_driver);
1555 }
1556
1557 static void cfq_remove_request(struct request *rq)
1558 {
1559         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1560
1561         if (cfqq->next_rq == rq)
1562                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1563
1564         list_del_init(&rq->queuelist);
1565         cfq_del_rq_rb(rq);
1566
1567         cfqq->cfqd->rq_queued--;
1568         cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1569                                         rq_data_dir(rq), rq_is_sync(rq));
1570         if (rq->cmd_flags & REQ_PRIO) {
1571                 WARN_ON(!cfqq->prio_pending);
1572                 cfqq->prio_pending--;
1573         }
1574 }
1575
1576 static int cfq_merge(struct request_queue *q, struct request **req,
1577                      struct bio *bio)
1578 {
1579         struct cfq_data *cfqd = q->elevator->elevator_data;
1580         struct request *__rq;
1581
1582         __rq = cfq_find_rq_fmerge(cfqd, bio);
1583         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1584                 *req = __rq;
1585                 return ELEVATOR_FRONT_MERGE;
1586         }
1587
1588         return ELEVATOR_NO_MERGE;
1589 }
1590
1591 static void cfq_merged_request(struct request_queue *q, struct request *req,
1592                                int type)
1593 {
1594         if (type == ELEVATOR_FRONT_MERGE) {
1595                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1596
1597                 cfq_reposition_rq_rb(cfqq, req);
1598         }
1599 }
1600
1601 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1602                                 struct bio *bio)
1603 {
1604         cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(req)),
1605                                         bio_data_dir(bio), cfq_bio_sync(bio));
1606 }
1607
1608 static void
1609 cfq_merged_requests(struct request_queue *q, struct request *rq,
1610                     struct request *next)
1611 {
1612         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1613         struct cfq_data *cfqd = q->elevator->elevator_data;
1614
1615         /*
1616          * reposition in fifo if next is older than rq
1617          */
1618         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1619             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1620                 list_move(&rq->queuelist, &next->queuelist);
1621                 rq_set_fifo_time(rq, rq_fifo_time(next));
1622         }
1623
1624         if (cfqq->next_rq == next)
1625                 cfqq->next_rq = rq;
1626         cfq_remove_request(next);
1627         cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1628                                         rq_data_dir(next), rq_is_sync(next));
1629
1630         cfqq = RQ_CFQQ(next);
1631         /*
1632          * all requests of this queue are merged to other queues, delete it
1633          * from the service tree. If it's the active_queue,
1634          * cfq_dispatch_requests() will choose to expire it or do idle
1635          */
1636         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1637             cfqq != cfqd->active_queue)
1638                 cfq_del_cfqq_rr(cfqd, cfqq);
1639 }
1640
1641 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1642                            struct bio *bio)
1643 {
1644         struct cfq_data *cfqd = q->elevator->elevator_data;
1645         struct cfq_io_cq *cic;
1646         struct cfq_queue *cfqq;
1647
1648         /*
1649          * Disallow merge of a sync bio into an async request.
1650          */
1651         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1652                 return false;
1653
1654         /*
1655          * Lookup the cfqq that this bio will be queued with and allow
1656          * merge only if rq is queued there.
1657          */
1658         cic = cfq_cic_lookup(cfqd, current->io_context);
1659         if (!cic)
1660                 return false;
1661
1662         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1663         return cfqq == RQ_CFQQ(rq);
1664 }
1665
1666 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1667 {
1668         del_timer(&cfqd->idle_slice_timer);
1669         cfq_blkiocg_update_idle_time_stats(cfqg_to_blkg(cfqq->cfqg));
1670 }
1671
1672 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1673                                    struct cfq_queue *cfqq)
1674 {
1675         if (cfqq) {
1676                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1677                                 cfqd->serving_prio, cfqd->serving_type);
1678                 cfq_blkiocg_update_avg_queue_size_stats(cfqg_to_blkg(cfqq->cfqg));
1679                 cfqq->slice_start = 0;
1680                 cfqq->dispatch_start = jiffies;
1681                 cfqq->allocated_slice = 0;
1682                 cfqq->slice_end = 0;
1683                 cfqq->slice_dispatch = 0;
1684                 cfqq->nr_sectors = 0;
1685
1686                 cfq_clear_cfqq_wait_request(cfqq);
1687                 cfq_clear_cfqq_must_dispatch(cfqq);
1688                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1689                 cfq_clear_cfqq_fifo_expire(cfqq);
1690                 cfq_mark_cfqq_slice_new(cfqq);
1691
1692                 cfq_del_timer(cfqd, cfqq);
1693         }
1694
1695         cfqd->active_queue = cfqq;
1696 }
1697
1698 /*
1699  * current cfqq expired its slice (or was too idle), select new one
1700  */
1701 static void
1702 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1703                     bool timed_out)
1704 {
1705         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1706
1707         if (cfq_cfqq_wait_request(cfqq))
1708                 cfq_del_timer(cfqd, cfqq);
1709
1710         cfq_clear_cfqq_wait_request(cfqq);
1711         cfq_clear_cfqq_wait_busy(cfqq);
1712
1713         /*
1714          * If this cfqq is shared between multiple processes, check to
1715          * make sure that those processes are still issuing I/Os within
1716          * the mean seek distance.  If not, it may be time to break the
1717          * queues apart again.
1718          */
1719         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1720                 cfq_mark_cfqq_split_coop(cfqq);
1721
1722         /*
1723          * store what was left of this slice, if the queue idled/timed out
1724          */
1725         if (timed_out) {
1726                 if (cfq_cfqq_slice_new(cfqq))
1727                         cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1728                 else
1729                         cfqq->slice_resid = cfqq->slice_end - jiffies;
1730                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1731         }
1732
1733         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1734
1735         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1736                 cfq_del_cfqq_rr(cfqd, cfqq);
1737
1738         cfq_resort_rr_list(cfqd, cfqq);
1739
1740         if (cfqq == cfqd->active_queue)
1741                 cfqd->active_queue = NULL;
1742
1743         if (cfqd->active_cic) {
1744                 put_io_context(cfqd->active_cic->icq.ioc);
1745                 cfqd->active_cic = NULL;
1746         }
1747 }
1748
1749 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1750 {
1751         struct cfq_queue *cfqq = cfqd->active_queue;
1752
1753         if (cfqq)
1754                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1755 }
1756
1757 /*
1758  * Get next queue for service. Unless we have a queue preemption,
1759  * we'll simply select the first cfqq in the service tree.
1760  */
1761 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1762 {
1763         struct cfq_rb_root *service_tree =
1764                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1765                                         cfqd->serving_type);
1766
1767         if (!cfqd->rq_queued)
1768                 return NULL;
1769
1770         /* There is nothing to dispatch */
1771         if (!service_tree)
1772                 return NULL;
1773         if (RB_EMPTY_ROOT(&service_tree->rb))
1774                 return NULL;
1775         return cfq_rb_first(service_tree);
1776 }
1777
1778 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1779 {
1780         struct cfq_group *cfqg;
1781         struct cfq_queue *cfqq;
1782         int i, j;
1783         struct cfq_rb_root *st;
1784
1785         if (!cfqd->rq_queued)
1786                 return NULL;
1787
1788         cfqg = cfq_get_next_cfqg(cfqd);
1789         if (!cfqg)
1790                 return NULL;
1791
1792         for_each_cfqg_st(cfqg, i, j, st)
1793                 if ((cfqq = cfq_rb_first(st)) != NULL)
1794                         return cfqq;
1795         return NULL;
1796 }
1797
1798 /*
1799  * Get and set a new active queue for service.
1800  */
1801 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1802                                               struct cfq_queue *cfqq)
1803 {
1804         if (!cfqq)
1805                 cfqq = cfq_get_next_queue(cfqd);
1806
1807         __cfq_set_active_queue(cfqd, cfqq);
1808         return cfqq;
1809 }
1810
1811 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1812                                           struct request *rq)
1813 {
1814         if (blk_rq_pos(rq) >= cfqd->last_position)
1815                 return blk_rq_pos(rq) - cfqd->last_position;
1816         else
1817                 return cfqd->last_position - blk_rq_pos(rq);
1818 }
1819
1820 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1821                                struct request *rq)
1822 {
1823         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1824 }
1825
1826 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1827                                     struct cfq_queue *cur_cfqq)
1828 {
1829         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1830         struct rb_node *parent, *node;
1831         struct cfq_queue *__cfqq;
1832         sector_t sector = cfqd->last_position;
1833
1834         if (RB_EMPTY_ROOT(root))
1835                 return NULL;
1836
1837         /*
1838          * First, if we find a request starting at the end of the last
1839          * request, choose it.
1840          */
1841         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1842         if (__cfqq)
1843                 return __cfqq;
1844
1845         /*
1846          * If the exact sector wasn't found, the parent of the NULL leaf
1847          * will contain the closest sector.
1848          */
1849         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1850         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1851                 return __cfqq;
1852
1853         if (blk_rq_pos(__cfqq->next_rq) < sector)
1854                 node = rb_next(&__cfqq->p_node);
1855         else
1856                 node = rb_prev(&__cfqq->p_node);
1857         if (!node)
1858                 return NULL;
1859
1860         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1861         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1862                 return __cfqq;
1863
1864         return NULL;
1865 }
1866
1867 /*
1868  * cfqd - obvious
1869  * cur_cfqq - passed in so that we don't decide that the current queue is
1870  *            closely cooperating with itself.
1871  *
1872  * So, basically we're assuming that that cur_cfqq has dispatched at least
1873  * one request, and that cfqd->last_position reflects a position on the disk
1874  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1875  * assumption.
1876  */
1877 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1878                                               struct cfq_queue *cur_cfqq)
1879 {
1880         struct cfq_queue *cfqq;
1881
1882         if (cfq_class_idle(cur_cfqq))
1883                 return NULL;
1884         if (!cfq_cfqq_sync(cur_cfqq))
1885                 return NULL;
1886         if (CFQQ_SEEKY(cur_cfqq))
1887                 return NULL;
1888
1889         /*
1890          * Don't search priority tree if it's the only queue in the group.
1891          */
1892         if (cur_cfqq->cfqg->nr_cfqq == 1)
1893                 return NULL;
1894
1895         /*
1896          * We should notice if some of the queues are cooperating, eg
1897          * working closely on the same area of the disk. In that case,
1898          * we can group them together and don't waste time idling.
1899          */
1900         cfqq = cfqq_close(cfqd, cur_cfqq);
1901         if (!cfqq)
1902                 return NULL;
1903
1904         /* If new queue belongs to different cfq_group, don't choose it */
1905         if (cur_cfqq->cfqg != cfqq->cfqg)
1906                 return NULL;
1907
1908         /*
1909          * It only makes sense to merge sync queues.
1910          */
1911         if (!cfq_cfqq_sync(cfqq))
1912                 return NULL;
1913         if (CFQQ_SEEKY(cfqq))
1914                 return NULL;
1915
1916         /*
1917          * Do not merge queues of different priority classes
1918          */
1919         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1920                 return NULL;
1921
1922         return cfqq;
1923 }
1924
1925 /*
1926  * Determine whether we should enforce idle window for this queue.
1927  */
1928
1929 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1930 {
1931         enum wl_prio_t prio = cfqq_prio(cfqq);
1932         struct cfq_rb_root *service_tree = cfqq->service_tree;
1933
1934         BUG_ON(!service_tree);
1935         BUG_ON(!service_tree->count);
1936
1937         if (!cfqd->cfq_slice_idle)
1938                 return false;
1939
1940         /* We never do for idle class queues. */
1941         if (prio == IDLE_WORKLOAD)
1942                 return false;
1943
1944         /* We do for queues that were marked with idle window flag. */
1945         if (cfq_cfqq_idle_window(cfqq) &&
1946            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1947                 return true;
1948
1949         /*
1950          * Otherwise, we do only if they are the last ones
1951          * in their service tree.
1952          */
1953         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1954            !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1955                 return true;
1956         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1957                         service_tree->count);
1958         return false;
1959 }
1960
1961 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1962 {
1963         struct cfq_queue *cfqq = cfqd->active_queue;
1964         struct cfq_io_cq *cic;
1965         unsigned long sl, group_idle = 0;
1966
1967         /*
1968          * SSD device without seek penalty, disable idling. But only do so
1969          * for devices that support queuing, otherwise we still have a problem
1970          * with sync vs async workloads.
1971          */
1972         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1973                 return;
1974
1975         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1976         WARN_ON(cfq_cfqq_slice_new(cfqq));
1977
1978         /*
1979          * idle is disabled, either manually or by past process history
1980          */
1981         if (!cfq_should_idle(cfqd, cfqq)) {
1982                 /* no queue idling. Check for group idling */
1983                 if (cfqd->cfq_group_idle)
1984                         group_idle = cfqd->cfq_group_idle;
1985                 else
1986                         return;
1987         }
1988
1989         /*
1990          * still active requests from this queue, don't idle
1991          */
1992         if (cfqq->dispatched)
1993                 return;
1994
1995         /*
1996          * task has exited, don't wait
1997          */
1998         cic = cfqd->active_cic;
1999         if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
2000                 return;
2001
2002         /*
2003          * If our average think time is larger than the remaining time
2004          * slice, then don't idle. This avoids overrunning the allotted
2005          * time slice.
2006          */
2007         if (sample_valid(cic->ttime.ttime_samples) &&
2008             (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2009                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2010                              cic->ttime.ttime_mean);
2011                 return;
2012         }
2013
2014         /* There are other queues in the group, don't do group idle */
2015         if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2016                 return;
2017
2018         cfq_mark_cfqq_wait_request(cfqq);
2019
2020         if (group_idle)
2021                 sl = cfqd->cfq_group_idle;
2022         else
2023                 sl = cfqd->cfq_slice_idle;
2024
2025         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2026         cfq_blkiocg_update_set_idle_time_stats(cfqg_to_blkg(cfqq->cfqg));
2027         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2028                         group_idle ? 1 : 0);
2029 }
2030
2031 /*
2032  * Move request from internal lists to the request queue dispatch list.
2033  */
2034 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2035 {
2036         struct cfq_data *cfqd = q->elevator->elevator_data;
2037         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2038
2039         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2040
2041         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2042         cfq_remove_request(rq);
2043         cfqq->dispatched++;
2044         (RQ_CFQG(rq))->dispatched++;
2045         elv_dispatch_sort(q, rq);
2046
2047         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2048         cfqq->nr_sectors += blk_rq_sectors(rq);
2049         cfq_blkiocg_update_dispatch_stats(cfqg_to_blkg(cfqq->cfqg),
2050                                           blk_rq_bytes(rq), rq_data_dir(rq),
2051                                           rq_is_sync(rq));
2052 }
2053
2054 /*
2055  * return expired entry, or NULL to just start from scratch in rbtree
2056  */
2057 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2058 {
2059         struct request *rq = NULL;
2060
2061         if (cfq_cfqq_fifo_expire(cfqq))
2062                 return NULL;
2063
2064         cfq_mark_cfqq_fifo_expire(cfqq);
2065
2066         if (list_empty(&cfqq->fifo))
2067                 return NULL;
2068
2069         rq = rq_entry_fifo(cfqq->fifo.next);
2070         if (time_before(jiffies, rq_fifo_time(rq)))
2071                 rq = NULL;
2072
2073         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2074         return rq;
2075 }
2076
2077 static inline int
2078 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2079 {
2080         const int base_rq = cfqd->cfq_slice_async_rq;
2081
2082         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2083
2084         return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2085 }
2086
2087 /*
2088  * Must be called with the queue_lock held.
2089  */
2090 static int cfqq_process_refs(struct cfq_queue *cfqq)
2091 {
2092         int process_refs, io_refs;
2093
2094         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2095         process_refs = cfqq->ref - io_refs;
2096         BUG_ON(process_refs < 0);
2097         return process_refs;
2098 }
2099
2100 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2101 {
2102         int process_refs, new_process_refs;
2103         struct cfq_queue *__cfqq;
2104
2105         /*
2106          * If there are no process references on the new_cfqq, then it is
2107          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2108          * chain may have dropped their last reference (not just their
2109          * last process reference).
2110          */
2111         if (!cfqq_process_refs(new_cfqq))
2112                 return;
2113
2114         /* Avoid a circular list and skip interim queue merges */
2115         while ((__cfqq = new_cfqq->new_cfqq)) {
2116                 if (__cfqq == cfqq)
2117                         return;
2118                 new_cfqq = __cfqq;
2119         }
2120
2121         process_refs = cfqq_process_refs(cfqq);
2122         new_process_refs = cfqq_process_refs(new_cfqq);
2123         /*
2124          * If the process for the cfqq has gone away, there is no
2125          * sense in merging the queues.
2126          */
2127         if (process_refs == 0 || new_process_refs == 0)
2128                 return;
2129
2130         /*
2131          * Merge in the direction of the lesser amount of work.
2132          */
2133         if (new_process_refs >= process_refs) {
2134                 cfqq->new_cfqq = new_cfqq;
2135                 new_cfqq->ref += process_refs;
2136         } else {
2137                 new_cfqq->new_cfqq = cfqq;
2138                 cfqq->ref += new_process_refs;
2139         }
2140 }
2141
2142 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2143                                 struct cfq_group *cfqg, enum wl_prio_t prio)
2144 {
2145         struct cfq_queue *queue;
2146         int i;
2147         bool key_valid = false;
2148         unsigned long lowest_key = 0;
2149         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2150
2151         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2152                 /* select the one with lowest rb_key */
2153                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2154                 if (queue &&
2155                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
2156                         lowest_key = queue->rb_key;
2157                         cur_best = i;
2158                         key_valid = true;
2159                 }
2160         }
2161
2162         return cur_best;
2163 }
2164
2165 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2166 {
2167         unsigned slice;
2168         unsigned count;
2169         struct cfq_rb_root *st;
2170         unsigned group_slice;
2171         enum wl_prio_t original_prio = cfqd->serving_prio;
2172
2173         /* Choose next priority. RT > BE > IDLE */
2174         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2175                 cfqd->serving_prio = RT_WORKLOAD;
2176         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2177                 cfqd->serving_prio = BE_WORKLOAD;
2178         else {
2179                 cfqd->serving_prio = IDLE_WORKLOAD;
2180                 cfqd->workload_expires = jiffies + 1;
2181                 return;
2182         }
2183
2184         if (original_prio != cfqd->serving_prio)
2185                 goto new_workload;
2186
2187         /*
2188          * For RT and BE, we have to choose also the type
2189          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2190          * expiration time
2191          */
2192         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2193         count = st->count;
2194
2195         /*
2196          * check workload expiration, and that we still have other queues ready
2197          */
2198         if (count && !time_after(jiffies, cfqd->workload_expires))
2199                 return;
2200
2201 new_workload:
2202         /* otherwise select new workload type */
2203         cfqd->serving_type =
2204                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2205         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2206         count = st->count;
2207
2208         /*
2209          * the workload slice is computed as a fraction of target latency
2210          * proportional to the number of queues in that workload, over
2211          * all the queues in the same priority class
2212          */
2213         group_slice = cfq_group_slice(cfqd, cfqg);
2214
2215         slice = group_slice * count /
2216                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2217                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2218
2219         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2220                 unsigned int tmp;
2221
2222                 /*
2223                  * Async queues are currently system wide. Just taking
2224                  * proportion of queues with-in same group will lead to higher
2225                  * async ratio system wide as generally root group is going
2226                  * to have higher weight. A more accurate thing would be to
2227                  * calculate system wide asnc/sync ratio.
2228                  */
2229                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2230                 tmp = tmp/cfqd->busy_queues;
2231                 slice = min_t(unsigned, slice, tmp);
2232
2233                 /* async workload slice is scaled down according to
2234                  * the sync/async slice ratio. */
2235                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2236         } else
2237                 /* sync workload slice is at least 2 * cfq_slice_idle */
2238                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2239
2240         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2241         cfq_log(cfqd, "workload slice:%d", slice);
2242         cfqd->workload_expires = jiffies + slice;
2243 }
2244
2245 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2246 {
2247         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2248         struct cfq_group *cfqg;
2249
2250         if (RB_EMPTY_ROOT(&st->rb))
2251                 return NULL;
2252         cfqg = cfq_rb_first_group(st);
2253         update_min_vdisktime(st);
2254         return cfqg;
2255 }
2256
2257 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2258 {
2259         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2260
2261         cfqd->serving_group = cfqg;
2262
2263         /* Restore the workload type data */
2264         if (cfqg->saved_workload_slice) {
2265                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2266                 cfqd->serving_type = cfqg->saved_workload;
2267                 cfqd->serving_prio = cfqg->saved_serving_prio;
2268         } else
2269                 cfqd->workload_expires = jiffies - 1;
2270
2271         choose_service_tree(cfqd, cfqg);
2272 }
2273
2274 /*
2275  * Select a queue for service. If we have a current active queue,
2276  * check whether to continue servicing it, or retrieve and set a new one.
2277  */
2278 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2279 {
2280         struct cfq_queue *cfqq, *new_cfqq = NULL;
2281
2282         cfqq = cfqd->active_queue;
2283         if (!cfqq)
2284                 goto new_queue;
2285
2286         if (!cfqd->rq_queued)
2287                 return NULL;
2288
2289         /*
2290          * We were waiting for group to get backlogged. Expire the queue
2291          */
2292         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2293                 goto expire;
2294
2295         /*
2296          * The active queue has run out of time, expire it and select new.
2297          */
2298         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2299                 /*
2300                  * If slice had not expired at the completion of last request
2301                  * we might not have turned on wait_busy flag. Don't expire
2302                  * the queue yet. Allow the group to get backlogged.
2303                  *
2304                  * The very fact that we have used the slice, that means we
2305                  * have been idling all along on this queue and it should be
2306                  * ok to wait for this request to complete.
2307                  */
2308                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2309                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2310                         cfqq = NULL;
2311                         goto keep_queue;
2312                 } else
2313                         goto check_group_idle;
2314         }
2315
2316         /*
2317          * The active queue has requests and isn't expired, allow it to
2318          * dispatch.
2319          */
2320         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2321                 goto keep_queue;
2322
2323         /*
2324          * If another queue has a request waiting within our mean seek
2325          * distance, let it run.  The expire code will check for close
2326          * cooperators and put the close queue at the front of the service
2327          * tree.  If possible, merge the expiring queue with the new cfqq.
2328          */
2329         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2330         if (new_cfqq) {
2331                 if (!cfqq->new_cfqq)
2332                         cfq_setup_merge(cfqq, new_cfqq);
2333                 goto expire;
2334         }
2335
2336         /*
2337          * No requests pending. If the active queue still has requests in
2338          * flight or is idling for a new request, allow either of these
2339          * conditions to happen (or time out) before selecting a new queue.
2340          */
2341         if (timer_pending(&cfqd->idle_slice_timer)) {
2342                 cfqq = NULL;
2343                 goto keep_queue;
2344         }
2345
2346         /*
2347          * This is a deep seek queue, but the device is much faster than
2348          * the queue can deliver, don't idle
2349          **/
2350         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2351             (cfq_cfqq_slice_new(cfqq) ||
2352             (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2353                 cfq_clear_cfqq_deep(cfqq);
2354                 cfq_clear_cfqq_idle_window(cfqq);
2355         }
2356
2357         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2358                 cfqq = NULL;
2359                 goto keep_queue;
2360         }
2361
2362         /*
2363          * If group idle is enabled and there are requests dispatched from
2364          * this group, wait for requests to complete.
2365          */
2366 check_group_idle:
2367         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2368             cfqq->cfqg->dispatched &&
2369             !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2370                 cfqq = NULL;
2371                 goto keep_queue;
2372         }
2373
2374 expire:
2375         cfq_slice_expired(cfqd, 0);
2376 new_queue:
2377         /*
2378          * Current queue expired. Check if we have to switch to a new
2379          * service tree
2380          */
2381         if (!new_cfqq)
2382                 cfq_choose_cfqg(cfqd);
2383
2384         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2385 keep_queue:
2386         return cfqq;
2387 }
2388
2389 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2390 {
2391         int dispatched = 0;
2392
2393         while (cfqq->next_rq) {
2394                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2395                 dispatched++;
2396         }
2397
2398         BUG_ON(!list_empty(&cfqq->fifo));
2399
2400         /* By default cfqq is not expired if it is empty. Do it explicitly */
2401         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2402         return dispatched;
2403 }
2404
2405 /*
2406  * Drain our current requests. Used for barriers and when switching
2407  * io schedulers on-the-fly.
2408  */
2409 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2410 {
2411         struct cfq_queue *cfqq;
2412         int dispatched = 0;
2413
2414         /* Expire the timeslice of the current active queue first */
2415         cfq_slice_expired(cfqd, 0);
2416         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2417                 __cfq_set_active_queue(cfqd, cfqq);
2418                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2419         }
2420
2421         BUG_ON(cfqd->busy_queues);
2422
2423         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2424         return dispatched;
2425 }
2426
2427 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2428         struct cfq_queue *cfqq)
2429 {
2430         /* the queue hasn't finished any request, can't estimate */
2431         if (cfq_cfqq_slice_new(cfqq))
2432                 return true;
2433         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2434                 cfqq->slice_end))
2435                 return true;
2436
2437         return false;
2438 }
2439
2440 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2441 {
2442         unsigned int max_dispatch;
2443
2444         /*
2445          * Drain async requests before we start sync IO
2446          */
2447         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2448                 return false;
2449
2450         /*
2451          * If this is an async queue and we have sync IO in flight, let it wait
2452          */
2453         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2454                 return false;
2455
2456         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2457         if (cfq_class_idle(cfqq))
2458                 max_dispatch = 1;
2459
2460         /*
2461          * Does this cfqq already have too much IO in flight?
2462          */
2463         if (cfqq->dispatched >= max_dispatch) {
2464                 bool promote_sync = false;
2465                 /*
2466                  * idle queue must always only have a single IO in flight
2467                  */
2468                 if (cfq_class_idle(cfqq))
2469                         return false;
2470
2471                 /*
2472                  * If there is only one sync queue
2473                  * we can ignore async queue here and give the sync
2474                  * queue no dispatch limit. The reason is a sync queue can
2475                  * preempt async queue, limiting the sync queue doesn't make
2476                  * sense. This is useful for aiostress test.
2477                  */
2478                 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2479                         promote_sync = true;
2480
2481                 /*
2482                  * We have other queues, don't allow more IO from this one
2483                  */
2484                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2485                                 !promote_sync)
2486                         return false;
2487
2488                 /*
2489                  * Sole queue user, no limit
2490                  */
2491                 if (cfqd->busy_queues == 1 || promote_sync)
2492                         max_dispatch = -1;
2493                 else
2494                         /*
2495                          * Normally we start throttling cfqq when cfq_quantum/2
2496                          * requests have been dispatched. But we can drive
2497                          * deeper queue depths at the beginning of slice
2498                          * subjected to upper limit of cfq_quantum.
2499                          * */
2500                         max_dispatch = cfqd->cfq_quantum;
2501         }
2502
2503         /*
2504          * Async queues must wait a bit before being allowed dispatch.
2505          * We also ramp up the dispatch depth gradually for async IO,
2506          * based on the last sync IO we serviced
2507          */
2508         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2509                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2510                 unsigned int depth;
2511
2512                 depth = last_sync / cfqd->cfq_slice[1];
2513                 if (!depth && !cfqq->dispatched)
2514                         depth = 1;
2515                 if (depth < max_dispatch)
2516                         max_dispatch = depth;
2517         }
2518
2519         /*
2520          * If we're below the current max, allow a dispatch
2521          */
2522         return cfqq->dispatched < max_dispatch;
2523 }
2524
2525 /*
2526  * Dispatch a request from cfqq, moving them to the request queue
2527  * dispatch list.
2528  */
2529 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2530 {
2531         struct request *rq;
2532
2533         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2534
2535         if (!cfq_may_dispatch(cfqd, cfqq))
2536                 return false;
2537
2538         /*
2539          * follow expired path, else get first next available
2540          */
2541         rq = cfq_check_fifo(cfqq);
2542         if (!rq)
2543                 rq = cfqq->next_rq;
2544
2545         /*
2546          * insert request into driver dispatch list
2547          */
2548         cfq_dispatch_insert(cfqd->queue, rq);
2549
2550         if (!cfqd->active_cic) {
2551                 struct cfq_io_cq *cic = RQ_CIC(rq);
2552
2553                 atomic_long_inc(&cic->icq.ioc->refcount);
2554                 cfqd->active_cic = cic;
2555         }
2556
2557         return true;
2558 }
2559
2560 /*
2561  * Find the cfqq that we need to service and move a request from that to the
2562  * dispatch list
2563  */
2564 static int cfq_dispatch_requests(struct request_queue *q, int force)
2565 {
2566         struct cfq_data *cfqd = q->elevator->elevator_data;
2567         struct cfq_queue *cfqq;
2568
2569         if (!cfqd->busy_queues)
2570                 return 0;
2571
2572         if (unlikely(force))
2573                 return cfq_forced_dispatch(cfqd);
2574
2575         cfqq = cfq_select_queue(cfqd);
2576         if (!cfqq)
2577                 return 0;
2578
2579         /*
2580          * Dispatch a request from this cfqq, if it is allowed
2581          */
2582         if (!cfq_dispatch_request(cfqd, cfqq))
2583                 return 0;
2584
2585         cfqq->slice_dispatch++;
2586         cfq_clear_cfqq_must_dispatch(cfqq);
2587
2588         /*
2589          * expire an async queue immediately if it has used up its slice. idle
2590          * queue always expire after 1 dispatch round.
2591          */
2592         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2593             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2594             cfq_class_idle(cfqq))) {
2595                 cfqq->slice_end = jiffies + 1;
2596                 cfq_slice_expired(cfqd, 0);
2597         }
2598
2599         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2600         return 1;
2601 }
2602
2603 /*
2604  * task holds one reference to the queue, dropped when task exits. each rq
2605  * in-flight on this queue also holds a reference, dropped when rq is freed.
2606  *
2607  * Each cfq queue took a reference on the parent group. Drop it now.
2608  * queue lock must be held here.
2609  */
2610 static void cfq_put_queue(struct cfq_queue *cfqq)
2611 {
2612         struct cfq_data *cfqd = cfqq->cfqd;
2613         struct cfq_group *cfqg;
2614
2615         BUG_ON(cfqq->ref <= 0);
2616
2617         cfqq->ref--;
2618         if (cfqq->ref)
2619                 return;
2620
2621         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2622         BUG_ON(rb_first(&cfqq->sort_list));
2623         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2624         cfqg = cfqq->cfqg;
2625
2626         if (unlikely(cfqd->active_queue == cfqq)) {
2627                 __cfq_slice_expired(cfqd, cfqq, 0);
2628                 cfq_schedule_dispatch(cfqd);
2629         }
2630
2631         BUG_ON(cfq_cfqq_on_rr(cfqq));
2632         kmem_cache_free(cfq_pool, cfqq);
2633         cfq_put_cfqg(cfqg);
2634 }
2635
2636 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2637 {
2638         struct cfq_queue *__cfqq, *next;
2639
2640         /*
2641          * If this queue was scheduled to merge with another queue, be
2642          * sure to drop the reference taken on that queue (and others in
2643          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2644          */
2645         __cfqq = cfqq->new_cfqq;
2646         while (__cfqq) {
2647                 if (__cfqq == cfqq) {
2648                         WARN(1, "cfqq->new_cfqq loop detected\n");
2649                         break;
2650                 }
2651                 next = __cfqq->new_cfqq;
2652                 cfq_put_queue(__cfqq);
2653                 __cfqq = next;
2654         }
2655 }
2656
2657 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2658 {
2659         if (unlikely(cfqq == cfqd->active_queue)) {
2660                 __cfq_slice_expired(cfqd, cfqq, 0);
2661                 cfq_schedule_dispatch(cfqd);
2662         }
2663
2664         cfq_put_cooperator(cfqq);
2665
2666         cfq_put_queue(cfqq);
2667 }
2668
2669 static void cfq_init_icq(struct io_cq *icq)
2670 {
2671         struct cfq_io_cq *cic = icq_to_cic(icq);
2672
2673         cic->ttime.last_end_request = jiffies;
2674 }
2675
2676 static void cfq_exit_icq(struct io_cq *icq)
2677 {
2678         struct cfq_io_cq *cic = icq_to_cic(icq);
2679         struct cfq_data *cfqd = cic_to_cfqd(cic);
2680
2681         if (cic->cfqq[BLK_RW_ASYNC]) {
2682                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2683                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2684         }
2685
2686         if (cic->cfqq[BLK_RW_SYNC]) {
2687                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2688                 cic->cfqq[BLK_RW_SYNC] = NULL;
2689         }
2690 }
2691
2692 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2693 {
2694         struct task_struct *tsk = current;
2695         int ioprio_class;
2696
2697         if (!cfq_cfqq_prio_changed(cfqq))
2698                 return;
2699
2700         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2701         switch (ioprio_class) {
2702         default:
2703                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2704         case IOPRIO_CLASS_NONE:
2705                 /*
2706                  * no prio set, inherit CPU scheduling settings
2707                  */
2708                 cfqq->ioprio = task_nice_ioprio(tsk);
2709                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2710                 break;
2711         case IOPRIO_CLASS_RT:
2712                 cfqq->ioprio = task_ioprio(ioc);
2713                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2714                 break;
2715         case IOPRIO_CLASS_BE:
2716                 cfqq->ioprio = task_ioprio(ioc);
2717                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2718                 break;
2719         case IOPRIO_CLASS_IDLE:
2720                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2721                 cfqq->ioprio = 7;
2722                 cfq_clear_cfqq_idle_window(cfqq);
2723                 break;
2724         }
2725
2726         /*
2727          * keep track of original prio settings in case we have to temporarily
2728          * elevate the priority of this queue
2729          */
2730         cfqq->org_ioprio = cfqq->ioprio;
2731         cfq_clear_cfqq_prio_changed(cfqq);
2732 }
2733
2734 static void changed_ioprio(struct cfq_io_cq *cic)
2735 {
2736         struct cfq_data *cfqd = cic_to_cfqd(cic);
2737         struct cfq_queue *cfqq;
2738
2739         if (unlikely(!cfqd))
2740                 return;
2741
2742         cfqq = cic->cfqq[BLK_RW_ASYNC];
2743         if (cfqq) {
2744                 struct cfq_queue *new_cfqq;
2745                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
2746                                                 GFP_ATOMIC);
2747                 if (new_cfqq) {
2748                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2749                         cfq_put_queue(cfqq);
2750                 }
2751         }
2752
2753         cfqq = cic->cfqq[BLK_RW_SYNC];
2754         if (cfqq)
2755                 cfq_mark_cfqq_prio_changed(cfqq);
2756 }
2757
2758 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2759                           pid_t pid, bool is_sync)
2760 {
2761         RB_CLEAR_NODE(&cfqq->rb_node);
2762         RB_CLEAR_NODE(&cfqq->p_node);
2763         INIT_LIST_HEAD(&cfqq->fifo);
2764
2765         cfqq->ref = 0;
2766         cfqq->cfqd = cfqd;
2767
2768         cfq_mark_cfqq_prio_changed(cfqq);
2769
2770         if (is_sync) {
2771                 if (!cfq_class_idle(cfqq))
2772                         cfq_mark_cfqq_idle_window(cfqq);
2773                 cfq_mark_cfqq_sync(cfqq);
2774         }
2775         cfqq->pid = pid;
2776 }
2777
2778 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2779 static void changed_cgroup(struct cfq_io_cq *cic)
2780 {
2781         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2782         struct cfq_data *cfqd = cic_to_cfqd(cic);
2783         struct request_queue *q;
2784
2785         if (unlikely(!cfqd))
2786                 return;
2787
2788         q = cfqd->queue;
2789
2790         if (sync_cfqq) {
2791                 /*
2792                  * Drop reference to sync queue. A new sync queue will be
2793                  * assigned in new group upon arrival of a fresh request.
2794                  */
2795                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2796                 cic_set_cfqq(cic, NULL, 1);
2797                 cfq_put_queue(sync_cfqq);
2798         }
2799 }
2800 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2801
2802 static struct cfq_queue *
2803 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2804                      struct io_context *ioc, gfp_t gfp_mask)
2805 {
2806         struct blkio_cgroup *blkcg;
2807         struct cfq_queue *cfqq, *new_cfqq = NULL;
2808         struct cfq_io_cq *cic;
2809         struct cfq_group *cfqg;
2810
2811 retry:
2812         rcu_read_lock();
2813
2814         blkcg = task_blkio_cgroup(current);
2815
2816         cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
2817
2818         cic = cfq_cic_lookup(cfqd, ioc);
2819         /* cic always exists here */
2820         cfqq = cic_to_cfqq(cic, is_sync);
2821
2822         /*
2823          * Always try a new alloc if we fell back to the OOM cfqq
2824          * originally, since it should just be a temporary situation.
2825          */
2826         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2827                 cfqq = NULL;
2828                 if (new_cfqq) {
2829                         cfqq = new_cfqq;
2830                         new_cfqq = NULL;
2831                 } else if (gfp_mask & __GFP_WAIT) {
2832                         rcu_read_unlock();
2833                         spin_unlock_irq(cfqd->queue->queue_lock);
2834                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2835                                         gfp_mask | __GFP_ZERO,
2836                                         cfqd->queue->node);
2837                         spin_lock_irq(cfqd->queue->queue_lock);
2838                         if (new_cfqq)
2839                                 goto retry;
2840                 } else {
2841                         cfqq = kmem_cache_alloc_node(cfq_pool,
2842                                         gfp_mask | __GFP_ZERO,
2843                                         cfqd->queue->node);
2844                 }
2845
2846                 if (cfqq) {
2847                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2848                         cfq_init_prio_data(cfqq, ioc);
2849                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2850                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2851                 } else
2852                         cfqq = &cfqd->oom_cfqq;
2853         }
2854
2855         if (new_cfqq)
2856                 kmem_cache_free(cfq_pool, new_cfqq);
2857
2858         rcu_read_unlock();
2859         return cfqq;
2860 }
2861
2862 static struct cfq_queue **
2863 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2864 {
2865         switch (ioprio_class) {
2866         case IOPRIO_CLASS_RT:
2867                 return &cfqd->async_cfqq[0][ioprio];
2868         case IOPRIO_CLASS_BE:
2869                 return &cfqd->async_cfqq[1][ioprio];
2870         case IOPRIO_CLASS_IDLE:
2871                 return &cfqd->async_idle_cfqq;
2872         default:
2873                 BUG();
2874         }
2875 }
2876
2877 static struct cfq_queue *
2878 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2879               gfp_t gfp_mask)
2880 {
2881         const int ioprio = task_ioprio(ioc);
2882         const int ioprio_class = task_ioprio_class(ioc);
2883         struct cfq_queue **async_cfqq = NULL;
2884         struct cfq_queue *cfqq = NULL;
2885
2886         if (!is_sync) {
2887                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2888                 cfqq = *async_cfqq;
2889         }
2890
2891         if (!cfqq)
2892                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2893
2894         /*
2895          * pin the queue now that it's allocated, scheduler exit will prune it
2896          */
2897         if (!is_sync && !(*async_cfqq)) {
2898                 cfqq->ref++;
2899                 *async_cfqq = cfqq;
2900         }
2901
2902         cfqq->ref++;
2903         return cfqq;
2904 }
2905
2906 static void
2907 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
2908 {
2909         unsigned long elapsed = jiffies - ttime->last_end_request;
2910         elapsed = min(elapsed, 2UL * slice_idle);
2911
2912         ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
2913         ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
2914         ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
2915 }
2916
2917 static void
2918 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2919                         struct cfq_io_cq *cic)
2920 {
2921         if (cfq_cfqq_sync(cfqq)) {
2922                 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
2923                 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
2924                         cfqd->cfq_slice_idle);
2925         }
2926 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2927         __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
2928 #endif
2929 }
2930
2931 static void
2932 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2933                        struct request *rq)
2934 {
2935         sector_t sdist = 0;
2936         sector_t n_sec = blk_rq_sectors(rq);
2937         if (cfqq->last_request_pos) {
2938                 if (cfqq->last_request_pos < blk_rq_pos(rq))
2939                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2940                 else
2941                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2942         }
2943
2944         cfqq->seek_history <<= 1;
2945         if (blk_queue_nonrot(cfqd->queue))
2946                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2947         else
2948                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2949 }
2950
2951 /*
2952  * Disable idle window if the process thinks too long or seeks so much that
2953  * it doesn't matter
2954  */
2955 static void
2956 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2957                        struct cfq_io_cq *cic)
2958 {
2959         int old_idle, enable_idle;
2960
2961         /*
2962          * Don't idle for async or idle io prio class
2963          */
2964         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2965                 return;
2966
2967         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2968
2969         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2970                 cfq_mark_cfqq_deep(cfqq);
2971
2972         if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
2973                 enable_idle = 0;
2974         else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
2975                  !cfqd->cfq_slice_idle ||
2976                  (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
2977                 enable_idle = 0;
2978         else if (sample_valid(cic->ttime.ttime_samples)) {
2979                 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
2980                         enable_idle = 0;
2981                 else
2982                         enable_idle = 1;
2983         }
2984
2985         if (old_idle != enable_idle) {
2986                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2987                 if (enable_idle)
2988                         cfq_mark_cfqq_idle_window(cfqq);
2989                 else
2990                         cfq_clear_cfqq_idle_window(cfqq);
2991         }
2992 }
2993
2994 /*
2995  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2996  * no or if we aren't sure, a 1 will cause a preempt.
2997  */
2998 static bool
2999 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3000                    struct request *rq)
3001 {
3002         struct cfq_queue *cfqq;
3003
3004         cfqq = cfqd->active_queue;
3005         if (!cfqq)
3006                 return false;
3007
3008         if (cfq_class_idle(new_cfqq))
3009                 return false;
3010
3011         if (cfq_class_idle(cfqq))
3012                 return true;
3013
3014         /*
3015          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3016          */
3017         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3018                 return false;
3019
3020         /*
3021          * if the new request is sync, but the currently running queue is
3022          * not, let the sync request have priority.
3023          */
3024         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3025                 return true;
3026
3027         if (new_cfqq->cfqg != cfqq->cfqg)
3028                 return false;
3029
3030         if (cfq_slice_used(cfqq))
3031                 return true;
3032
3033         /* Allow preemption only if we are idling on sync-noidle tree */
3034         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3035             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3036             new_cfqq->service_tree->count == 2 &&
3037             RB_EMPTY_ROOT(&cfqq->sort_list))
3038                 return true;
3039
3040         /*
3041          * So both queues are sync. Let the new request get disk time if
3042          * it's a metadata request and the current queue is doing regular IO.
3043          */
3044         if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3045                 return true;
3046
3047         /*
3048          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3049          */
3050         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3051                 return true;
3052
3053         /* An idle queue should not be idle now for some reason */
3054         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3055                 return true;
3056
3057         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3058                 return false;
3059
3060         /*
3061          * if this request is as-good as one we would expect from the
3062          * current cfqq, let it preempt
3063          */
3064         if (cfq_rq_close(cfqd, cfqq, rq))
3065                 return true;
3066
3067         return false;
3068 }
3069
3070 /*
3071  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3072  * let it have half of its nominal slice.
3073  */
3074 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3075 {
3076         enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3077
3078         cfq_log_cfqq(cfqd, cfqq, "preempt");
3079         cfq_slice_expired(cfqd, 1);
3080
3081         /*
3082          * workload type is changed, don't save slice, otherwise preempt
3083          * doesn't happen
3084          */
3085         if (old_type != cfqq_type(cfqq))
3086                 cfqq->cfqg->saved_workload_slice = 0;
3087
3088         /*
3089          * Put the new queue at the front of the of the current list,
3090          * so we know that it will be selected next.
3091          */
3092         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3093
3094         cfq_service_tree_add(cfqd, cfqq, 1);
3095
3096         cfqq->slice_end = 0;
3097         cfq_mark_cfqq_slice_new(cfqq);
3098 }
3099
3100 /*
3101  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3102  * something we should do about it
3103  */
3104 static void
3105 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3106                 struct request *rq)
3107 {
3108         struct cfq_io_cq *cic = RQ_CIC(rq);
3109
3110         cfqd->rq_queued++;
3111         if (rq->cmd_flags & REQ_PRIO)
3112                 cfqq->prio_pending++;
3113
3114         cfq_update_io_thinktime(cfqd, cfqq, cic);
3115         cfq_update_io_seektime(cfqd, cfqq, rq);
3116         cfq_update_idle_window(cfqd, cfqq, cic);
3117
3118         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3119
3120         if (cfqq == cfqd->active_queue) {
3121                 /*
3122                  * Remember that we saw a request from this process, but
3123                  * don't start queuing just yet. Otherwise we risk seeing lots
3124                  * of tiny requests, because we disrupt the normal plugging
3125                  * and merging. If the request is already larger than a single
3126                  * page, let it rip immediately. For that case we assume that
3127                  * merging is already done. Ditto for a busy system that
3128                  * has other work pending, don't risk delaying until the
3129                  * idle timer unplug to continue working.
3130                  */
3131                 if (cfq_cfqq_wait_request(cfqq)) {
3132                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3133                             cfqd->busy_queues > 1) {
3134                                 cfq_del_timer(cfqd, cfqq);
3135                                 cfq_clear_cfqq_wait_request(cfqq);
3136                                 __blk_run_queue(cfqd->queue);
3137                         } else {
3138                                 cfq_blkiocg_update_idle_time_stats(
3139                                                 cfqg_to_blkg(cfqq->cfqg));
3140                                 cfq_mark_cfqq_must_dispatch(cfqq);
3141                         }
3142                 }
3143         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3144                 /*
3145                  * not the active queue - expire current slice if it is
3146                  * idle and has expired it's mean thinktime or this new queue
3147                  * has some old slice time left and is of higher priority or
3148                  * this new queue is RT and the current one is BE
3149                  */
3150                 cfq_preempt_queue(cfqd, cfqq);
3151                 __blk_run_queue(cfqd->queue);
3152         }
3153 }
3154
3155 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3156 {
3157         struct cfq_data *cfqd = q->elevator->elevator_data;
3158         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3159
3160         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3161         cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
3162
3163         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3164         list_add_tail(&rq->queuelist, &cfqq->fifo);
3165         cfq_add_rq_rb(rq);
3166         cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
3167                                         cfqg_to_blkg(cfqd->serving_group),
3168                                         rq_data_dir(rq), rq_is_sync(rq));
3169         cfq_rq_enqueued(cfqd, cfqq, rq);
3170 }
3171
3172 /*
3173  * Update hw_tag based on peak queue depth over 50 samples under
3174  * sufficient load.
3175  */
3176 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3177 {
3178         struct cfq_queue *cfqq = cfqd->active_queue;
3179
3180         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3181                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3182
3183         if (cfqd->hw_tag == 1)
3184                 return;
3185
3186         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3187             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3188                 return;
3189
3190         /*
3191          * If active queue hasn't enough requests and can idle, cfq might not
3192          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3193          * case
3194          */
3195         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3196             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3197             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3198                 return;
3199
3200         if (cfqd->hw_tag_samples++ < 50)
3201                 return;
3202
3203         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3204                 cfqd->hw_tag = 1;
3205         else
3206                 cfqd->hw_tag = 0;
3207 }
3208
3209 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3210 {
3211         struct cfq_io_cq *cic = cfqd->active_cic;
3212
3213         /* If the queue already has requests, don't wait */
3214         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3215                 return false;
3216
3217         /* If there are other queues in the group, don't wait */
3218         if (cfqq->cfqg->nr_cfqq > 1)
3219                 return false;
3220
3221         /* the only queue in the group, but think time is big */
3222         if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3223                 return false;
3224
3225         if (cfq_slice_used(cfqq))
3226                 return true;
3227
3228         /* if slice left is less than think time, wait busy */
3229         if (cic && sample_valid(cic->ttime.ttime_samples)
3230             && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3231                 return true;
3232
3233         /*
3234          * If think times is less than a jiffy than ttime_mean=0 and above
3235          * will not be true. It might happen that slice has not expired yet
3236          * but will expire soon (4-5 ns) during select_queue(). To cover the
3237          * case where think time is less than a jiffy, mark the queue wait
3238          * busy if only 1 jiffy is left in the slice.
3239          */
3240         if (cfqq->slice_end - jiffies == 1)
3241                 return true;
3242
3243         return false;
3244 }
3245
3246 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3247 {
3248         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3249         struct cfq_data *cfqd = cfqq->cfqd;
3250         const int sync = rq_is_sync(rq);
3251         unsigned long now;
3252
3253         now = jiffies;
3254         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3255                      !!(rq->cmd_flags & REQ_NOIDLE));
3256
3257         cfq_update_hw_tag(cfqd);
3258
3259         WARN_ON(!cfqd->rq_in_driver);
3260         WARN_ON(!cfqq->dispatched);
3261         cfqd->rq_in_driver--;
3262         cfqq->dispatched--;
3263         (RQ_CFQG(rq))->dispatched--;
3264         cfq_blkiocg_update_completion_stats(cfqg_to_blkg(cfqq->cfqg),
3265                         rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3266                         rq_data_dir(rq), rq_is_sync(rq));
3267
3268         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3269
3270         if (sync) {
3271                 struct cfq_rb_root *service_tree;
3272
3273                 RQ_CIC(rq)->ttime.last_end_request = now;
3274
3275                 if (cfq_cfqq_on_rr(cfqq))
3276                         service_tree = cfqq->service_tree;
3277                 else
3278                         service_tree = service_tree_for(cfqq->cfqg,
3279                                 cfqq_prio(cfqq), cfqq_type(cfqq));
3280                 service_tree->ttime.last_end_request = now;
3281                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3282                         cfqd->last_delayed_sync = now;
3283         }
3284
3285 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3286         cfqq->cfqg->ttime.last_end_request = now;
3287 #endif
3288
3289         /*
3290          * If this is the active queue, check if it needs to be expired,
3291          * or if we want to idle in case it has no pending requests.
3292          */
3293         if (cfqd->active_queue == cfqq) {
3294                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3295
3296                 if (cfq_cfqq_slice_new(cfqq)) {
3297                         cfq_set_prio_slice(cfqd, cfqq);
3298                         cfq_clear_cfqq_slice_new(cfqq);
3299                 }
3300
3301                 /*
3302                  * Should we wait for next request to come in before we expire
3303                  * the queue.
3304                  */
3305                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3306                         unsigned long extend_sl = cfqd->cfq_slice_idle;
3307                         if (!cfqd->cfq_slice_idle)
3308                                 extend_sl = cfqd->cfq_group_idle;
3309                         cfqq->slice_end = jiffies + extend_sl;
3310                         cfq_mark_cfqq_wait_busy(cfqq);
3311                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3312                 }
3313
3314                 /*
3315                  * Idling is not enabled on:
3316                  * - expired queues
3317                  * - idle-priority queues
3318                  * - async queues
3319                  * - queues with still some requests queued
3320                  * - when there is a close cooperator
3321                  */
3322                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3323                         cfq_slice_expired(cfqd, 1);
3324                 else if (sync && cfqq_empty &&
3325                          !cfq_close_cooperator(cfqd, cfqq)) {
3326                         cfq_arm_slice_timer(cfqd);
3327                 }
3328         }
3329
3330         if (!cfqd->rq_in_driver)
3331                 cfq_schedule_dispatch(cfqd);
3332 }
3333
3334 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3335 {
3336         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3337                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3338                 return ELV_MQUEUE_MUST;
3339         }
3340
3341         return ELV_MQUEUE_MAY;
3342 }
3343
3344 static int cfq_may_queue(struct request_queue *q, int rw)
3345 {
3346         struct cfq_data *cfqd = q->elevator->elevator_data;
3347         struct task_struct *tsk = current;
3348         struct cfq_io_cq *cic;
3349         struct cfq_queue *cfqq;
3350
3351         /*
3352          * don't force setup of a queue from here, as a call to may_queue
3353          * does not necessarily imply that a request actually will be queued.
3354          * so just lookup a possibly existing queue, or return 'may queue'
3355          * if that fails
3356          */
3357         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3358         if (!cic)
3359                 return ELV_MQUEUE_MAY;
3360
3361         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3362         if (cfqq) {
3363                 cfq_init_prio_data(cfqq, cic->icq.ioc);
3364
3365                 return __cfq_may_queue(cfqq);
3366         }
3367
3368         return ELV_MQUEUE_MAY;
3369 }
3370
3371 /*
3372  * queue lock held here
3373  */
3374 static void cfq_put_request(struct request *rq)
3375 {
3376         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3377
3378         if (cfqq) {
3379                 const int rw = rq_data_dir(rq);
3380
3381                 BUG_ON(!cfqq->allocated[rw]);
3382                 cfqq->allocated[rw]--;
3383
3384                 /* Put down rq reference on cfqg */
3385                 cfq_put_cfqg(RQ_CFQG(rq));
3386                 rq->elv.priv[0] = NULL;
3387                 rq->elv.priv[1] = NULL;
3388
3389                 cfq_put_queue(cfqq);
3390         }
3391 }
3392
3393 static struct cfq_queue *
3394 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3395                 struct cfq_queue *cfqq)
3396 {
3397         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3398         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3399         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3400         cfq_put_queue(cfqq);
3401         return cic_to_cfqq(cic, 1);
3402 }
3403
3404 /*
3405  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3406  * was the last process referring to said cfqq.
3407  */
3408 static struct cfq_queue *
3409 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3410 {
3411         if (cfqq_process_refs(cfqq) == 1) {
3412                 cfqq->pid = current->pid;
3413                 cfq_clear_cfqq_coop(cfqq);
3414                 cfq_clear_cfqq_split_coop(cfqq);
3415                 return cfqq;
3416         }
3417
3418         cic_set_cfqq(cic, NULL, 1);
3419
3420         cfq_put_cooperator(cfqq);
3421
3422         cfq_put_queue(cfqq);
3423         return NULL;
3424 }
3425 /*
3426  * Allocate cfq data structures associated with this request.
3427  */
3428 static int
3429 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3430 {
3431         struct cfq_data *cfqd = q->elevator->elevator_data;
3432         struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3433         const int rw = rq_data_dir(rq);
3434         const bool is_sync = rq_is_sync(rq);
3435         struct cfq_queue *cfqq;
3436         unsigned int changed;
3437
3438         might_sleep_if(gfp_mask & __GFP_WAIT);
3439
3440         spin_lock_irq(q->queue_lock);
3441
3442         /* handle changed notifications */
3443         changed = icq_get_changed(&cic->icq);
3444         if (unlikely(changed & ICQ_IOPRIO_CHANGED))
3445                 changed_ioprio(cic);
3446 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3447         if (unlikely(changed & ICQ_CGROUP_CHANGED))
3448                 changed_cgroup(cic);
3449 #endif
3450
3451 new_queue:
3452         cfqq = cic_to_cfqq(cic, is_sync);
3453         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3454                 cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
3455                 cic_set_cfqq(cic, cfqq, is_sync);
3456         } else {
3457                 /*
3458                  * If the queue was seeky for too long, break it apart.
3459                  */
3460                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3461                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3462                         cfqq = split_cfqq(cic, cfqq);
3463                         if (!cfqq)
3464                                 goto new_queue;
3465                 }
3466
3467                 /*
3468                  * Check to see if this queue is scheduled to merge with
3469                  * another, closely cooperating queue.  The merging of
3470                  * queues happens here as it must be done in process context.
3471                  * The reference on new_cfqq was taken in merge_cfqqs.
3472                  */
3473                 if (cfqq->new_cfqq)
3474                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3475         }
3476
3477         cfqq->allocated[rw]++;
3478
3479         cfqq->ref++;
3480         rq->elv.priv[0] = cfqq;
3481         rq->elv.priv[1] = cfq_ref_get_cfqg(cfqq->cfqg);
3482         spin_unlock_irq(q->queue_lock);
3483         return 0;
3484 }
3485
3486 static void cfq_kick_queue(struct work_struct *work)
3487 {
3488         struct cfq_data *cfqd =
3489                 container_of(work, struct cfq_data, unplug_work);
3490         struct request_queue *q = cfqd->queue;
3491
3492         spin_lock_irq(q->queue_lock);
3493         __blk_run_queue(cfqd->queue);
3494         spin_unlock_irq(q->queue_lock);
3495 }
3496
3497 /*
3498  * Timer running if the active_queue is currently idling inside its time slice
3499  */
3500 static void cfq_idle_slice_timer(unsigned long data)
3501 {
3502         struct cfq_data *cfqd = (struct cfq_data *) data;
3503         struct cfq_queue *cfqq;
3504         unsigned long flags;
3505         int timed_out = 1;
3506
3507         cfq_log(cfqd, "idle timer fired");
3508
3509         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3510
3511         cfqq = cfqd->active_queue;
3512         if (cfqq) {
3513                 timed_out = 0;
3514
3515                 /*
3516                  * We saw a request before the queue expired, let it through
3517                  */
3518                 if (cfq_cfqq_must_dispatch(cfqq))
3519                         goto out_kick;
3520
3521                 /*
3522                  * expired
3523                  */
3524                 if (cfq_slice_used(cfqq))
3525                         goto expire;
3526
3527                 /*
3528                  * only expire and reinvoke request handler, if there are
3529                  * other queues with pending requests
3530                  */
3531                 if (!cfqd->busy_queues)
3532                         goto out_cont;
3533
3534                 /*
3535                  * not expired and it has a request pending, let it dispatch
3536                  */
3537                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3538                         goto out_kick;
3539
3540                 /*
3541                  * Queue depth flag is reset only when the idle didn't succeed
3542                  */
3543                 cfq_clear_cfqq_deep(cfqq);
3544         }
3545 expire:
3546         cfq_slice_expired(cfqd, timed_out);
3547 out_kick:
3548         cfq_schedule_dispatch(cfqd);
3549 out_cont:
3550         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3551 }
3552
3553 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3554 {
3555         del_timer_sync(&cfqd->idle_slice_timer);
3556         cancel_work_sync(&cfqd->unplug_work);
3557 }
3558
3559 static void cfq_put_async_queues(struct cfq_data *cfqd)
3560 {
3561         int i;
3562
3563         for (i = 0; i < IOPRIO_BE_NR; i++) {
3564                 if (cfqd->async_cfqq[0][i])
3565                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3566                 if (cfqd->async_cfqq[1][i])
3567                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3568         }
3569
3570         if (cfqd->async_idle_cfqq)
3571                 cfq_put_queue(cfqd->async_idle_cfqq);
3572 }
3573
3574 static void cfq_exit_queue(struct elevator_queue *e)
3575 {
3576         struct cfq_data *cfqd = e->elevator_data;
3577         struct request_queue *q = cfqd->queue;
3578         bool wait = false;
3579
3580         cfq_shutdown_timer_wq(cfqd);
3581
3582         spin_lock_irq(q->queue_lock);
3583
3584         if (cfqd->active_queue)
3585                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3586
3587         cfq_put_async_queues(cfqd);
3588         cfq_release_cfq_groups(cfqd);
3589
3590         /*
3591          * If there are groups which we could not unlink from blkcg list,
3592          * wait for a rcu period for them to be freed.
3593          */
3594         if (cfqd->nr_blkcg_linked_grps)
3595                 wait = true;
3596
3597         spin_unlock_irq(q->queue_lock);
3598
3599         cfq_shutdown_timer_wq(cfqd);
3600
3601         /*
3602          * Wait for cfqg->blkg->key accessors to exit their grace periods.
3603          * Do this wait only if there are other unlinked groups out
3604          * there. This can happen if cgroup deletion path claimed the
3605          * responsibility of cleaning up a group before queue cleanup code
3606          * get to the group.
3607          *
3608          * Do not call synchronize_rcu() unconditionally as there are drivers
3609          * which create/delete request queue hundreds of times during scan/boot
3610          * and synchronize_rcu() can take significant time and slow down boot.
3611          */
3612         if (wait)
3613                 synchronize_rcu();
3614
3615 #ifndef CONFIG_CFQ_GROUP_IOSCHED
3616         kfree(cfqd->root_group);
3617 #endif
3618         kfree(cfqd);
3619 }
3620
3621 static int cfq_init_queue(struct request_queue *q)
3622 {
3623         struct cfq_data *cfqd;
3624         struct blkio_group *blkg __maybe_unused;
3625         int i;
3626
3627         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3628         if (!cfqd)
3629                 return -ENOMEM;
3630
3631         cfqd->queue = q;
3632         q->elevator->elevator_data = cfqd;
3633
3634         /* Init root service tree */
3635         cfqd->grp_service_tree = CFQ_RB_ROOT;
3636
3637         /* Init root group and prefer root group over other groups by default */
3638 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3639         rcu_read_lock();
3640         spin_lock_irq(q->queue_lock);
3641
3642         blkg = blkg_lookup_create(&blkio_root_cgroup, q, BLKIO_POLICY_PROP,
3643                                   true);
3644         if (!IS_ERR(blkg))
3645                 cfqd->root_group = blkg_to_cfqg(blkg);
3646
3647         spin_unlock_irq(q->queue_lock);
3648         rcu_read_unlock();
3649 #else
3650         cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
3651                                         GFP_KERNEL, cfqd->queue->node);
3652         if (cfqd->root_group)
3653                 cfq_init_cfqg_base(cfqd->root_group);
3654 #endif
3655         if (!cfqd->root_group) {
3656                 kfree(cfqd);
3657                 return -ENOMEM;
3658         }
3659
3660         cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
3661
3662         /*
3663          * Not strictly needed (since RB_ROOT just clears the node and we
3664          * zeroed cfqd on alloc), but better be safe in case someone decides
3665          * to add magic to the rb code
3666          */
3667         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3668                 cfqd->prio_trees[i] = RB_ROOT;
3669
3670         /*
3671          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3672          * Grab a permanent reference to it, so that the normal code flow
3673          * will not attempt to free it.  oom_cfqq is linked to root_group
3674          * but shouldn't hold a reference as it'll never be unlinked.  Lose
3675          * the reference from linking right away.
3676          */
3677         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3678         cfqd->oom_cfqq.ref++;
3679         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
3680         cfq_put_cfqg(cfqd->root_group);
3681
3682         init_timer(&cfqd->idle_slice_timer);
3683         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3684         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3685
3686         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3687
3688         cfqd->cfq_quantum = cfq_quantum;
3689         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3690         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3691         cfqd->cfq_back_max = cfq_back_max;
3692         cfqd->cfq_back_penalty = cfq_back_penalty;
3693         cfqd->cfq_slice[0] = cfq_slice_async;
3694         cfqd->cfq_slice[1] = cfq_slice_sync;
3695         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3696         cfqd->cfq_slice_idle = cfq_slice_idle;
3697         cfqd->cfq_group_idle = cfq_group_idle;
3698         cfqd->cfq_latency = 1;
3699         cfqd->hw_tag = -1;
3700         /*
3701          * we optimistically start assuming sync ops weren't delayed in last
3702          * second, in order to have larger depth for async operations.
3703          */
3704         cfqd->last_delayed_sync = jiffies - HZ;
3705         return 0;
3706 }
3707
3708 /*
3709  * sysfs parts below -->
3710  */
3711 static ssize_t
3712 cfq_var_show(unsigned int var, char *page)
3713 {
3714         return sprintf(page, "%d\n", var);
3715 }
3716
3717 static ssize_t
3718 cfq_var_store(unsigned int *var, const char *page, size_t count)
3719 {
3720         char *p = (char *) page;
3721
3722         *var = simple_strtoul(p, &p, 10);
3723         return count;
3724 }
3725
3726 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3727 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3728 {                                                                       \
3729         struct cfq_data *cfqd = e->elevator_data;                       \
3730         unsigned int __data = __VAR;                                    \
3731         if (__CONV)                                                     \
3732                 __data = jiffies_to_msecs(__data);                      \
3733         return cfq_var_show(__data, (page));                            \
3734 }
3735 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3736 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3737 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3738 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3739 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3740 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3741 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3742 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3743 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3744 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3745 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3746 #undef SHOW_FUNCTION
3747
3748 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3749 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3750 {                                                                       \
3751         struct cfq_data *cfqd = e->elevator_data;                       \
3752         unsigned int __data;                                            \
3753         int ret = cfq_var_store(&__data, (page), count);                \
3754         if (__data < (MIN))                                             \
3755                 __data = (MIN);                                         \
3756         else if (__data > (MAX))                                        \
3757                 __data = (MAX);                                         \
3758         if (__CONV)                                                     \
3759                 *(__PTR) = msecs_to_jiffies(__data);                    \
3760         else                                                            \
3761                 *(__PTR) = __data;                                      \
3762         return ret;                                                     \
3763 }
3764 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3765 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3766                 UINT_MAX, 1);
3767 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3768                 UINT_MAX, 1);
3769 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3770 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3771                 UINT_MAX, 0);
3772 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3773 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
3774 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3775 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3776 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3777                 UINT_MAX, 0);
3778 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3779 #undef STORE_FUNCTION
3780
3781 #define CFQ_ATTR(name) \
3782         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3783
3784 static struct elv_fs_entry cfq_attrs[] = {
3785         CFQ_ATTR(quantum),
3786         CFQ_ATTR(fifo_expire_sync),
3787         CFQ_ATTR(fifo_expire_async),
3788         CFQ_ATTR(back_seek_max),
3789         CFQ_ATTR(back_seek_penalty),
3790         CFQ_ATTR(slice_sync),
3791         CFQ_ATTR(slice_async),
3792         CFQ_ATTR(slice_async_rq),
3793         CFQ_ATTR(slice_idle),
3794         CFQ_ATTR(group_idle),
3795         CFQ_ATTR(low_latency),
3796         __ATTR_NULL
3797 };
3798
3799 static struct elevator_type iosched_cfq = {
3800         .ops = {
3801                 .elevator_merge_fn =            cfq_merge,
3802                 .elevator_merged_fn =           cfq_merged_request,
3803                 .elevator_merge_req_fn =        cfq_merged_requests,
3804                 .elevator_allow_merge_fn =      cfq_allow_merge,
3805                 .elevator_bio_merged_fn =       cfq_bio_merged,
3806                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3807                 .elevator_add_req_fn =          cfq_insert_request,
3808                 .elevator_activate_req_fn =     cfq_activate_request,
3809                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3810                 .elevator_completed_req_fn =    cfq_completed_request,
3811                 .elevator_former_req_fn =       elv_rb_former_request,
3812                 .elevator_latter_req_fn =       elv_rb_latter_request,
3813                 .elevator_init_icq_fn =         cfq_init_icq,
3814                 .elevator_exit_icq_fn =         cfq_exit_icq,
3815                 .elevator_set_req_fn =          cfq_set_request,
3816                 .elevator_put_req_fn =          cfq_put_request,
3817                 .elevator_may_queue_fn =        cfq_may_queue,
3818                 .elevator_init_fn =             cfq_init_queue,
3819                 .elevator_exit_fn =             cfq_exit_queue,
3820         },
3821         .icq_size       =       sizeof(struct cfq_io_cq),
3822         .icq_align      =       __alignof__(struct cfq_io_cq),
3823         .elevator_attrs =       cfq_attrs,
3824         .elevator_name  =       "cfq",
3825         .elevator_owner =       THIS_MODULE,
3826 };
3827
3828 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3829 static struct blkio_policy_type blkio_policy_cfq = {
3830         .ops = {
3831                 .blkio_init_group_fn =          cfq_init_blkio_group,
3832                 .blkio_link_group_fn =          cfq_link_blkio_group,
3833                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
3834                 .blkio_clear_queue_fn = cfq_clear_queue,
3835                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3836         },
3837         .plid = BLKIO_POLICY_PROP,
3838         .pdata_size = sizeof(struct cfq_group),
3839 };
3840 #endif
3841
3842 static int __init cfq_init(void)
3843 {
3844         int ret;
3845
3846         /*
3847          * could be 0 on HZ < 1000 setups
3848          */
3849         if (!cfq_slice_async)
3850                 cfq_slice_async = 1;
3851         if (!cfq_slice_idle)
3852                 cfq_slice_idle = 1;
3853
3854 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3855         if (!cfq_group_idle)
3856                 cfq_group_idle = 1;
3857 #else
3858                 cfq_group_idle = 0;
3859 #endif
3860         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3861         if (!cfq_pool)
3862                 return -ENOMEM;
3863
3864         ret = elv_register(&iosched_cfq);
3865         if (ret) {
3866                 kmem_cache_destroy(cfq_pool);
3867                 return ret;
3868         }
3869
3870 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3871         blkio_policy_register(&blkio_policy_cfq);
3872 #endif
3873         return 0;
3874 }
3875
3876 static void __exit cfq_exit(void)
3877 {
3878 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3879         blkio_policy_unregister(&blkio_policy_cfq);
3880 #endif
3881         elv_unregister(&iosched_cfq);
3882         kmem_cache_destroy(cfq_pool);
3883 }
3884
3885 module_init(cfq_init);
3886 module_exit(cfq_exit);
3887
3888 MODULE_AUTHOR("Jens Axboe");
3889 MODULE_LICENSE("GPL");
3890 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");