]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/cfq-iosched.c
blkcg: move body parsing from blkg_conf_prep() to its callers
[karo-tx-linux.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
19
20 /*
21  * tunables
22  */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39  * offset from end of service tree
40  */
41 #define CFQ_IDLE_DELAY          (HZ / 5)
42
43 /*
44  * below this threshold, we consider thinktime immediate
45  */
46 #define CFQ_MIN_TT              (2)
47
48 #define CFQ_SLICE_SCALE         (5)
49 #define CFQ_HW_QUEUE_MIN        (5)
50 #define CFQ_SERVICE_SHIFT       12
51
52 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq)              icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples)   ((samples) > 80)
68 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
69
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_MIN          10
72 #define CFQ_WEIGHT_MAX          1000
73 #define CFQ_WEIGHT_DEFAULT      500
74
75 struct cfq_ttime {
76         unsigned long last_end_request;
77
78         unsigned long ttime_total;
79         unsigned long ttime_samples;
80         unsigned long ttime_mean;
81 };
82
83 /*
84  * Most of our rbtree usage is for sorting with min extraction, so
85  * if we cache the leftmost node we don't have to walk down the tree
86  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87  * move this into the elevator for the rq sorting as well.
88  */
89 struct cfq_rb_root {
90         struct rb_root rb;
91         struct rb_node *left;
92         unsigned count;
93         u64 min_vdisktime;
94         struct cfq_ttime ttime;
95 };
96 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, \
97                         .ttime = {.last_end_request = jiffies,},}
98
99 /*
100  * Per process-grouping structure
101  */
102 struct cfq_queue {
103         /* reference count */
104         int ref;
105         /* various state flags, see below */
106         unsigned int flags;
107         /* parent cfq_data */
108         struct cfq_data *cfqd;
109         /* service_tree member */
110         struct rb_node rb_node;
111         /* service_tree key */
112         unsigned long rb_key;
113         /* prio tree member */
114         struct rb_node p_node;
115         /* prio tree root we belong to, if any */
116         struct rb_root *p_root;
117         /* sorted list of pending requests */
118         struct rb_root sort_list;
119         /* if fifo isn't expired, next request to serve */
120         struct request *next_rq;
121         /* requests queued in sort_list */
122         int queued[2];
123         /* currently allocated requests */
124         int allocated[2];
125         /* fifo list of requests in sort_list */
126         struct list_head fifo;
127
128         /* time when queue got scheduled in to dispatch first request. */
129         unsigned long dispatch_start;
130         unsigned int allocated_slice;
131         unsigned int slice_dispatch;
132         /* time when first request from queue completed and slice started. */
133         unsigned long slice_start;
134         unsigned long slice_end;
135         long slice_resid;
136
137         /* pending priority requests */
138         int prio_pending;
139         /* number of requests that are on the dispatch list or inside driver */
140         int dispatched;
141
142         /* io prio of this group */
143         unsigned short ioprio, org_ioprio;
144         unsigned short ioprio_class;
145
146         pid_t pid;
147
148         u32 seek_history;
149         sector_t last_request_pos;
150
151         struct cfq_rb_root *service_tree;
152         struct cfq_queue *new_cfqq;
153         struct cfq_group *cfqg;
154         /* Number of sectors dispatched from queue in single dispatch round */
155         unsigned long nr_sectors;
156 };
157
158 /*
159  * First index in the service_trees.
160  * IDLE is handled separately, so it has negative index
161  */
162 enum wl_class_t {
163         BE_WORKLOAD = 0,
164         RT_WORKLOAD = 1,
165         IDLE_WORKLOAD = 2,
166         CFQ_PRIO_NR,
167 };
168
169 /*
170  * Second index in the service_trees.
171  */
172 enum wl_type_t {
173         ASYNC_WORKLOAD = 0,
174         SYNC_NOIDLE_WORKLOAD = 1,
175         SYNC_WORKLOAD = 2
176 };
177
178 struct cfqg_stats {
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180         /* number of ios merged */
181         struct blkg_rwstat              merged;
182         /* total time spent on device in ns, may not be accurate w/ queueing */
183         struct blkg_rwstat              service_time;
184         /* total time spent waiting in scheduler queue in ns */
185         struct blkg_rwstat              wait_time;
186         /* number of IOs queued up */
187         struct blkg_rwstat              queued;
188         /* total disk time and nr sectors dispatched by this group */
189         struct blkg_stat                time;
190 #ifdef CONFIG_DEBUG_BLK_CGROUP
191         /* time not charged to this cgroup */
192         struct blkg_stat                unaccounted_time;
193         /* sum of number of ios queued across all samples */
194         struct blkg_stat                avg_queue_size_sum;
195         /* count of samples taken for average */
196         struct blkg_stat                avg_queue_size_samples;
197         /* how many times this group has been removed from service tree */
198         struct blkg_stat                dequeue;
199         /* total time spent waiting for it to be assigned a timeslice. */
200         struct blkg_stat                group_wait_time;
201         /* time spent idling for this blkcg_gq */
202         struct blkg_stat                idle_time;
203         /* total time with empty current active q with other requests queued */
204         struct blkg_stat                empty_time;
205         /* fields after this shouldn't be cleared on stat reset */
206         uint64_t                        start_group_wait_time;
207         uint64_t                        start_idle_time;
208         uint64_t                        start_empty_time;
209         uint16_t                        flags;
210 #endif  /* CONFIG_DEBUG_BLK_CGROUP */
211 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
212 };
213
214 /* Per-cgroup data */
215 struct cfq_group_data {
216         /* must be the first member */
217         struct blkcg_policy_data cpd;
218
219         unsigned int weight;
220         unsigned int leaf_weight;
221 };
222
223 /* This is per cgroup per device grouping structure */
224 struct cfq_group {
225         /* must be the first member */
226         struct blkg_policy_data pd;
227
228         /* group service_tree member */
229         struct rb_node rb_node;
230
231         /* group service_tree key */
232         u64 vdisktime;
233
234         /*
235          * The number of active cfqgs and sum of their weights under this
236          * cfqg.  This covers this cfqg's leaf_weight and all children's
237          * weights, but does not cover weights of further descendants.
238          *
239          * If a cfqg is on the service tree, it's active.  An active cfqg
240          * also activates its parent and contributes to the children_weight
241          * of the parent.
242          */
243         int nr_active;
244         unsigned int children_weight;
245
246         /*
247          * vfraction is the fraction of vdisktime that the tasks in this
248          * cfqg are entitled to.  This is determined by compounding the
249          * ratios walking up from this cfqg to the root.
250          *
251          * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
252          * vfractions on a service tree is approximately 1.  The sum may
253          * deviate a bit due to rounding errors and fluctuations caused by
254          * cfqgs entering and leaving the service tree.
255          */
256         unsigned int vfraction;
257
258         /*
259          * There are two weights - (internal) weight is the weight of this
260          * cfqg against the sibling cfqgs.  leaf_weight is the wight of
261          * this cfqg against the child cfqgs.  For the root cfqg, both
262          * weights are kept in sync for backward compatibility.
263          */
264         unsigned int weight;
265         unsigned int new_weight;
266         unsigned int dev_weight;
267
268         unsigned int leaf_weight;
269         unsigned int new_leaf_weight;
270         unsigned int dev_leaf_weight;
271
272         /* number of cfqq currently on this group */
273         int nr_cfqq;
274
275         /*
276          * Per group busy queues average. Useful for workload slice calc. We
277          * create the array for each prio class but at run time it is used
278          * only for RT and BE class and slot for IDLE class remains unused.
279          * This is primarily done to avoid confusion and a gcc warning.
280          */
281         unsigned int busy_queues_avg[CFQ_PRIO_NR];
282         /*
283          * rr lists of queues with requests. We maintain service trees for
284          * RT and BE classes. These trees are subdivided in subclasses
285          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
286          * class there is no subclassification and all the cfq queues go on
287          * a single tree service_tree_idle.
288          * Counts are embedded in the cfq_rb_root
289          */
290         struct cfq_rb_root service_trees[2][3];
291         struct cfq_rb_root service_tree_idle;
292
293         unsigned long saved_wl_slice;
294         enum wl_type_t saved_wl_type;
295         enum wl_class_t saved_wl_class;
296
297         /* number of requests that are on the dispatch list or inside driver */
298         int dispatched;
299         struct cfq_ttime ttime;
300         struct cfqg_stats stats;        /* stats for this cfqg */
301
302         /* async queue for each priority case */
303         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
304         struct cfq_queue *async_idle_cfqq;
305
306 };
307
308 struct cfq_io_cq {
309         struct io_cq            icq;            /* must be the first member */
310         struct cfq_queue        *cfqq[2];
311         struct cfq_ttime        ttime;
312         int                     ioprio;         /* the current ioprio */
313 #ifdef CONFIG_CFQ_GROUP_IOSCHED
314         uint64_t                blkcg_serial_nr; /* the current blkcg serial */
315 #endif
316 };
317
318 /*
319  * Per block device queue structure
320  */
321 struct cfq_data {
322         struct request_queue *queue;
323         /* Root service tree for cfq_groups */
324         struct cfq_rb_root grp_service_tree;
325         struct cfq_group *root_group;
326
327         /*
328          * The priority currently being served
329          */
330         enum wl_class_t serving_wl_class;
331         enum wl_type_t serving_wl_type;
332         unsigned long workload_expires;
333         struct cfq_group *serving_group;
334
335         /*
336          * Each priority tree is sorted by next_request position.  These
337          * trees are used when determining if two or more queues are
338          * interleaving requests (see cfq_close_cooperator).
339          */
340         struct rb_root prio_trees[CFQ_PRIO_LISTS];
341
342         unsigned int busy_queues;
343         unsigned int busy_sync_queues;
344
345         int rq_in_driver;
346         int rq_in_flight[2];
347
348         /*
349          * queue-depth detection
350          */
351         int rq_queued;
352         int hw_tag;
353         /*
354          * hw_tag can be
355          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
356          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
357          *  0 => no NCQ
358          */
359         int hw_tag_est_depth;
360         unsigned int hw_tag_samples;
361
362         /*
363          * idle window management
364          */
365         struct timer_list idle_slice_timer;
366         struct work_struct unplug_work;
367
368         struct cfq_queue *active_queue;
369         struct cfq_io_cq *active_cic;
370
371         sector_t last_position;
372
373         /*
374          * tunables, see top of file
375          */
376         unsigned int cfq_quantum;
377         unsigned int cfq_fifo_expire[2];
378         unsigned int cfq_back_penalty;
379         unsigned int cfq_back_max;
380         unsigned int cfq_slice[2];
381         unsigned int cfq_slice_async_rq;
382         unsigned int cfq_slice_idle;
383         unsigned int cfq_group_idle;
384         unsigned int cfq_latency;
385         unsigned int cfq_target_latency;
386
387         /*
388          * Fallback dummy cfqq for extreme OOM conditions
389          */
390         struct cfq_queue oom_cfqq;
391
392         unsigned long last_delayed_sync;
393 };
394
395 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
396 static void cfq_put_queue(struct cfq_queue *cfqq);
397
398 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
399                                             enum wl_class_t class,
400                                             enum wl_type_t type)
401 {
402         if (!cfqg)
403                 return NULL;
404
405         if (class == IDLE_WORKLOAD)
406                 return &cfqg->service_tree_idle;
407
408         return &cfqg->service_trees[class][type];
409 }
410
411 enum cfqq_state_flags {
412         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
413         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
414         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
415         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
416         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
417         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
418         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
419         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
420         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
421         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
422         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
423         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
424         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
425 };
426
427 #define CFQ_CFQQ_FNS(name)                                              \
428 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
429 {                                                                       \
430         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
431 }                                                                       \
432 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
433 {                                                                       \
434         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
435 }                                                                       \
436 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
437 {                                                                       \
438         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
439 }
440
441 CFQ_CFQQ_FNS(on_rr);
442 CFQ_CFQQ_FNS(wait_request);
443 CFQ_CFQQ_FNS(must_dispatch);
444 CFQ_CFQQ_FNS(must_alloc_slice);
445 CFQ_CFQQ_FNS(fifo_expire);
446 CFQ_CFQQ_FNS(idle_window);
447 CFQ_CFQQ_FNS(prio_changed);
448 CFQ_CFQQ_FNS(slice_new);
449 CFQ_CFQQ_FNS(sync);
450 CFQ_CFQQ_FNS(coop);
451 CFQ_CFQQ_FNS(split_coop);
452 CFQ_CFQQ_FNS(deep);
453 CFQ_CFQQ_FNS(wait_busy);
454 #undef CFQ_CFQQ_FNS
455
456 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
457
458 /* cfqg stats flags */
459 enum cfqg_stats_flags {
460         CFQG_stats_waiting = 0,
461         CFQG_stats_idling,
462         CFQG_stats_empty,
463 };
464
465 #define CFQG_FLAG_FNS(name)                                             \
466 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)     \
467 {                                                                       \
468         stats->flags |= (1 << CFQG_stats_##name);                       \
469 }                                                                       \
470 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)    \
471 {                                                                       \
472         stats->flags &= ~(1 << CFQG_stats_##name);                      \
473 }                                                                       \
474 static inline int cfqg_stats_##name(struct cfqg_stats *stats)           \
475 {                                                                       \
476         return (stats->flags & (1 << CFQG_stats_##name)) != 0;          \
477 }                                                                       \
478
479 CFQG_FLAG_FNS(waiting)
480 CFQG_FLAG_FNS(idling)
481 CFQG_FLAG_FNS(empty)
482 #undef CFQG_FLAG_FNS
483
484 /* This should be called with the queue_lock held. */
485 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
486 {
487         unsigned long long now;
488
489         if (!cfqg_stats_waiting(stats))
490                 return;
491
492         now = sched_clock();
493         if (time_after64(now, stats->start_group_wait_time))
494                 blkg_stat_add(&stats->group_wait_time,
495                               now - stats->start_group_wait_time);
496         cfqg_stats_clear_waiting(stats);
497 }
498
499 /* This should be called with the queue_lock held. */
500 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
501                                                  struct cfq_group *curr_cfqg)
502 {
503         struct cfqg_stats *stats = &cfqg->stats;
504
505         if (cfqg_stats_waiting(stats))
506                 return;
507         if (cfqg == curr_cfqg)
508                 return;
509         stats->start_group_wait_time = sched_clock();
510         cfqg_stats_mark_waiting(stats);
511 }
512
513 /* This should be called with the queue_lock held. */
514 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
515 {
516         unsigned long long now;
517
518         if (!cfqg_stats_empty(stats))
519                 return;
520
521         now = sched_clock();
522         if (time_after64(now, stats->start_empty_time))
523                 blkg_stat_add(&stats->empty_time,
524                               now - stats->start_empty_time);
525         cfqg_stats_clear_empty(stats);
526 }
527
528 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
529 {
530         blkg_stat_add(&cfqg->stats.dequeue, 1);
531 }
532
533 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
534 {
535         struct cfqg_stats *stats = &cfqg->stats;
536
537         if (blkg_rwstat_total(&stats->queued))
538                 return;
539
540         /*
541          * group is already marked empty. This can happen if cfqq got new
542          * request in parent group and moved to this group while being added
543          * to service tree. Just ignore the event and move on.
544          */
545         if (cfqg_stats_empty(stats))
546                 return;
547
548         stats->start_empty_time = sched_clock();
549         cfqg_stats_mark_empty(stats);
550 }
551
552 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
553 {
554         struct cfqg_stats *stats = &cfqg->stats;
555
556         if (cfqg_stats_idling(stats)) {
557                 unsigned long long now = sched_clock();
558
559                 if (time_after64(now, stats->start_idle_time))
560                         blkg_stat_add(&stats->idle_time,
561                                       now - stats->start_idle_time);
562                 cfqg_stats_clear_idling(stats);
563         }
564 }
565
566 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
567 {
568         struct cfqg_stats *stats = &cfqg->stats;
569
570         BUG_ON(cfqg_stats_idling(stats));
571
572         stats->start_idle_time = sched_clock();
573         cfqg_stats_mark_idling(stats);
574 }
575
576 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
577 {
578         struct cfqg_stats *stats = &cfqg->stats;
579
580         blkg_stat_add(&stats->avg_queue_size_sum,
581                       blkg_rwstat_total(&stats->queued));
582         blkg_stat_add(&stats->avg_queue_size_samples, 1);
583         cfqg_stats_update_group_wait_time(stats);
584 }
585
586 #else   /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
587
588 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
589 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
590 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
591 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
592 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
593 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
595
596 #endif  /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
597
598 #ifdef CONFIG_CFQ_GROUP_IOSCHED
599
600 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
601 {
602         return pd ? container_of(pd, struct cfq_group, pd) : NULL;
603 }
604
605 static struct cfq_group_data
606 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
607 {
608         return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
609 }
610
611 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
612 {
613         return pd_to_blkg(&cfqg->pd);
614 }
615
616 static struct blkcg_policy blkcg_policy_cfq;
617
618 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
619 {
620         return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
621 }
622
623 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
624 {
625         return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
626 }
627
628 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
629 {
630         struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
631
632         return pblkg ? blkg_to_cfqg(pblkg) : NULL;
633 }
634
635 static inline void cfqg_get(struct cfq_group *cfqg)
636 {
637         return blkg_get(cfqg_to_blkg(cfqg));
638 }
639
640 static inline void cfqg_put(struct cfq_group *cfqg)
641 {
642         return blkg_put(cfqg_to_blkg(cfqg));
643 }
644
645 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  do {                    \
646         char __pbuf[128];                                               \
647                                                                         \
648         blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));  \
649         blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
650                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A',              \
651                         cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
652                           __pbuf, ##args);                              \
653 } while (0)
654
655 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)  do {                    \
656         char __pbuf[128];                                               \
657                                                                         \
658         blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));          \
659         blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);    \
660 } while (0)
661
662 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
663                                             struct cfq_group *curr_cfqg, int rw)
664 {
665         blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
666         cfqg_stats_end_empty_time(&cfqg->stats);
667         cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
668 }
669
670 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
671                         unsigned long time, unsigned long unaccounted_time)
672 {
673         blkg_stat_add(&cfqg->stats.time, time);
674 #ifdef CONFIG_DEBUG_BLK_CGROUP
675         blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
676 #endif
677 }
678
679 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
680 {
681         blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
682 }
683
684 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
685 {
686         blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
687 }
688
689 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
690                         uint64_t start_time, uint64_t io_start_time, int rw)
691 {
692         struct cfqg_stats *stats = &cfqg->stats;
693         unsigned long long now = sched_clock();
694
695         if (time_after64(now, io_start_time))
696                 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
697         if (time_after64(io_start_time, start_time))
698                 blkg_rwstat_add(&stats->wait_time, rw,
699                                 io_start_time - start_time);
700 }
701
702 /* @stats = 0 */
703 static void cfqg_stats_reset(struct cfqg_stats *stats)
704 {
705         /* queued stats shouldn't be cleared */
706         blkg_rwstat_reset(&stats->merged);
707         blkg_rwstat_reset(&stats->service_time);
708         blkg_rwstat_reset(&stats->wait_time);
709         blkg_stat_reset(&stats->time);
710 #ifdef CONFIG_DEBUG_BLK_CGROUP
711         blkg_stat_reset(&stats->unaccounted_time);
712         blkg_stat_reset(&stats->avg_queue_size_sum);
713         blkg_stat_reset(&stats->avg_queue_size_samples);
714         blkg_stat_reset(&stats->dequeue);
715         blkg_stat_reset(&stats->group_wait_time);
716         blkg_stat_reset(&stats->idle_time);
717         blkg_stat_reset(&stats->empty_time);
718 #endif
719 }
720
721 /* @to += @from */
722 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
723 {
724         /* queued stats shouldn't be cleared */
725         blkg_rwstat_add_aux(&to->merged, &from->merged);
726         blkg_rwstat_add_aux(&to->service_time, &from->service_time);
727         blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
728         blkg_stat_add_aux(&from->time, &from->time);
729 #ifdef CONFIG_DEBUG_BLK_CGROUP
730         blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
731         blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
732         blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
733         blkg_stat_add_aux(&to->dequeue, &from->dequeue);
734         blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
735         blkg_stat_add_aux(&to->idle_time, &from->idle_time);
736         blkg_stat_add_aux(&to->empty_time, &from->empty_time);
737 #endif
738 }
739
740 /*
741  * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
742  * recursive stats can still account for the amount used by this cfqg after
743  * it's gone.
744  */
745 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
746 {
747         struct cfq_group *parent = cfqg_parent(cfqg);
748
749         lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
750
751         if (unlikely(!parent))
752                 return;
753
754         cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
755         cfqg_stats_reset(&cfqg->stats);
756 }
757
758 #else   /* CONFIG_CFQ_GROUP_IOSCHED */
759
760 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
761 static inline void cfqg_get(struct cfq_group *cfqg) { }
762 static inline void cfqg_put(struct cfq_group *cfqg) { }
763
764 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
765         blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
766                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A',              \
767                         cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
768                                 ##args)
769 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0)
770
771 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
772                         struct cfq_group *curr_cfqg, int rw) { }
773 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
774                         unsigned long time, unsigned long unaccounted_time) { }
775 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
776 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
777 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
778                         uint64_t start_time, uint64_t io_start_time, int rw) { }
779
780 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
781
782 #define cfq_log(cfqd, fmt, args...)     \
783         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
784
785 /* Traverses through cfq group service trees */
786 #define for_each_cfqg_st(cfqg, i, j, st) \
787         for (i = 0; i <= IDLE_WORKLOAD; i++) \
788                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
789                         : &cfqg->service_tree_idle; \
790                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
791                         (i == IDLE_WORKLOAD && j == 0); \
792                         j++, st = i < IDLE_WORKLOAD ? \
793                         &cfqg->service_trees[i][j]: NULL) \
794
795 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
796         struct cfq_ttime *ttime, bool group_idle)
797 {
798         unsigned long slice;
799         if (!sample_valid(ttime->ttime_samples))
800                 return false;
801         if (group_idle)
802                 slice = cfqd->cfq_group_idle;
803         else
804                 slice = cfqd->cfq_slice_idle;
805         return ttime->ttime_mean > slice;
806 }
807
808 static inline bool iops_mode(struct cfq_data *cfqd)
809 {
810         /*
811          * If we are not idling on queues and it is a NCQ drive, parallel
812          * execution of requests is on and measuring time is not possible
813          * in most of the cases until and unless we drive shallower queue
814          * depths and that becomes a performance bottleneck. In such cases
815          * switch to start providing fairness in terms of number of IOs.
816          */
817         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
818                 return true;
819         else
820                 return false;
821 }
822
823 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
824 {
825         if (cfq_class_idle(cfqq))
826                 return IDLE_WORKLOAD;
827         if (cfq_class_rt(cfqq))
828                 return RT_WORKLOAD;
829         return BE_WORKLOAD;
830 }
831
832
833 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
834 {
835         if (!cfq_cfqq_sync(cfqq))
836                 return ASYNC_WORKLOAD;
837         if (!cfq_cfqq_idle_window(cfqq))
838                 return SYNC_NOIDLE_WORKLOAD;
839         return SYNC_WORKLOAD;
840 }
841
842 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
843                                         struct cfq_data *cfqd,
844                                         struct cfq_group *cfqg)
845 {
846         if (wl_class == IDLE_WORKLOAD)
847                 return cfqg->service_tree_idle.count;
848
849         return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
850                 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
851                 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
852 }
853
854 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
855                                         struct cfq_group *cfqg)
856 {
857         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
858                 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
859 }
860
861 static void cfq_dispatch_insert(struct request_queue *, struct request *);
862 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
863                                        struct cfq_io_cq *cic, struct bio *bio);
864
865 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
866 {
867         /* cic->icq is the first member, %NULL will convert to %NULL */
868         return container_of(icq, struct cfq_io_cq, icq);
869 }
870
871 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
872                                                struct io_context *ioc)
873 {
874         if (ioc)
875                 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
876         return NULL;
877 }
878
879 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
880 {
881         return cic->cfqq[is_sync];
882 }
883
884 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
885                                 bool is_sync)
886 {
887         cic->cfqq[is_sync] = cfqq;
888 }
889
890 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
891 {
892         return cic->icq.q->elevator->elevator_data;
893 }
894
895 /*
896  * We regard a request as SYNC, if it's either a read or has the SYNC bit
897  * set (in which case it could also be direct WRITE).
898  */
899 static inline bool cfq_bio_sync(struct bio *bio)
900 {
901         return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
902 }
903
904 /*
905  * scheduler run of queue, if there are requests pending and no one in the
906  * driver that will restart queueing
907  */
908 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
909 {
910         if (cfqd->busy_queues) {
911                 cfq_log(cfqd, "schedule dispatch");
912                 kblockd_schedule_work(&cfqd->unplug_work);
913         }
914 }
915
916 /*
917  * Scale schedule slice based on io priority. Use the sync time slice only
918  * if a queue is marked sync and has sync io queued. A sync queue with async
919  * io only, should not get full sync slice length.
920  */
921 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
922                                  unsigned short prio)
923 {
924         const int base_slice = cfqd->cfq_slice[sync];
925
926         WARN_ON(prio >= IOPRIO_BE_NR);
927
928         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
929 }
930
931 static inline int
932 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
933 {
934         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
935 }
936
937 /**
938  * cfqg_scale_charge - scale disk time charge according to cfqg weight
939  * @charge: disk time being charged
940  * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
941  *
942  * Scale @charge according to @vfraction, which is in range (0, 1].  The
943  * scaling is inversely proportional.
944  *
945  * scaled = charge / vfraction
946  *
947  * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
948  */
949 static inline u64 cfqg_scale_charge(unsigned long charge,
950                                     unsigned int vfraction)
951 {
952         u64 c = charge << CFQ_SERVICE_SHIFT;    /* make it fixed point */
953
954         /* charge / vfraction */
955         c <<= CFQ_SERVICE_SHIFT;
956         do_div(c, vfraction);
957         return c;
958 }
959
960 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
961 {
962         s64 delta = (s64)(vdisktime - min_vdisktime);
963         if (delta > 0)
964                 min_vdisktime = vdisktime;
965
966         return min_vdisktime;
967 }
968
969 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
970 {
971         s64 delta = (s64)(vdisktime - min_vdisktime);
972         if (delta < 0)
973                 min_vdisktime = vdisktime;
974
975         return min_vdisktime;
976 }
977
978 static void update_min_vdisktime(struct cfq_rb_root *st)
979 {
980         struct cfq_group *cfqg;
981
982         if (st->left) {
983                 cfqg = rb_entry_cfqg(st->left);
984                 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
985                                                   cfqg->vdisktime);
986         }
987 }
988
989 /*
990  * get averaged number of queues of RT/BE priority.
991  * average is updated, with a formula that gives more weight to higher numbers,
992  * to quickly follows sudden increases and decrease slowly
993  */
994
995 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
996                                         struct cfq_group *cfqg, bool rt)
997 {
998         unsigned min_q, max_q;
999         unsigned mult  = cfq_hist_divisor - 1;
1000         unsigned round = cfq_hist_divisor / 2;
1001         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1002
1003         min_q = min(cfqg->busy_queues_avg[rt], busy);
1004         max_q = max(cfqg->busy_queues_avg[rt], busy);
1005         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1006                 cfq_hist_divisor;
1007         return cfqg->busy_queues_avg[rt];
1008 }
1009
1010 static inline unsigned
1011 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1012 {
1013         return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1014 }
1015
1016 static inline unsigned
1017 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1018 {
1019         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1020         if (cfqd->cfq_latency) {
1021                 /*
1022                  * interested queues (we consider only the ones with the same
1023                  * priority class in the cfq group)
1024                  */
1025                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1026                                                 cfq_class_rt(cfqq));
1027                 unsigned sync_slice = cfqd->cfq_slice[1];
1028                 unsigned expect_latency = sync_slice * iq;
1029                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1030
1031                 if (expect_latency > group_slice) {
1032                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1033                         /* scale low_slice according to IO priority
1034                          * and sync vs async */
1035                         unsigned low_slice =
1036                                 min(slice, base_low_slice * slice / sync_slice);
1037                         /* the adapted slice value is scaled to fit all iqs
1038                          * into the target latency */
1039                         slice = max(slice * group_slice / expect_latency,
1040                                     low_slice);
1041                 }
1042         }
1043         return slice;
1044 }
1045
1046 static inline void
1047 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1048 {
1049         unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1050
1051         cfqq->slice_start = jiffies;
1052         cfqq->slice_end = jiffies + slice;
1053         cfqq->allocated_slice = slice;
1054         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1055 }
1056
1057 /*
1058  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1059  * isn't valid until the first request from the dispatch is activated
1060  * and the slice time set.
1061  */
1062 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1063 {
1064         if (cfq_cfqq_slice_new(cfqq))
1065                 return false;
1066         if (time_before(jiffies, cfqq->slice_end))
1067                 return false;
1068
1069         return true;
1070 }
1071
1072 /*
1073  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1074  * We choose the request that is closest to the head right now. Distance
1075  * behind the head is penalized and only allowed to a certain extent.
1076  */
1077 static struct request *
1078 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1079 {
1080         sector_t s1, s2, d1 = 0, d2 = 0;
1081         unsigned long back_max;
1082 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
1083 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
1084         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1085
1086         if (rq1 == NULL || rq1 == rq2)
1087                 return rq2;
1088         if (rq2 == NULL)
1089                 return rq1;
1090
1091         if (rq_is_sync(rq1) != rq_is_sync(rq2))
1092                 return rq_is_sync(rq1) ? rq1 : rq2;
1093
1094         if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1095                 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1096
1097         s1 = blk_rq_pos(rq1);
1098         s2 = blk_rq_pos(rq2);
1099
1100         /*
1101          * by definition, 1KiB is 2 sectors
1102          */
1103         back_max = cfqd->cfq_back_max * 2;
1104
1105         /*
1106          * Strict one way elevator _except_ in the case where we allow
1107          * short backward seeks which are biased as twice the cost of a
1108          * similar forward seek.
1109          */
1110         if (s1 >= last)
1111                 d1 = s1 - last;
1112         else if (s1 + back_max >= last)
1113                 d1 = (last - s1) * cfqd->cfq_back_penalty;
1114         else
1115                 wrap |= CFQ_RQ1_WRAP;
1116
1117         if (s2 >= last)
1118                 d2 = s2 - last;
1119         else if (s2 + back_max >= last)
1120                 d2 = (last - s2) * cfqd->cfq_back_penalty;
1121         else
1122                 wrap |= CFQ_RQ2_WRAP;
1123
1124         /* Found required data */
1125
1126         /*
1127          * By doing switch() on the bit mask "wrap" we avoid having to
1128          * check two variables for all permutations: --> faster!
1129          */
1130         switch (wrap) {
1131         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1132                 if (d1 < d2)
1133                         return rq1;
1134                 else if (d2 < d1)
1135                         return rq2;
1136                 else {
1137                         if (s1 >= s2)
1138                                 return rq1;
1139                         else
1140                                 return rq2;
1141                 }
1142
1143         case CFQ_RQ2_WRAP:
1144                 return rq1;
1145         case CFQ_RQ1_WRAP:
1146                 return rq2;
1147         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1148         default:
1149                 /*
1150                  * Since both rqs are wrapped,
1151                  * start with the one that's further behind head
1152                  * (--> only *one* back seek required),
1153                  * since back seek takes more time than forward.
1154                  */
1155                 if (s1 <= s2)
1156                         return rq1;
1157                 else
1158                         return rq2;
1159         }
1160 }
1161
1162 /*
1163  * The below is leftmost cache rbtree addon
1164  */
1165 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1166 {
1167         /* Service tree is empty */
1168         if (!root->count)
1169                 return NULL;
1170
1171         if (!root->left)
1172                 root->left = rb_first(&root->rb);
1173
1174         if (root->left)
1175                 return rb_entry(root->left, struct cfq_queue, rb_node);
1176
1177         return NULL;
1178 }
1179
1180 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1181 {
1182         if (!root->left)
1183                 root->left = rb_first(&root->rb);
1184
1185         if (root->left)
1186                 return rb_entry_cfqg(root->left);
1187
1188         return NULL;
1189 }
1190
1191 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1192 {
1193         rb_erase(n, root);
1194         RB_CLEAR_NODE(n);
1195 }
1196
1197 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1198 {
1199         if (root->left == n)
1200                 root->left = NULL;
1201         rb_erase_init(n, &root->rb);
1202         --root->count;
1203 }
1204
1205 /*
1206  * would be nice to take fifo expire time into account as well
1207  */
1208 static struct request *
1209 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1210                   struct request *last)
1211 {
1212         struct rb_node *rbnext = rb_next(&last->rb_node);
1213         struct rb_node *rbprev = rb_prev(&last->rb_node);
1214         struct request *next = NULL, *prev = NULL;
1215
1216         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1217
1218         if (rbprev)
1219                 prev = rb_entry_rq(rbprev);
1220
1221         if (rbnext)
1222                 next = rb_entry_rq(rbnext);
1223         else {
1224                 rbnext = rb_first(&cfqq->sort_list);
1225                 if (rbnext && rbnext != &last->rb_node)
1226                         next = rb_entry_rq(rbnext);
1227         }
1228
1229         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1230 }
1231
1232 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1233                                       struct cfq_queue *cfqq)
1234 {
1235         /*
1236          * just an approximation, should be ok.
1237          */
1238         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1239                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1240 }
1241
1242 static inline s64
1243 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1244 {
1245         return cfqg->vdisktime - st->min_vdisktime;
1246 }
1247
1248 static void
1249 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1250 {
1251         struct rb_node **node = &st->rb.rb_node;
1252         struct rb_node *parent = NULL;
1253         struct cfq_group *__cfqg;
1254         s64 key = cfqg_key(st, cfqg);
1255         int left = 1;
1256
1257         while (*node != NULL) {
1258                 parent = *node;
1259                 __cfqg = rb_entry_cfqg(parent);
1260
1261                 if (key < cfqg_key(st, __cfqg))
1262                         node = &parent->rb_left;
1263                 else {
1264                         node = &parent->rb_right;
1265                         left = 0;
1266                 }
1267         }
1268
1269         if (left)
1270                 st->left = &cfqg->rb_node;
1271
1272         rb_link_node(&cfqg->rb_node, parent, node);
1273         rb_insert_color(&cfqg->rb_node, &st->rb);
1274 }
1275
1276 /*
1277  * This has to be called only on activation of cfqg
1278  */
1279 static void
1280 cfq_update_group_weight(struct cfq_group *cfqg)
1281 {
1282         if (cfqg->new_weight) {
1283                 cfqg->weight = cfqg->new_weight;
1284                 cfqg->new_weight = 0;
1285         }
1286 }
1287
1288 static void
1289 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1290 {
1291         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1292
1293         if (cfqg->new_leaf_weight) {
1294                 cfqg->leaf_weight = cfqg->new_leaf_weight;
1295                 cfqg->new_leaf_weight = 0;
1296         }
1297 }
1298
1299 static void
1300 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1301 {
1302         unsigned int vfr = 1 << CFQ_SERVICE_SHIFT;      /* start with 1 */
1303         struct cfq_group *pos = cfqg;
1304         struct cfq_group *parent;
1305         bool propagate;
1306
1307         /* add to the service tree */
1308         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1309
1310         /*
1311          * Update leaf_weight.  We cannot update weight at this point
1312          * because cfqg might already have been activated and is
1313          * contributing its current weight to the parent's child_weight.
1314          */
1315         cfq_update_group_leaf_weight(cfqg);
1316         __cfq_group_service_tree_add(st, cfqg);
1317
1318         /*
1319          * Activate @cfqg and calculate the portion of vfraction @cfqg is
1320          * entitled to.  vfraction is calculated by walking the tree
1321          * towards the root calculating the fraction it has at each level.
1322          * The compounded ratio is how much vfraction @cfqg owns.
1323          *
1324          * Start with the proportion tasks in this cfqg has against active
1325          * children cfqgs - its leaf_weight against children_weight.
1326          */
1327         propagate = !pos->nr_active++;
1328         pos->children_weight += pos->leaf_weight;
1329         vfr = vfr * pos->leaf_weight / pos->children_weight;
1330
1331         /*
1332          * Compound ->weight walking up the tree.  Both activation and
1333          * vfraction calculation are done in the same loop.  Propagation
1334          * stops once an already activated node is met.  vfraction
1335          * calculation should always continue to the root.
1336          */
1337         while ((parent = cfqg_parent(pos))) {
1338                 if (propagate) {
1339                         cfq_update_group_weight(pos);
1340                         propagate = !parent->nr_active++;
1341                         parent->children_weight += pos->weight;
1342                 }
1343                 vfr = vfr * pos->weight / parent->children_weight;
1344                 pos = parent;
1345         }
1346
1347         cfqg->vfraction = max_t(unsigned, vfr, 1);
1348 }
1349
1350 static void
1351 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1352 {
1353         struct cfq_rb_root *st = &cfqd->grp_service_tree;
1354         struct cfq_group *__cfqg;
1355         struct rb_node *n;
1356
1357         cfqg->nr_cfqq++;
1358         if (!RB_EMPTY_NODE(&cfqg->rb_node))
1359                 return;
1360
1361         /*
1362          * Currently put the group at the end. Later implement something
1363          * so that groups get lesser vtime based on their weights, so that
1364          * if group does not loose all if it was not continuously backlogged.
1365          */
1366         n = rb_last(&st->rb);
1367         if (n) {
1368                 __cfqg = rb_entry_cfqg(n);
1369                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1370         } else
1371                 cfqg->vdisktime = st->min_vdisktime;
1372         cfq_group_service_tree_add(st, cfqg);
1373 }
1374
1375 static void
1376 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1377 {
1378         struct cfq_group *pos = cfqg;
1379         bool propagate;
1380
1381         /*
1382          * Undo activation from cfq_group_service_tree_add().  Deactivate
1383          * @cfqg and propagate deactivation upwards.
1384          */
1385         propagate = !--pos->nr_active;
1386         pos->children_weight -= pos->leaf_weight;
1387
1388         while (propagate) {
1389                 struct cfq_group *parent = cfqg_parent(pos);
1390
1391                 /* @pos has 0 nr_active at this point */
1392                 WARN_ON_ONCE(pos->children_weight);
1393                 pos->vfraction = 0;
1394
1395                 if (!parent)
1396                         break;
1397
1398                 propagate = !--parent->nr_active;
1399                 parent->children_weight -= pos->weight;
1400                 pos = parent;
1401         }
1402
1403         /* remove from the service tree */
1404         if (!RB_EMPTY_NODE(&cfqg->rb_node))
1405                 cfq_rb_erase(&cfqg->rb_node, st);
1406 }
1407
1408 static void
1409 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1410 {
1411         struct cfq_rb_root *st = &cfqd->grp_service_tree;
1412
1413         BUG_ON(cfqg->nr_cfqq < 1);
1414         cfqg->nr_cfqq--;
1415
1416         /* If there are other cfq queues under this group, don't delete it */
1417         if (cfqg->nr_cfqq)
1418                 return;
1419
1420         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1421         cfq_group_service_tree_del(st, cfqg);
1422         cfqg->saved_wl_slice = 0;
1423         cfqg_stats_update_dequeue(cfqg);
1424 }
1425
1426 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1427                                                 unsigned int *unaccounted_time)
1428 {
1429         unsigned int slice_used;
1430
1431         /*
1432          * Queue got expired before even a single request completed or
1433          * got expired immediately after first request completion.
1434          */
1435         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1436                 /*
1437                  * Also charge the seek time incurred to the group, otherwise
1438                  * if there are mutiple queues in the group, each can dispatch
1439                  * a single request on seeky media and cause lots of seek time
1440                  * and group will never know it.
1441                  */
1442                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1443                                         1);
1444         } else {
1445                 slice_used = jiffies - cfqq->slice_start;
1446                 if (slice_used > cfqq->allocated_slice) {
1447                         *unaccounted_time = slice_used - cfqq->allocated_slice;
1448                         slice_used = cfqq->allocated_slice;
1449                 }
1450                 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1451                         *unaccounted_time += cfqq->slice_start -
1452                                         cfqq->dispatch_start;
1453         }
1454
1455         return slice_used;
1456 }
1457
1458 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1459                                 struct cfq_queue *cfqq)
1460 {
1461         struct cfq_rb_root *st = &cfqd->grp_service_tree;
1462         unsigned int used_sl, charge, unaccounted_sl = 0;
1463         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1464                         - cfqg->service_tree_idle.count;
1465         unsigned int vfr;
1466
1467         BUG_ON(nr_sync < 0);
1468         used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1469
1470         if (iops_mode(cfqd))
1471                 charge = cfqq->slice_dispatch;
1472         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1473                 charge = cfqq->allocated_slice;
1474
1475         /*
1476          * Can't update vdisktime while on service tree and cfqg->vfraction
1477          * is valid only while on it.  Cache vfr, leave the service tree,
1478          * update vdisktime and go back on.  The re-addition to the tree
1479          * will also update the weights as necessary.
1480          */
1481         vfr = cfqg->vfraction;
1482         cfq_group_service_tree_del(st, cfqg);
1483         cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1484         cfq_group_service_tree_add(st, cfqg);
1485
1486         /* This group is being expired. Save the context */
1487         if (time_after(cfqd->workload_expires, jiffies)) {
1488                 cfqg->saved_wl_slice = cfqd->workload_expires
1489                                                 - jiffies;
1490                 cfqg->saved_wl_type = cfqd->serving_wl_type;
1491                 cfqg->saved_wl_class = cfqd->serving_wl_class;
1492         } else
1493                 cfqg->saved_wl_slice = 0;
1494
1495         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1496                                         st->min_vdisktime);
1497         cfq_log_cfqq(cfqq->cfqd, cfqq,
1498                      "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1499                      used_sl, cfqq->slice_dispatch, charge,
1500                      iops_mode(cfqd), cfqq->nr_sectors);
1501         cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1502         cfqg_stats_set_start_empty_time(cfqg);
1503 }
1504
1505 /**
1506  * cfq_init_cfqg_base - initialize base part of a cfq_group
1507  * @cfqg: cfq_group to initialize
1508  *
1509  * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1510  * is enabled or not.
1511  */
1512 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1513 {
1514         struct cfq_rb_root *st;
1515         int i, j;
1516
1517         for_each_cfqg_st(cfqg, i, j, st)
1518                 *st = CFQ_RB_ROOT;
1519         RB_CLEAR_NODE(&cfqg->rb_node);
1520
1521         cfqg->ttime.last_end_request = jiffies;
1522 }
1523
1524 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1525 static void cfqg_stats_exit(struct cfqg_stats *stats)
1526 {
1527         blkg_rwstat_exit(&stats->merged);
1528         blkg_rwstat_exit(&stats->service_time);
1529         blkg_rwstat_exit(&stats->wait_time);
1530         blkg_rwstat_exit(&stats->queued);
1531         blkg_stat_exit(&stats->time);
1532 #ifdef CONFIG_DEBUG_BLK_CGROUP
1533         blkg_stat_exit(&stats->unaccounted_time);
1534         blkg_stat_exit(&stats->avg_queue_size_sum);
1535         blkg_stat_exit(&stats->avg_queue_size_samples);
1536         blkg_stat_exit(&stats->dequeue);
1537         blkg_stat_exit(&stats->group_wait_time);
1538         blkg_stat_exit(&stats->idle_time);
1539         blkg_stat_exit(&stats->empty_time);
1540 #endif
1541 }
1542
1543 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1544 {
1545         if (blkg_rwstat_init(&stats->merged, gfp) ||
1546             blkg_rwstat_init(&stats->service_time, gfp) ||
1547             blkg_rwstat_init(&stats->wait_time, gfp) ||
1548             blkg_rwstat_init(&stats->queued, gfp) ||
1549             blkg_stat_init(&stats->time, gfp))
1550                 goto err;
1551
1552 #ifdef CONFIG_DEBUG_BLK_CGROUP
1553         if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1554             blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1555             blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1556             blkg_stat_init(&stats->dequeue, gfp) ||
1557             blkg_stat_init(&stats->group_wait_time, gfp) ||
1558             blkg_stat_init(&stats->idle_time, gfp) ||
1559             blkg_stat_init(&stats->empty_time, gfp))
1560                 goto err;
1561 #endif
1562         return 0;
1563 err:
1564         cfqg_stats_exit(stats);
1565         return -ENOMEM;
1566 }
1567
1568 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1569 {
1570         struct cfq_group_data *cgd;
1571
1572         cgd = kzalloc(sizeof(*cgd), GFP_KERNEL);
1573         if (!cgd)
1574                 return NULL;
1575         return &cgd->cpd;
1576 }
1577
1578 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1579 {
1580         struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1581
1582         if (cpd_to_blkcg(cpd) == &blkcg_root) {
1583                 cgd->weight = 2 * CFQ_WEIGHT_DEFAULT;
1584                 cgd->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
1585         } else {
1586                 cgd->weight = CFQ_WEIGHT_DEFAULT;
1587                 cgd->leaf_weight = CFQ_WEIGHT_DEFAULT;
1588         }
1589 }
1590
1591 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1592 {
1593         kfree(cpd_to_cfqgd(cpd));
1594 }
1595
1596 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1597 {
1598         struct cfq_group *cfqg;
1599
1600         cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1601         if (!cfqg)
1602                 return NULL;
1603
1604         cfq_init_cfqg_base(cfqg);
1605         if (cfqg_stats_init(&cfqg->stats, gfp)) {
1606                 kfree(cfqg);
1607                 return NULL;
1608         }
1609
1610         return &cfqg->pd;
1611 }
1612
1613 static void cfq_pd_init(struct blkg_policy_data *pd)
1614 {
1615         struct cfq_group *cfqg = pd_to_cfqg(pd);
1616         struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1617
1618         cfqg->weight = cgd->weight;
1619         cfqg->leaf_weight = cgd->leaf_weight;
1620 }
1621
1622 static void cfq_pd_offline(struct blkg_policy_data *pd)
1623 {
1624         struct cfq_group *cfqg = pd_to_cfqg(pd);
1625         int i;
1626
1627         for (i = 0; i < IOPRIO_BE_NR; i++) {
1628                 if (cfqg->async_cfqq[0][i])
1629                         cfq_put_queue(cfqg->async_cfqq[0][i]);
1630                 if (cfqg->async_cfqq[1][i])
1631                         cfq_put_queue(cfqg->async_cfqq[1][i]);
1632         }
1633
1634         if (cfqg->async_idle_cfqq)
1635                 cfq_put_queue(cfqg->async_idle_cfqq);
1636
1637         /*
1638          * @blkg is going offline and will be ignored by
1639          * blkg_[rw]stat_recursive_sum().  Transfer stats to the parent so
1640          * that they don't get lost.  If IOs complete after this point, the
1641          * stats for them will be lost.  Oh well...
1642          */
1643         cfqg_stats_xfer_dead(cfqg);
1644 }
1645
1646 static void cfq_pd_free(struct blkg_policy_data *pd)
1647 {
1648         struct cfq_group *cfqg = pd_to_cfqg(pd);
1649
1650         cfqg_stats_exit(&cfqg->stats);
1651         return kfree(cfqg);
1652 }
1653
1654 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1655 {
1656         struct cfq_group *cfqg = pd_to_cfqg(pd);
1657
1658         cfqg_stats_reset(&cfqg->stats);
1659 }
1660
1661 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1662                                          struct blkcg *blkcg)
1663 {
1664         struct blkcg_gq *blkg;
1665
1666         blkg = blkg_lookup(blkcg, cfqd->queue);
1667         if (likely(blkg))
1668                 return blkg_to_cfqg(blkg);
1669         return NULL;
1670 }
1671
1672 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1673 {
1674         cfqq->cfqg = cfqg;
1675         /* cfqq reference on cfqg */
1676         cfqg_get(cfqg);
1677 }
1678
1679 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1680                                      struct blkg_policy_data *pd, int off)
1681 {
1682         struct cfq_group *cfqg = pd_to_cfqg(pd);
1683
1684         if (!cfqg->dev_weight)
1685                 return 0;
1686         return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1687 }
1688
1689 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1690 {
1691         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1692                           cfqg_prfill_weight_device, &blkcg_policy_cfq,
1693                           0, false);
1694         return 0;
1695 }
1696
1697 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1698                                           struct blkg_policy_data *pd, int off)
1699 {
1700         struct cfq_group *cfqg = pd_to_cfqg(pd);
1701
1702         if (!cfqg->dev_leaf_weight)
1703                 return 0;
1704         return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1705 }
1706
1707 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1708 {
1709         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1710                           cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1711                           0, false);
1712         return 0;
1713 }
1714
1715 static int cfq_print_weight(struct seq_file *sf, void *v)
1716 {
1717         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1718         struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1719         unsigned int val = 0;
1720
1721         if (cgd)
1722                 val = cgd->weight;
1723
1724         seq_printf(sf, "%u\n", val);
1725         return 0;
1726 }
1727
1728 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1729 {
1730         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1731         struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1732         unsigned int val = 0;
1733
1734         if (cgd)
1735                 val = cgd->leaf_weight;
1736
1737         seq_printf(sf, "%u\n", val);
1738         return 0;
1739 }
1740
1741 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1742                                         char *buf, size_t nbytes, loff_t off,
1743                                         bool is_leaf_weight)
1744 {
1745         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1746         struct blkg_conf_ctx ctx;
1747         struct cfq_group *cfqg;
1748         struct cfq_group_data *cfqgd;
1749         int ret;
1750         u64 v;
1751
1752         ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1753         if (ret)
1754                 return ret;
1755
1756         ret = -EINVAL;
1757         if (sscanf(ctx.body, "%llu", &v) != 1)
1758                 goto out_finish;
1759
1760         cfqg = blkg_to_cfqg(ctx.blkg);
1761         cfqgd = blkcg_to_cfqgd(blkcg);
1762
1763         ret = -ERANGE;
1764         if (!v || (v >= CFQ_WEIGHT_MIN && v <= CFQ_WEIGHT_MAX)) {
1765                 if (!is_leaf_weight) {
1766                         cfqg->dev_weight = v;
1767                         cfqg->new_weight = v ?: cfqgd->weight;
1768                 } else {
1769                         cfqg->dev_leaf_weight = v;
1770                         cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1771                 }
1772                 ret = 0;
1773         }
1774 out_finish:
1775         blkg_conf_finish(&ctx);
1776         return ret ?: nbytes;
1777 }
1778
1779 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1780                                       char *buf, size_t nbytes, loff_t off)
1781 {
1782         return __cfqg_set_weight_device(of, buf, nbytes, off, false);
1783 }
1784
1785 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1786                                            char *buf, size_t nbytes, loff_t off)
1787 {
1788         return __cfqg_set_weight_device(of, buf, nbytes, off, true);
1789 }
1790
1791 static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1792                             u64 val, bool is_leaf_weight)
1793 {
1794         struct blkcg *blkcg = css_to_blkcg(css);
1795         struct blkcg_gq *blkg;
1796         struct cfq_group_data *cfqgd;
1797         int ret = 0;
1798
1799         if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1800                 return -EINVAL;
1801
1802         spin_lock_irq(&blkcg->lock);
1803         cfqgd = blkcg_to_cfqgd(blkcg);
1804         if (!cfqgd) {
1805                 ret = -EINVAL;
1806                 goto out;
1807         }
1808
1809         if (!is_leaf_weight)
1810                 cfqgd->weight = val;
1811         else
1812                 cfqgd->leaf_weight = val;
1813
1814         hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1815                 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1816
1817                 if (!cfqg)
1818                         continue;
1819
1820                 if (!is_leaf_weight) {
1821                         if (!cfqg->dev_weight)
1822                                 cfqg->new_weight = cfqgd->weight;
1823                 } else {
1824                         if (!cfqg->dev_leaf_weight)
1825                                 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1826                 }
1827         }
1828
1829 out:
1830         spin_unlock_irq(&blkcg->lock);
1831         return ret;
1832 }
1833
1834 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1835                           u64 val)
1836 {
1837         return __cfq_set_weight(css, cft, val, false);
1838 }
1839
1840 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1841                                struct cftype *cft, u64 val)
1842 {
1843         return __cfq_set_weight(css, cft, val, true);
1844 }
1845
1846 static int cfqg_print_stat(struct seq_file *sf, void *v)
1847 {
1848         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1849                           &blkcg_policy_cfq, seq_cft(sf)->private, false);
1850         return 0;
1851 }
1852
1853 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1854 {
1855         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1856                           &blkcg_policy_cfq, seq_cft(sf)->private, true);
1857         return 0;
1858 }
1859
1860 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1861                                       struct blkg_policy_data *pd, int off)
1862 {
1863         u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1864                                           &blkcg_policy_cfq, off);
1865         return __blkg_prfill_u64(sf, pd, sum);
1866 }
1867
1868 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1869                                         struct blkg_policy_data *pd, int off)
1870 {
1871         struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1872                                                         &blkcg_policy_cfq, off);
1873         return __blkg_prfill_rwstat(sf, pd, &sum);
1874 }
1875
1876 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1877 {
1878         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1879                           cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1880                           seq_cft(sf)->private, false);
1881         return 0;
1882 }
1883
1884 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1885 {
1886         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1887                           cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1888                           seq_cft(sf)->private, true);
1889         return 0;
1890 }
1891
1892 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1893                                int off)
1894 {
1895         u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1896
1897         return __blkg_prfill_u64(sf, pd, sum >> 9);
1898 }
1899
1900 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1901 {
1902         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1903                           cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1904         return 0;
1905 }
1906
1907 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1908                                          struct blkg_policy_data *pd, int off)
1909 {
1910         struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1911                                         offsetof(struct blkcg_gq, stat_bytes));
1912         u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1913                 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1914
1915         return __blkg_prfill_u64(sf, pd, sum >> 9);
1916 }
1917
1918 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1919 {
1920         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1921                           cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1922                           false);
1923         return 0;
1924 }
1925
1926 #ifdef CONFIG_DEBUG_BLK_CGROUP
1927 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1928                                       struct blkg_policy_data *pd, int off)
1929 {
1930         struct cfq_group *cfqg = pd_to_cfqg(pd);
1931         u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1932         u64 v = 0;
1933
1934         if (samples) {
1935                 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1936                 v = div64_u64(v, samples);
1937         }
1938         __blkg_prfill_u64(sf, pd, v);
1939         return 0;
1940 }
1941
1942 /* print avg_queue_size */
1943 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1944 {
1945         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1946                           cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1947                           0, false);
1948         return 0;
1949 }
1950 #endif  /* CONFIG_DEBUG_BLK_CGROUP */
1951
1952 static struct cftype cfq_blkcg_legacy_files[] = {
1953         /* on root, weight is mapped to leaf_weight */
1954         {
1955                 .name = "weight_device",
1956                 .flags = CFTYPE_ONLY_ON_ROOT,
1957                 .seq_show = cfqg_print_leaf_weight_device,
1958                 .write = cfqg_set_leaf_weight_device,
1959         },
1960         {
1961                 .name = "weight",
1962                 .flags = CFTYPE_ONLY_ON_ROOT,
1963                 .seq_show = cfq_print_leaf_weight,
1964                 .write_u64 = cfq_set_leaf_weight,
1965         },
1966
1967         /* no such mapping necessary for !roots */
1968         {
1969                 .name = "weight_device",
1970                 .flags = CFTYPE_NOT_ON_ROOT,
1971                 .seq_show = cfqg_print_weight_device,
1972                 .write = cfqg_set_weight_device,
1973         },
1974         {
1975                 .name = "weight",
1976                 .flags = CFTYPE_NOT_ON_ROOT,
1977                 .seq_show = cfq_print_weight,
1978                 .write_u64 = cfq_set_weight,
1979         },
1980
1981         {
1982                 .name = "leaf_weight_device",
1983                 .seq_show = cfqg_print_leaf_weight_device,
1984                 .write = cfqg_set_leaf_weight_device,
1985         },
1986         {
1987                 .name = "leaf_weight",
1988                 .seq_show = cfq_print_leaf_weight,
1989                 .write_u64 = cfq_set_leaf_weight,
1990         },
1991
1992         /* statistics, covers only the tasks in the cfqg */
1993         {
1994                 .name = "time",
1995                 .private = offsetof(struct cfq_group, stats.time),
1996                 .seq_show = cfqg_print_stat,
1997         },
1998         {
1999                 .name = "sectors",
2000                 .seq_show = cfqg_print_stat_sectors,
2001         },
2002         {
2003                 .name = "io_service_bytes",
2004                 .private = (unsigned long)&blkcg_policy_cfq,
2005                 .seq_show = blkg_print_stat_bytes,
2006         },
2007         {
2008                 .name = "io_serviced",
2009                 .private = (unsigned long)&blkcg_policy_cfq,
2010                 .seq_show = blkg_print_stat_ios,
2011         },
2012         {
2013                 .name = "io_service_time",
2014                 .private = offsetof(struct cfq_group, stats.service_time),
2015                 .seq_show = cfqg_print_rwstat,
2016         },
2017         {
2018                 .name = "io_wait_time",
2019                 .private = offsetof(struct cfq_group, stats.wait_time),
2020                 .seq_show = cfqg_print_rwstat,
2021         },
2022         {
2023                 .name = "io_merged",
2024                 .private = offsetof(struct cfq_group, stats.merged),
2025                 .seq_show = cfqg_print_rwstat,
2026         },
2027         {
2028                 .name = "io_queued",
2029                 .private = offsetof(struct cfq_group, stats.queued),
2030                 .seq_show = cfqg_print_rwstat,
2031         },
2032
2033         /* the same statictics which cover the cfqg and its descendants */
2034         {
2035                 .name = "time_recursive",
2036                 .private = offsetof(struct cfq_group, stats.time),
2037                 .seq_show = cfqg_print_stat_recursive,
2038         },
2039         {
2040                 .name = "sectors_recursive",
2041                 .seq_show = cfqg_print_stat_sectors_recursive,
2042         },
2043         {
2044                 .name = "io_service_bytes_recursive",
2045                 .private = (unsigned long)&blkcg_policy_cfq,
2046                 .seq_show = blkg_print_stat_bytes_recursive,
2047         },
2048         {
2049                 .name = "io_serviced_recursive",
2050                 .private = (unsigned long)&blkcg_policy_cfq,
2051                 .seq_show = blkg_print_stat_ios_recursive,
2052         },
2053         {
2054                 .name = "io_service_time_recursive",
2055                 .private = offsetof(struct cfq_group, stats.service_time),
2056                 .seq_show = cfqg_print_rwstat_recursive,
2057         },
2058         {
2059                 .name = "io_wait_time_recursive",
2060                 .private = offsetof(struct cfq_group, stats.wait_time),
2061                 .seq_show = cfqg_print_rwstat_recursive,
2062         },
2063         {
2064                 .name = "io_merged_recursive",
2065                 .private = offsetof(struct cfq_group, stats.merged),
2066                 .seq_show = cfqg_print_rwstat_recursive,
2067         },
2068         {
2069                 .name = "io_queued_recursive",
2070                 .private = offsetof(struct cfq_group, stats.queued),
2071                 .seq_show = cfqg_print_rwstat_recursive,
2072         },
2073 #ifdef CONFIG_DEBUG_BLK_CGROUP
2074         {
2075                 .name = "avg_queue_size",
2076                 .seq_show = cfqg_print_avg_queue_size,
2077         },
2078         {
2079                 .name = "group_wait_time",
2080                 .private = offsetof(struct cfq_group, stats.group_wait_time),
2081                 .seq_show = cfqg_print_stat,
2082         },
2083         {
2084                 .name = "idle_time",
2085                 .private = offsetof(struct cfq_group, stats.idle_time),
2086                 .seq_show = cfqg_print_stat,
2087         },
2088         {
2089                 .name = "empty_time",
2090                 .private = offsetof(struct cfq_group, stats.empty_time),
2091                 .seq_show = cfqg_print_stat,
2092         },
2093         {
2094                 .name = "dequeue",
2095                 .private = offsetof(struct cfq_group, stats.dequeue),
2096                 .seq_show = cfqg_print_stat,
2097         },
2098         {
2099                 .name = "unaccounted_time",
2100                 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2101                 .seq_show = cfqg_print_stat,
2102         },
2103 #endif  /* CONFIG_DEBUG_BLK_CGROUP */
2104         { }     /* terminate */
2105 };
2106 #else /* GROUP_IOSCHED */
2107 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2108                                          struct blkcg *blkcg)
2109 {
2110         return cfqd->root_group;
2111 }
2112
2113 static inline void
2114 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2115         cfqq->cfqg = cfqg;
2116 }
2117
2118 #endif /* GROUP_IOSCHED */
2119
2120 /*
2121  * The cfqd->service_trees holds all pending cfq_queue's that have
2122  * requests waiting to be processed. It is sorted in the order that
2123  * we will service the queues.
2124  */
2125 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2126                                  bool add_front)
2127 {
2128         struct rb_node **p, *parent;
2129         struct cfq_queue *__cfqq;
2130         unsigned long rb_key;
2131         struct cfq_rb_root *st;
2132         int left;
2133         int new_cfqq = 1;
2134
2135         st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2136         if (cfq_class_idle(cfqq)) {
2137                 rb_key = CFQ_IDLE_DELAY;
2138                 parent = rb_last(&st->rb);
2139                 if (parent && parent != &cfqq->rb_node) {
2140                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2141                         rb_key += __cfqq->rb_key;
2142                 } else
2143                         rb_key += jiffies;
2144         } else if (!add_front) {
2145                 /*
2146                  * Get our rb key offset. Subtract any residual slice
2147                  * value carried from last service. A negative resid
2148                  * count indicates slice overrun, and this should position
2149                  * the next service time further away in the tree.
2150                  */
2151                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2152                 rb_key -= cfqq->slice_resid;
2153                 cfqq->slice_resid = 0;
2154         } else {
2155                 rb_key = -HZ;
2156                 __cfqq = cfq_rb_first(st);
2157                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2158         }
2159
2160         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2161                 new_cfqq = 0;
2162                 /*
2163                  * same position, nothing more to do
2164                  */
2165                 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2166                         return;
2167
2168                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2169                 cfqq->service_tree = NULL;
2170         }
2171
2172         left = 1;
2173         parent = NULL;
2174         cfqq->service_tree = st;
2175         p = &st->rb.rb_node;
2176         while (*p) {
2177                 parent = *p;
2178                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2179
2180                 /*
2181                  * sort by key, that represents service time.
2182                  */
2183                 if (time_before(rb_key, __cfqq->rb_key))
2184                         p = &parent->rb_left;
2185                 else {
2186                         p = &parent->rb_right;
2187                         left = 0;
2188                 }
2189         }
2190
2191         if (left)
2192                 st->left = &cfqq->rb_node;
2193
2194         cfqq->rb_key = rb_key;
2195         rb_link_node(&cfqq->rb_node, parent, p);
2196         rb_insert_color(&cfqq->rb_node, &st->rb);
2197         st->count++;
2198         if (add_front || !new_cfqq)
2199                 return;
2200         cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2201 }
2202
2203 static struct cfq_queue *
2204 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2205                      sector_t sector, struct rb_node **ret_parent,
2206                      struct rb_node ***rb_link)
2207 {
2208         struct rb_node **p, *parent;
2209         struct cfq_queue *cfqq = NULL;
2210
2211         parent = NULL;
2212         p = &root->rb_node;
2213         while (*p) {
2214                 struct rb_node **n;
2215
2216                 parent = *p;
2217                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2218
2219                 /*
2220                  * Sort strictly based on sector.  Smallest to the left,
2221                  * largest to the right.
2222                  */
2223                 if (sector > blk_rq_pos(cfqq->next_rq))
2224                         n = &(*p)->rb_right;
2225                 else if (sector < blk_rq_pos(cfqq->next_rq))
2226                         n = &(*p)->rb_left;
2227                 else
2228                         break;
2229                 p = n;
2230                 cfqq = NULL;
2231         }
2232
2233         *ret_parent = parent;
2234         if (rb_link)
2235                 *rb_link = p;
2236         return cfqq;
2237 }
2238
2239 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2240 {
2241         struct rb_node **p, *parent;
2242         struct cfq_queue *__cfqq;
2243
2244         if (cfqq->p_root) {
2245                 rb_erase(&cfqq->p_node, cfqq->p_root);
2246                 cfqq->p_root = NULL;
2247         }
2248
2249         if (cfq_class_idle(cfqq))
2250                 return;
2251         if (!cfqq->next_rq)
2252                 return;
2253
2254         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2255         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2256                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
2257         if (!__cfqq) {
2258                 rb_link_node(&cfqq->p_node, parent, p);
2259                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2260         } else
2261                 cfqq->p_root = NULL;
2262 }
2263
2264 /*
2265  * Update cfqq's position in the service tree.
2266  */
2267 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2268 {
2269         /*
2270          * Resorting requires the cfqq to be on the RR list already.
2271          */
2272         if (cfq_cfqq_on_rr(cfqq)) {
2273                 cfq_service_tree_add(cfqd, cfqq, 0);
2274                 cfq_prio_tree_add(cfqd, cfqq);
2275         }
2276 }
2277
2278 /*
2279  * add to busy list of queues for service, trying to be fair in ordering
2280  * the pending list according to last request service
2281  */
2282 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2283 {
2284         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2285         BUG_ON(cfq_cfqq_on_rr(cfqq));
2286         cfq_mark_cfqq_on_rr(cfqq);
2287         cfqd->busy_queues++;
2288         if (cfq_cfqq_sync(cfqq))
2289                 cfqd->busy_sync_queues++;
2290
2291         cfq_resort_rr_list(cfqd, cfqq);
2292 }
2293
2294 /*
2295  * Called when the cfqq no longer has requests pending, remove it from
2296  * the service tree.
2297  */
2298 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2299 {
2300         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2301         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2302         cfq_clear_cfqq_on_rr(cfqq);
2303
2304         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2305                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2306                 cfqq->service_tree = NULL;
2307         }
2308         if (cfqq->p_root) {
2309                 rb_erase(&cfqq->p_node, cfqq->p_root);
2310                 cfqq->p_root = NULL;
2311         }
2312
2313         cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2314         BUG_ON(!cfqd->busy_queues);
2315         cfqd->busy_queues--;
2316         if (cfq_cfqq_sync(cfqq))
2317                 cfqd->busy_sync_queues--;
2318 }
2319
2320 /*
2321  * rb tree support functions
2322  */
2323 static void cfq_del_rq_rb(struct request *rq)
2324 {
2325         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2326         const int sync = rq_is_sync(rq);
2327
2328         BUG_ON(!cfqq->queued[sync]);
2329         cfqq->queued[sync]--;
2330
2331         elv_rb_del(&cfqq->sort_list, rq);
2332
2333         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2334                 /*
2335                  * Queue will be deleted from service tree when we actually
2336                  * expire it later. Right now just remove it from prio tree
2337                  * as it is empty.
2338                  */
2339                 if (cfqq->p_root) {
2340                         rb_erase(&cfqq->p_node, cfqq->p_root);
2341                         cfqq->p_root = NULL;
2342                 }
2343         }
2344 }
2345
2346 static void cfq_add_rq_rb(struct request *rq)
2347 {
2348         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2349         struct cfq_data *cfqd = cfqq->cfqd;
2350         struct request *prev;
2351
2352         cfqq->queued[rq_is_sync(rq)]++;
2353
2354         elv_rb_add(&cfqq->sort_list, rq);
2355
2356         if (!cfq_cfqq_on_rr(cfqq))
2357                 cfq_add_cfqq_rr(cfqd, cfqq);
2358
2359         /*
2360          * check if this request is a better next-serve candidate
2361          */
2362         prev = cfqq->next_rq;
2363         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2364
2365         /*
2366          * adjust priority tree position, if ->next_rq changes
2367          */
2368         if (prev != cfqq->next_rq)
2369                 cfq_prio_tree_add(cfqd, cfqq);
2370
2371         BUG_ON(!cfqq->next_rq);
2372 }
2373
2374 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2375 {
2376         elv_rb_del(&cfqq->sort_list, rq);
2377         cfqq->queued[rq_is_sync(rq)]--;
2378         cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2379         cfq_add_rq_rb(rq);
2380         cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2381                                  rq->cmd_flags);
2382 }
2383
2384 static struct request *
2385 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2386 {
2387         struct task_struct *tsk = current;
2388         struct cfq_io_cq *cic;
2389         struct cfq_queue *cfqq;
2390
2391         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2392         if (!cic)
2393                 return NULL;
2394
2395         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2396         if (cfqq)
2397                 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2398
2399         return NULL;
2400 }
2401
2402 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2403 {
2404         struct cfq_data *cfqd = q->elevator->elevator_data;
2405
2406         cfqd->rq_in_driver++;
2407         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2408                                                 cfqd->rq_in_driver);
2409
2410         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2411 }
2412
2413 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2414 {
2415         struct cfq_data *cfqd = q->elevator->elevator_data;
2416
2417         WARN_ON(!cfqd->rq_in_driver);
2418         cfqd->rq_in_driver--;
2419         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2420                                                 cfqd->rq_in_driver);
2421 }
2422
2423 static void cfq_remove_request(struct request *rq)
2424 {
2425         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2426
2427         if (cfqq->next_rq == rq)
2428                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2429
2430         list_del_init(&rq->queuelist);
2431         cfq_del_rq_rb(rq);
2432
2433         cfqq->cfqd->rq_queued--;
2434         cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2435         if (rq->cmd_flags & REQ_PRIO) {
2436                 WARN_ON(!cfqq->prio_pending);
2437                 cfqq->prio_pending--;
2438         }
2439 }
2440
2441 static int cfq_merge(struct request_queue *q, struct request **req,
2442                      struct bio *bio)
2443 {
2444         struct cfq_data *cfqd = q->elevator->elevator_data;
2445         struct request *__rq;
2446
2447         __rq = cfq_find_rq_fmerge(cfqd, bio);
2448         if (__rq && elv_rq_merge_ok(__rq, bio)) {
2449                 *req = __rq;
2450                 return ELEVATOR_FRONT_MERGE;
2451         }
2452
2453         return ELEVATOR_NO_MERGE;
2454 }
2455
2456 static void cfq_merged_request(struct request_queue *q, struct request *req,
2457                                int type)
2458 {
2459         if (type == ELEVATOR_FRONT_MERGE) {
2460                 struct cfq_queue *cfqq = RQ_CFQQ(req);
2461
2462                 cfq_reposition_rq_rb(cfqq, req);
2463         }
2464 }
2465
2466 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2467                                 struct bio *bio)
2468 {
2469         cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2470 }
2471
2472 static void
2473 cfq_merged_requests(struct request_queue *q, struct request *rq,
2474                     struct request *next)
2475 {
2476         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2477         struct cfq_data *cfqd = q->elevator->elevator_data;
2478
2479         /*
2480          * reposition in fifo if next is older than rq
2481          */
2482         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2483             time_before(next->fifo_time, rq->fifo_time) &&
2484             cfqq == RQ_CFQQ(next)) {
2485                 list_move(&rq->queuelist, &next->queuelist);
2486                 rq->fifo_time = next->fifo_time;
2487         }
2488
2489         if (cfqq->next_rq == next)
2490                 cfqq->next_rq = rq;
2491         cfq_remove_request(next);
2492         cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2493
2494         cfqq = RQ_CFQQ(next);
2495         /*
2496          * all requests of this queue are merged to other queues, delete it
2497          * from the service tree. If it's the active_queue,
2498          * cfq_dispatch_requests() will choose to expire it or do idle
2499          */
2500         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2501             cfqq != cfqd->active_queue)
2502                 cfq_del_cfqq_rr(cfqd, cfqq);
2503 }
2504
2505 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2506                            struct bio *bio)
2507 {
2508         struct cfq_data *cfqd = q->elevator->elevator_data;
2509         struct cfq_io_cq *cic;
2510         struct cfq_queue *cfqq;
2511
2512         /*
2513          * Disallow merge of a sync bio into an async request.
2514          */
2515         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2516                 return false;
2517
2518         /*
2519          * Lookup the cfqq that this bio will be queued with and allow
2520          * merge only if rq is queued there.
2521          */
2522         cic = cfq_cic_lookup(cfqd, current->io_context);
2523         if (!cic)
2524                 return false;
2525
2526         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2527         return cfqq == RQ_CFQQ(rq);
2528 }
2529
2530 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2531 {
2532         del_timer(&cfqd->idle_slice_timer);
2533         cfqg_stats_update_idle_time(cfqq->cfqg);
2534 }
2535
2536 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2537                                    struct cfq_queue *cfqq)
2538 {
2539         if (cfqq) {
2540                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2541                                 cfqd->serving_wl_class, cfqd->serving_wl_type);
2542                 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2543                 cfqq->slice_start = 0;
2544                 cfqq->dispatch_start = jiffies;
2545                 cfqq->allocated_slice = 0;
2546                 cfqq->slice_end = 0;
2547                 cfqq->slice_dispatch = 0;
2548                 cfqq->nr_sectors = 0;
2549
2550                 cfq_clear_cfqq_wait_request(cfqq);
2551                 cfq_clear_cfqq_must_dispatch(cfqq);
2552                 cfq_clear_cfqq_must_alloc_slice(cfqq);
2553                 cfq_clear_cfqq_fifo_expire(cfqq);
2554                 cfq_mark_cfqq_slice_new(cfqq);
2555
2556                 cfq_del_timer(cfqd, cfqq);
2557         }
2558
2559         cfqd->active_queue = cfqq;
2560 }
2561
2562 /*
2563  * current cfqq expired its slice (or was too idle), select new one
2564  */
2565 static void
2566 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2567                     bool timed_out)
2568 {
2569         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2570
2571         if (cfq_cfqq_wait_request(cfqq))
2572                 cfq_del_timer(cfqd, cfqq);
2573
2574         cfq_clear_cfqq_wait_request(cfqq);
2575         cfq_clear_cfqq_wait_busy(cfqq);
2576
2577         /*
2578          * If this cfqq is shared between multiple processes, check to
2579          * make sure that those processes are still issuing I/Os within
2580          * the mean seek distance.  If not, it may be time to break the
2581          * queues apart again.
2582          */
2583         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2584                 cfq_mark_cfqq_split_coop(cfqq);
2585
2586         /*
2587          * store what was left of this slice, if the queue idled/timed out
2588          */
2589         if (timed_out) {
2590                 if (cfq_cfqq_slice_new(cfqq))
2591                         cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2592                 else
2593                         cfqq->slice_resid = cfqq->slice_end - jiffies;
2594                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2595         }
2596
2597         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2598
2599         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2600                 cfq_del_cfqq_rr(cfqd, cfqq);
2601
2602         cfq_resort_rr_list(cfqd, cfqq);
2603
2604         if (cfqq == cfqd->active_queue)
2605                 cfqd->active_queue = NULL;
2606
2607         if (cfqd->active_cic) {
2608                 put_io_context(cfqd->active_cic->icq.ioc);
2609                 cfqd->active_cic = NULL;
2610         }
2611 }
2612
2613 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2614 {
2615         struct cfq_queue *cfqq = cfqd->active_queue;
2616
2617         if (cfqq)
2618                 __cfq_slice_expired(cfqd, cfqq, timed_out);
2619 }
2620
2621 /*
2622  * Get next queue for service. Unless we have a queue preemption,
2623  * we'll simply select the first cfqq in the service tree.
2624  */
2625 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2626 {
2627         struct cfq_rb_root *st = st_for(cfqd->serving_group,
2628                         cfqd->serving_wl_class, cfqd->serving_wl_type);
2629
2630         if (!cfqd->rq_queued)
2631                 return NULL;
2632
2633         /* There is nothing to dispatch */
2634         if (!st)
2635                 return NULL;
2636         if (RB_EMPTY_ROOT(&st->rb))
2637                 return NULL;
2638         return cfq_rb_first(st);
2639 }
2640
2641 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2642 {
2643         struct cfq_group *cfqg;
2644         struct cfq_queue *cfqq;
2645         int i, j;
2646         struct cfq_rb_root *st;
2647
2648         if (!cfqd->rq_queued)
2649                 return NULL;
2650
2651         cfqg = cfq_get_next_cfqg(cfqd);
2652         if (!cfqg)
2653                 return NULL;
2654
2655         for_each_cfqg_st(cfqg, i, j, st)
2656                 if ((cfqq = cfq_rb_first(st)) != NULL)
2657                         return cfqq;
2658         return NULL;
2659 }
2660
2661 /*
2662  * Get and set a new active queue for service.
2663  */
2664 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2665                                               struct cfq_queue *cfqq)
2666 {
2667         if (!cfqq)
2668                 cfqq = cfq_get_next_queue(cfqd);
2669
2670         __cfq_set_active_queue(cfqd, cfqq);
2671         return cfqq;
2672 }
2673
2674 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2675                                           struct request *rq)
2676 {
2677         if (blk_rq_pos(rq) >= cfqd->last_position)
2678                 return blk_rq_pos(rq) - cfqd->last_position;
2679         else
2680                 return cfqd->last_position - blk_rq_pos(rq);
2681 }
2682
2683 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2684                                struct request *rq)
2685 {
2686         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2687 }
2688
2689 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2690                                     struct cfq_queue *cur_cfqq)
2691 {
2692         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2693         struct rb_node *parent, *node;
2694         struct cfq_queue *__cfqq;
2695         sector_t sector = cfqd->last_position;
2696
2697         if (RB_EMPTY_ROOT(root))
2698                 return NULL;
2699
2700         /*
2701          * First, if we find a request starting at the end of the last
2702          * request, choose it.
2703          */
2704         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2705         if (__cfqq)
2706                 return __cfqq;
2707
2708         /*
2709          * If the exact sector wasn't found, the parent of the NULL leaf
2710          * will contain the closest sector.
2711          */
2712         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2713         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2714                 return __cfqq;
2715
2716         if (blk_rq_pos(__cfqq->next_rq) < sector)
2717                 node = rb_next(&__cfqq->p_node);
2718         else
2719                 node = rb_prev(&__cfqq->p_node);
2720         if (!node)
2721                 return NULL;
2722
2723         __cfqq = rb_entry(node, struct cfq_queue, p_node);
2724         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2725                 return __cfqq;
2726
2727         return NULL;
2728 }
2729
2730 /*
2731  * cfqd - obvious
2732  * cur_cfqq - passed in so that we don't decide that the current queue is
2733  *            closely cooperating with itself.
2734  *
2735  * So, basically we're assuming that that cur_cfqq has dispatched at least
2736  * one request, and that cfqd->last_position reflects a position on the disk
2737  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2738  * assumption.
2739  */
2740 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2741                                               struct cfq_queue *cur_cfqq)
2742 {
2743         struct cfq_queue *cfqq;
2744
2745         if (cfq_class_idle(cur_cfqq))
2746                 return NULL;
2747         if (!cfq_cfqq_sync(cur_cfqq))
2748                 return NULL;
2749         if (CFQQ_SEEKY(cur_cfqq))
2750                 return NULL;
2751
2752         /*
2753          * Don't search priority tree if it's the only queue in the group.
2754          */
2755         if (cur_cfqq->cfqg->nr_cfqq == 1)
2756                 return NULL;
2757
2758         /*
2759          * We should notice if some of the queues are cooperating, eg
2760          * working closely on the same area of the disk. In that case,
2761          * we can group them together and don't waste time idling.
2762          */
2763         cfqq = cfqq_close(cfqd, cur_cfqq);
2764         if (!cfqq)
2765                 return NULL;
2766
2767         /* If new queue belongs to different cfq_group, don't choose it */
2768         if (cur_cfqq->cfqg != cfqq->cfqg)
2769                 return NULL;
2770
2771         /*
2772          * It only makes sense to merge sync queues.
2773          */
2774         if (!cfq_cfqq_sync(cfqq))
2775                 return NULL;
2776         if (CFQQ_SEEKY(cfqq))
2777                 return NULL;
2778
2779         /*
2780          * Do not merge queues of different priority classes
2781          */
2782         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2783                 return NULL;
2784
2785         return cfqq;
2786 }
2787
2788 /*
2789  * Determine whether we should enforce idle window for this queue.
2790  */
2791
2792 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2793 {
2794         enum wl_class_t wl_class = cfqq_class(cfqq);
2795         struct cfq_rb_root *st = cfqq->service_tree;
2796
2797         BUG_ON(!st);
2798         BUG_ON(!st->count);
2799
2800         if (!cfqd->cfq_slice_idle)
2801                 return false;
2802
2803         /* We never do for idle class queues. */
2804         if (wl_class == IDLE_WORKLOAD)
2805                 return false;
2806
2807         /* We do for queues that were marked with idle window flag. */
2808         if (cfq_cfqq_idle_window(cfqq) &&
2809            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2810                 return true;
2811
2812         /*
2813          * Otherwise, we do only if they are the last ones
2814          * in their service tree.
2815          */
2816         if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2817            !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2818                 return true;
2819         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2820         return false;
2821 }
2822
2823 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2824 {
2825         struct cfq_queue *cfqq = cfqd->active_queue;
2826         struct cfq_io_cq *cic;
2827         unsigned long sl, group_idle = 0;
2828
2829         /*
2830          * SSD device without seek penalty, disable idling. But only do so
2831          * for devices that support queuing, otherwise we still have a problem
2832          * with sync vs async workloads.
2833          */
2834         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2835                 return;
2836
2837         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2838         WARN_ON(cfq_cfqq_slice_new(cfqq));
2839
2840         /*
2841          * idle is disabled, either manually or by past process history
2842          */
2843         if (!cfq_should_idle(cfqd, cfqq)) {
2844                 /* no queue idling. Check for group idling */
2845                 if (cfqd->cfq_group_idle)
2846                         group_idle = cfqd->cfq_group_idle;
2847                 else
2848                         return;
2849         }
2850
2851         /*
2852          * still active requests from this queue, don't idle
2853          */
2854         if (cfqq->dispatched)
2855                 return;
2856
2857         /*
2858          * task has exited, don't wait
2859          */
2860         cic = cfqd->active_cic;
2861         if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2862                 return;
2863
2864         /*
2865          * If our average think time is larger than the remaining time
2866          * slice, then don't idle. This avoids overrunning the allotted
2867          * time slice.
2868          */
2869         if (sample_valid(cic->ttime.ttime_samples) &&
2870             (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2871                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2872                              cic->ttime.ttime_mean);
2873                 return;
2874         }
2875
2876         /* There are other queues in the group, don't do group idle */
2877         if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2878                 return;
2879
2880         cfq_mark_cfqq_wait_request(cfqq);
2881
2882         if (group_idle)
2883                 sl = cfqd->cfq_group_idle;
2884         else
2885                 sl = cfqd->cfq_slice_idle;
2886
2887         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2888         cfqg_stats_set_start_idle_time(cfqq->cfqg);
2889         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2890                         group_idle ? 1 : 0);
2891 }
2892
2893 /*
2894  * Move request from internal lists to the request queue dispatch list.
2895  */
2896 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2897 {
2898         struct cfq_data *cfqd = q->elevator->elevator_data;
2899         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2900
2901         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2902
2903         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2904         cfq_remove_request(rq);
2905         cfqq->dispatched++;
2906         (RQ_CFQG(rq))->dispatched++;
2907         elv_dispatch_sort(q, rq);
2908
2909         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2910         cfqq->nr_sectors += blk_rq_sectors(rq);
2911 }
2912
2913 /*
2914  * return expired entry, or NULL to just start from scratch in rbtree
2915  */
2916 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2917 {
2918         struct request *rq = NULL;
2919
2920         if (cfq_cfqq_fifo_expire(cfqq))
2921                 return NULL;
2922
2923         cfq_mark_cfqq_fifo_expire(cfqq);
2924
2925         if (list_empty(&cfqq->fifo))
2926                 return NULL;
2927
2928         rq = rq_entry_fifo(cfqq->fifo.next);
2929         if (time_before(jiffies, rq->fifo_time))
2930                 rq = NULL;
2931
2932         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2933         return rq;
2934 }
2935
2936 static inline int
2937 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2938 {
2939         const int base_rq = cfqd->cfq_slice_async_rq;
2940
2941         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2942
2943         return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2944 }
2945
2946 /*
2947  * Must be called with the queue_lock held.
2948  */
2949 static int cfqq_process_refs(struct cfq_queue *cfqq)
2950 {
2951         int process_refs, io_refs;
2952
2953         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2954         process_refs = cfqq->ref - io_refs;
2955         BUG_ON(process_refs < 0);
2956         return process_refs;
2957 }
2958
2959 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2960 {
2961         int process_refs, new_process_refs;
2962         struct cfq_queue *__cfqq;
2963
2964         /*
2965          * If there are no process references on the new_cfqq, then it is
2966          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2967          * chain may have dropped their last reference (not just their
2968          * last process reference).
2969          */
2970         if (!cfqq_process_refs(new_cfqq))
2971                 return;
2972
2973         /* Avoid a circular list and skip interim queue merges */
2974         while ((__cfqq = new_cfqq->new_cfqq)) {
2975                 if (__cfqq == cfqq)
2976                         return;
2977                 new_cfqq = __cfqq;
2978         }
2979
2980         process_refs = cfqq_process_refs(cfqq);
2981         new_process_refs = cfqq_process_refs(new_cfqq);
2982         /*
2983          * If the process for the cfqq has gone away, there is no
2984          * sense in merging the queues.
2985          */
2986         if (process_refs == 0 || new_process_refs == 0)
2987                 return;
2988
2989         /*
2990          * Merge in the direction of the lesser amount of work.
2991          */
2992         if (new_process_refs >= process_refs) {
2993                 cfqq->new_cfqq = new_cfqq;
2994                 new_cfqq->ref += process_refs;
2995         } else {
2996                 new_cfqq->new_cfqq = cfqq;
2997                 cfqq->ref += new_process_refs;
2998         }
2999 }
3000
3001 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3002                         struct cfq_group *cfqg, enum wl_class_t wl_class)
3003 {
3004         struct cfq_queue *queue;
3005         int i;
3006         bool key_valid = false;
3007         unsigned long lowest_key = 0;
3008         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3009
3010         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3011                 /* select the one with lowest rb_key */
3012                 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3013                 if (queue &&
3014                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
3015                         lowest_key = queue->rb_key;
3016                         cur_best = i;
3017                         key_valid = true;
3018                 }
3019         }
3020
3021         return cur_best;
3022 }
3023
3024 static void
3025 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3026 {
3027         unsigned slice;
3028         unsigned count;
3029         struct cfq_rb_root *st;
3030         unsigned group_slice;
3031         enum wl_class_t original_class = cfqd->serving_wl_class;
3032
3033         /* Choose next priority. RT > BE > IDLE */
3034         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3035                 cfqd->serving_wl_class = RT_WORKLOAD;
3036         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3037                 cfqd->serving_wl_class = BE_WORKLOAD;
3038         else {
3039                 cfqd->serving_wl_class = IDLE_WORKLOAD;
3040                 cfqd->workload_expires = jiffies + 1;
3041                 return;
3042         }
3043
3044         if (original_class != cfqd->serving_wl_class)
3045                 goto new_workload;
3046
3047         /*
3048          * For RT and BE, we have to choose also the type
3049          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3050          * expiration time
3051          */
3052         st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3053         count = st->count;
3054
3055         /*
3056          * check workload expiration, and that we still have other queues ready
3057          */
3058         if (count && !time_after(jiffies, cfqd->workload_expires))
3059                 return;
3060
3061 new_workload:
3062         /* otherwise select new workload type */
3063         cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3064                                         cfqd->serving_wl_class);
3065         st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3066         count = st->count;
3067
3068         /*
3069          * the workload slice is computed as a fraction of target latency
3070          * proportional to the number of queues in that workload, over
3071          * all the queues in the same priority class
3072          */
3073         group_slice = cfq_group_slice(cfqd, cfqg);
3074
3075         slice = group_slice * count /
3076                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3077                       cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3078                                         cfqg));
3079
3080         if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3081                 unsigned int tmp;
3082
3083                 /*
3084                  * Async queues are currently system wide. Just taking
3085                  * proportion of queues with-in same group will lead to higher
3086                  * async ratio system wide as generally root group is going
3087                  * to have higher weight. A more accurate thing would be to
3088                  * calculate system wide asnc/sync ratio.
3089                  */
3090                 tmp = cfqd->cfq_target_latency *
3091                         cfqg_busy_async_queues(cfqd, cfqg);
3092                 tmp = tmp/cfqd->busy_queues;
3093                 slice = min_t(unsigned, slice, tmp);
3094
3095                 /* async workload slice is scaled down according to
3096                  * the sync/async slice ratio. */
3097                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
3098         } else
3099                 /* sync workload slice is at least 2 * cfq_slice_idle */
3100                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3101
3102         slice = max_t(unsigned, slice, CFQ_MIN_TT);
3103         cfq_log(cfqd, "workload slice:%d", slice);
3104         cfqd->workload_expires = jiffies + slice;
3105 }
3106
3107 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3108 {
3109         struct cfq_rb_root *st = &cfqd->grp_service_tree;
3110         struct cfq_group *cfqg;
3111
3112         if (RB_EMPTY_ROOT(&st->rb))
3113                 return NULL;
3114         cfqg = cfq_rb_first_group(st);
3115         update_min_vdisktime(st);
3116         return cfqg;
3117 }
3118
3119 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3120 {
3121         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3122
3123         cfqd->serving_group = cfqg;
3124
3125         /* Restore the workload type data */
3126         if (cfqg->saved_wl_slice) {
3127                 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3128                 cfqd->serving_wl_type = cfqg->saved_wl_type;
3129                 cfqd->serving_wl_class = cfqg->saved_wl_class;
3130         } else
3131                 cfqd->workload_expires = jiffies - 1;
3132
3133         choose_wl_class_and_type(cfqd, cfqg);
3134 }
3135
3136 /*
3137  * Select a queue for service. If we have a current active queue,
3138  * check whether to continue servicing it, or retrieve and set a new one.
3139  */
3140 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3141 {
3142         struct cfq_queue *cfqq, *new_cfqq = NULL;
3143
3144         cfqq = cfqd->active_queue;
3145         if (!cfqq)
3146                 goto new_queue;
3147
3148         if (!cfqd->rq_queued)
3149                 return NULL;
3150
3151         /*
3152          * We were waiting for group to get backlogged. Expire the queue
3153          */
3154         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3155                 goto expire;
3156
3157         /*
3158          * The active queue has run out of time, expire it and select new.
3159          */
3160         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3161                 /*
3162                  * If slice had not expired at the completion of last request
3163                  * we might not have turned on wait_busy flag. Don't expire
3164                  * the queue yet. Allow the group to get backlogged.
3165                  *
3166                  * The very fact that we have used the slice, that means we
3167                  * have been idling all along on this queue and it should be
3168                  * ok to wait for this request to complete.
3169                  */
3170                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3171                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3172                         cfqq = NULL;
3173                         goto keep_queue;
3174                 } else
3175                         goto check_group_idle;
3176         }
3177
3178         /*
3179          * The active queue has requests and isn't expired, allow it to
3180          * dispatch.
3181          */
3182         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3183                 goto keep_queue;
3184
3185         /*
3186          * If another queue has a request waiting within our mean seek
3187          * distance, let it run.  The expire code will check for close
3188          * cooperators and put the close queue at the front of the service
3189          * tree.  If possible, merge the expiring queue with the new cfqq.
3190          */
3191         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3192         if (new_cfqq) {
3193                 if (!cfqq->new_cfqq)
3194                         cfq_setup_merge(cfqq, new_cfqq);
3195                 goto expire;
3196         }
3197
3198         /*
3199          * No requests pending. If the active queue still has requests in
3200          * flight or is idling for a new request, allow either of these
3201          * conditions to happen (or time out) before selecting a new queue.
3202          */
3203         if (timer_pending(&cfqd->idle_slice_timer)) {
3204                 cfqq = NULL;
3205                 goto keep_queue;
3206         }
3207
3208         /*
3209          * This is a deep seek queue, but the device is much faster than
3210          * the queue can deliver, don't idle
3211          **/
3212         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3213             (cfq_cfqq_slice_new(cfqq) ||
3214             (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3215                 cfq_clear_cfqq_deep(cfqq);
3216                 cfq_clear_cfqq_idle_window(cfqq);
3217         }
3218
3219         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3220                 cfqq = NULL;
3221                 goto keep_queue;
3222         }
3223
3224         /*
3225          * If group idle is enabled and there are requests dispatched from
3226          * this group, wait for requests to complete.
3227          */
3228 check_group_idle:
3229         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3230             cfqq->cfqg->dispatched &&
3231             !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3232                 cfqq = NULL;
3233                 goto keep_queue;
3234         }
3235
3236 expire:
3237         cfq_slice_expired(cfqd, 0);
3238 new_queue:
3239         /*
3240          * Current queue expired. Check if we have to switch to a new
3241          * service tree
3242          */
3243         if (!new_cfqq)
3244                 cfq_choose_cfqg(cfqd);
3245
3246         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3247 keep_queue:
3248         return cfqq;
3249 }
3250
3251 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3252 {
3253         int dispatched = 0;
3254
3255         while (cfqq->next_rq) {
3256                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3257                 dispatched++;
3258         }
3259
3260         BUG_ON(!list_empty(&cfqq->fifo));
3261
3262         /* By default cfqq is not expired if it is empty. Do it explicitly */
3263         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3264         return dispatched;
3265 }
3266
3267 /*
3268  * Drain our current requests. Used for barriers and when switching
3269  * io schedulers on-the-fly.
3270  */
3271 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3272 {
3273         struct cfq_queue *cfqq;
3274         int dispatched = 0;
3275
3276         /* Expire the timeslice of the current active queue first */
3277         cfq_slice_expired(cfqd, 0);
3278         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3279                 __cfq_set_active_queue(cfqd, cfqq);
3280                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3281         }
3282
3283         BUG_ON(cfqd->busy_queues);
3284
3285         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3286         return dispatched;
3287 }
3288
3289 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3290         struct cfq_queue *cfqq)
3291 {
3292         /* the queue hasn't finished any request, can't estimate */
3293         if (cfq_cfqq_slice_new(cfqq))
3294                 return true;
3295         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3296                 cfqq->slice_end))
3297                 return true;
3298
3299         return false;
3300 }
3301
3302 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3303 {
3304         unsigned int max_dispatch;
3305
3306         /*
3307          * Drain async requests before we start sync IO
3308          */
3309         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3310                 return false;
3311
3312         /*
3313          * If this is an async queue and we have sync IO in flight, let it wait
3314          */
3315         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3316                 return false;
3317
3318         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3319         if (cfq_class_idle(cfqq))
3320                 max_dispatch = 1;
3321
3322         /*
3323          * Does this cfqq already have too much IO in flight?
3324          */
3325         if (cfqq->dispatched >= max_dispatch) {
3326                 bool promote_sync = false;
3327                 /*
3328                  * idle queue must always only have a single IO in flight
3329                  */
3330                 if (cfq_class_idle(cfqq))
3331                         return false;
3332
3333                 /*
3334                  * If there is only one sync queue
3335                  * we can ignore async queue here and give the sync
3336                  * queue no dispatch limit. The reason is a sync queue can
3337                  * preempt async queue, limiting the sync queue doesn't make
3338                  * sense. This is useful for aiostress test.
3339                  */
3340                 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3341                         promote_sync = true;
3342
3343                 /*
3344                  * We have other queues, don't allow more IO from this one
3345                  */
3346                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3347                                 !promote_sync)
3348                         return false;
3349
3350                 /*
3351                  * Sole queue user, no limit
3352                  */
3353                 if (cfqd->busy_queues == 1 || promote_sync)
3354                         max_dispatch = -1;
3355                 else
3356                         /*
3357                          * Normally we start throttling cfqq when cfq_quantum/2
3358                          * requests have been dispatched. But we can drive
3359                          * deeper queue depths at the beginning of slice
3360                          * subjected to upper limit of cfq_quantum.
3361                          * */
3362                         max_dispatch = cfqd->cfq_quantum;
3363         }
3364
3365         /*
3366          * Async queues must wait a bit before being allowed dispatch.
3367          * We also ramp up the dispatch depth gradually for async IO,
3368          * based on the last sync IO we serviced
3369          */
3370         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3371                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3372                 unsigned int depth;
3373
3374                 depth = last_sync / cfqd->cfq_slice[1];
3375                 if (!depth && !cfqq->dispatched)
3376                         depth = 1;
3377                 if (depth < max_dispatch)
3378                         max_dispatch = depth;
3379         }
3380
3381         /*
3382          * If we're below the current max, allow a dispatch
3383          */
3384         return cfqq->dispatched < max_dispatch;
3385 }
3386
3387 /*
3388  * Dispatch a request from cfqq, moving them to the request queue
3389  * dispatch list.
3390  */
3391 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3392 {
3393         struct request *rq;
3394
3395         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3396
3397         if (!cfq_may_dispatch(cfqd, cfqq))
3398                 return false;
3399
3400         /*
3401          * follow expired path, else get first next available
3402          */
3403         rq = cfq_check_fifo(cfqq);
3404         if (!rq)
3405                 rq = cfqq->next_rq;
3406
3407         /*
3408          * insert request into driver dispatch list
3409          */
3410         cfq_dispatch_insert(cfqd->queue, rq);
3411
3412         if (!cfqd->active_cic) {
3413                 struct cfq_io_cq *cic = RQ_CIC(rq);
3414
3415                 atomic_long_inc(&cic->icq.ioc->refcount);
3416                 cfqd->active_cic = cic;
3417         }
3418
3419         return true;
3420 }
3421
3422 /*
3423  * Find the cfqq that we need to service and move a request from that to the
3424  * dispatch list
3425  */
3426 static int cfq_dispatch_requests(struct request_queue *q, int force)
3427 {
3428         struct cfq_data *cfqd = q->elevator->elevator_data;
3429         struct cfq_queue *cfqq;
3430
3431         if (!cfqd->busy_queues)
3432                 return 0;
3433
3434         if (unlikely(force))
3435                 return cfq_forced_dispatch(cfqd);
3436
3437         cfqq = cfq_select_queue(cfqd);
3438         if (!cfqq)
3439                 return 0;
3440
3441         /*
3442          * Dispatch a request from this cfqq, if it is allowed
3443          */
3444         if (!cfq_dispatch_request(cfqd, cfqq))
3445                 return 0;
3446
3447         cfqq->slice_dispatch++;
3448         cfq_clear_cfqq_must_dispatch(cfqq);
3449
3450         /*
3451          * expire an async queue immediately if it has used up its slice. idle
3452          * queue always expire after 1 dispatch round.
3453          */
3454         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3455             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3456             cfq_class_idle(cfqq))) {
3457                 cfqq->slice_end = jiffies + 1;
3458                 cfq_slice_expired(cfqd, 0);
3459         }
3460
3461         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3462         return 1;
3463 }
3464
3465 /*
3466  * task holds one reference to the queue, dropped when task exits. each rq
3467  * in-flight on this queue also holds a reference, dropped when rq is freed.
3468  *
3469  * Each cfq queue took a reference on the parent group. Drop it now.
3470  * queue lock must be held here.
3471  */
3472 static void cfq_put_queue(struct cfq_queue *cfqq)
3473 {
3474         struct cfq_data *cfqd = cfqq->cfqd;
3475         struct cfq_group *cfqg;
3476
3477         BUG_ON(cfqq->ref <= 0);
3478
3479         cfqq->ref--;
3480         if (cfqq->ref)
3481                 return;
3482
3483         cfq_log_cfqq(cfqd, cfqq, "put_queue");
3484         BUG_ON(rb_first(&cfqq->sort_list));
3485         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3486         cfqg = cfqq->cfqg;
3487
3488         if (unlikely(cfqd->active_queue == cfqq)) {
3489                 __cfq_slice_expired(cfqd, cfqq, 0);
3490                 cfq_schedule_dispatch(cfqd);
3491         }
3492
3493         BUG_ON(cfq_cfqq_on_rr(cfqq));
3494         kmem_cache_free(cfq_pool, cfqq);
3495         cfqg_put(cfqg);
3496 }
3497
3498 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3499 {
3500         struct cfq_queue *__cfqq, *next;
3501
3502         /*
3503          * If this queue was scheduled to merge with another queue, be
3504          * sure to drop the reference taken on that queue (and others in
3505          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
3506          */
3507         __cfqq = cfqq->new_cfqq;
3508         while (__cfqq) {
3509                 if (__cfqq == cfqq) {
3510                         WARN(1, "cfqq->new_cfqq loop detected\n");
3511                         break;
3512                 }
3513                 next = __cfqq->new_cfqq;
3514                 cfq_put_queue(__cfqq);
3515                 __cfqq = next;
3516         }
3517 }
3518
3519 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3520 {
3521         if (unlikely(cfqq == cfqd->active_queue)) {
3522                 __cfq_slice_expired(cfqd, cfqq, 0);
3523                 cfq_schedule_dispatch(cfqd);
3524         }
3525
3526         cfq_put_cooperator(cfqq);
3527
3528         cfq_put_queue(cfqq);
3529 }
3530
3531 static void cfq_init_icq(struct io_cq *icq)
3532 {
3533         struct cfq_io_cq *cic = icq_to_cic(icq);
3534
3535         cic->ttime.last_end_request = jiffies;
3536 }
3537
3538 static void cfq_exit_icq(struct io_cq *icq)
3539 {
3540         struct cfq_io_cq *cic = icq_to_cic(icq);
3541         struct cfq_data *cfqd = cic_to_cfqd(cic);
3542
3543         if (cic_to_cfqq(cic, false)) {
3544                 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3545                 cic_set_cfqq(cic, NULL, false);
3546         }
3547
3548         if (cic_to_cfqq(cic, true)) {
3549                 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3550                 cic_set_cfqq(cic, NULL, true);
3551         }
3552 }
3553
3554 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3555 {
3556         struct task_struct *tsk = current;
3557         int ioprio_class;
3558
3559         if (!cfq_cfqq_prio_changed(cfqq))
3560                 return;
3561
3562         ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3563         switch (ioprio_class) {
3564         default:
3565                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3566         case IOPRIO_CLASS_NONE:
3567                 /*
3568                  * no prio set, inherit CPU scheduling settings
3569                  */
3570                 cfqq->ioprio = task_nice_ioprio(tsk);
3571                 cfqq->ioprio_class = task_nice_ioclass(tsk);
3572                 break;
3573         case IOPRIO_CLASS_RT:
3574                 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3575                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3576                 break;
3577         case IOPRIO_CLASS_BE:
3578                 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3579                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3580                 break;
3581         case IOPRIO_CLASS_IDLE:
3582                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3583                 cfqq->ioprio = 7;
3584                 cfq_clear_cfqq_idle_window(cfqq);
3585                 break;
3586         }
3587
3588         /*
3589          * keep track of original prio settings in case we have to temporarily
3590          * elevate the priority of this queue
3591          */
3592         cfqq->org_ioprio = cfqq->ioprio;
3593         cfq_clear_cfqq_prio_changed(cfqq);
3594 }
3595
3596 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3597 {
3598         int ioprio = cic->icq.ioc->ioprio;
3599         struct cfq_data *cfqd = cic_to_cfqd(cic);
3600         struct cfq_queue *cfqq;
3601
3602         /*
3603          * Check whether ioprio has changed.  The condition may trigger
3604          * spuriously on a newly created cic but there's no harm.
3605          */
3606         if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3607                 return;
3608
3609         cfqq = cic_to_cfqq(cic, false);
3610         if (cfqq) {
3611                 cfq_put_queue(cfqq);
3612                 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3613                 cic_set_cfqq(cic, cfqq, false);
3614         }
3615
3616         cfqq = cic_to_cfqq(cic, true);
3617         if (cfqq)
3618                 cfq_mark_cfqq_prio_changed(cfqq);
3619
3620         cic->ioprio = ioprio;
3621 }
3622
3623 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3624                           pid_t pid, bool is_sync)
3625 {
3626         RB_CLEAR_NODE(&cfqq->rb_node);
3627         RB_CLEAR_NODE(&cfqq->p_node);
3628         INIT_LIST_HEAD(&cfqq->fifo);
3629
3630         cfqq->ref = 0;
3631         cfqq->cfqd = cfqd;
3632
3633         cfq_mark_cfqq_prio_changed(cfqq);
3634
3635         if (is_sync) {
3636                 if (!cfq_class_idle(cfqq))
3637                         cfq_mark_cfqq_idle_window(cfqq);
3638                 cfq_mark_cfqq_sync(cfqq);
3639         }
3640         cfqq->pid = pid;
3641 }
3642
3643 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3644 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3645 {
3646         struct cfq_data *cfqd = cic_to_cfqd(cic);
3647         struct cfq_queue *cfqq;
3648         uint64_t serial_nr;
3649
3650         rcu_read_lock();
3651         serial_nr = bio_blkcg(bio)->css.serial_nr;
3652         rcu_read_unlock();
3653
3654         /*
3655          * Check whether blkcg has changed.  The condition may trigger
3656          * spuriously on a newly created cic but there's no harm.
3657          */
3658         if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3659                 return;
3660
3661         /*
3662          * Drop reference to queues.  New queues will be assigned in new
3663          * group upon arrival of fresh requests.
3664          */
3665         cfqq = cic_to_cfqq(cic, false);
3666         if (cfqq) {
3667                 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3668                 cic_set_cfqq(cic, NULL, false);
3669                 cfq_put_queue(cfqq);
3670         }
3671
3672         cfqq = cic_to_cfqq(cic, true);
3673         if (cfqq) {
3674                 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3675                 cic_set_cfqq(cic, NULL, true);
3676                 cfq_put_queue(cfqq);
3677         }
3678
3679         cic->blkcg_serial_nr = serial_nr;
3680 }
3681 #else
3682 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3683 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3684
3685 static struct cfq_queue **
3686 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3687 {
3688         switch (ioprio_class) {
3689         case IOPRIO_CLASS_RT:
3690                 return &cfqg->async_cfqq[0][ioprio];
3691         case IOPRIO_CLASS_NONE:
3692                 ioprio = IOPRIO_NORM;
3693                 /* fall through */
3694         case IOPRIO_CLASS_BE:
3695                 return &cfqg->async_cfqq[1][ioprio];
3696         case IOPRIO_CLASS_IDLE:
3697                 return &cfqg->async_idle_cfqq;
3698         default:
3699                 BUG();
3700         }
3701 }
3702
3703 static struct cfq_queue *
3704 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3705               struct bio *bio)
3706 {
3707         int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3708         int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3709         struct cfq_queue **async_cfqq = NULL;
3710         struct cfq_queue *cfqq;
3711         struct cfq_group *cfqg;
3712
3713         rcu_read_lock();
3714         cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3715         if (!cfqg) {
3716                 cfqq = &cfqd->oom_cfqq;
3717                 goto out;
3718         }
3719
3720         if (!is_sync) {
3721                 if (!ioprio_valid(cic->ioprio)) {
3722                         struct task_struct *tsk = current;
3723                         ioprio = task_nice_ioprio(tsk);
3724                         ioprio_class = task_nice_ioclass(tsk);
3725                 }
3726                 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3727                 cfqq = *async_cfqq;
3728                 if (cfqq)
3729                         goto out;
3730         }
3731
3732         cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO,
3733                                      cfqd->queue->node);
3734         if (!cfqq) {
3735                 cfqq = &cfqd->oom_cfqq;
3736                 goto out;
3737         }
3738
3739         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3740         cfq_init_prio_data(cfqq, cic);
3741         cfq_link_cfqq_cfqg(cfqq, cfqg);
3742         cfq_log_cfqq(cfqd, cfqq, "alloced");
3743
3744         if (async_cfqq) {
3745                 /* a new async queue is created, pin and remember */
3746                 cfqq->ref++;
3747                 *async_cfqq = cfqq;
3748         }
3749 out:
3750         cfqq->ref++;
3751         rcu_read_unlock();
3752         return cfqq;
3753 }
3754
3755 static void
3756 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3757 {
3758         unsigned long elapsed = jiffies - ttime->last_end_request;
3759         elapsed = min(elapsed, 2UL * slice_idle);
3760
3761         ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3762         ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3763         ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3764 }
3765
3766 static void
3767 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3768                         struct cfq_io_cq *cic)
3769 {
3770         if (cfq_cfqq_sync(cfqq)) {
3771                 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3772                 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3773                         cfqd->cfq_slice_idle);
3774         }
3775 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3776         __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3777 #endif
3778 }
3779
3780 static void
3781 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3782                        struct request *rq)
3783 {
3784         sector_t sdist = 0;
3785         sector_t n_sec = blk_rq_sectors(rq);
3786         if (cfqq->last_request_pos) {
3787                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3788                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3789                 else
3790                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3791         }
3792
3793         cfqq->seek_history <<= 1;
3794         if (blk_queue_nonrot(cfqd->queue))
3795                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3796         else
3797                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3798 }
3799
3800 /*
3801  * Disable idle window if the process thinks too long or seeks so much that
3802  * it doesn't matter
3803  */
3804 static void
3805 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3806                        struct cfq_io_cq *cic)
3807 {
3808         int old_idle, enable_idle;
3809
3810         /*
3811          * Don't idle for async or idle io prio class
3812          */
3813         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3814                 return;
3815
3816         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3817
3818         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3819                 cfq_mark_cfqq_deep(cfqq);
3820
3821         if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3822                 enable_idle = 0;
3823         else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3824                  !cfqd->cfq_slice_idle ||
3825                  (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3826                 enable_idle = 0;
3827         else if (sample_valid(cic->ttime.ttime_samples)) {
3828                 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3829                         enable_idle = 0;
3830                 else
3831                         enable_idle = 1;
3832         }
3833
3834         if (old_idle != enable_idle) {
3835                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3836                 if (enable_idle)
3837                         cfq_mark_cfqq_idle_window(cfqq);
3838                 else
3839                         cfq_clear_cfqq_idle_window(cfqq);
3840         }
3841 }
3842
3843 /*
3844  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3845  * no or if we aren't sure, a 1 will cause a preempt.
3846  */
3847 static bool
3848 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3849                    struct request *rq)
3850 {
3851         struct cfq_queue *cfqq;
3852
3853         cfqq = cfqd->active_queue;
3854         if (!cfqq)
3855                 return false;
3856
3857         if (cfq_class_idle(new_cfqq))
3858                 return false;
3859
3860         if (cfq_class_idle(cfqq))
3861                 return true;
3862
3863         /*
3864          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3865          */
3866         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3867                 return false;
3868
3869         /*
3870          * if the new request is sync, but the currently running queue is
3871          * not, let the sync request have priority.
3872          */
3873         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3874                 return true;
3875
3876         if (new_cfqq->cfqg != cfqq->cfqg)
3877                 return false;
3878
3879         if (cfq_slice_used(cfqq))
3880                 return true;
3881
3882         /* Allow preemption only if we are idling on sync-noidle tree */
3883         if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3884             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3885             new_cfqq->service_tree->count == 2 &&
3886             RB_EMPTY_ROOT(&cfqq->sort_list))
3887                 return true;
3888
3889         /*
3890          * So both queues are sync. Let the new request get disk time if
3891          * it's a metadata request and the current queue is doing regular IO.
3892          */
3893         if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3894                 return true;
3895
3896         /*
3897          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3898          */
3899         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3900                 return true;
3901
3902         /* An idle queue should not be idle now for some reason */
3903         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3904                 return true;
3905
3906         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3907                 return false;
3908
3909         /*
3910          * if this request is as-good as one we would expect from the
3911          * current cfqq, let it preempt
3912          */
3913         if (cfq_rq_close(cfqd, cfqq, rq))
3914                 return true;
3915
3916         return false;
3917 }
3918
3919 /*
3920  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3921  * let it have half of its nominal slice.
3922  */
3923 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3924 {
3925         enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3926
3927         cfq_log_cfqq(cfqd, cfqq, "preempt");
3928         cfq_slice_expired(cfqd, 1);
3929
3930         /*
3931          * workload type is changed, don't save slice, otherwise preempt
3932          * doesn't happen
3933          */
3934         if (old_type != cfqq_type(cfqq))
3935                 cfqq->cfqg->saved_wl_slice = 0;
3936
3937         /*
3938          * Put the new queue at the front of the of the current list,
3939          * so we know that it will be selected next.
3940          */
3941         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3942
3943         cfq_service_tree_add(cfqd, cfqq, 1);
3944
3945         cfqq->slice_end = 0;
3946         cfq_mark_cfqq_slice_new(cfqq);
3947 }
3948
3949 /*
3950  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3951  * something we should do about it
3952  */
3953 static void
3954 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3955                 struct request *rq)
3956 {
3957         struct cfq_io_cq *cic = RQ_CIC(rq);
3958
3959         cfqd->rq_queued++;
3960         if (rq->cmd_flags & REQ_PRIO)
3961                 cfqq->prio_pending++;
3962
3963         cfq_update_io_thinktime(cfqd, cfqq, cic);
3964         cfq_update_io_seektime(cfqd, cfqq, rq);
3965         cfq_update_idle_window(cfqd, cfqq, cic);
3966
3967         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3968
3969         if (cfqq == cfqd->active_queue) {
3970                 /*
3971                  * Remember that we saw a request from this process, but
3972                  * don't start queuing just yet. Otherwise we risk seeing lots
3973                  * of tiny requests, because we disrupt the normal plugging
3974                  * and merging. If the request is already larger than a single
3975                  * page, let it rip immediately. For that case we assume that
3976                  * merging is already done. Ditto for a busy system that
3977                  * has other work pending, don't risk delaying until the
3978                  * idle timer unplug to continue working.
3979                  */
3980                 if (cfq_cfqq_wait_request(cfqq)) {
3981                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3982                             cfqd->busy_queues > 1) {
3983                                 cfq_del_timer(cfqd, cfqq);
3984                                 cfq_clear_cfqq_wait_request(cfqq);
3985                                 __blk_run_queue(cfqd->queue);
3986                         } else {
3987                                 cfqg_stats_update_idle_time(cfqq->cfqg);
3988                                 cfq_mark_cfqq_must_dispatch(cfqq);
3989                         }
3990                 }
3991         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3992                 /*
3993                  * not the active queue - expire current slice if it is
3994                  * idle and has expired it's mean thinktime or this new queue
3995                  * has some old slice time left and is of higher priority or
3996                  * this new queue is RT and the current one is BE
3997                  */
3998                 cfq_preempt_queue(cfqd, cfqq);
3999                 __blk_run_queue(cfqd->queue);
4000         }
4001 }
4002
4003 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4004 {
4005         struct cfq_data *cfqd = q->elevator->elevator_data;
4006         struct cfq_queue *cfqq = RQ_CFQQ(rq);
4007
4008         cfq_log_cfqq(cfqd, cfqq, "insert_request");
4009         cfq_init_prio_data(cfqq, RQ_CIC(rq));
4010
4011         rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4012         list_add_tail(&rq->queuelist, &cfqq->fifo);
4013         cfq_add_rq_rb(rq);
4014         cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4015                                  rq->cmd_flags);
4016         cfq_rq_enqueued(cfqd, cfqq, rq);
4017 }
4018
4019 /*
4020  * Update hw_tag based on peak queue depth over 50 samples under
4021  * sufficient load.
4022  */
4023 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4024 {
4025         struct cfq_queue *cfqq = cfqd->active_queue;
4026
4027         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4028                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4029
4030         if (cfqd->hw_tag == 1)
4031                 return;
4032
4033         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4034             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4035                 return;
4036
4037         /*
4038          * If active queue hasn't enough requests and can idle, cfq might not
4039          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4040          * case
4041          */
4042         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4043             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4044             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4045                 return;
4046
4047         if (cfqd->hw_tag_samples++ < 50)
4048                 return;
4049
4050         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4051                 cfqd->hw_tag = 1;
4052         else
4053                 cfqd->hw_tag = 0;
4054 }
4055
4056 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4057 {
4058         struct cfq_io_cq *cic = cfqd->active_cic;
4059
4060         /* If the queue already has requests, don't wait */
4061         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4062                 return false;
4063
4064         /* If there are other queues in the group, don't wait */
4065         if (cfqq->cfqg->nr_cfqq > 1)
4066                 return false;
4067
4068         /* the only queue in the group, but think time is big */
4069         if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4070                 return false;
4071
4072         if (cfq_slice_used(cfqq))
4073                 return true;
4074
4075         /* if slice left is less than think time, wait busy */
4076         if (cic && sample_valid(cic->ttime.ttime_samples)
4077             && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4078                 return true;
4079
4080         /*
4081          * If think times is less than a jiffy than ttime_mean=0 and above
4082          * will not be true. It might happen that slice has not expired yet
4083          * but will expire soon (4-5 ns) during select_queue(). To cover the
4084          * case where think time is less than a jiffy, mark the queue wait
4085          * busy if only 1 jiffy is left in the slice.
4086          */
4087         if (cfqq->slice_end - jiffies == 1)
4088                 return true;
4089
4090         return false;
4091 }
4092
4093 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4094 {
4095         struct cfq_queue *cfqq = RQ_CFQQ(rq);
4096         struct cfq_data *cfqd = cfqq->cfqd;
4097         const int sync = rq_is_sync(rq);
4098         unsigned long now;
4099
4100         now = jiffies;
4101         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4102                      !!(rq->cmd_flags & REQ_NOIDLE));
4103
4104         cfq_update_hw_tag(cfqd);
4105
4106         WARN_ON(!cfqd->rq_in_driver);
4107         WARN_ON(!cfqq->dispatched);
4108         cfqd->rq_in_driver--;
4109         cfqq->dispatched--;
4110         (RQ_CFQG(rq))->dispatched--;
4111         cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4112                                      rq_io_start_time_ns(rq), rq->cmd_flags);
4113
4114         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4115
4116         if (sync) {
4117                 struct cfq_rb_root *st;
4118
4119                 RQ_CIC(rq)->ttime.last_end_request = now;
4120
4121                 if (cfq_cfqq_on_rr(cfqq))
4122                         st = cfqq->service_tree;
4123                 else
4124                         st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4125                                         cfqq_type(cfqq));
4126
4127                 st->ttime.last_end_request = now;
4128                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4129                         cfqd->last_delayed_sync = now;
4130         }
4131
4132 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4133         cfqq->cfqg->ttime.last_end_request = now;
4134 #endif
4135
4136         /*
4137          * If this is the active queue, check if it needs to be expired,
4138          * or if we want to idle in case it has no pending requests.
4139          */
4140         if (cfqd->active_queue == cfqq) {
4141                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4142
4143                 if (cfq_cfqq_slice_new(cfqq)) {
4144                         cfq_set_prio_slice(cfqd, cfqq);
4145                         cfq_clear_cfqq_slice_new(cfqq);
4146                 }
4147
4148                 /*
4149                  * Should we wait for next request to come in before we expire
4150                  * the queue.
4151                  */
4152                 if (cfq_should_wait_busy(cfqd, cfqq)) {
4153                         unsigned long extend_sl = cfqd->cfq_slice_idle;
4154                         if (!cfqd->cfq_slice_idle)
4155                                 extend_sl = cfqd->cfq_group_idle;
4156                         cfqq->slice_end = jiffies + extend_sl;
4157                         cfq_mark_cfqq_wait_busy(cfqq);
4158                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4159                 }
4160
4161                 /*
4162                  * Idling is not enabled on:
4163                  * - expired queues
4164                  * - idle-priority queues
4165                  * - async queues
4166                  * - queues with still some requests queued
4167                  * - when there is a close cooperator
4168                  */
4169                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4170                         cfq_slice_expired(cfqd, 1);
4171                 else if (sync && cfqq_empty &&
4172                          !cfq_close_cooperator(cfqd, cfqq)) {
4173                         cfq_arm_slice_timer(cfqd);
4174                 }
4175         }
4176
4177         if (!cfqd->rq_in_driver)
4178                 cfq_schedule_dispatch(cfqd);
4179 }
4180
4181 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4182 {
4183         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4184                 cfq_mark_cfqq_must_alloc_slice(cfqq);
4185                 return ELV_MQUEUE_MUST;
4186         }
4187
4188         return ELV_MQUEUE_MAY;
4189 }
4190
4191 static int cfq_may_queue(struct request_queue *q, int rw)
4192 {
4193         struct cfq_data *cfqd = q->elevator->elevator_data;
4194         struct task_struct *tsk = current;
4195         struct cfq_io_cq *cic;
4196         struct cfq_queue *cfqq;
4197
4198         /*
4199          * don't force setup of a queue from here, as a call to may_queue
4200          * does not necessarily imply that a request actually will be queued.
4201          * so just lookup a possibly existing queue, or return 'may queue'
4202          * if that fails
4203          */
4204         cic = cfq_cic_lookup(cfqd, tsk->io_context);
4205         if (!cic)
4206                 return ELV_MQUEUE_MAY;
4207
4208         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4209         if (cfqq) {
4210                 cfq_init_prio_data(cfqq, cic);
4211
4212                 return __cfq_may_queue(cfqq);
4213         }
4214
4215         return ELV_MQUEUE_MAY;
4216 }
4217
4218 /*
4219  * queue lock held here
4220  */
4221 static void cfq_put_request(struct request *rq)
4222 {
4223         struct cfq_queue *cfqq = RQ_CFQQ(rq);
4224
4225         if (cfqq) {
4226                 const int rw = rq_data_dir(rq);
4227
4228                 BUG_ON(!cfqq->allocated[rw]);
4229                 cfqq->allocated[rw]--;
4230
4231                 /* Put down rq reference on cfqg */
4232                 cfqg_put(RQ_CFQG(rq));
4233                 rq->elv.priv[0] = NULL;
4234                 rq->elv.priv[1] = NULL;
4235
4236                 cfq_put_queue(cfqq);
4237         }
4238 }
4239
4240 static struct cfq_queue *
4241 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4242                 struct cfq_queue *cfqq)
4243 {
4244         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4245         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4246         cfq_mark_cfqq_coop(cfqq->new_cfqq);
4247         cfq_put_queue(cfqq);
4248         return cic_to_cfqq(cic, 1);
4249 }
4250
4251 /*
4252  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4253  * was the last process referring to said cfqq.
4254  */
4255 static struct cfq_queue *
4256 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4257 {
4258         if (cfqq_process_refs(cfqq) == 1) {
4259                 cfqq->pid = current->pid;
4260                 cfq_clear_cfqq_coop(cfqq);
4261                 cfq_clear_cfqq_split_coop(cfqq);
4262                 return cfqq;
4263         }
4264
4265         cic_set_cfqq(cic, NULL, 1);
4266
4267         cfq_put_cooperator(cfqq);
4268
4269         cfq_put_queue(cfqq);
4270         return NULL;
4271 }
4272 /*
4273  * Allocate cfq data structures associated with this request.
4274  */
4275 static int
4276 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4277                 gfp_t gfp_mask)
4278 {
4279         struct cfq_data *cfqd = q->elevator->elevator_data;
4280         struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4281         const int rw = rq_data_dir(rq);
4282         const bool is_sync = rq_is_sync(rq);
4283         struct cfq_queue *cfqq;
4284
4285         spin_lock_irq(q->queue_lock);
4286
4287         check_ioprio_changed(cic, bio);
4288         check_blkcg_changed(cic, bio);
4289 new_queue:
4290         cfqq = cic_to_cfqq(cic, is_sync);
4291         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4292                 if (cfqq)
4293                         cfq_put_queue(cfqq);
4294                 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4295                 cic_set_cfqq(cic, cfqq, is_sync);
4296         } else {
4297                 /*
4298                  * If the queue was seeky for too long, break it apart.
4299                  */
4300                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4301                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4302                         cfqq = split_cfqq(cic, cfqq);
4303                         if (!cfqq)
4304                                 goto new_queue;
4305                 }
4306
4307                 /*
4308                  * Check to see if this queue is scheduled to merge with
4309                  * another, closely cooperating queue.  The merging of
4310                  * queues happens here as it must be done in process context.
4311                  * The reference on new_cfqq was taken in merge_cfqqs.
4312                  */
4313                 if (cfqq->new_cfqq)
4314                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4315         }
4316
4317         cfqq->allocated[rw]++;
4318
4319         cfqq->ref++;
4320         cfqg_get(cfqq->cfqg);
4321         rq->elv.priv[0] = cfqq;
4322         rq->elv.priv[1] = cfqq->cfqg;
4323         spin_unlock_irq(q->queue_lock);
4324         return 0;
4325 }
4326
4327 static void cfq_kick_queue(struct work_struct *work)
4328 {
4329         struct cfq_data *cfqd =
4330                 container_of(work, struct cfq_data, unplug_work);
4331         struct request_queue *q = cfqd->queue;
4332
4333         spin_lock_irq(q->queue_lock);
4334         __blk_run_queue(cfqd->queue);
4335         spin_unlock_irq(q->queue_lock);
4336 }
4337
4338 /*
4339  * Timer running if the active_queue is currently idling inside its time slice
4340  */
4341 static void cfq_idle_slice_timer(unsigned long data)
4342 {
4343         struct cfq_data *cfqd = (struct cfq_data *) data;
4344         struct cfq_queue *cfqq;
4345         unsigned long flags;
4346         int timed_out = 1;
4347
4348         cfq_log(cfqd, "idle timer fired");
4349
4350         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4351
4352         cfqq = cfqd->active_queue;
4353         if (cfqq) {
4354                 timed_out = 0;
4355
4356                 /*
4357                  * We saw a request before the queue expired, let it through
4358                  */
4359                 if (cfq_cfqq_must_dispatch(cfqq))
4360                         goto out_kick;
4361
4362                 /*
4363                  * expired
4364                  */
4365                 if (cfq_slice_used(cfqq))
4366                         goto expire;
4367
4368                 /*
4369                  * only expire and reinvoke request handler, if there are
4370                  * other queues with pending requests
4371                  */
4372                 if (!cfqd->busy_queues)
4373                         goto out_cont;
4374
4375                 /*
4376                  * not expired and it has a request pending, let it dispatch
4377                  */
4378                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4379                         goto out_kick;
4380
4381                 /*
4382                  * Queue depth flag is reset only when the idle didn't succeed
4383                  */
4384                 cfq_clear_cfqq_deep(cfqq);
4385         }
4386 expire:
4387         cfq_slice_expired(cfqd, timed_out);
4388 out_kick:
4389         cfq_schedule_dispatch(cfqd);
4390 out_cont:
4391         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4392 }
4393
4394 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4395 {
4396         del_timer_sync(&cfqd->idle_slice_timer);
4397         cancel_work_sync(&cfqd->unplug_work);
4398 }
4399
4400 static void cfq_exit_queue(struct elevator_queue *e)
4401 {
4402         struct cfq_data *cfqd = e->elevator_data;
4403         struct request_queue *q = cfqd->queue;
4404
4405         cfq_shutdown_timer_wq(cfqd);
4406
4407         spin_lock_irq(q->queue_lock);
4408
4409         if (cfqd->active_queue)
4410                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4411
4412         spin_unlock_irq(q->queue_lock);
4413
4414         cfq_shutdown_timer_wq(cfqd);
4415
4416 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4417         blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4418 #else
4419         kfree(cfqd->root_group);
4420 #endif
4421         kfree(cfqd);
4422 }
4423
4424 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4425 {
4426         struct cfq_data *cfqd;
4427         struct blkcg_gq *blkg __maybe_unused;
4428         int i, ret;
4429         struct elevator_queue *eq;
4430
4431         eq = elevator_alloc(q, e);
4432         if (!eq)
4433                 return -ENOMEM;
4434
4435         cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4436         if (!cfqd) {
4437                 kobject_put(&eq->kobj);
4438                 return -ENOMEM;
4439         }
4440         eq->elevator_data = cfqd;
4441
4442         cfqd->queue = q;
4443         spin_lock_irq(q->queue_lock);
4444         q->elevator = eq;
4445         spin_unlock_irq(q->queue_lock);
4446
4447         /* Init root service tree */
4448         cfqd->grp_service_tree = CFQ_RB_ROOT;
4449
4450         /* Init root group and prefer root group over other groups by default */
4451 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4452         ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4453         if (ret)
4454                 goto out_free;
4455
4456         cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4457 #else
4458         ret = -ENOMEM;
4459         cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4460                                         GFP_KERNEL, cfqd->queue->node);
4461         if (!cfqd->root_group)
4462                 goto out_free;
4463
4464         cfq_init_cfqg_base(cfqd->root_group);
4465 #endif
4466         cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4467         cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4468
4469         /*
4470          * Not strictly needed (since RB_ROOT just clears the node and we
4471          * zeroed cfqd on alloc), but better be safe in case someone decides
4472          * to add magic to the rb code
4473          */
4474         for (i = 0; i < CFQ_PRIO_LISTS; i++)
4475                 cfqd->prio_trees[i] = RB_ROOT;
4476
4477         /*
4478          * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4479          * Grab a permanent reference to it, so that the normal code flow
4480          * will not attempt to free it.  oom_cfqq is linked to root_group
4481          * but shouldn't hold a reference as it'll never be unlinked.  Lose
4482          * the reference from linking right away.
4483          */
4484         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4485         cfqd->oom_cfqq.ref++;
4486
4487         spin_lock_irq(q->queue_lock);
4488         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4489         cfqg_put(cfqd->root_group);
4490         spin_unlock_irq(q->queue_lock);
4491
4492         init_timer(&cfqd->idle_slice_timer);
4493         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4494         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4495
4496         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4497
4498         cfqd->cfq_quantum = cfq_quantum;
4499         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4500         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4501         cfqd->cfq_back_max = cfq_back_max;
4502         cfqd->cfq_back_penalty = cfq_back_penalty;
4503         cfqd->cfq_slice[0] = cfq_slice_async;
4504         cfqd->cfq_slice[1] = cfq_slice_sync;
4505         cfqd->cfq_target_latency = cfq_target_latency;
4506         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4507         cfqd->cfq_slice_idle = cfq_slice_idle;
4508         cfqd->cfq_group_idle = cfq_group_idle;
4509         cfqd->cfq_latency = 1;
4510         cfqd->hw_tag = -1;
4511         /*
4512          * we optimistically start assuming sync ops weren't delayed in last
4513          * second, in order to have larger depth for async operations.
4514          */
4515         cfqd->last_delayed_sync = jiffies - HZ;
4516         return 0;
4517
4518 out_free:
4519         kfree(cfqd);
4520         kobject_put(&eq->kobj);
4521         return ret;
4522 }
4523
4524 static void cfq_registered_queue(struct request_queue *q)
4525 {
4526         struct elevator_queue *e = q->elevator;
4527         struct cfq_data *cfqd = e->elevator_data;
4528
4529         /*
4530          * Default to IOPS mode with no idling for SSDs
4531          */
4532         if (blk_queue_nonrot(q))
4533                 cfqd->cfq_slice_idle = 0;
4534 }
4535
4536 /*
4537  * sysfs parts below -->
4538  */
4539 static ssize_t
4540 cfq_var_show(unsigned int var, char *page)
4541 {
4542         return sprintf(page, "%u\n", var);
4543 }
4544
4545 static ssize_t
4546 cfq_var_store(unsigned int *var, const char *page, size_t count)
4547 {
4548         char *p = (char *) page;
4549
4550         *var = simple_strtoul(p, &p, 10);
4551         return count;
4552 }
4553
4554 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
4555 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
4556 {                                                                       \
4557         struct cfq_data *cfqd = e->elevator_data;                       \
4558         unsigned int __data = __VAR;                                    \
4559         if (__CONV)                                                     \
4560                 __data = jiffies_to_msecs(__data);                      \
4561         return cfq_var_show(__data, (page));                            \
4562 }
4563 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4564 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4565 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4566 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4567 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4568 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4569 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4570 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4571 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4572 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4573 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4574 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4575 #undef SHOW_FUNCTION
4576
4577 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
4578 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4579 {                                                                       \
4580         struct cfq_data *cfqd = e->elevator_data;                       \
4581         unsigned int __data;                                            \
4582         int ret = cfq_var_store(&__data, (page), count);                \
4583         if (__data < (MIN))                                             \
4584                 __data = (MIN);                                         \
4585         else if (__data > (MAX))                                        \
4586                 __data = (MAX);                                         \
4587         if (__CONV)                                                     \
4588                 *(__PTR) = msecs_to_jiffies(__data);                    \
4589         else                                                            \
4590                 *(__PTR) = __data;                                      \
4591         return ret;                                                     \
4592 }
4593 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4594 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4595                 UINT_MAX, 1);
4596 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4597                 UINT_MAX, 1);
4598 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4599 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4600                 UINT_MAX, 0);
4601 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4602 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4603 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4604 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4605 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4606                 UINT_MAX, 0);
4607 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4608 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4609 #undef STORE_FUNCTION
4610
4611 #define CFQ_ATTR(name) \
4612         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4613
4614 static struct elv_fs_entry cfq_attrs[] = {
4615         CFQ_ATTR(quantum),
4616         CFQ_ATTR(fifo_expire_sync),
4617         CFQ_ATTR(fifo_expire_async),
4618         CFQ_ATTR(back_seek_max),
4619         CFQ_ATTR(back_seek_penalty),
4620         CFQ_ATTR(slice_sync),
4621         CFQ_ATTR(slice_async),
4622         CFQ_ATTR(slice_async_rq),
4623         CFQ_ATTR(slice_idle),
4624         CFQ_ATTR(group_idle),
4625         CFQ_ATTR(low_latency),
4626         CFQ_ATTR(target_latency),
4627         __ATTR_NULL
4628 };
4629
4630 static struct elevator_type iosched_cfq = {
4631         .ops = {
4632                 .elevator_merge_fn =            cfq_merge,
4633                 .elevator_merged_fn =           cfq_merged_request,
4634                 .elevator_merge_req_fn =        cfq_merged_requests,
4635                 .elevator_allow_merge_fn =      cfq_allow_merge,
4636                 .elevator_bio_merged_fn =       cfq_bio_merged,
4637                 .elevator_dispatch_fn =         cfq_dispatch_requests,
4638                 .elevator_add_req_fn =          cfq_insert_request,
4639                 .elevator_activate_req_fn =     cfq_activate_request,
4640                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
4641                 .elevator_completed_req_fn =    cfq_completed_request,
4642                 .elevator_former_req_fn =       elv_rb_former_request,
4643                 .elevator_latter_req_fn =       elv_rb_latter_request,
4644                 .elevator_init_icq_fn =         cfq_init_icq,
4645                 .elevator_exit_icq_fn =         cfq_exit_icq,
4646                 .elevator_set_req_fn =          cfq_set_request,
4647                 .elevator_put_req_fn =          cfq_put_request,
4648                 .elevator_may_queue_fn =        cfq_may_queue,
4649                 .elevator_init_fn =             cfq_init_queue,
4650                 .elevator_exit_fn =             cfq_exit_queue,
4651                 .elevator_registered_fn =       cfq_registered_queue,
4652         },
4653         .icq_size       =       sizeof(struct cfq_io_cq),
4654         .icq_align      =       __alignof__(struct cfq_io_cq),
4655         .elevator_attrs =       cfq_attrs,
4656         .elevator_name  =       "cfq",
4657         .elevator_owner =       THIS_MODULE,
4658 };
4659
4660 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4661 static struct blkcg_policy blkcg_policy_cfq = {
4662         .legacy_cftypes         = cfq_blkcg_legacy_files,
4663
4664         .cpd_alloc_fn           = cfq_cpd_alloc,
4665         .cpd_init_fn            = cfq_cpd_init,
4666         .cpd_free_fn            = cfq_cpd_free,
4667
4668         .pd_alloc_fn            = cfq_pd_alloc,
4669         .pd_init_fn             = cfq_pd_init,
4670         .pd_offline_fn          = cfq_pd_offline,
4671         .pd_free_fn             = cfq_pd_free,
4672         .pd_reset_stats_fn      = cfq_pd_reset_stats,
4673 };
4674 #endif
4675
4676 static int __init cfq_init(void)
4677 {
4678         int ret;
4679
4680         /*
4681          * could be 0 on HZ < 1000 setups
4682          */
4683         if (!cfq_slice_async)
4684                 cfq_slice_async = 1;
4685         if (!cfq_slice_idle)
4686                 cfq_slice_idle = 1;
4687
4688 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4689         if (!cfq_group_idle)
4690                 cfq_group_idle = 1;
4691
4692         ret = blkcg_policy_register(&blkcg_policy_cfq);
4693         if (ret)
4694                 return ret;
4695 #else
4696         cfq_group_idle = 0;
4697 #endif
4698
4699         ret = -ENOMEM;
4700         cfq_pool = KMEM_CACHE(cfq_queue, 0);
4701         if (!cfq_pool)
4702                 goto err_pol_unreg;
4703
4704         ret = elv_register(&iosched_cfq);
4705         if (ret)
4706                 goto err_free_pool;
4707
4708         return 0;
4709
4710 err_free_pool:
4711         kmem_cache_destroy(cfq_pool);
4712 err_pol_unreg:
4713 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4714         blkcg_policy_unregister(&blkcg_policy_cfq);
4715 #endif
4716         return ret;
4717 }
4718
4719 static void __exit cfq_exit(void)
4720 {
4721 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4722         blkcg_policy_unregister(&blkcg_policy_cfq);
4723 #endif
4724         elv_unregister(&iosched_cfq);
4725         kmem_cache_destroy(cfq_pool);
4726 }
4727
4728 module_init(cfq_init);
4729 module_exit(cfq_exit);
4730
4731 MODULE_AUTHOR("Jens Axboe");
4732 MODULE_LICENSE("GPL");
4733 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");