]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/acpi/processor_idle.c
Pull xpc-disengage into release branch
[karo-tx-linux.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004       Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40
41 #include <asm/io.h>
42 #include <asm/uaccess.h>
43
44 #include <acpi/acpi_bus.h>
45 #include <acpi/processor.h>
46
47 #define ACPI_PROCESSOR_COMPONENT        0x01000000
48 #define ACPI_PROCESSOR_CLASS            "processor"
49 #define ACPI_PROCESSOR_DRIVER_NAME      "ACPI Processor Driver"
50 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
51 ACPI_MODULE_NAME("acpi_processor")
52 #define ACPI_PROCESSOR_FILE_POWER       "power"
53 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
54 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
55 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
56 static void (*pm_idle_save) (void);
57 module_param(max_cstate, uint, 0644);
58
59 static unsigned int nocst = 0;
60 module_param(nocst, uint, 0000);
61
62 /*
63  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
64  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
65  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
66  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
67  * reduce history for more aggressive entry into C3
68  */
69 static unsigned int bm_history =
70     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
71 module_param(bm_history, uint, 0644);
72 /* --------------------------------------------------------------------------
73                                 Power Management
74    -------------------------------------------------------------------------- */
75
76 /*
77  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
78  * For now disable this. Probably a bug somewhere else.
79  *
80  * To skip this limit, boot/load with a large max_cstate limit.
81  */
82 static int set_max_cstate(struct dmi_system_id *id)
83 {
84         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
85                 return 0;
86
87         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
88                " Override with \"processor.max_cstate=%d\"\n", id->ident,
89                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
90
91         max_cstate = (long)id->driver_data;
92
93         return 0;
94 }
95
96 static struct dmi_system_id __initdata processor_power_dmi_table[] = {
97         {set_max_cstate, "IBM ThinkPad R40e", {
98                                                DMI_MATCH(DMI_BIOS_VENDOR,
99                                                          "IBM"),
100                                                DMI_MATCH(DMI_BIOS_VERSION,
101                                                          "1SET60WW")},
102          (void *)1},
103         {set_max_cstate, "Medion 41700", {
104                                           DMI_MATCH(DMI_BIOS_VENDOR,
105                                                     "Phoenix Technologies LTD"),
106                                           DMI_MATCH(DMI_BIOS_VERSION,
107                                                     "R01-A1J")}, (void *)1},
108         {set_max_cstate, "Clevo 5600D", {
109                                          DMI_MATCH(DMI_BIOS_VENDOR,
110                                                    "Phoenix Technologies LTD"),
111                                          DMI_MATCH(DMI_BIOS_VERSION,
112                                                    "SHE845M0.86C.0013.D.0302131307")},
113          (void *)2},
114         {},
115 };
116
117 static inline u32 ticks_elapsed(u32 t1, u32 t2)
118 {
119         if (t2 >= t1)
120                 return (t2 - t1);
121         else if (!acpi_fadt.tmr_val_ext)
122                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
123         else
124                 return ((0xFFFFFFFF - t1) + t2);
125 }
126
127 static void
128 acpi_processor_power_activate(struct acpi_processor *pr,
129                               struct acpi_processor_cx *new)
130 {
131         struct acpi_processor_cx *old;
132
133         if (!pr || !new)
134                 return;
135
136         old = pr->power.state;
137
138         if (old)
139                 old->promotion.count = 0;
140         new->demotion.count = 0;
141
142         /* Cleanup from old state. */
143         if (old) {
144                 switch (old->type) {
145                 case ACPI_STATE_C3:
146                         /* Disable bus master reload */
147                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
148                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
149                                                   ACPI_MTX_DO_NOT_LOCK);
150                         break;
151                 }
152         }
153
154         /* Prepare to use new state. */
155         switch (new->type) {
156         case ACPI_STATE_C3:
157                 /* Enable bus master reload */
158                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
159                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
160                                           ACPI_MTX_DO_NOT_LOCK);
161                 break;
162         }
163
164         pr->power.state = new;
165
166         return;
167 }
168
169 static atomic_t c3_cpu_count;
170
171 static void acpi_processor_idle(void)
172 {
173         struct acpi_processor *pr = NULL;
174         struct acpi_processor_cx *cx = NULL;
175         struct acpi_processor_cx *next_state = NULL;
176         int sleep_ticks = 0;
177         u32 t1, t2 = 0;
178
179         pr = processors[raw_smp_processor_id()];
180         if (!pr)
181                 return;
182
183         /*
184          * Interrupts must be disabled during bus mastering calculations and
185          * for C2/C3 transitions.
186          */
187         local_irq_disable();
188
189         /*
190          * Check whether we truly need to go idle, or should
191          * reschedule:
192          */
193         if (unlikely(need_resched())) {
194                 local_irq_enable();
195                 return;
196         }
197
198         cx = pr->power.state;
199         if (!cx)
200                 goto easy_out;
201
202         /*
203          * Check BM Activity
204          * -----------------
205          * Check for bus mastering activity (if required), record, and check
206          * for demotion.
207          */
208         if (pr->flags.bm_check) {
209                 u32 bm_status = 0;
210                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
211
212                 if (diff > 32)
213                         diff = 32;
214
215                 while (diff) {
216                         /* if we didn't get called, assume there was busmaster activity */
217                         diff--;
218                         if (diff)
219                                 pr->power.bm_activity |= 0x1;
220                         pr->power.bm_activity <<= 1;
221                 }
222
223                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
224                                   &bm_status, ACPI_MTX_DO_NOT_LOCK);
225                 if (bm_status) {
226                         pr->power.bm_activity++;
227                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
228                                           1, ACPI_MTX_DO_NOT_LOCK);
229                 }
230                 /*
231                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
232                  * the true state of bus mastering activity; forcing us to
233                  * manually check the BMIDEA bit of each IDE channel.
234                  */
235                 else if (errata.piix4.bmisx) {
236                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
237                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
238                                 pr->power.bm_activity++;
239                 }
240
241                 pr->power.bm_check_timestamp = jiffies;
242
243                 /*
244                  * Apply bus mastering demotion policy.  Automatically demote
245                  * to avoid a faulty transition.  Note that the processor
246                  * won't enter a low-power state during this call (to this
247                  * funciton) but should upon the next.
248                  *
249                  * TBD: A better policy might be to fallback to the demotion
250                  *      state (use it for this quantum only) istead of
251                  *      demoting -- and rely on duration as our sole demotion
252                  *      qualification.  This may, however, introduce DMA
253                  *      issues (e.g. floppy DMA transfer overrun/underrun).
254                  */
255                 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
256                         local_irq_enable();
257                         next_state = cx->demotion.state;
258                         goto end;
259                 }
260         }
261
262         cx->usage++;
263
264         /*
265          * Sleep:
266          * ------
267          * Invoke the current Cx state to put the processor to sleep.
268          */
269         switch (cx->type) {
270
271         case ACPI_STATE_C1:
272                 /*
273                  * Invoke C1.
274                  * Use the appropriate idle routine, the one that would
275                  * be used without acpi C-states.
276                  */
277                 if (pm_idle_save)
278                         pm_idle_save();
279                 else
280                         safe_halt();
281                 /*
282                  * TBD: Can't get time duration while in C1, as resumes
283                  *      go to an ISR rather than here.  Need to instrument
284                  *      base interrupt handler.
285                  */
286                 sleep_ticks = 0xFFFFFFFF;
287                 break;
288
289         case ACPI_STATE_C2:
290                 /* Get start time (ticks) */
291                 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
292                 /* Invoke C2 */
293                 inb(cx->address);
294                 /* Dummy op - must do something useless after P_LVL2 read */
295                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
296                 /* Get end time (ticks) */
297                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
298                 /* Re-enable interrupts */
299                 local_irq_enable();
300                 /* Compute time (ticks) that we were actually asleep */
301                 sleep_ticks =
302                     ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
303                 break;
304
305         case ACPI_STATE_C3:
306
307                 if (pr->flags.bm_check) {
308                         if (atomic_inc_return(&c3_cpu_count) ==
309                             num_online_cpus()) {
310                                 /*
311                                  * All CPUs are trying to go to C3
312                                  * Disable bus master arbitration
313                                  */
314                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
315                                                   ACPI_MTX_DO_NOT_LOCK);
316                         }
317                 } else {
318                         /* SMP with no shared cache... Invalidate cache  */
319                         ACPI_FLUSH_CPU_CACHE();
320                 }
321
322                 /* Get start time (ticks) */
323                 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
324                 /* Invoke C3 */
325                 inb(cx->address);
326                 /* Dummy op - must do something useless after P_LVL3 read */
327                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
328                 /* Get end time (ticks) */
329                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
330                 if (pr->flags.bm_check) {
331                         /* Enable bus master arbitration */
332                         atomic_dec(&c3_cpu_count);
333                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
334                                           ACPI_MTX_DO_NOT_LOCK);
335                 }
336
337                 /* Re-enable interrupts */
338                 local_irq_enable();
339                 /* Compute time (ticks) that we were actually asleep */
340                 sleep_ticks =
341                     ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
342                 break;
343
344         default:
345                 local_irq_enable();
346                 return;
347         }
348
349         next_state = pr->power.state;
350
351         /*
352          * Promotion?
353          * ----------
354          * Track the number of longs (time asleep is greater than threshold)
355          * and promote when the count threshold is reached.  Note that bus
356          * mastering activity may prevent promotions.
357          * Do not promote above max_cstate.
358          */
359         if (cx->promotion.state &&
360             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
361                 if (sleep_ticks > cx->promotion.threshold.ticks) {
362                         cx->promotion.count++;
363                         cx->demotion.count = 0;
364                         if (cx->promotion.count >=
365                             cx->promotion.threshold.count) {
366                                 if (pr->flags.bm_check) {
367                                         if (!
368                                             (pr->power.bm_activity & cx->
369                                              promotion.threshold.bm)) {
370                                                 next_state =
371                                                     cx->promotion.state;
372                                                 goto end;
373                                         }
374                                 } else {
375                                         next_state = cx->promotion.state;
376                                         goto end;
377                                 }
378                         }
379                 }
380         }
381
382         /*
383          * Demotion?
384          * ---------
385          * Track the number of shorts (time asleep is less than time threshold)
386          * and demote when the usage threshold is reached.
387          */
388         if (cx->demotion.state) {
389                 if (sleep_ticks < cx->demotion.threshold.ticks) {
390                         cx->demotion.count++;
391                         cx->promotion.count = 0;
392                         if (cx->demotion.count >= cx->demotion.threshold.count) {
393                                 next_state = cx->demotion.state;
394                                 goto end;
395                         }
396                 }
397         }
398
399       end:
400         /*
401          * Demote if current state exceeds max_cstate
402          */
403         if ((pr->power.state - pr->power.states) > max_cstate) {
404                 if (cx->demotion.state)
405                         next_state = cx->demotion.state;
406         }
407
408         /*
409          * New Cx State?
410          * -------------
411          * If we're going to start using a new Cx state we must clean up
412          * from the previous and prepare to use the new.
413          */
414         if (next_state != pr->power.state)
415                 acpi_processor_power_activate(pr, next_state);
416
417         return;
418
419       easy_out:
420         /* do C1 instead of busy loop */
421         if (pm_idle_save)
422                 pm_idle_save();
423         else
424                 safe_halt();
425         return;
426 }
427
428 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
429 {
430         unsigned int i;
431         unsigned int state_is_set = 0;
432         struct acpi_processor_cx *lower = NULL;
433         struct acpi_processor_cx *higher = NULL;
434         struct acpi_processor_cx *cx;
435
436         ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
437
438         if (!pr)
439                 return_VALUE(-EINVAL);
440
441         /*
442          * This function sets the default Cx state policy (OS idle handler).
443          * Our scheme is to promote quickly to C2 but more conservatively
444          * to C3.  We're favoring C2  for its characteristics of low latency
445          * (quick response), good power savings, and ability to allow bus
446          * mastering activity.  Note that the Cx state policy is completely
447          * customizable and can be altered dynamically.
448          */
449
450         /* startup state */
451         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
452                 cx = &pr->power.states[i];
453                 if (!cx->valid)
454                         continue;
455
456                 if (!state_is_set)
457                         pr->power.state = cx;
458                 state_is_set++;
459                 break;
460         }
461
462         if (!state_is_set)
463                 return_VALUE(-ENODEV);
464
465         /* demotion */
466         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
467                 cx = &pr->power.states[i];
468                 if (!cx->valid)
469                         continue;
470
471                 if (lower) {
472                         cx->demotion.state = lower;
473                         cx->demotion.threshold.ticks = cx->latency_ticks;
474                         cx->demotion.threshold.count = 1;
475                         if (cx->type == ACPI_STATE_C3)
476                                 cx->demotion.threshold.bm = bm_history;
477                 }
478
479                 lower = cx;
480         }
481
482         /* promotion */
483         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
484                 cx = &pr->power.states[i];
485                 if (!cx->valid)
486                         continue;
487
488                 if (higher) {
489                         cx->promotion.state = higher;
490                         cx->promotion.threshold.ticks = cx->latency_ticks;
491                         if (cx->type >= ACPI_STATE_C2)
492                                 cx->promotion.threshold.count = 4;
493                         else
494                                 cx->promotion.threshold.count = 10;
495                         if (higher->type == ACPI_STATE_C3)
496                                 cx->promotion.threshold.bm = bm_history;
497                 }
498
499                 higher = cx;
500         }
501
502         return_VALUE(0);
503 }
504
505 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
506 {
507         int i;
508
509         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
510
511         if (!pr)
512                 return_VALUE(-EINVAL);
513
514         if (!pr->pblk)
515                 return_VALUE(-ENODEV);
516
517         for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
518                 memset(pr->power.states, 0, sizeof(struct acpi_processor_cx));
519
520         /* if info is obtained from pblk/fadt, type equals state */
521         pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
522         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
523         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
524
525         /* the C0 state only exists as a filler in our array,
526          * and all processors need to support C1 */
527         pr->power.states[ACPI_STATE_C0].valid = 1;
528         pr->power.states[ACPI_STATE_C1].valid = 1;
529
530         /* determine C2 and C3 address from pblk */
531         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
532         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
533
534         /* determine latencies from FADT */
535         pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
536         pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
537
538         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
539                           "lvl2[0x%08x] lvl3[0x%08x]\n",
540                           pr->power.states[ACPI_STATE_C2].address,
541                           pr->power.states[ACPI_STATE_C3].address));
542
543         return_VALUE(0);
544 }
545
546 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
547 {
548         int i;
549
550         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
551
552         for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
553                 memset(&(pr->power.states[i]), 0,
554                        sizeof(struct acpi_processor_cx));
555
556         /* if info is obtained from pblk/fadt, type equals state */
557         pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
558         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
559         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
560
561         /* the C0 state only exists as a filler in our array,
562          * and all processors need to support C1 */
563         pr->power.states[ACPI_STATE_C0].valid = 1;
564         pr->power.states[ACPI_STATE_C1].valid = 1;
565
566         return_VALUE(0);
567 }
568
569 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
570 {
571         acpi_status status = 0;
572         acpi_integer count;
573         int i;
574         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
575         union acpi_object *cst;
576
577         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
578
579         if (nocst)
580                 return_VALUE(-ENODEV);
581
582         pr->power.count = 0;
583         for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
584                 memset(&(pr->power.states[i]), 0,
585                        sizeof(struct acpi_processor_cx));
586
587         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
588         if (ACPI_FAILURE(status)) {
589                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
590                 return_VALUE(-ENODEV);
591         }
592
593         cst = (union acpi_object *)buffer.pointer;
594
595         /* There must be at least 2 elements */
596         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
597                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
598                                   "not enough elements in _CST\n"));
599                 status = -EFAULT;
600                 goto end;
601         }
602
603         count = cst->package.elements[0].integer.value;
604
605         /* Validate number of power states. */
606         if (count < 1 || count != cst->package.count - 1) {
607                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
608                                   "count given by _CST is not valid\n"));
609                 status = -EFAULT;
610                 goto end;
611         }
612
613         /* We support up to ACPI_PROCESSOR_MAX_POWER. */
614         if (count > ACPI_PROCESSOR_MAX_POWER) {
615                 printk(KERN_WARNING
616                        "Limiting number of power states to max (%d)\n",
617                        ACPI_PROCESSOR_MAX_POWER);
618                 printk(KERN_WARNING
619                        "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
620                 count = ACPI_PROCESSOR_MAX_POWER;
621         }
622
623         /* Tell driver that at least _CST is supported. */
624         pr->flags.has_cst = 1;
625
626         for (i = 1; i <= count; i++) {
627                 union acpi_object *element;
628                 union acpi_object *obj;
629                 struct acpi_power_register *reg;
630                 struct acpi_processor_cx cx;
631
632                 memset(&cx, 0, sizeof(cx));
633
634                 element = (union acpi_object *)&(cst->package.elements[i]);
635                 if (element->type != ACPI_TYPE_PACKAGE)
636                         continue;
637
638                 if (element->package.count != 4)
639                         continue;
640
641                 obj = (union acpi_object *)&(element->package.elements[0]);
642
643                 if (obj->type != ACPI_TYPE_BUFFER)
644                         continue;
645
646                 reg = (struct acpi_power_register *)obj->buffer.pointer;
647
648                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
649                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
650                         continue;
651
652                 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
653                     0 : reg->address;
654
655                 /* There should be an easy way to extract an integer... */
656                 obj = (union acpi_object *)&(element->package.elements[1]);
657                 if (obj->type != ACPI_TYPE_INTEGER)
658                         continue;
659
660                 cx.type = obj->integer.value;
661
662                 if ((cx.type != ACPI_STATE_C1) &&
663                     (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
664                         continue;
665
666                 if ((cx.type < ACPI_STATE_C1) || (cx.type > ACPI_STATE_C3))
667                         continue;
668
669                 obj = (union acpi_object *)&(element->package.elements[2]);
670                 if (obj->type != ACPI_TYPE_INTEGER)
671                         continue;
672
673                 cx.latency = obj->integer.value;
674
675                 obj = (union acpi_object *)&(element->package.elements[3]);
676                 if (obj->type != ACPI_TYPE_INTEGER)
677                         continue;
678
679                 cx.power = obj->integer.value;
680
681                 (pr->power.count)++;
682                 memcpy(&(pr->power.states[pr->power.count]), &cx, sizeof(cx));
683         }
684
685         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
686                           pr->power.count));
687
688         /* Validate number of power states discovered */
689         if (pr->power.count < 2)
690                 status = -ENODEV;
691
692       end:
693         acpi_os_free(buffer.pointer);
694
695         return_VALUE(status);
696 }
697
698 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
699 {
700         ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
701
702         if (!cx->address)
703                 return_VOID;
704
705         /*
706          * C2 latency must be less than or equal to 100
707          * microseconds.
708          */
709         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
710                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
711                                   "latency too large [%d]\n", cx->latency));
712                 return_VOID;
713         }
714
715         /*
716          * Otherwise we've met all of our C2 requirements.
717          * Normalize the C2 latency to expidite policy
718          */
719         cx->valid = 1;
720         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
721
722         return_VOID;
723 }
724
725 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
726                                            struct acpi_processor_cx *cx)
727 {
728         static int bm_check_flag;
729
730         ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
731
732         if (!cx->address)
733                 return_VOID;
734
735         /*
736          * C3 latency must be less than or equal to 1000
737          * microseconds.
738          */
739         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
740                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
741                                   "latency too large [%d]\n", cx->latency));
742                 return_VOID;
743         }
744
745         /*
746          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
747          * DMA transfers are used by any ISA device to avoid livelock.
748          * Note that we could disable Type-F DMA (as recommended by
749          * the erratum), but this is known to disrupt certain ISA
750          * devices thus we take the conservative approach.
751          */
752         else if (errata.piix4.fdma) {
753                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
754                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
755                 return_VOID;
756         }
757
758         /* All the logic here assumes flags.bm_check is same across all CPUs */
759         if (!bm_check_flag) {
760                 /* Determine whether bm_check is needed based on CPU  */
761                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
762                 bm_check_flag = pr->flags.bm_check;
763         } else {
764                 pr->flags.bm_check = bm_check_flag;
765         }
766
767         if (pr->flags.bm_check) {
768                 /* bus mastering control is necessary */
769                 if (!pr->flags.bm_control) {
770                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
771                                           "C3 support requires bus mastering control\n"));
772                         return_VOID;
773                 }
774         } else {
775                 /*
776                  * WBINVD should be set in fadt, for C3 state to be
777                  * supported on when bm_check is not required.
778                  */
779                 if (acpi_fadt.wb_invd != 1) {
780                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
781                                           "Cache invalidation should work properly"
782                                           " for C3 to be enabled on SMP systems\n"));
783                         return_VOID;
784                 }
785                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
786                                   0, ACPI_MTX_DO_NOT_LOCK);
787         }
788
789         /*
790          * Otherwise we've met all of our C3 requirements.
791          * Normalize the C3 latency to expidite policy.  Enable
792          * checking of bus mastering status (bm_check) so we can
793          * use this in our C3 policy
794          */
795         cx->valid = 1;
796         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
797
798         return_VOID;
799 }
800
801 static int acpi_processor_power_verify(struct acpi_processor *pr)
802 {
803         unsigned int i;
804         unsigned int working = 0;
805
806         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
807                 struct acpi_processor_cx *cx = &pr->power.states[i];
808
809                 switch (cx->type) {
810                 case ACPI_STATE_C1:
811                         cx->valid = 1;
812                         break;
813
814                 case ACPI_STATE_C2:
815                         acpi_processor_power_verify_c2(cx);
816                         break;
817
818                 case ACPI_STATE_C3:
819                         acpi_processor_power_verify_c3(pr, cx);
820                         break;
821                 }
822
823                 if (cx->valid)
824                         working++;
825         }
826
827         return (working);
828 }
829
830 static int acpi_processor_get_power_info(struct acpi_processor *pr)
831 {
832         unsigned int i;
833         int result;
834
835         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
836
837         /* NOTE: the idle thread may not be running while calling
838          * this function */
839
840         result = acpi_processor_get_power_info_cst(pr);
841         if ((result) || (acpi_processor_power_verify(pr) < 2)) {
842                 result = acpi_processor_get_power_info_fadt(pr);
843                 if ((result) || (acpi_processor_power_verify(pr) < 2))
844                         result = acpi_processor_get_power_info_default_c1(pr);
845         }
846
847         /*
848          * Set Default Policy
849          * ------------------
850          * Now that we know which states are supported, set the default
851          * policy.  Note that this policy can be changed dynamically
852          * (e.g. encourage deeper sleeps to conserve battery life when
853          * not on AC).
854          */
855         result = acpi_processor_set_power_policy(pr);
856         if (result)
857                 return_VALUE(result);
858
859         /*
860          * if one state of type C2 or C3 is available, mark this
861          * CPU as being "idle manageable"
862          */
863         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
864                 if (pr->power.states[i].valid) {
865                         pr->power.count = i;
866                         pr->flags.power = 1;
867                 }
868         }
869
870         return_VALUE(0);
871 }
872
873 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
874 {
875         int result = 0;
876
877         ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
878
879         if (!pr)
880                 return_VALUE(-EINVAL);
881
882         if (nocst) {
883                 return_VALUE(-ENODEV);
884         }
885
886         if (!pr->flags.power_setup_done)
887                 return_VALUE(-ENODEV);
888
889         /* Fall back to the default idle loop */
890         pm_idle = pm_idle_save;
891         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
892
893         pr->flags.power = 0;
894         result = acpi_processor_get_power_info(pr);
895         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
896                 pm_idle = acpi_processor_idle;
897
898         return_VALUE(result);
899 }
900
901 /* proc interface */
902
903 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
904 {
905         struct acpi_processor *pr = (struct acpi_processor *)seq->private;
906         unsigned int i;
907
908         ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
909
910         if (!pr)
911                 goto end;
912
913         seq_printf(seq, "active state:            C%zd\n"
914                    "max_cstate:              C%d\n"
915                    "bus master activity:     %08x\n",
916                    pr->power.state ? pr->power.state - pr->power.states : 0,
917                    max_cstate, (unsigned)pr->power.bm_activity);
918
919         seq_puts(seq, "states:\n");
920
921         for (i = 1; i <= pr->power.count; i++) {
922                 seq_printf(seq, "   %cC%d:                  ",
923                            (&pr->power.states[i] ==
924                             pr->power.state ? '*' : ' '), i);
925
926                 if (!pr->power.states[i].valid) {
927                         seq_puts(seq, "<not supported>\n");
928                         continue;
929                 }
930
931                 switch (pr->power.states[i].type) {
932                 case ACPI_STATE_C1:
933                         seq_printf(seq, "type[C1] ");
934                         break;
935                 case ACPI_STATE_C2:
936                         seq_printf(seq, "type[C2] ");
937                         break;
938                 case ACPI_STATE_C3:
939                         seq_printf(seq, "type[C3] ");
940                         break;
941                 default:
942                         seq_printf(seq, "type[--] ");
943                         break;
944                 }
945
946                 if (pr->power.states[i].promotion.state)
947                         seq_printf(seq, "promotion[C%zd] ",
948                                    (pr->power.states[i].promotion.state -
949                                     pr->power.states));
950                 else
951                         seq_puts(seq, "promotion[--] ");
952
953                 if (pr->power.states[i].demotion.state)
954                         seq_printf(seq, "demotion[C%zd] ",
955                                    (pr->power.states[i].demotion.state -
956                                     pr->power.states));
957                 else
958                         seq_puts(seq, "demotion[--] ");
959
960                 seq_printf(seq, "latency[%03d] usage[%08d]\n",
961                            pr->power.states[i].latency,
962                            pr->power.states[i].usage);
963         }
964
965       end:
966         return_VALUE(0);
967 }
968
969 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
970 {
971         return single_open(file, acpi_processor_power_seq_show,
972                            PDE(inode)->data);
973 }
974
975 static struct file_operations acpi_processor_power_fops = {
976         .open = acpi_processor_power_open_fs,
977         .read = seq_read,
978         .llseek = seq_lseek,
979         .release = single_release,
980 };
981
982 int acpi_processor_power_init(struct acpi_processor *pr,
983                               struct acpi_device *device)
984 {
985         acpi_status status = 0;
986         static int first_run = 0;
987         struct proc_dir_entry *entry = NULL;
988         unsigned int i;
989
990         ACPI_FUNCTION_TRACE("acpi_processor_power_init");
991
992         if (!first_run) {
993                 dmi_check_system(processor_power_dmi_table);
994                 if (max_cstate < ACPI_C_STATES_MAX)
995                         printk(KERN_NOTICE
996                                "ACPI: processor limited to max C-state %d\n",
997                                max_cstate);
998                 first_run++;
999         }
1000
1001         if (!pr)
1002                 return_VALUE(-EINVAL);
1003
1004         if (acpi_fadt.cst_cnt && !nocst) {
1005                 status =
1006                     acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1007                 if (ACPI_FAILURE(status)) {
1008                         ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1009                                           "Notifying BIOS of _CST ability failed\n"));
1010                 }
1011         }
1012
1013         acpi_processor_power_init_pdc(&(pr->power), pr->id);
1014         acpi_processor_set_pdc(pr, pr->power.pdc);
1015         acpi_processor_get_power_info(pr);
1016
1017         /*
1018          * Install the idle handler if processor power management is supported.
1019          * Note that we use previously set idle handler will be used on
1020          * platforms that only support C1.
1021          */
1022         if ((pr->flags.power) && (!boot_option_idle_override)) {
1023                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1024                 for (i = 1; i <= pr->power.count; i++)
1025                         if (pr->power.states[i].valid)
1026                                 printk(" C%d[C%d]", i,
1027                                        pr->power.states[i].type);
1028                 printk(")\n");
1029
1030                 if (pr->id == 0) {
1031                         pm_idle_save = pm_idle;
1032                         pm_idle = acpi_processor_idle;
1033                 }
1034         }
1035
1036         /* 'power' [R] */
1037         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1038                                   S_IRUGO, acpi_device_dir(device));
1039         if (!entry)
1040                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1041                                   "Unable to create '%s' fs entry\n",
1042                                   ACPI_PROCESSOR_FILE_POWER));
1043         else {
1044                 entry->proc_fops = &acpi_processor_power_fops;
1045                 entry->data = acpi_driver_data(device);
1046                 entry->owner = THIS_MODULE;
1047         }
1048
1049         pr->flags.power_setup_done = 1;
1050
1051         return_VALUE(0);
1052 }
1053
1054 int acpi_processor_power_exit(struct acpi_processor *pr,
1055                               struct acpi_device *device)
1056 {
1057         ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1058
1059         pr->flags.power_setup_done = 0;
1060
1061         if (acpi_device_dir(device))
1062                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1063                                   acpi_device_dir(device));
1064
1065         /* Unregister the idle handler when processor #0 is removed. */
1066         if (pr->id == 0) {
1067                 pm_idle = pm_idle_save;
1068
1069                 /*
1070                  * We are about to unload the current idle thread pm callback
1071                  * (pm_idle), Wait for all processors to update cached/local
1072                  * copies of pm_idle before proceeding.
1073                  */
1074                 cpu_idle_wait();
1075         }
1076
1077         return_VALUE(0);
1078 }