]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/atm/fore200e.c
Merge branches 'pm-cpufreq-sched' and 'intel_pstate'
[karo-tx-linux.git] / drivers / atm / fore200e.c
1 /*
2   A FORE Systems 200E-series driver for ATM on Linux.
3   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7   This driver simultaneously supports PCA-200E and SBA-200E adapters
8   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 2 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program; if not, write to the Free Software
22   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23 */
24
25
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/capability.h>
30 #include <linux/interrupt.h>
31 #include <linux/bitops.h>
32 #include <linux/pci.h>
33 #include <linux/module.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/atm_suni.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/firmware.h>
40 #include <asm/io.h>
41 #include <asm/string.h>
42 #include <asm/page.h>
43 #include <asm/irq.h>
44 #include <asm/dma.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <linux/atomic.h>
48
49 #ifdef CONFIG_SBUS
50 #include <linux/of.h>
51 #include <linux/of_device.h>
52 #include <asm/idprom.h>
53 #include <asm/openprom.h>
54 #include <asm/oplib.h>
55 #include <asm/pgtable.h>
56 #endif
57
58 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59 #define FORE200E_USE_TASKLET
60 #endif
61
62 #if 0 /* enable the debugging code of the buffer supply queues */
63 #define FORE200E_BSQ_DEBUG
64 #endif
65
66 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67 #define FORE200E_52BYTE_AAL0_SDU
68 #endif
69
70 #include "fore200e.h"
71 #include "suni.h"
72
73 #define FORE200E_VERSION "0.3e"
74
75 #define FORE200E         "fore200e: "
76
77 #if 0 /* override .config */
78 #define CONFIG_ATM_FORE200E_DEBUG 1
79 #endif
80 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                   printk(FORE200E format, ##args); } while (0)
83 #else
84 #define DPRINTK(level, format, args...)  do {} while (0)
85 #endif
86
87
88 #define FORE200E_ALIGN(addr, alignment) \
89         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
92
93 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
94
95 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
96
97 #if 1
98 #define ASSERT(expr)     if (!(expr)) { \
99                              printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100                                     __func__, __LINE__, #expr); \
101                              panic(FORE200E "%s", __func__); \
102                          }
103 #else
104 #define ASSERT(expr)     do {} while (0)
105 #endif
106
107
108 static const struct atmdev_ops   fore200e_ops;
109 static const struct fore200e_bus fore200e_bus[];
110
111 static LIST_HEAD(fore200e_boards);
112
113
114 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120     { BUFFER_S1_NBR, BUFFER_L1_NBR },
121     { BUFFER_S2_NBR, BUFFER_L2_NBR }
122 };
123
124 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127 };
128
129
130 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132 #endif
133
134
135 #if 0 /* currently unused */
136 static int 
137 fore200e_fore2atm_aal(enum fore200e_aal aal)
138 {
139     switch(aal) {
140     case FORE200E_AAL0:  return ATM_AAL0;
141     case FORE200E_AAL34: return ATM_AAL34;
142     case FORE200E_AAL5:  return ATM_AAL5;
143     }
144
145     return -EINVAL;
146 }
147 #endif
148
149
150 static enum fore200e_aal
151 fore200e_atm2fore_aal(int aal)
152 {
153     switch(aal) {
154     case ATM_AAL0:  return FORE200E_AAL0;
155     case ATM_AAL34: return FORE200E_AAL34;
156     case ATM_AAL1:
157     case ATM_AAL2:
158     case ATM_AAL5:  return FORE200E_AAL5;
159     }
160
161     return -EINVAL;
162 }
163
164
165 static char*
166 fore200e_irq_itoa(int irq)
167 {
168     static char str[8];
169     sprintf(str, "%d", irq);
170     return str;
171 }
172
173
174 /* allocate and align a chunk of memory intended to hold the data behing exchanged
175    between the driver and the adapter (using streaming DVMA) */
176
177 static int
178 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179 {
180     unsigned long offset = 0;
181
182     if (alignment <= sizeof(int))
183         alignment = 0;
184
185     chunk->alloc_size = size + alignment;
186     chunk->align_size = size;
187     chunk->direction  = direction;
188
189     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190     if (chunk->alloc_addr == NULL)
191         return -ENOMEM;
192
193     if (alignment > 0)
194         offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
195     
196     chunk->align_addr = chunk->alloc_addr + offset;
197
198     chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199     
200     return 0;
201 }
202
203
204 /* free a chunk of memory */
205
206 static void
207 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208 {
209     fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
211     kfree(chunk->alloc_addr);
212 }
213
214
215 static void
216 fore200e_spin(int msecs)
217 {
218     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219     while (time_before(jiffies, timeout));
220 }
221
222
223 static int
224 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225 {
226     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227     int           ok;
228
229     mb();
230     do {
231         if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232             break;
233
234     } while (time_before(jiffies, timeout));
235
236 #if 1
237     if (!ok) {
238         printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239                *addr, val);
240     }
241 #endif
242
243     return ok;
244 }
245
246
247 static int
248 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249 {
250     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251     int           ok;
252
253     do {
254         if ((ok = (fore200e->bus->read(addr) == val)))
255             break;
256
257     } while (time_before(jiffies, timeout));
258
259 #if 1
260     if (!ok) {
261         printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262                fore200e->bus->read(addr), val);
263     }
264 #endif
265
266     return ok;
267 }
268
269
270 static void
271 fore200e_free_rx_buf(struct fore200e* fore200e)
272 {
273     int scheme, magn, nbr;
274     struct buffer* buffer;
275
276     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279             if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281                 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283                     struct chunk* data = &buffer[ nbr ].data;
284
285                     if (data->alloc_addr != NULL)
286                         fore200e_chunk_free(fore200e, data);
287                 }
288             }
289         }
290     }
291 }
292
293
294 static void
295 fore200e_uninit_bs_queue(struct fore200e* fore200e)
296 {
297     int scheme, magn;
298     
299     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302             struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
303             struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304             
305             if (status->alloc_addr)
306                 fore200e->bus->dma_chunk_free(fore200e, status);
307             
308             if (rbd_block->alloc_addr)
309                 fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310         }
311     }
312 }
313
314
315 static int
316 fore200e_reset(struct fore200e* fore200e, int diag)
317 {
318     int ok;
319
320     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321     
322     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324     fore200e->bus->reset(fore200e);
325
326     if (diag) {
327         ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328         if (ok == 0) {
329             
330             printk(FORE200E "device %s self-test failed\n", fore200e->name);
331             return -ENODEV;
332         }
333
334         printk(FORE200E "device %s self-test passed\n", fore200e->name);
335         
336         fore200e->state = FORE200E_STATE_RESET;
337     }
338
339     return 0;
340 }
341
342
343 static void
344 fore200e_shutdown(struct fore200e* fore200e)
345 {
346     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347            fore200e->name, fore200e->phys_base, 
348            fore200e_irq_itoa(fore200e->irq));
349     
350     if (fore200e->state > FORE200E_STATE_RESET) {
351         /* first, reset the board to prevent further interrupts or data transfers */
352         fore200e_reset(fore200e, 0);
353     }
354     
355     /* then, release all allocated resources */
356     switch(fore200e->state) {
357
358     case FORE200E_STATE_COMPLETE:
359         kfree(fore200e->stats);
360
361     case FORE200E_STATE_IRQ:
362         free_irq(fore200e->irq, fore200e->atm_dev);
363
364     case FORE200E_STATE_ALLOC_BUF:
365         fore200e_free_rx_buf(fore200e);
366
367     case FORE200E_STATE_INIT_BSQ:
368         fore200e_uninit_bs_queue(fore200e);
369
370     case FORE200E_STATE_INIT_RXQ:
371         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
372         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
373
374     case FORE200E_STATE_INIT_TXQ:
375         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
376         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
377
378     case FORE200E_STATE_INIT_CMDQ:
379         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
380
381     case FORE200E_STATE_INITIALIZE:
382         /* nothing to do for that state */
383
384     case FORE200E_STATE_START_FW:
385         /* nothing to do for that state */
386
387     case FORE200E_STATE_RESET:
388         /* nothing to do for that state */
389
390     case FORE200E_STATE_MAP:
391         fore200e->bus->unmap(fore200e);
392
393     case FORE200E_STATE_CONFIGURE:
394         /* nothing to do for that state */
395
396     case FORE200E_STATE_REGISTER:
397         /* XXX shouldn't we *start* by deregistering the device? */
398         atm_dev_deregister(fore200e->atm_dev);
399
400     case FORE200E_STATE_BLANK:
401         /* nothing to do for that state */
402         break;
403     }
404 }
405
406
407 #ifdef CONFIG_PCI
408
409 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
410 {
411     /* on big-endian hosts, the board is configured to convert
412        the endianess of slave RAM accesses  */
413     return le32_to_cpu(readl(addr));
414 }
415
416
417 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
418 {
419     /* on big-endian hosts, the board is configured to convert
420        the endianess of slave RAM accesses  */
421     writel(cpu_to_le32(val), addr);
422 }
423
424
425 static u32
426 fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
427 {
428     u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
429
430     DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
431             virt_addr, size, direction, dma_addr);
432     
433     return dma_addr;
434 }
435
436
437 static void
438 fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
439 {
440     DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
441             dma_addr, size, direction);
442
443     dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
444 }
445
446
447 static void
448 fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
449 {
450     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
451
452     dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
453 }
454
455 static void
456 fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457 {
458     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460     dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
461 }
462
463
464 /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
465    (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
466
467 static int
468 fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
469                              int size, int nbr, int alignment)
470 {
471     /* returned chunks are page-aligned */
472     chunk->alloc_size = size * nbr;
473     chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
474                                            chunk->alloc_size,
475                                            &chunk->dma_addr,
476                                            GFP_KERNEL);
477     
478     if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
479         return -ENOMEM;
480
481     chunk->align_addr = chunk->alloc_addr;
482     
483     return 0;
484 }
485
486
487 /* free a DMA consistent chunk of memory */
488
489 static void
490 fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
491 {
492     dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
493                         chunk->alloc_size,
494                         chunk->alloc_addr,
495                         chunk->dma_addr);
496 }
497
498
499 static int
500 fore200e_pca_irq_check(struct fore200e* fore200e)
501 {
502     /* this is a 1 bit register */
503     int irq_posted = readl(fore200e->regs.pca.psr);
504
505 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
506     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
507         DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
508     }
509 #endif
510
511     return irq_posted;
512 }
513
514
515 static void
516 fore200e_pca_irq_ack(struct fore200e* fore200e)
517 {
518     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
519 }
520
521
522 static void
523 fore200e_pca_reset(struct fore200e* fore200e)
524 {
525     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
526     fore200e_spin(10);
527     writel(0, fore200e->regs.pca.hcr);
528 }
529
530
531 static int fore200e_pca_map(struct fore200e* fore200e)
532 {
533     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
534
535     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
536     
537     if (fore200e->virt_base == NULL) {
538         printk(FORE200E "can't map device %s\n", fore200e->name);
539         return -EFAULT;
540     }
541
542     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
543
544     /* gain access to the PCA specific registers  */
545     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
546     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
547     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
548
549     fore200e->state = FORE200E_STATE_MAP;
550     return 0;
551 }
552
553
554 static void
555 fore200e_pca_unmap(struct fore200e* fore200e)
556 {
557     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
558
559     if (fore200e->virt_base != NULL)
560         iounmap(fore200e->virt_base);
561 }
562
563
564 static int fore200e_pca_configure(struct fore200e *fore200e)
565 {
566     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
567     u8              master_ctrl, latency;
568
569     DPRINTK(2, "device %s being configured\n", fore200e->name);
570
571     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
572         printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
573         return -EIO;
574     }
575
576     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
577
578     master_ctrl = master_ctrl
579 #if defined(__BIG_ENDIAN)
580         /* request the PCA board to convert the endianess of slave RAM accesses */
581         | PCA200E_CTRL_CONVERT_ENDIAN
582 #endif
583 #if 0
584         | PCA200E_CTRL_DIS_CACHE_RD
585         | PCA200E_CTRL_DIS_WRT_INVAL
586         | PCA200E_CTRL_ENA_CONT_REQ_MODE
587         | PCA200E_CTRL_2_CACHE_WRT_INVAL
588 #endif
589         | PCA200E_CTRL_LARGE_PCI_BURSTS;
590     
591     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
592
593     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
594        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
595        this may impact the performances of other PCI devices on the same bus, though */
596     latency = 192;
597     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
598
599     fore200e->state = FORE200E_STATE_CONFIGURE;
600     return 0;
601 }
602
603
604 static int __init
605 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
606 {
607     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
608     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
609     struct prom_opcode      opcode;
610     int                     ok;
611     u32                     prom_dma;
612
613     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
614
615     opcode.opcode = OPCODE_GET_PROM;
616     opcode.pad    = 0;
617
618     prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
619
620     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
621     
622     *entry->status = STATUS_PENDING;
623
624     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
625
626     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
627
628     *entry->status = STATUS_FREE;
629
630     fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
631
632     if (ok == 0) {
633         printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
634         return -EIO;
635     }
636
637 #if defined(__BIG_ENDIAN)
638     
639 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
640
641     /* MAC address is stored as little-endian */
642     swap_here(&prom->mac_addr[0]);
643     swap_here(&prom->mac_addr[4]);
644 #endif
645     
646     return 0;
647 }
648
649
650 static int
651 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
652 {
653     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
654
655     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
656                    pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
657 }
658
659 #endif /* CONFIG_PCI */
660
661
662 #ifdef CONFIG_SBUS
663
664 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
665 {
666     return sbus_readl(addr);
667 }
668
669 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
670 {
671     sbus_writel(val, addr);
672 }
673
674 static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
675 {
676         struct platform_device *op = fore200e->bus_dev;
677         u32 dma_addr;
678
679         dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
680
681         DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
682                 virt_addr, size, direction, dma_addr);
683     
684         return dma_addr;
685 }
686
687 static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
688 {
689         struct platform_device *op = fore200e->bus_dev;
690
691         DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
692                 dma_addr, size, direction);
693
694         dma_unmap_single(&op->dev, dma_addr, size, direction);
695 }
696
697 static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
698 {
699         struct platform_device *op = fore200e->bus_dev;
700
701         DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
702     
703         dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
704 }
705
706 static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
707 {
708         struct platform_device *op = fore200e->bus_dev;
709
710         DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
711
712         dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
713 }
714
715 /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
716  * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
717  */
718 static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
719                                         int size, int nbr, int alignment)
720 {
721         struct platform_device *op = fore200e->bus_dev;
722
723         chunk->alloc_size = chunk->align_size = size * nbr;
724
725         /* returned chunks are page-aligned */
726         chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
727                                                &chunk->dma_addr, GFP_ATOMIC);
728
729         if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
730                 return -ENOMEM;
731
732         chunk->align_addr = chunk->alloc_addr;
733     
734         return 0;
735 }
736
737 /* free a DVMA consistent chunk of memory */
738 static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
739 {
740         struct platform_device *op = fore200e->bus_dev;
741
742         dma_free_coherent(&op->dev, chunk->alloc_size,
743                           chunk->alloc_addr, chunk->dma_addr);
744 }
745
746 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
747 {
748         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
749         fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
750 }
751
752 static int fore200e_sba_irq_check(struct fore200e *fore200e)
753 {
754         return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
755 }
756
757 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
758 {
759         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
760         fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
761 }
762
763 static void fore200e_sba_reset(struct fore200e *fore200e)
764 {
765         fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
766         fore200e_spin(10);
767         fore200e->bus->write(0, fore200e->regs.sba.hcr);
768 }
769
770 static int __init fore200e_sba_map(struct fore200e *fore200e)
771 {
772         struct platform_device *op = fore200e->bus_dev;
773         unsigned int bursts;
774
775         /* gain access to the SBA specific registers  */
776         fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
777         fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
778         fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
779         fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
780
781         if (!fore200e->virt_base) {
782                 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
783                 return -EFAULT;
784         }
785
786         DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
787     
788         fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
789
790         /* get the supported DVMA burst sizes */
791         bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
792
793         if (sbus_can_dma_64bit())
794                 sbus_set_sbus64(&op->dev, bursts);
795
796         fore200e->state = FORE200E_STATE_MAP;
797         return 0;
798 }
799
800 static void fore200e_sba_unmap(struct fore200e *fore200e)
801 {
802         struct platform_device *op = fore200e->bus_dev;
803
804         of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
805         of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
806         of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
807         of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
808 }
809
810 static int __init fore200e_sba_configure(struct fore200e *fore200e)
811 {
812         fore200e->state = FORE200E_STATE_CONFIGURE;
813         return 0;
814 }
815
816 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
817 {
818         struct platform_device *op = fore200e->bus_dev;
819         const u8 *prop;
820         int len;
821
822         prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
823         if (!prop)
824                 return -ENODEV;
825         memcpy(&prom->mac_addr[4], prop, 4);
826
827         prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
828         if (!prop)
829                 return -ENODEV;
830         memcpy(&prom->mac_addr[2], prop, 4);
831
832         prom->serial_number = of_getintprop_default(op->dev.of_node,
833                                                     "serialnumber", 0);
834         prom->hw_revision = of_getintprop_default(op->dev.of_node,
835                                                   "promversion", 0);
836     
837         return 0;
838 }
839
840 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
841 {
842         struct platform_device *op = fore200e->bus_dev;
843         const struct linux_prom_registers *regs;
844
845         regs = of_get_property(op->dev.of_node, "reg", NULL);
846
847         return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
848                        (regs ? regs->which_io : 0), op->dev.of_node->name);
849 }
850 #endif /* CONFIG_SBUS */
851
852
853 static void
854 fore200e_tx_irq(struct fore200e* fore200e)
855 {
856     struct host_txq*        txq = &fore200e->host_txq;
857     struct host_txq_entry*  entry;
858     struct atm_vcc*         vcc;
859     struct fore200e_vc_map* vc_map;
860
861     if (fore200e->host_txq.txing == 0)
862         return;
863
864     for (;;) {
865         
866         entry = &txq->host_entry[ txq->tail ];
867
868         if ((*entry->status & STATUS_COMPLETE) == 0) {
869             break;
870         }
871
872         DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
873                 entry, txq->tail, entry->vc_map, entry->skb);
874
875         /* free copy of misaligned data */
876         kfree(entry->data);
877         
878         /* remove DMA mapping */
879         fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
880                                  DMA_TO_DEVICE);
881
882         vc_map = entry->vc_map;
883
884         /* vcc closed since the time the entry was submitted for tx? */
885         if ((vc_map->vcc == NULL) ||
886             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
887
888             DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
889                     fore200e->atm_dev->number);
890
891             dev_kfree_skb_any(entry->skb);
892         }
893         else {
894             ASSERT(vc_map->vcc);
895
896             /* vcc closed then immediately re-opened? */
897             if (vc_map->incarn != entry->incarn) {
898
899                 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
900                    if the same vcc is immediately re-opened, those pending PDUs must
901                    not be popped after the completion of their emission, as they refer
902                    to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
903                    would be decremented by the size of the (unrelated) skb, possibly
904                    leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
905                    we thus bind the tx entry to the current incarnation of the vcc
906                    when the entry is submitted for tx. When the tx later completes,
907                    if the incarnation number of the tx entry does not match the one
908                    of the vcc, then this implies that the vcc has been closed then re-opened.
909                    we thus just drop the skb here. */
910
911                 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
912                         fore200e->atm_dev->number);
913
914                 dev_kfree_skb_any(entry->skb);
915             }
916             else {
917                 vcc = vc_map->vcc;
918                 ASSERT(vcc);
919
920                 /* notify tx completion */
921                 if (vcc->pop) {
922                     vcc->pop(vcc, entry->skb);
923                 }
924                 else {
925                     dev_kfree_skb_any(entry->skb);
926                 }
927
928                 /* check error condition */
929                 if (*entry->status & STATUS_ERROR)
930                     atomic_inc(&vcc->stats->tx_err);
931                 else
932                     atomic_inc(&vcc->stats->tx);
933             }
934         }
935
936         *entry->status = STATUS_FREE;
937
938         fore200e->host_txq.txing--;
939
940         FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
941     }
942 }
943
944
945 #ifdef FORE200E_BSQ_DEBUG
946 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
947 {
948     struct buffer* buffer;
949     int count = 0;
950
951     buffer = bsq->freebuf;
952     while (buffer) {
953
954         if (buffer->supplied) {
955             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
956                    where, scheme, magn, buffer->index);
957         }
958
959         if (buffer->magn != magn) {
960             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
961                    where, scheme, magn, buffer->index, buffer->magn);
962         }
963
964         if (buffer->scheme != scheme) {
965             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
966                    where, scheme, magn, buffer->index, buffer->scheme);
967         }
968
969         if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
970             printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
971                    where, scheme, magn, buffer->index);
972         }
973
974         count++;
975         buffer = buffer->next;
976     }
977
978     if (count != bsq->freebuf_count) {
979         printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
980                where, scheme, magn, count, bsq->freebuf_count);
981     }
982     return 0;
983 }
984 #endif
985
986
987 static void
988 fore200e_supply(struct fore200e* fore200e)
989 {
990     int  scheme, magn, i;
991
992     struct host_bsq*       bsq;
993     struct host_bsq_entry* entry;
994     struct buffer*         buffer;
995
996     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
997         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
998
999             bsq = &fore200e->host_bsq[ scheme ][ magn ];
1000
1001 #ifdef FORE200E_BSQ_DEBUG
1002             bsq_audit(1, bsq, scheme, magn);
1003 #endif
1004             while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1005
1006                 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1007                         RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1008
1009                 entry = &bsq->host_entry[ bsq->head ];
1010
1011                 for (i = 0; i < RBD_BLK_SIZE; i++) {
1012
1013                     /* take the first buffer in the free buffer list */
1014                     buffer = bsq->freebuf;
1015                     if (!buffer) {
1016                         printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1017                                scheme, magn, bsq->freebuf_count);
1018                         return;
1019                     }
1020                     bsq->freebuf = buffer->next;
1021                     
1022 #ifdef FORE200E_BSQ_DEBUG
1023                     if (buffer->supplied)
1024                         printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1025                                scheme, magn, buffer->index);
1026                     buffer->supplied = 1;
1027 #endif
1028                     entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1029                     entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1030                 }
1031
1032                 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1033
1034                 /* decrease accordingly the number of free rx buffers */
1035                 bsq->freebuf_count -= RBD_BLK_SIZE;
1036
1037                 *entry->status = STATUS_PENDING;
1038                 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1039             }
1040         }
1041     }
1042 }
1043
1044
1045 static int
1046 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1047 {
1048     struct sk_buff*      skb;
1049     struct buffer*       buffer;
1050     struct fore200e_vcc* fore200e_vcc;
1051     int                  i, pdu_len = 0;
1052 #ifdef FORE200E_52BYTE_AAL0_SDU
1053     u32                  cell_header = 0;
1054 #endif
1055
1056     ASSERT(vcc);
1057     
1058     fore200e_vcc = FORE200E_VCC(vcc);
1059     ASSERT(fore200e_vcc);
1060
1061 #ifdef FORE200E_52BYTE_AAL0_SDU
1062     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1063
1064         cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1065                       (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1066                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1067                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1068                        rpd->atm_header.clp;
1069         pdu_len = 4;
1070     }
1071 #endif
1072     
1073     /* compute total PDU length */
1074     for (i = 0; i < rpd->nseg; i++)
1075         pdu_len += rpd->rsd[ i ].length;
1076     
1077     skb = alloc_skb(pdu_len, GFP_ATOMIC);
1078     if (skb == NULL) {
1079         DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1080
1081         atomic_inc(&vcc->stats->rx_drop);
1082         return -ENOMEM;
1083     } 
1084
1085     __net_timestamp(skb);
1086     
1087 #ifdef FORE200E_52BYTE_AAL0_SDU
1088     if (cell_header) {
1089         *((u32*)skb_put(skb, 4)) = cell_header;
1090     }
1091 #endif
1092
1093     /* reassemble segments */
1094     for (i = 0; i < rpd->nseg; i++) {
1095         
1096         /* rebuild rx buffer address from rsd handle */
1097         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1098         
1099         /* Make device DMA transfer visible to CPU.  */
1100         fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1101         
1102         skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1103
1104         /* Now let the device get at it again.  */
1105         fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1106     }
1107
1108     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1109     
1110     if (pdu_len < fore200e_vcc->rx_min_pdu)
1111         fore200e_vcc->rx_min_pdu = pdu_len;
1112     if (pdu_len > fore200e_vcc->rx_max_pdu)
1113         fore200e_vcc->rx_max_pdu = pdu_len;
1114     fore200e_vcc->rx_pdu++;
1115
1116     /* push PDU */
1117     if (atm_charge(vcc, skb->truesize) == 0) {
1118
1119         DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1120                 vcc->itf, vcc->vpi, vcc->vci);
1121
1122         dev_kfree_skb_any(skb);
1123
1124         atomic_inc(&vcc->stats->rx_drop);
1125         return -ENOMEM;
1126     }
1127
1128     vcc->push(vcc, skb);
1129     atomic_inc(&vcc->stats->rx);
1130
1131     return 0;
1132 }
1133
1134
1135 static void
1136 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1137 {
1138     struct host_bsq* bsq;
1139     struct buffer*   buffer;
1140     int              i;
1141     
1142     for (i = 0; i < rpd->nseg; i++) {
1143
1144         /* rebuild rx buffer address from rsd handle */
1145         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1146
1147         bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1148
1149 #ifdef FORE200E_BSQ_DEBUG
1150         bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1151
1152         if (buffer->supplied == 0)
1153             printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1154                    buffer->scheme, buffer->magn, buffer->index);
1155         buffer->supplied = 0;
1156 #endif
1157
1158         /* re-insert the buffer into the free buffer list */
1159         buffer->next = bsq->freebuf;
1160         bsq->freebuf = buffer;
1161
1162         /* then increment the number of free rx buffers */
1163         bsq->freebuf_count++;
1164     }
1165 }
1166
1167
1168 static void
1169 fore200e_rx_irq(struct fore200e* fore200e)
1170 {
1171     struct host_rxq*        rxq = &fore200e->host_rxq;
1172     struct host_rxq_entry*  entry;
1173     struct atm_vcc*         vcc;
1174     struct fore200e_vc_map* vc_map;
1175
1176     for (;;) {
1177         
1178         entry = &rxq->host_entry[ rxq->head ];
1179
1180         /* no more received PDUs */
1181         if ((*entry->status & STATUS_COMPLETE) == 0)
1182             break;
1183
1184         vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1185
1186         if ((vc_map->vcc == NULL) ||
1187             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1188
1189             DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1190                     fore200e->atm_dev->number,
1191                     entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1192         }
1193         else {
1194             vcc = vc_map->vcc;
1195             ASSERT(vcc);
1196
1197             if ((*entry->status & STATUS_ERROR) == 0) {
1198
1199                 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1200             }
1201             else {
1202                 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1203                         fore200e->atm_dev->number,
1204                         entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1205                 atomic_inc(&vcc->stats->rx_err);
1206             }
1207         }
1208
1209         FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1210
1211         fore200e_collect_rpd(fore200e, entry->rpd);
1212
1213         /* rewrite the rpd address to ack the received PDU */
1214         fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1215         *entry->status = STATUS_FREE;
1216
1217         fore200e_supply(fore200e);
1218     }
1219 }
1220
1221
1222 #ifndef FORE200E_USE_TASKLET
1223 static void
1224 fore200e_irq(struct fore200e* fore200e)
1225 {
1226     unsigned long flags;
1227
1228     spin_lock_irqsave(&fore200e->q_lock, flags);
1229     fore200e_rx_irq(fore200e);
1230     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1231
1232     spin_lock_irqsave(&fore200e->q_lock, flags);
1233     fore200e_tx_irq(fore200e);
1234     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1235 }
1236 #endif
1237
1238
1239 static irqreturn_t
1240 fore200e_interrupt(int irq, void* dev)
1241 {
1242     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1243
1244     if (fore200e->bus->irq_check(fore200e) == 0) {
1245         
1246         DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1247         return IRQ_NONE;
1248     }
1249     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1250
1251 #ifdef FORE200E_USE_TASKLET
1252     tasklet_schedule(&fore200e->tx_tasklet);
1253     tasklet_schedule(&fore200e->rx_tasklet);
1254 #else
1255     fore200e_irq(fore200e);
1256 #endif
1257     
1258     fore200e->bus->irq_ack(fore200e);
1259     return IRQ_HANDLED;
1260 }
1261
1262
1263 #ifdef FORE200E_USE_TASKLET
1264 static void
1265 fore200e_tx_tasklet(unsigned long data)
1266 {
1267     struct fore200e* fore200e = (struct fore200e*) data;
1268     unsigned long flags;
1269
1270     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1271
1272     spin_lock_irqsave(&fore200e->q_lock, flags);
1273     fore200e_tx_irq(fore200e);
1274     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1275 }
1276
1277
1278 static void
1279 fore200e_rx_tasklet(unsigned long data)
1280 {
1281     struct fore200e* fore200e = (struct fore200e*) data;
1282     unsigned long    flags;
1283
1284     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1285
1286     spin_lock_irqsave(&fore200e->q_lock, flags);
1287     fore200e_rx_irq((struct fore200e*) data);
1288     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1289 }
1290 #endif
1291
1292
1293 static int
1294 fore200e_select_scheme(struct atm_vcc* vcc)
1295 {
1296     /* fairly balance the VCs over (identical) buffer schemes */
1297     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1298
1299     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1300             vcc->itf, vcc->vpi, vcc->vci, scheme);
1301
1302     return scheme;
1303 }
1304
1305
1306 static int 
1307 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1308 {
1309     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1310     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1311     struct activate_opcode   activ_opcode;
1312     struct deactivate_opcode deactiv_opcode;
1313     struct vpvc              vpvc;
1314     int                      ok;
1315     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1316
1317     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1318     
1319     if (activate) {
1320         FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1321         
1322         activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1323         activ_opcode.aal    = aal;
1324         activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1325         activ_opcode.pad    = 0;
1326     }
1327     else {
1328         deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1329         deactiv_opcode.pad    = 0;
1330     }
1331
1332     vpvc.vci = vcc->vci;
1333     vpvc.vpi = vcc->vpi;
1334
1335     *entry->status = STATUS_PENDING;
1336
1337     if (activate) {
1338
1339 #ifdef FORE200E_52BYTE_AAL0_SDU
1340         mtu = 48;
1341 #endif
1342         /* the MTU is not used by the cp, except in the case of AAL0 */
1343         fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1344         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1345         fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1346     }
1347     else {
1348         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1349         fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1350     }
1351
1352     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1353
1354     *entry->status = STATUS_FREE;
1355
1356     if (ok == 0) {
1357         printk(FORE200E "unable to %s VC %d.%d.%d\n",
1358                activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1359         return -EIO;
1360     }
1361
1362     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1363             activate ? "open" : "clos");
1364
1365     return 0;
1366 }
1367
1368
1369 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1370
1371 static void
1372 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1373 {
1374     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1375     
1376         /* compute the data cells to idle cells ratio from the tx PCR */
1377         rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1378         rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1379     }
1380     else {
1381         /* disable rate control */
1382         rate->data_cells = rate->idle_cells = 0;
1383     }
1384 }
1385
1386
1387 static int
1388 fore200e_open(struct atm_vcc *vcc)
1389 {
1390     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1391     struct fore200e_vcc*    fore200e_vcc;
1392     struct fore200e_vc_map* vc_map;
1393     unsigned long           flags;
1394     int                     vci = vcc->vci;
1395     short                   vpi = vcc->vpi;
1396
1397     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1398     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1399
1400     spin_lock_irqsave(&fore200e->q_lock, flags);
1401
1402     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1403     if (vc_map->vcc) {
1404
1405         spin_unlock_irqrestore(&fore200e->q_lock, flags);
1406
1407         printk(FORE200E "VC %d.%d.%d already in use\n",
1408                fore200e->atm_dev->number, vpi, vci);
1409
1410         return -EINVAL;
1411     }
1412
1413     vc_map->vcc = vcc;
1414
1415     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1416
1417     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1418     if (fore200e_vcc == NULL) {
1419         vc_map->vcc = NULL;
1420         return -ENOMEM;
1421     }
1422
1423     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1424             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1425             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1426             fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1427             vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1428             fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1429             vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1430     
1431     /* pseudo-CBR bandwidth requested? */
1432     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1433         
1434         mutex_lock(&fore200e->rate_mtx);
1435         if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1436             mutex_unlock(&fore200e->rate_mtx);
1437
1438             kfree(fore200e_vcc);
1439             vc_map->vcc = NULL;
1440             return -EAGAIN;
1441         }
1442
1443         /* reserve bandwidth */
1444         fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1445         mutex_unlock(&fore200e->rate_mtx);
1446     }
1447     
1448     vcc->itf = vcc->dev->number;
1449
1450     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1451     set_bit(ATM_VF_ADDR, &vcc->flags);
1452
1453     vcc->dev_data = fore200e_vcc;
1454     
1455     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1456
1457         vc_map->vcc = NULL;
1458
1459         clear_bit(ATM_VF_ADDR, &vcc->flags);
1460         clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1461
1462         vcc->dev_data = NULL;
1463
1464         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1465
1466         kfree(fore200e_vcc);
1467         return -EINVAL;
1468     }
1469     
1470     /* compute rate control parameters */
1471     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1472         
1473         fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1474         set_bit(ATM_VF_HASQOS, &vcc->flags);
1475
1476         DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1477                 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1478                 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1479                 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1480     }
1481     
1482     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1483     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1484     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1485
1486     /* new incarnation of the vcc */
1487     vc_map->incarn = ++fore200e->incarn_count;
1488
1489     /* VC unusable before this flag is set */
1490     set_bit(ATM_VF_READY, &vcc->flags);
1491
1492     return 0;
1493 }
1494
1495
1496 static void
1497 fore200e_close(struct atm_vcc* vcc)
1498 {
1499     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1500     struct fore200e_vcc*    fore200e_vcc;
1501     struct fore200e_vc_map* vc_map;
1502     unsigned long           flags;
1503
1504     ASSERT(vcc);
1505     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1506     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1507
1508     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1509
1510     clear_bit(ATM_VF_READY, &vcc->flags);
1511
1512     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1513
1514     spin_lock_irqsave(&fore200e->q_lock, flags);
1515
1516     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1517
1518     /* the vc is no longer considered as "in use" by fore200e_open() */
1519     vc_map->vcc = NULL;
1520
1521     vcc->itf = vcc->vci = vcc->vpi = 0;
1522
1523     fore200e_vcc = FORE200E_VCC(vcc);
1524     vcc->dev_data = NULL;
1525
1526     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1527
1528     /* release reserved bandwidth, if any */
1529     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1530
1531         mutex_lock(&fore200e->rate_mtx);
1532         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1533         mutex_unlock(&fore200e->rate_mtx);
1534
1535         clear_bit(ATM_VF_HASQOS, &vcc->flags);
1536     }
1537
1538     clear_bit(ATM_VF_ADDR, &vcc->flags);
1539     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1540
1541     ASSERT(fore200e_vcc);
1542     kfree(fore200e_vcc);
1543 }
1544
1545
1546 static int
1547 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1548 {
1549     struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1550     struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1551     struct fore200e_vc_map* vc_map;
1552     struct host_txq*        txq          = &fore200e->host_txq;
1553     struct host_txq_entry*  entry;
1554     struct tpd*             tpd;
1555     struct tpd_haddr        tpd_haddr;
1556     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1557     int                     tx_copy      = 0;
1558     int                     tx_len       = skb->len;
1559     u32*                    cell_header  = NULL;
1560     unsigned char*          skb_data;
1561     int                     skb_len;
1562     unsigned char*          data;
1563     unsigned long           flags;
1564
1565     ASSERT(vcc);
1566     ASSERT(fore200e);
1567     ASSERT(fore200e_vcc);
1568
1569     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1570         DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1571         dev_kfree_skb_any(skb);
1572         return -EINVAL;
1573     }
1574
1575 #ifdef FORE200E_52BYTE_AAL0_SDU
1576     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1577         cell_header = (u32*) skb->data;
1578         skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1579         skb_len     = tx_len = skb->len  - 4;
1580
1581         DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1582     }
1583     else 
1584 #endif
1585     {
1586         skb_data = skb->data;
1587         skb_len  = skb->len;
1588     }
1589     
1590     if (((unsigned long)skb_data) & 0x3) {
1591
1592         DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1593         tx_copy = 1;
1594         tx_len  = skb_len;
1595     }
1596
1597     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1598
1599         /* this simply NUKES the PCA board */
1600         DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1601         tx_copy = 1;
1602         tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1603     }
1604     
1605     if (tx_copy) {
1606         data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1607         if (data == NULL) {
1608             if (vcc->pop) {
1609                 vcc->pop(vcc, skb);
1610             }
1611             else {
1612                 dev_kfree_skb_any(skb);
1613             }
1614             return -ENOMEM;
1615         }
1616
1617         memcpy(data, skb_data, skb_len);
1618         if (skb_len < tx_len)
1619             memset(data + skb_len, 0x00, tx_len - skb_len);
1620     }
1621     else {
1622         data = skb_data;
1623     }
1624
1625     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1626     ASSERT(vc_map->vcc == vcc);
1627
1628   retry_here:
1629
1630     spin_lock_irqsave(&fore200e->q_lock, flags);
1631
1632     entry = &txq->host_entry[ txq->head ];
1633
1634     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1635
1636         /* try to free completed tx queue entries */
1637         fore200e_tx_irq(fore200e);
1638
1639         if (*entry->status != STATUS_FREE) {
1640
1641             spin_unlock_irqrestore(&fore200e->q_lock, flags);
1642
1643             /* retry once again? */
1644             if (--retry > 0) {
1645                 udelay(50);
1646                 goto retry_here;
1647             }
1648
1649             atomic_inc(&vcc->stats->tx_err);
1650
1651             fore200e->tx_sat++;
1652             DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1653                     fore200e->name, fore200e->cp_queues->heartbeat);
1654             if (vcc->pop) {
1655                 vcc->pop(vcc, skb);
1656             }
1657             else {
1658                 dev_kfree_skb_any(skb);
1659             }
1660
1661             if (tx_copy)
1662                 kfree(data);
1663
1664             return -ENOBUFS;
1665         }
1666     }
1667
1668     entry->incarn = vc_map->incarn;
1669     entry->vc_map = vc_map;
1670     entry->skb    = skb;
1671     entry->data   = tx_copy ? data : NULL;
1672
1673     tpd = entry->tpd;
1674     tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1675     tpd->tsd[ 0 ].length = tx_len;
1676
1677     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1678     txq->txing++;
1679
1680     /* The dma_map call above implies a dma_sync so the device can use it,
1681      * thus no explicit dma_sync call is necessary here.
1682      */
1683     
1684     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1685             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1686             tpd->tsd[0].length, skb_len);
1687
1688     if (skb_len < fore200e_vcc->tx_min_pdu)
1689         fore200e_vcc->tx_min_pdu = skb_len;
1690     if (skb_len > fore200e_vcc->tx_max_pdu)
1691         fore200e_vcc->tx_max_pdu = skb_len;
1692     fore200e_vcc->tx_pdu++;
1693
1694     /* set tx rate control information */
1695     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1696     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1697
1698     if (cell_header) {
1699         tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1700         tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1701         tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1702         tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1703         tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1704     }
1705     else {
1706         /* set the ATM header, common to all cells conveying the PDU */
1707         tpd->atm_header.clp = 0;
1708         tpd->atm_header.plt = 0;
1709         tpd->atm_header.vci = vcc->vci;
1710         tpd->atm_header.vpi = vcc->vpi;
1711         tpd->atm_header.gfc = 0;
1712     }
1713
1714     tpd->spec.length = tx_len;
1715     tpd->spec.nseg   = 1;
1716     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1717     tpd->spec.intr   = 1;
1718
1719     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1720     tpd_haddr.pad   = 0;
1721     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1722
1723     *entry->status = STATUS_PENDING;
1724     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1725
1726     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1727
1728     return 0;
1729 }
1730
1731
1732 static int
1733 fore200e_getstats(struct fore200e* fore200e)
1734 {
1735     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1736     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1737     struct stats_opcode     opcode;
1738     int                     ok;
1739     u32                     stats_dma_addr;
1740
1741     if (fore200e->stats == NULL) {
1742         fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1743         if (fore200e->stats == NULL)
1744             return -ENOMEM;
1745     }
1746     
1747     stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1748                                             sizeof(struct stats), DMA_FROM_DEVICE);
1749     
1750     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1751
1752     opcode.opcode = OPCODE_GET_STATS;
1753     opcode.pad    = 0;
1754
1755     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1756     
1757     *entry->status = STATUS_PENDING;
1758
1759     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1760
1761     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1762
1763     *entry->status = STATUS_FREE;
1764
1765     fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1766     
1767     if (ok == 0) {
1768         printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1769         return -EIO;
1770     }
1771
1772     return 0;
1773 }
1774
1775
1776 static int
1777 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1778 {
1779     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1780
1781     DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1782             vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1783
1784     return -EINVAL;
1785 }
1786
1787
1788 static int
1789 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1790 {
1791     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1792     
1793     DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1794             vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1795     
1796     return -EINVAL;
1797 }
1798
1799
1800 #if 0 /* currently unused */
1801 static int
1802 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1803 {
1804     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1805     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1806     struct oc3_opcode       opcode;
1807     int                     ok;
1808     u32                     oc3_regs_dma_addr;
1809
1810     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1811
1812     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1813
1814     opcode.opcode = OPCODE_GET_OC3;
1815     opcode.reg    = 0;
1816     opcode.value  = 0;
1817     opcode.mask   = 0;
1818
1819     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1820     
1821     *entry->status = STATUS_PENDING;
1822
1823     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1824
1825     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1826
1827     *entry->status = STATUS_FREE;
1828
1829     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1830     
1831     if (ok == 0) {
1832         printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1833         return -EIO;
1834     }
1835
1836     return 0;
1837 }
1838 #endif
1839
1840
1841 static int
1842 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1843 {
1844     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1845     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1846     struct oc3_opcode       opcode;
1847     int                     ok;
1848
1849     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1850
1851     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1852
1853     opcode.opcode = OPCODE_SET_OC3;
1854     opcode.reg    = reg;
1855     opcode.value  = value;
1856     opcode.mask   = mask;
1857
1858     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1859     
1860     *entry->status = STATUS_PENDING;
1861
1862     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1863
1864     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1865
1866     *entry->status = STATUS_FREE;
1867
1868     if (ok == 0) {
1869         printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1870         return -EIO;
1871     }
1872
1873     return 0;
1874 }
1875
1876
1877 static int
1878 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1879 {
1880     u32 mct_value, mct_mask;
1881     int error;
1882
1883     if (!capable(CAP_NET_ADMIN))
1884         return -EPERM;
1885     
1886     switch (loop_mode) {
1887
1888     case ATM_LM_NONE:
1889         mct_value = 0; 
1890         mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1891         break;
1892         
1893     case ATM_LM_LOC_PHY:
1894         mct_value = mct_mask = SUNI_MCT_DLE;
1895         break;
1896
1897     case ATM_LM_RMT_PHY:
1898         mct_value = mct_mask = SUNI_MCT_LLE;
1899         break;
1900
1901     default:
1902         return -EINVAL;
1903     }
1904
1905     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1906     if (error == 0)
1907         fore200e->loop_mode = loop_mode;
1908
1909     return error;
1910 }
1911
1912
1913 static int
1914 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1915 {
1916     struct sonet_stats tmp;
1917
1918     if (fore200e_getstats(fore200e) < 0)
1919         return -EIO;
1920
1921     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1922     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1923     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1924     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1925     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1926     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1927     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1928     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1929                       be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1930                       be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1931     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1932                       be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1933                       be32_to_cpu(fore200e->stats->aal5.cells_received);
1934
1935     if (arg)
1936         return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;       
1937     
1938     return 0;
1939 }
1940
1941
1942 static int
1943 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1944 {
1945     struct fore200e* fore200e = FORE200E_DEV(dev);
1946     
1947     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1948
1949     switch (cmd) {
1950
1951     case SONET_GETSTAT:
1952         return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1953
1954     case SONET_GETDIAG:
1955         return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1956
1957     case ATM_SETLOOP:
1958         return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1959
1960     case ATM_GETLOOP:
1961         return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1962
1963     case ATM_QUERYLOOP:
1964         return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1965     }
1966
1967     return -ENOSYS; /* not implemented */
1968 }
1969
1970
1971 static int
1972 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1973 {
1974     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1975     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1976
1977     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1978         DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1979         return -EINVAL;
1980     }
1981
1982     DPRINTK(2, "change_qos %d.%d.%d, "
1983             "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1984             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1985             "available_cell_rate = %u",
1986             vcc->itf, vcc->vpi, vcc->vci,
1987             fore200e_traffic_class[ qos->txtp.traffic_class ],
1988             qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1989             fore200e_traffic_class[ qos->rxtp.traffic_class ],
1990             qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1991             flags, fore200e->available_cell_rate);
1992
1993     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1994
1995         mutex_lock(&fore200e->rate_mtx);
1996         if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1997             mutex_unlock(&fore200e->rate_mtx);
1998             return -EAGAIN;
1999         }
2000
2001         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2002         fore200e->available_cell_rate -= qos->txtp.max_pcr;
2003
2004         mutex_unlock(&fore200e->rate_mtx);
2005         
2006         memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2007         
2008         /* update rate control parameters */
2009         fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2010
2011         set_bit(ATM_VF_HASQOS, &vcc->flags);
2012
2013         return 0;
2014     }
2015     
2016     return -EINVAL;
2017 }
2018     
2019
2020 static int fore200e_irq_request(struct fore200e *fore200e)
2021 {
2022     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2023
2024         printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2025                fore200e_irq_itoa(fore200e->irq), fore200e->name);
2026         return -EBUSY;
2027     }
2028
2029     printk(FORE200E "IRQ %s reserved for device %s\n",
2030            fore200e_irq_itoa(fore200e->irq), fore200e->name);
2031
2032 #ifdef FORE200E_USE_TASKLET
2033     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2034     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2035 #endif
2036
2037     fore200e->state = FORE200E_STATE_IRQ;
2038     return 0;
2039 }
2040
2041
2042 static int fore200e_get_esi(struct fore200e *fore200e)
2043 {
2044     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2045     int ok, i;
2046
2047     if (!prom)
2048         return -ENOMEM;
2049
2050     ok = fore200e->bus->prom_read(fore200e, prom);
2051     if (ok < 0) {
2052         kfree(prom);
2053         return -EBUSY;
2054     }
2055         
2056     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2057            fore200e->name, 
2058            (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2059            prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2060         
2061     for (i = 0; i < ESI_LEN; i++) {
2062         fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2063     }
2064     
2065     kfree(prom);
2066
2067     return 0;
2068 }
2069
2070
2071 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2072 {
2073     int scheme, magn, nbr, size, i;
2074
2075     struct host_bsq* bsq;
2076     struct buffer*   buffer;
2077
2078     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2079         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2080
2081             bsq = &fore200e->host_bsq[ scheme ][ magn ];
2082
2083             nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2084             size = fore200e_rx_buf_size[ scheme ][ magn ];
2085
2086             DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2087
2088             /* allocate the array of receive buffers */
2089             buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2090
2091             if (buffer == NULL)
2092                 return -ENOMEM;
2093
2094             bsq->freebuf = NULL;
2095
2096             for (i = 0; i < nbr; i++) {
2097
2098                 buffer[ i ].scheme = scheme;
2099                 buffer[ i ].magn   = magn;
2100 #ifdef FORE200E_BSQ_DEBUG
2101                 buffer[ i ].index  = i;
2102                 buffer[ i ].supplied = 0;
2103 #endif
2104
2105                 /* allocate the receive buffer body */
2106                 if (fore200e_chunk_alloc(fore200e,
2107                                          &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2108                                          DMA_FROM_DEVICE) < 0) {
2109                     
2110                     while (i > 0)
2111                         fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2112                     kfree(buffer);
2113                     
2114                     return -ENOMEM;
2115                 }
2116
2117                 /* insert the buffer into the free buffer list */
2118                 buffer[ i ].next = bsq->freebuf;
2119                 bsq->freebuf = &buffer[ i ];
2120             }
2121             /* all the buffers are free, initially */
2122             bsq->freebuf_count = nbr;
2123
2124 #ifdef FORE200E_BSQ_DEBUG
2125             bsq_audit(3, bsq, scheme, magn);
2126 #endif
2127         }
2128     }
2129
2130     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2131     return 0;
2132 }
2133
2134
2135 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2136 {
2137     int scheme, magn, i;
2138
2139     struct host_bsq*     bsq;
2140     struct cp_bsq_entry __iomem * cp_entry;
2141
2142     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2143         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2144
2145             DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2146
2147             bsq = &fore200e->host_bsq[ scheme ][ magn ];
2148
2149             /* allocate and align the array of status words */
2150             if (fore200e->bus->dma_chunk_alloc(fore200e,
2151                                                &bsq->status,
2152                                                sizeof(enum status), 
2153                                                QUEUE_SIZE_BS,
2154                                                fore200e->bus->status_alignment) < 0) {
2155                 return -ENOMEM;
2156             }
2157
2158             /* allocate and align the array of receive buffer descriptors */
2159             if (fore200e->bus->dma_chunk_alloc(fore200e,
2160                                                &bsq->rbd_block,
2161                                                sizeof(struct rbd_block),
2162                                                QUEUE_SIZE_BS,
2163                                                fore200e->bus->descr_alignment) < 0) {
2164                 
2165                 fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2166                 return -ENOMEM;
2167             }
2168             
2169             /* get the base address of the cp resident buffer supply queue entries */
2170             cp_entry = fore200e->virt_base + 
2171                        fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2172             
2173             /* fill the host resident and cp resident buffer supply queue entries */
2174             for (i = 0; i < QUEUE_SIZE_BS; i++) {
2175                 
2176                 bsq->host_entry[ i ].status = 
2177                                      FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2178                 bsq->host_entry[ i ].rbd_block =
2179                                      FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2180                 bsq->host_entry[ i ].rbd_block_dma =
2181                                      FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2182                 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2183                 
2184                 *bsq->host_entry[ i ].status = STATUS_FREE;
2185                 
2186                 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2187                                      &cp_entry[ i ].status_haddr);
2188             }
2189         }
2190     }
2191
2192     fore200e->state = FORE200E_STATE_INIT_BSQ;
2193     return 0;
2194 }
2195
2196
2197 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2198 {
2199     struct host_rxq*     rxq =  &fore200e->host_rxq;
2200     struct cp_rxq_entry __iomem * cp_entry;
2201     int i;
2202
2203     DPRINTK(2, "receive queue is being initialized\n");
2204
2205     /* allocate and align the array of status words */
2206     if (fore200e->bus->dma_chunk_alloc(fore200e,
2207                                        &rxq->status,
2208                                        sizeof(enum status), 
2209                                        QUEUE_SIZE_RX,
2210                                        fore200e->bus->status_alignment) < 0) {
2211         return -ENOMEM;
2212     }
2213
2214     /* allocate and align the array of receive PDU descriptors */
2215     if (fore200e->bus->dma_chunk_alloc(fore200e,
2216                                        &rxq->rpd,
2217                                        sizeof(struct rpd), 
2218                                        QUEUE_SIZE_RX,
2219                                        fore200e->bus->descr_alignment) < 0) {
2220         
2221         fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2222         return -ENOMEM;
2223     }
2224
2225     /* get the base address of the cp resident rx queue entries */
2226     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2227
2228     /* fill the host resident and cp resident rx entries */
2229     for (i=0; i < QUEUE_SIZE_RX; i++) {
2230         
2231         rxq->host_entry[ i ].status = 
2232                              FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2233         rxq->host_entry[ i ].rpd = 
2234                              FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2235         rxq->host_entry[ i ].rpd_dma = 
2236                              FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2237         rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2238
2239         *rxq->host_entry[ i ].status = STATUS_FREE;
2240
2241         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2242                              &cp_entry[ i ].status_haddr);
2243
2244         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2245                              &cp_entry[ i ].rpd_haddr);
2246     }
2247
2248     /* set the head entry of the queue */
2249     rxq->head = 0;
2250
2251     fore200e->state = FORE200E_STATE_INIT_RXQ;
2252     return 0;
2253 }
2254
2255
2256 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2257 {
2258     struct host_txq*     txq =  &fore200e->host_txq;
2259     struct cp_txq_entry __iomem * cp_entry;
2260     int i;
2261
2262     DPRINTK(2, "transmit queue is being initialized\n");
2263
2264     /* allocate and align the array of status words */
2265     if (fore200e->bus->dma_chunk_alloc(fore200e,
2266                                        &txq->status,
2267                                        sizeof(enum status), 
2268                                        QUEUE_SIZE_TX,
2269                                        fore200e->bus->status_alignment) < 0) {
2270         return -ENOMEM;
2271     }
2272
2273     /* allocate and align the array of transmit PDU descriptors */
2274     if (fore200e->bus->dma_chunk_alloc(fore200e,
2275                                        &txq->tpd,
2276                                        sizeof(struct tpd), 
2277                                        QUEUE_SIZE_TX,
2278                                        fore200e->bus->descr_alignment) < 0) {
2279         
2280         fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2281         return -ENOMEM;
2282     }
2283
2284     /* get the base address of the cp resident tx queue entries */
2285     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2286
2287     /* fill the host resident and cp resident tx entries */
2288     for (i=0; i < QUEUE_SIZE_TX; i++) {
2289         
2290         txq->host_entry[ i ].status = 
2291                              FORE200E_INDEX(txq->status.align_addr, enum status, i);
2292         txq->host_entry[ i ].tpd = 
2293                              FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2294         txq->host_entry[ i ].tpd_dma  = 
2295                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2296         txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2297
2298         *txq->host_entry[ i ].status = STATUS_FREE;
2299         
2300         fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2301                              &cp_entry[ i ].status_haddr);
2302         
2303         /* although there is a one-to-one mapping of tx queue entries and tpds,
2304            we do not write here the DMA (physical) base address of each tpd into
2305            the related cp resident entry, because the cp relies on this write
2306            operation to detect that a new pdu has been submitted for tx */
2307     }
2308
2309     /* set the head and tail entries of the queue */
2310     txq->head = 0;
2311     txq->tail = 0;
2312
2313     fore200e->state = FORE200E_STATE_INIT_TXQ;
2314     return 0;
2315 }
2316
2317
2318 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2319 {
2320     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2321     struct cp_cmdq_entry __iomem * cp_entry;
2322     int i;
2323
2324     DPRINTK(2, "command queue is being initialized\n");
2325
2326     /* allocate and align the array of status words */
2327     if (fore200e->bus->dma_chunk_alloc(fore200e,
2328                                        &cmdq->status,
2329                                        sizeof(enum status), 
2330                                        QUEUE_SIZE_CMD,
2331                                        fore200e->bus->status_alignment) < 0) {
2332         return -ENOMEM;
2333     }
2334     
2335     /* get the base address of the cp resident cmd queue entries */
2336     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2337
2338     /* fill the host resident and cp resident cmd entries */
2339     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2340         
2341         cmdq->host_entry[ i ].status   = 
2342                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2343         cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2344
2345         *cmdq->host_entry[ i ].status = STATUS_FREE;
2346
2347         fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2348                              &cp_entry[ i ].status_haddr);
2349     }
2350
2351     /* set the head entry of the queue */
2352     cmdq->head = 0;
2353
2354     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2355     return 0;
2356 }
2357
2358
2359 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2360                                     enum buffer_scheme scheme,
2361                                     enum buffer_magn magn, int queue_length,
2362                                     int pool_size, int supply_blksize)
2363 {
2364     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2365
2366     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2367     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2368     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2369     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2370 }
2371
2372
2373 static int fore200e_initialize(struct fore200e *fore200e)
2374 {
2375     struct cp_queues __iomem * cpq;
2376     int               ok, scheme, magn;
2377
2378     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2379
2380     mutex_init(&fore200e->rate_mtx);
2381     spin_lock_init(&fore200e->q_lock);
2382
2383     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2384
2385     /* enable cp to host interrupts */
2386     fore200e->bus->write(1, &cpq->imask);
2387
2388     if (fore200e->bus->irq_enable)
2389         fore200e->bus->irq_enable(fore200e);
2390     
2391     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2392
2393     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2394     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2395     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2396
2397     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2398     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2399
2400     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2401         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2402             fore200e_param_bs_queue(fore200e, scheme, magn,
2403                                     QUEUE_SIZE_BS, 
2404                                     fore200e_rx_buf_nbr[ scheme ][ magn ],
2405                                     RBD_BLK_SIZE);
2406
2407     /* issue the initialize command */
2408     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2409     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2410
2411     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2412     if (ok == 0) {
2413         printk(FORE200E "device %s initialization failed\n", fore200e->name);
2414         return -ENODEV;
2415     }
2416
2417     printk(FORE200E "device %s initialized\n", fore200e->name);
2418
2419     fore200e->state = FORE200E_STATE_INITIALIZE;
2420     return 0;
2421 }
2422
2423
2424 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2425 {
2426     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2427
2428 #if 0
2429     printk("%c", c);
2430 #endif
2431     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2432 }
2433
2434
2435 static int fore200e_monitor_getc(struct fore200e *fore200e)
2436 {
2437     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2438     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2439     int                c;
2440
2441     while (time_before(jiffies, timeout)) {
2442
2443         c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2444
2445         if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2446
2447             fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2448 #if 0
2449             printk("%c", c & 0xFF);
2450 #endif
2451             return c & 0xFF;
2452         }
2453     }
2454
2455     return -1;
2456 }
2457
2458
2459 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2460 {
2461     while (*str) {
2462
2463         /* the i960 monitor doesn't accept any new character if it has something to say */
2464         while (fore200e_monitor_getc(fore200e) >= 0);
2465         
2466         fore200e_monitor_putc(fore200e, *str++);
2467     }
2468
2469     while (fore200e_monitor_getc(fore200e) >= 0);
2470 }
2471
2472 #ifdef __LITTLE_ENDIAN
2473 #define FW_EXT ".bin"
2474 #else
2475 #define FW_EXT "_ecd.bin2"
2476 #endif
2477
2478 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2479 {
2480     const struct firmware *firmware;
2481     struct device *device;
2482     const struct fw_header *fw_header;
2483     const __le32 *fw_data;
2484     u32 fw_size;
2485     u32 __iomem *load_addr;
2486     char buf[48];
2487     int err = -ENODEV;
2488
2489     if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2490         device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2491 #ifdef CONFIG_SBUS
2492     else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2493         device = &((struct platform_device *) fore200e->bus_dev)->dev;
2494 #endif
2495     else
2496         return err;
2497
2498     sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2499     if ((err = request_firmware(&firmware, buf, device)) < 0) {
2500         printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2501         return err;
2502     }
2503
2504     fw_data = (const __le32 *)firmware->data;
2505     fw_size = firmware->size / sizeof(u32);
2506     fw_header = (const struct fw_header *)firmware->data;
2507     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2508
2509     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2510             fore200e->name, load_addr, fw_size);
2511
2512     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2513         printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2514         goto release;
2515     }
2516
2517     for (; fw_size--; fw_data++, load_addr++)
2518         fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2519
2520     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2521
2522 #if defined(__sparc_v9__)
2523     /* reported to be required by SBA cards on some sparc64 hosts */
2524     fore200e_spin(100);
2525 #endif
2526
2527     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2528     fore200e_monitor_puts(fore200e, buf);
2529
2530     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2531         printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2532         goto release;
2533     }
2534
2535     printk(FORE200E "device %s firmware started\n", fore200e->name);
2536
2537     fore200e->state = FORE200E_STATE_START_FW;
2538     err = 0;
2539
2540 release:
2541     release_firmware(firmware);
2542     return err;
2543 }
2544
2545
2546 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2547 {
2548     struct atm_dev* atm_dev;
2549
2550     DPRINTK(2, "device %s being registered\n", fore200e->name);
2551
2552     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2553                                -1, NULL);
2554     if (atm_dev == NULL) {
2555         printk(FORE200E "unable to register device %s\n", fore200e->name);
2556         return -ENODEV;
2557     }
2558
2559     atm_dev->dev_data = fore200e;
2560     fore200e->atm_dev = atm_dev;
2561
2562     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2563     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2564
2565     fore200e->available_cell_rate = ATM_OC3_PCR;
2566
2567     fore200e->state = FORE200E_STATE_REGISTER;
2568     return 0;
2569 }
2570
2571
2572 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2573 {
2574     if (fore200e_register(fore200e, parent) < 0)
2575         return -ENODEV;
2576     
2577     if (fore200e->bus->configure(fore200e) < 0)
2578         return -ENODEV;
2579
2580     if (fore200e->bus->map(fore200e) < 0)
2581         return -ENODEV;
2582
2583     if (fore200e_reset(fore200e, 1) < 0)
2584         return -ENODEV;
2585
2586     if (fore200e_load_and_start_fw(fore200e) < 0)
2587         return -ENODEV;
2588
2589     if (fore200e_initialize(fore200e) < 0)
2590         return -ENODEV;
2591
2592     if (fore200e_init_cmd_queue(fore200e) < 0)
2593         return -ENOMEM;
2594
2595     if (fore200e_init_tx_queue(fore200e) < 0)
2596         return -ENOMEM;
2597
2598     if (fore200e_init_rx_queue(fore200e) < 0)
2599         return -ENOMEM;
2600
2601     if (fore200e_init_bs_queue(fore200e) < 0)
2602         return -ENOMEM;
2603
2604     if (fore200e_alloc_rx_buf(fore200e) < 0)
2605         return -ENOMEM;
2606
2607     if (fore200e_get_esi(fore200e) < 0)
2608         return -EIO;
2609
2610     if (fore200e_irq_request(fore200e) < 0)
2611         return -EBUSY;
2612
2613     fore200e_supply(fore200e);
2614
2615     /* all done, board initialization is now complete */
2616     fore200e->state = FORE200E_STATE_COMPLETE;
2617     return 0;
2618 }
2619
2620 #ifdef CONFIG_SBUS
2621 static const struct of_device_id fore200e_sba_match[];
2622 static int fore200e_sba_probe(struct platform_device *op)
2623 {
2624         const struct of_device_id *match;
2625         const struct fore200e_bus *bus;
2626         struct fore200e *fore200e;
2627         static int index = 0;
2628         int err;
2629
2630         match = of_match_device(fore200e_sba_match, &op->dev);
2631         if (!match)
2632                 return -EINVAL;
2633         bus = match->data;
2634
2635         fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2636         if (!fore200e)
2637                 return -ENOMEM;
2638
2639         fore200e->bus = bus;
2640         fore200e->bus_dev = op;
2641         fore200e->irq = op->archdata.irqs[0];
2642         fore200e->phys_base = op->resource[0].start;
2643
2644         sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2645
2646         err = fore200e_init(fore200e, &op->dev);
2647         if (err < 0) {
2648                 fore200e_shutdown(fore200e);
2649                 kfree(fore200e);
2650                 return err;
2651         }
2652
2653         index++;
2654         dev_set_drvdata(&op->dev, fore200e);
2655
2656         return 0;
2657 }
2658
2659 static int fore200e_sba_remove(struct platform_device *op)
2660 {
2661         struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2662
2663         fore200e_shutdown(fore200e);
2664         kfree(fore200e);
2665
2666         return 0;
2667 }
2668
2669 static const struct of_device_id fore200e_sba_match[] = {
2670         {
2671                 .name = SBA200E_PROM_NAME,
2672                 .data = (void *) &fore200e_bus[1],
2673         },
2674         {},
2675 };
2676 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2677
2678 static struct platform_driver fore200e_sba_driver = {
2679         .driver = {
2680                 .name = "fore_200e",
2681                 .of_match_table = fore200e_sba_match,
2682         },
2683         .probe          = fore200e_sba_probe,
2684         .remove         = fore200e_sba_remove,
2685 };
2686 #endif
2687
2688 #ifdef CONFIG_PCI
2689 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2690                                const struct pci_device_id *pci_ent)
2691 {
2692     const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2693     struct fore200e* fore200e;
2694     int err = 0;
2695     static int index = 0;
2696
2697     if (pci_enable_device(pci_dev)) {
2698         err = -EINVAL;
2699         goto out;
2700     }
2701
2702     if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2703         err = -EINVAL;
2704         goto out;
2705     }
2706     
2707     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2708     if (fore200e == NULL) {
2709         err = -ENOMEM;
2710         goto out_disable;
2711     }
2712
2713     fore200e->bus       = bus;
2714     fore200e->bus_dev   = pci_dev;    
2715     fore200e->irq       = pci_dev->irq;
2716     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2717
2718     sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2719
2720     pci_set_master(pci_dev);
2721
2722     printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2723            fore200e->bus->model_name, 
2724            fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2725
2726     sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2727
2728     err = fore200e_init(fore200e, &pci_dev->dev);
2729     if (err < 0) {
2730         fore200e_shutdown(fore200e);
2731         goto out_free;
2732     }
2733
2734     ++index;
2735     pci_set_drvdata(pci_dev, fore200e);
2736
2737 out:
2738     return err;
2739
2740 out_free:
2741     kfree(fore200e);
2742 out_disable:
2743     pci_disable_device(pci_dev);
2744     goto out;
2745 }
2746
2747
2748 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2749 {
2750     struct fore200e *fore200e;
2751
2752     fore200e = pci_get_drvdata(pci_dev);
2753
2754     fore200e_shutdown(fore200e);
2755     kfree(fore200e);
2756     pci_disable_device(pci_dev);
2757 }
2758
2759
2760 static struct pci_device_id fore200e_pca_tbl[] = {
2761     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2762       0, 0, (unsigned long) &fore200e_bus[0] },
2763     { 0, }
2764 };
2765
2766 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2767
2768 static struct pci_driver fore200e_pca_driver = {
2769     .name =     "fore_200e",
2770     .probe =    fore200e_pca_detect,
2771     .remove =   fore200e_pca_remove_one,
2772     .id_table = fore200e_pca_tbl,
2773 };
2774 #endif
2775
2776 static int __init fore200e_module_init(void)
2777 {
2778         int err = 0;
2779
2780         printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2781
2782 #ifdef CONFIG_SBUS
2783         err = platform_driver_register(&fore200e_sba_driver);
2784         if (err)
2785                 return err;
2786 #endif
2787
2788 #ifdef CONFIG_PCI
2789         err = pci_register_driver(&fore200e_pca_driver);
2790 #endif
2791
2792 #ifdef CONFIG_SBUS
2793         if (err)
2794                 platform_driver_unregister(&fore200e_sba_driver);
2795 #endif
2796
2797         return err;
2798 }
2799
2800 static void __exit fore200e_module_cleanup(void)
2801 {
2802 #ifdef CONFIG_PCI
2803         pci_unregister_driver(&fore200e_pca_driver);
2804 #endif
2805 #ifdef CONFIG_SBUS
2806         platform_driver_unregister(&fore200e_sba_driver);
2807 #endif
2808 }
2809
2810 static int
2811 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2812 {
2813     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2814     struct fore200e_vcc* fore200e_vcc;
2815     struct atm_vcc*      vcc;
2816     int                  i, len, left = *pos;
2817     unsigned long        flags;
2818
2819     if (!left--) {
2820
2821         if (fore200e_getstats(fore200e) < 0)
2822             return -EIO;
2823
2824         len = sprintf(page,"\n"
2825                        " device:\n"
2826                        "   internal name:\t\t%s\n", fore200e->name);
2827
2828         /* print bus-specific information */
2829         if (fore200e->bus->proc_read)
2830             len += fore200e->bus->proc_read(fore200e, page + len);
2831         
2832         len += sprintf(page + len,
2833                 "   interrupt line:\t\t%s\n"
2834                 "   physical base address:\t0x%p\n"
2835                 "   virtual base address:\t0x%p\n"
2836                 "   factory address (ESI):\t%pM\n"
2837                 "   board serial number:\t\t%d\n\n",
2838                 fore200e_irq_itoa(fore200e->irq),
2839                 (void*)fore200e->phys_base,
2840                 fore200e->virt_base,
2841                 fore200e->esi,
2842                 fore200e->esi[4] * 256 + fore200e->esi[5]);
2843
2844         return len;
2845     }
2846
2847     if (!left--)
2848         return sprintf(page,
2849                        "   free small bufs, scheme 1:\t%d\n"
2850                        "   free large bufs, scheme 1:\t%d\n"
2851                        "   free small bufs, scheme 2:\t%d\n"
2852                        "   free large bufs, scheme 2:\t%d\n",
2853                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2854                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2855                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2856                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2857
2858     if (!left--) {
2859         u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2860
2861         len = sprintf(page,"\n\n"
2862                       " cell processor:\n"
2863                       "   heartbeat state:\t\t");
2864         
2865         if (hb >> 16 != 0xDEAD)
2866             len += sprintf(page + len, "0x%08x\n", hb);
2867         else
2868             len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2869
2870         return len;
2871     }
2872
2873     if (!left--) {
2874         static const char* media_name[] = {
2875             "unshielded twisted pair",
2876             "multimode optical fiber ST",
2877             "multimode optical fiber SC",
2878             "single-mode optical fiber ST",
2879             "single-mode optical fiber SC",
2880             "unknown"
2881         };
2882
2883         static const char* oc3_mode[] = {
2884             "normal operation",
2885             "diagnostic loopback",
2886             "line loopback",
2887             "unknown"
2888         };
2889
2890         u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2891         u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2892         u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2893         u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2894         u32 oc3_index;
2895
2896         if (media_index > 4)
2897                 media_index = 5;
2898         
2899         switch (fore200e->loop_mode) {
2900             case ATM_LM_NONE:    oc3_index = 0;
2901                                  break;
2902             case ATM_LM_LOC_PHY: oc3_index = 1;
2903                                  break;
2904             case ATM_LM_RMT_PHY: oc3_index = 2;
2905                                  break;
2906             default:             oc3_index = 3;
2907         }
2908
2909         return sprintf(page,
2910                        "   firmware release:\t\t%d.%d.%d\n"
2911                        "   monitor release:\t\t%d.%d\n"
2912                        "   media type:\t\t\t%s\n"
2913                        "   OC-3 revision:\t\t0x%x\n"
2914                        "   OC-3 mode:\t\t\t%s",
2915                        fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2916                        mon960_release >> 16, mon960_release << 16 >> 16,
2917                        media_name[ media_index ],
2918                        oc3_revision,
2919                        oc3_mode[ oc3_index ]);
2920     }
2921
2922     if (!left--) {
2923         struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2924
2925         return sprintf(page,
2926                        "\n\n"
2927                        " monitor:\n"
2928                        "   version number:\t\t%d\n"
2929                        "   boot status word:\t\t0x%08x\n",
2930                        fore200e->bus->read(&cp_monitor->mon_version),
2931                        fore200e->bus->read(&cp_monitor->bstat));
2932     }
2933
2934     if (!left--)
2935         return sprintf(page,
2936                        "\n"
2937                        " device statistics:\n"
2938                        "  4b5b:\n"
2939                        "     crc_header_errors:\t\t%10u\n"
2940                        "     framing_errors:\t\t%10u\n",
2941                        be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2942                        be32_to_cpu(fore200e->stats->phy.framing_errors));
2943     
2944     if (!left--)
2945         return sprintf(page, "\n"
2946                        "  OC-3:\n"
2947                        "     section_bip8_errors:\t%10u\n"
2948                        "     path_bip8_errors:\t\t%10u\n"
2949                        "     line_bip24_errors:\t\t%10u\n"
2950                        "     line_febe_errors:\t\t%10u\n"
2951                        "     path_febe_errors:\t\t%10u\n"
2952                        "     corr_hcs_errors:\t\t%10u\n"
2953                        "     ucorr_hcs_errors:\t\t%10u\n",
2954                        be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2955                        be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2956                        be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2957                        be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2958                        be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2959                        be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2960                        be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2961
2962     if (!left--)
2963         return sprintf(page,"\n"
2964                        "   ATM:\t\t\t\t     cells\n"
2965                        "     TX:\t\t\t%10u\n"
2966                        "     RX:\t\t\t%10u\n"
2967                        "     vpi out of range:\t\t%10u\n"
2968                        "     vpi no conn:\t\t%10u\n"
2969                        "     vci out of range:\t\t%10u\n"
2970                        "     vci no conn:\t\t%10u\n",
2971                        be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2972                        be32_to_cpu(fore200e->stats->atm.cells_received),
2973                        be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2974                        be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2975                        be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2976                        be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2977     
2978     if (!left--)
2979         return sprintf(page,"\n"
2980                        "   AAL0:\t\t\t     cells\n"
2981                        "     TX:\t\t\t%10u\n"
2982                        "     RX:\t\t\t%10u\n"
2983                        "     dropped:\t\t\t%10u\n",
2984                        be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2985                        be32_to_cpu(fore200e->stats->aal0.cells_received),
2986                        be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2987     
2988     if (!left--)
2989         return sprintf(page,"\n"
2990                        "   AAL3/4:\n"
2991                        "     SAR sublayer:\t\t     cells\n"
2992                        "       TX:\t\t\t%10u\n"
2993                        "       RX:\t\t\t%10u\n"
2994                        "       dropped:\t\t\t%10u\n"
2995                        "       CRC errors:\t\t%10u\n"
2996                        "       protocol errors:\t\t%10u\n\n"
2997                        "     CS  sublayer:\t\t      PDUs\n"
2998                        "       TX:\t\t\t%10u\n"
2999                        "       RX:\t\t\t%10u\n"
3000                        "       dropped:\t\t\t%10u\n"
3001                        "       protocol errors:\t\t%10u\n",
3002                        be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3003                        be32_to_cpu(fore200e->stats->aal34.cells_received),
3004                        be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3005                        be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3006                        be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3007                        be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3008                        be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3009                        be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3010                        be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3011     
3012     if (!left--)
3013         return sprintf(page,"\n"
3014                        "   AAL5:\n"
3015                        "     SAR sublayer:\t\t     cells\n"
3016                        "       TX:\t\t\t%10u\n"
3017                        "       RX:\t\t\t%10u\n"
3018                        "       dropped:\t\t\t%10u\n"
3019                        "       congestions:\t\t%10u\n\n"
3020                        "     CS  sublayer:\t\t      PDUs\n"
3021                        "       TX:\t\t\t%10u\n"
3022                        "       RX:\t\t\t%10u\n"
3023                        "       dropped:\t\t\t%10u\n"
3024                        "       CRC errors:\t\t%10u\n"
3025                        "       protocol errors:\t\t%10u\n",
3026                        be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3027                        be32_to_cpu(fore200e->stats->aal5.cells_received),
3028                        be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3029                        be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3030                        be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3031                        be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3032                        be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3033                        be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3034                        be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3035     
3036     if (!left--)
3037         return sprintf(page,"\n"
3038                        "   AUX:\t\t       allocation failures\n"
3039                        "     small b1:\t\t\t%10u\n"
3040                        "     large b1:\t\t\t%10u\n"
3041                        "     small b2:\t\t\t%10u\n"
3042                        "     large b2:\t\t\t%10u\n"
3043                        "     RX PDUs:\t\t\t%10u\n"
3044                        "     TX PDUs:\t\t\t%10lu\n",
3045                        be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3046                        be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3047                        be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3048                        be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3049                        be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3050                        fore200e->tx_sat);
3051     
3052     if (!left--)
3053         return sprintf(page,"\n"
3054                        " receive carrier:\t\t\t%s\n",
3055                        fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3056     
3057     if (!left--) {
3058         return sprintf(page,"\n"
3059                        " VCCs:\n  address   VPI VCI   AAL "
3060                        "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3061     }
3062
3063     for (i = 0; i < NBR_CONNECT; i++) {
3064
3065         vcc = fore200e->vc_map[i].vcc;
3066
3067         if (vcc == NULL)
3068             continue;
3069
3070         spin_lock_irqsave(&fore200e->q_lock, flags);
3071
3072         if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3073
3074             fore200e_vcc = FORE200E_VCC(vcc);
3075             ASSERT(fore200e_vcc);
3076
3077             len = sprintf(page,
3078                           "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3079                           (u32)(unsigned long)vcc,
3080                           vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3081                           fore200e_vcc->tx_pdu,
3082                           fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3083                           fore200e_vcc->tx_max_pdu,
3084                           fore200e_vcc->rx_pdu,
3085                           fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3086                           fore200e_vcc->rx_max_pdu);
3087
3088             spin_unlock_irqrestore(&fore200e->q_lock, flags);
3089             return len;
3090         }
3091
3092         spin_unlock_irqrestore(&fore200e->q_lock, flags);
3093     }
3094     
3095     return 0;
3096 }
3097
3098 module_init(fore200e_module_init);
3099 module_exit(fore200e_module_cleanup);
3100
3101
3102 static const struct atmdev_ops fore200e_ops =
3103 {
3104         .open       = fore200e_open,
3105         .close      = fore200e_close,
3106         .ioctl      = fore200e_ioctl,
3107         .getsockopt = fore200e_getsockopt,
3108         .setsockopt = fore200e_setsockopt,
3109         .send       = fore200e_send,
3110         .change_qos = fore200e_change_qos,
3111         .proc_read  = fore200e_proc_read,
3112         .owner      = THIS_MODULE
3113 };
3114
3115
3116 static const struct fore200e_bus fore200e_bus[] = {
3117 #ifdef CONFIG_PCI
3118     { "PCA-200E", "pca200e", 32, 4, 32, 
3119       fore200e_pca_read,
3120       fore200e_pca_write,
3121       fore200e_pca_dma_map,
3122       fore200e_pca_dma_unmap,
3123       fore200e_pca_dma_sync_for_cpu,
3124       fore200e_pca_dma_sync_for_device,
3125       fore200e_pca_dma_chunk_alloc,
3126       fore200e_pca_dma_chunk_free,
3127       fore200e_pca_configure,
3128       fore200e_pca_map,
3129       fore200e_pca_reset,
3130       fore200e_pca_prom_read,
3131       fore200e_pca_unmap,
3132       NULL,
3133       fore200e_pca_irq_check,
3134       fore200e_pca_irq_ack,
3135       fore200e_pca_proc_read,
3136     },
3137 #endif
3138 #ifdef CONFIG_SBUS
3139     { "SBA-200E", "sba200e", 32, 64, 32,
3140       fore200e_sba_read,
3141       fore200e_sba_write,
3142       fore200e_sba_dma_map,
3143       fore200e_sba_dma_unmap,
3144       fore200e_sba_dma_sync_for_cpu,
3145       fore200e_sba_dma_sync_for_device,
3146       fore200e_sba_dma_chunk_alloc,
3147       fore200e_sba_dma_chunk_free,
3148       fore200e_sba_configure,
3149       fore200e_sba_map,
3150       fore200e_sba_reset,
3151       fore200e_sba_prom_read,
3152       fore200e_sba_unmap,
3153       fore200e_sba_irq_enable,
3154       fore200e_sba_irq_check,
3155       fore200e_sba_irq_ack,
3156       fore200e_sba_proc_read,
3157     },
3158 #endif
3159     {}
3160 };
3161
3162 MODULE_LICENSE("GPL");
3163 #ifdef CONFIG_PCI
3164 #ifdef __LITTLE_ENDIAN__
3165 MODULE_FIRMWARE("pca200e.bin");
3166 #else
3167 MODULE_FIRMWARE("pca200e_ecd.bin2");
3168 #endif
3169 #endif /* CONFIG_PCI */
3170 #ifdef CONFIG_SBUS
3171 MODULE_FIRMWARE("sba200e_ecd.bin2");
3172 #endif