]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/nvme-core.c
Merge tag 'master-2014-11-20' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[karo-tx-linux.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bio.h>
17 #include <linux/bitops.h>
18 #include <linux/blkdev.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/percpu.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #include <trace/events/block.h>
46
47 #define NVME_Q_DEPTH            1024
48 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
51 #define IOD_TIMEOUT             (retry_time * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char nvme_io_timeout = 30;
58 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char retry_time = 30;
62 module_param(retry_time, byte, 0644);
63 MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");
64
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67
68 static int use_threaded_interrupts;
69 module_param(use_threaded_interrupts, int, 0);
70
71 static DEFINE_SPINLOCK(dev_list_lock);
72 static LIST_HEAD(dev_list);
73 static struct task_struct *nvme_thread;
74 static struct workqueue_struct *nvme_workq;
75 static wait_queue_head_t nvme_kthread_wait;
76 static struct notifier_block nvme_nb;
77
78 static void nvme_reset_failed_dev(struct work_struct *ws);
79
80 struct async_cmd_info {
81         struct kthread_work work;
82         struct kthread_worker *worker;
83         u32 result;
84         int status;
85         void *ctx;
86 };
87
88 /*
89  * An NVM Express queue.  Each device has at least two (one for admin
90  * commands and one for I/O commands).
91  */
92 struct nvme_queue {
93         struct rcu_head r_head;
94         struct device *q_dmadev;
95         struct nvme_dev *dev;
96         char irqname[24];       /* nvme4294967295-65535\0 */
97         spinlock_t q_lock;
98         struct nvme_command *sq_cmds;
99         volatile struct nvme_completion *cqes;
100         dma_addr_t sq_dma_addr;
101         dma_addr_t cq_dma_addr;
102         wait_queue_head_t sq_full;
103         wait_queue_t sq_cong_wait;
104         struct bio_list sq_cong;
105         struct list_head iod_bio;
106         u32 __iomem *q_db;
107         u16 q_depth;
108         u16 cq_vector;
109         u16 sq_head;
110         u16 sq_tail;
111         u16 cq_head;
112         u16 qid;
113         u8 cq_phase;
114         u8 cqe_seen;
115         u8 q_suspended;
116         cpumask_var_t cpu_mask;
117         struct async_cmd_info cmdinfo;
118         unsigned long cmdid_data[];
119 };
120
121 /*
122  * Check we didin't inadvertently grow the command struct
123  */
124 static inline void _nvme_check_size(void)
125 {
126         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
136         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
137         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
138 }
139
140 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
141                                                 struct nvme_completion *);
142
143 struct nvme_cmd_info {
144         nvme_completion_fn fn;
145         void *ctx;
146         unsigned long timeout;
147         int aborted;
148 };
149
150 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
151 {
152         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
153 }
154
155 static unsigned nvme_queue_extra(int depth)
156 {
157         return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
158 }
159
160 /**
161  * alloc_cmdid() - Allocate a Command ID
162  * @nvmeq: The queue that will be used for this command
163  * @ctx: A pointer that will be passed to the handler
164  * @handler: The function to call on completion
165  *
166  * Allocate a Command ID for a queue.  The data passed in will
167  * be passed to the completion handler.  This is implemented by using
168  * the bottom two bits of the ctx pointer to store the handler ID.
169  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
170  * We can change this if it becomes a problem.
171  *
172  * May be called with local interrupts disabled and the q_lock held,
173  * or with interrupts enabled and no locks held.
174  */
175 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
176                                 nvme_completion_fn handler, unsigned timeout)
177 {
178         int depth = nvmeq->q_depth - 1;
179         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
180         int cmdid;
181
182         do {
183                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
184                 if (cmdid >= depth)
185                         return -EBUSY;
186         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
187
188         info[cmdid].fn = handler;
189         info[cmdid].ctx = ctx;
190         info[cmdid].timeout = jiffies + timeout;
191         info[cmdid].aborted = 0;
192         return cmdid;
193 }
194
195 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
196                                 nvme_completion_fn handler, unsigned timeout)
197 {
198         int cmdid;
199         wait_event_killable(nvmeq->sq_full,
200                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
201         return (cmdid < 0) ? -EINTR : cmdid;
202 }
203
204 /* Special values must be less than 0x1000 */
205 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
206 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
207 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
208 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
209 #define CMD_CTX_ABORT           (0x318 + CMD_CTX_BASE)
210
211 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
212                                                 struct nvme_completion *cqe)
213 {
214         if (ctx == CMD_CTX_CANCELLED)
215                 return;
216         if (ctx == CMD_CTX_ABORT) {
217                 ++nvmeq->dev->abort_limit;
218                 return;
219         }
220         if (ctx == CMD_CTX_COMPLETED) {
221                 dev_warn(nvmeq->q_dmadev,
222                                 "completed id %d twice on queue %d\n",
223                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
224                 return;
225         }
226         if (ctx == CMD_CTX_INVALID) {
227                 dev_warn(nvmeq->q_dmadev,
228                                 "invalid id %d completed on queue %d\n",
229                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
230                 return;
231         }
232
233         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
234 }
235
236 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
237                                                 struct nvme_completion *cqe)
238 {
239         struct async_cmd_info *cmdinfo = ctx;
240         cmdinfo->result = le32_to_cpup(&cqe->result);
241         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
242         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
243 }
244
245 /*
246  * Called with local interrupts disabled and the q_lock held.  May not sleep.
247  */
248 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
249                                                 nvme_completion_fn *fn)
250 {
251         void *ctx;
252         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
253
254         if (cmdid >= nvmeq->q_depth || !info[cmdid].fn) {
255                 if (fn)
256                         *fn = special_completion;
257                 return CMD_CTX_INVALID;
258         }
259         if (fn)
260                 *fn = info[cmdid].fn;
261         ctx = info[cmdid].ctx;
262         info[cmdid].fn = special_completion;
263         info[cmdid].ctx = CMD_CTX_COMPLETED;
264         clear_bit(cmdid, nvmeq->cmdid_data);
265         wake_up(&nvmeq->sq_full);
266         return ctx;
267 }
268
269 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
270                                                 nvme_completion_fn *fn)
271 {
272         void *ctx;
273         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
274         if (fn)
275                 *fn = info[cmdid].fn;
276         ctx = info[cmdid].ctx;
277         info[cmdid].fn = special_completion;
278         info[cmdid].ctx = CMD_CTX_CANCELLED;
279         return ctx;
280 }
281
282 static struct nvme_queue *raw_nvmeq(struct nvme_dev *dev, int qid)
283 {
284         return rcu_dereference_raw(dev->queues[qid]);
285 }
286
287 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) __acquires(RCU)
288 {
289         struct nvme_queue *nvmeq;
290         unsigned queue_id = get_cpu_var(*dev->io_queue);
291
292         rcu_read_lock();
293         nvmeq = rcu_dereference(dev->queues[queue_id]);
294         if (nvmeq)
295                 return nvmeq;
296
297         rcu_read_unlock();
298         put_cpu_var(*dev->io_queue);
299         return NULL;
300 }
301
302 static void put_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
303 {
304         rcu_read_unlock();
305         put_cpu_var(nvmeq->dev->io_queue);
306 }
307
308 static struct nvme_queue *lock_nvmeq(struct nvme_dev *dev, int q_idx)
309                                                         __acquires(RCU)
310 {
311         struct nvme_queue *nvmeq;
312
313         rcu_read_lock();
314         nvmeq = rcu_dereference(dev->queues[q_idx]);
315         if (nvmeq)
316                 return nvmeq;
317
318         rcu_read_unlock();
319         return NULL;
320 }
321
322 static void unlock_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
323 {
324         rcu_read_unlock();
325 }
326
327 /**
328  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
329  * @nvmeq: The queue to use
330  * @cmd: The command to send
331  *
332  * Safe to use from interrupt context
333  */
334 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
335 {
336         unsigned long flags;
337         u16 tail;
338         spin_lock_irqsave(&nvmeq->q_lock, flags);
339         if (nvmeq->q_suspended) {
340                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
341                 return -EBUSY;
342         }
343         tail = nvmeq->sq_tail;
344         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
345         if (++tail == nvmeq->q_depth)
346                 tail = 0;
347         writel(tail, nvmeq->q_db);
348         nvmeq->sq_tail = tail;
349         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
350
351         return 0;
352 }
353
354 static __le64 **iod_list(struct nvme_iod *iod)
355 {
356         return ((void *)iod) + iod->offset;
357 }
358
359 /*
360  * Will slightly overestimate the number of pages needed.  This is OK
361  * as it only leads to a small amount of wasted memory for the lifetime of
362  * the I/O.
363  */
364 static int nvme_npages(unsigned size)
365 {
366         unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
367         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
368 }
369
370 static struct nvme_iod *
371 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
372 {
373         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
374                                 sizeof(__le64 *) * nvme_npages(nbytes) +
375                                 sizeof(struct scatterlist) * nseg, gfp);
376
377         if (iod) {
378                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
379                 iod->npages = -1;
380                 iod->length = nbytes;
381                 iod->nents = 0;
382                 iod->first_dma = 0ULL;
383                 iod->start_time = jiffies;
384         }
385
386         return iod;
387 }
388
389 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
390 {
391         const int last_prp = PAGE_SIZE / 8 - 1;
392         int i;
393         __le64 **list = iod_list(iod);
394         dma_addr_t prp_dma = iod->first_dma;
395
396         if (iod->npages == 0)
397                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
398         for (i = 0; i < iod->npages; i++) {
399                 __le64 *prp_list = list[i];
400                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
401                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
402                 prp_dma = next_prp_dma;
403         }
404         kfree(iod);
405 }
406
407 static void nvme_start_io_acct(struct bio *bio)
408 {
409         struct gendisk *disk = bio->bi_bdev->bd_disk;
410         if (blk_queue_io_stat(disk->queue)) {
411                 const int rw = bio_data_dir(bio);
412                 int cpu = part_stat_lock();
413                 part_round_stats(cpu, &disk->part0);
414                 part_stat_inc(cpu, &disk->part0, ios[rw]);
415                 part_stat_add(cpu, &disk->part0, sectors[rw],
416                                                         bio_sectors(bio));
417                 part_inc_in_flight(&disk->part0, rw);
418                 part_stat_unlock();
419         }
420 }
421
422 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
423 {
424         struct gendisk *disk = bio->bi_bdev->bd_disk;
425         if (blk_queue_io_stat(disk->queue)) {
426                 const int rw = bio_data_dir(bio);
427                 unsigned long duration = jiffies - start_time;
428                 int cpu = part_stat_lock();
429                 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
430                 part_round_stats(cpu, &disk->part0);
431                 part_dec_in_flight(&disk->part0, rw);
432                 part_stat_unlock();
433         }
434 }
435
436 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
437                                                 struct nvme_completion *cqe)
438 {
439         struct nvme_iod *iod = ctx;
440         struct bio *bio = iod->private;
441         u16 status = le16_to_cpup(&cqe->status) >> 1;
442         int error = 0;
443
444         if (unlikely(status)) {
445                 if (!(status & NVME_SC_DNR ||
446                                 bio->bi_rw & REQ_FAILFAST_MASK) &&
447                                 (jiffies - iod->start_time) < IOD_TIMEOUT) {
448                         if (!waitqueue_active(&nvmeq->sq_full))
449                                 add_wait_queue(&nvmeq->sq_full,
450                                                         &nvmeq->sq_cong_wait);
451                         list_add_tail(&iod->node, &nvmeq->iod_bio);
452                         wake_up(&nvmeq->sq_full);
453                         return;
454                 }
455                 error = -EIO;
456         }
457         if (iod->nents) {
458                 dma_unmap_sg(nvmeq->q_dmadev, iod->sg, iod->nents,
459                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
460                 nvme_end_io_acct(bio, iod->start_time);
461         }
462         nvme_free_iod(nvmeq->dev, iod);
463
464         trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio, error);
465         bio_endio(bio, error);
466 }
467
468 /* length is in bytes.  gfp flags indicates whether we may sleep. */
469 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
470                                                                 gfp_t gfp)
471 {
472         struct dma_pool *pool;
473         int length = total_len;
474         struct scatterlist *sg = iod->sg;
475         int dma_len = sg_dma_len(sg);
476         u64 dma_addr = sg_dma_address(sg);
477         int offset = offset_in_page(dma_addr);
478         __le64 *prp_list;
479         __le64 **list = iod_list(iod);
480         dma_addr_t prp_dma;
481         int nprps, i;
482
483         length -= (PAGE_SIZE - offset);
484         if (length <= 0)
485                 return total_len;
486
487         dma_len -= (PAGE_SIZE - offset);
488         if (dma_len) {
489                 dma_addr += (PAGE_SIZE - offset);
490         } else {
491                 sg = sg_next(sg);
492                 dma_addr = sg_dma_address(sg);
493                 dma_len = sg_dma_len(sg);
494         }
495
496         if (length <= PAGE_SIZE) {
497                 iod->first_dma = dma_addr;
498                 return total_len;
499         }
500
501         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
502         if (nprps <= (256 / 8)) {
503                 pool = dev->prp_small_pool;
504                 iod->npages = 0;
505         } else {
506                 pool = dev->prp_page_pool;
507                 iod->npages = 1;
508         }
509
510         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
511         if (!prp_list) {
512                 iod->first_dma = dma_addr;
513                 iod->npages = -1;
514                 return (total_len - length) + PAGE_SIZE;
515         }
516         list[0] = prp_list;
517         iod->first_dma = prp_dma;
518         i = 0;
519         for (;;) {
520                 if (i == PAGE_SIZE / 8) {
521                         __le64 *old_prp_list = prp_list;
522                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
523                         if (!prp_list)
524                                 return total_len - length;
525                         list[iod->npages++] = prp_list;
526                         prp_list[0] = old_prp_list[i - 1];
527                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
528                         i = 1;
529                 }
530                 prp_list[i++] = cpu_to_le64(dma_addr);
531                 dma_len -= PAGE_SIZE;
532                 dma_addr += PAGE_SIZE;
533                 length -= PAGE_SIZE;
534                 if (length <= 0)
535                         break;
536                 if (dma_len > 0)
537                         continue;
538                 BUG_ON(dma_len < 0);
539                 sg = sg_next(sg);
540                 dma_addr = sg_dma_address(sg);
541                 dma_len = sg_dma_len(sg);
542         }
543
544         return total_len;
545 }
546
547 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
548                                  int len)
549 {
550         struct bio *split = bio_split(bio, len >> 9, GFP_ATOMIC, NULL);
551         if (!split)
552                 return -ENOMEM;
553
554         trace_block_split(bdev_get_queue(bio->bi_bdev), bio,
555                                         split->bi_iter.bi_sector);
556         bio_chain(split, bio);
557
558         if (!waitqueue_active(&nvmeq->sq_full))
559                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
560         bio_list_add(&nvmeq->sq_cong, split);
561         bio_list_add(&nvmeq->sq_cong, bio);
562         wake_up(&nvmeq->sq_full);
563
564         return 0;
565 }
566
567 /* NVMe scatterlists require no holes in the virtual address */
568 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
569                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
570
571 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
572                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
573 {
574         struct bio_vec bvec, bvprv;
575         struct bvec_iter iter;
576         struct scatterlist *sg = NULL;
577         int length = 0, nsegs = 0, split_len = bio->bi_iter.bi_size;
578         int first = 1;
579
580         if (nvmeq->dev->stripe_size)
581                 split_len = nvmeq->dev->stripe_size -
582                         ((bio->bi_iter.bi_sector << 9) &
583                          (nvmeq->dev->stripe_size - 1));
584
585         sg_init_table(iod->sg, psegs);
586         bio_for_each_segment(bvec, bio, iter) {
587                 if (!first && BIOVEC_PHYS_MERGEABLE(&bvprv, &bvec)) {
588                         sg->length += bvec.bv_len;
589                 } else {
590                         if (!first && BIOVEC_NOT_VIRT_MERGEABLE(&bvprv, &bvec))
591                                 return nvme_split_and_submit(bio, nvmeq,
592                                                              length);
593
594                         sg = sg ? sg + 1 : iod->sg;
595                         sg_set_page(sg, bvec.bv_page,
596                                     bvec.bv_len, bvec.bv_offset);
597                         nsegs++;
598                 }
599
600                 if (split_len - length < bvec.bv_len)
601                         return nvme_split_and_submit(bio, nvmeq, split_len);
602                 length += bvec.bv_len;
603                 bvprv = bvec;
604                 first = 0;
605         }
606         iod->nents = nsegs;
607         sg_mark_end(sg);
608         if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
609                 return -ENOMEM;
610
611         BUG_ON(length != bio->bi_iter.bi_size);
612         return length;
613 }
614
615 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
616                 struct bio *bio, struct nvme_iod *iod, int cmdid)
617 {
618         struct nvme_dsm_range *range =
619                                 (struct nvme_dsm_range *)iod_list(iod)[0];
620         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
621
622         range->cattr = cpu_to_le32(0);
623         range->nlb = cpu_to_le32(bio->bi_iter.bi_size >> ns->lba_shift);
624         range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
625
626         memset(cmnd, 0, sizeof(*cmnd));
627         cmnd->dsm.opcode = nvme_cmd_dsm;
628         cmnd->dsm.command_id = cmdid;
629         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
630         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
631         cmnd->dsm.nr = 0;
632         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
633
634         if (++nvmeq->sq_tail == nvmeq->q_depth)
635                 nvmeq->sq_tail = 0;
636         writel(nvmeq->sq_tail, nvmeq->q_db);
637
638         return 0;
639 }
640
641 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
642                                                                 int cmdid)
643 {
644         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
645
646         memset(cmnd, 0, sizeof(*cmnd));
647         cmnd->common.opcode = nvme_cmd_flush;
648         cmnd->common.command_id = cmdid;
649         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
650
651         if (++nvmeq->sq_tail == nvmeq->q_depth)
652                 nvmeq->sq_tail = 0;
653         writel(nvmeq->sq_tail, nvmeq->q_db);
654
655         return 0;
656 }
657
658 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod)
659 {
660         struct bio *bio = iod->private;
661         struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
662         struct nvme_command *cmnd;
663         int cmdid;
664         u16 control;
665         u32 dsmgmt;
666
667         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
668         if (unlikely(cmdid < 0))
669                 return cmdid;
670
671         if (bio->bi_rw & REQ_DISCARD)
672                 return nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
673         if (bio->bi_rw & REQ_FLUSH)
674                 return nvme_submit_flush(nvmeq, ns, cmdid);
675
676         control = 0;
677         if (bio->bi_rw & REQ_FUA)
678                 control |= NVME_RW_FUA;
679         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
680                 control |= NVME_RW_LR;
681
682         dsmgmt = 0;
683         if (bio->bi_rw & REQ_RAHEAD)
684                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
685
686         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
687         memset(cmnd, 0, sizeof(*cmnd));
688
689         cmnd->rw.opcode = bio_data_dir(bio) ? nvme_cmd_write : nvme_cmd_read;
690         cmnd->rw.command_id = cmdid;
691         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
692         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
693         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
694         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
695         cmnd->rw.length =
696                 cpu_to_le16((bio->bi_iter.bi_size >> ns->lba_shift) - 1);
697         cmnd->rw.control = cpu_to_le16(control);
698         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
699
700         if (++nvmeq->sq_tail == nvmeq->q_depth)
701                 nvmeq->sq_tail = 0;
702         writel(nvmeq->sq_tail, nvmeq->q_db);
703
704         return 0;
705 }
706
707 static int nvme_split_flush_data(struct nvme_queue *nvmeq, struct bio *bio)
708 {
709         struct bio *split = bio_clone(bio, GFP_ATOMIC);
710         if (!split)
711                 return -ENOMEM;
712
713         split->bi_iter.bi_size = 0;
714         split->bi_phys_segments = 0;
715         bio->bi_rw &= ~REQ_FLUSH;
716         bio_chain(split, bio);
717
718         if (!waitqueue_active(&nvmeq->sq_full))
719                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
720         bio_list_add(&nvmeq->sq_cong, split);
721         bio_list_add(&nvmeq->sq_cong, bio);
722         wake_up_process(nvme_thread);
723
724         return 0;
725 }
726
727 /*
728  * Called with local interrupts disabled and the q_lock held.  May not sleep.
729  */
730 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
731                                                                 struct bio *bio)
732 {
733         struct nvme_iod *iod;
734         int psegs = bio_phys_segments(ns->queue, bio);
735         int result;
736
737         if ((bio->bi_rw & REQ_FLUSH) && psegs)
738                 return nvme_split_flush_data(nvmeq, bio);
739
740         iod = nvme_alloc_iod(psegs, bio->bi_iter.bi_size, GFP_ATOMIC);
741         if (!iod)
742                 return -ENOMEM;
743
744         iod->private = bio;
745         if (bio->bi_rw & REQ_DISCARD) {
746                 void *range;
747                 /*
748                  * We reuse the small pool to allocate the 16-byte range here
749                  * as it is not worth having a special pool for these or
750                  * additional cases to handle freeing the iod.
751                  */
752                 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
753                                                 GFP_ATOMIC,
754                                                 &iod->first_dma);
755                 if (!range) {
756                         result = -ENOMEM;
757                         goto free_iod;
758                 }
759                 iod_list(iod)[0] = (__le64 *)range;
760                 iod->npages = 0;
761         } else if (psegs) {
762                 result = nvme_map_bio(nvmeq, iod, bio,
763                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
764                         psegs);
765                 if (result <= 0)
766                         goto free_iod;
767                 if (nvme_setup_prps(nvmeq->dev, iod, result, GFP_ATOMIC) !=
768                                                                 result) {
769                         result = -ENOMEM;
770                         goto free_iod;
771                 }
772                 nvme_start_io_acct(bio);
773         }
774         if (unlikely(nvme_submit_iod(nvmeq, iod))) {
775                 if (!waitqueue_active(&nvmeq->sq_full))
776                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
777                 list_add_tail(&iod->node, &nvmeq->iod_bio);
778         }
779         return 0;
780
781  free_iod:
782         nvme_free_iod(nvmeq->dev, iod);
783         return result;
784 }
785
786 static int nvme_process_cq(struct nvme_queue *nvmeq)
787 {
788         u16 head, phase;
789
790         head = nvmeq->cq_head;
791         phase = nvmeq->cq_phase;
792
793         for (;;) {
794                 void *ctx;
795                 nvme_completion_fn fn;
796                 struct nvme_completion cqe = nvmeq->cqes[head];
797                 if ((le16_to_cpu(cqe.status) & 1) != phase)
798                         break;
799                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
800                 if (++head == nvmeq->q_depth) {
801                         head = 0;
802                         phase = !phase;
803                 }
804
805                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
806                 fn(nvmeq, ctx, &cqe);
807         }
808
809         /* If the controller ignores the cq head doorbell and continuously
810          * writes to the queue, it is theoretically possible to wrap around
811          * the queue twice and mistakenly return IRQ_NONE.  Linux only
812          * requires that 0.1% of your interrupts are handled, so this isn't
813          * a big problem.
814          */
815         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
816                 return 0;
817
818         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
819         nvmeq->cq_head = head;
820         nvmeq->cq_phase = phase;
821
822         nvmeq->cqe_seen = 1;
823         return 1;
824 }
825
826 static void nvme_make_request(struct request_queue *q, struct bio *bio)
827 {
828         struct nvme_ns *ns = q->queuedata;
829         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
830         int result = -EBUSY;
831
832         if (!nvmeq) {
833                 bio_endio(bio, -EIO);
834                 return;
835         }
836
837         spin_lock_irq(&nvmeq->q_lock);
838         if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
839                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
840         if (unlikely(result)) {
841                 if (!waitqueue_active(&nvmeq->sq_full))
842                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
843                 bio_list_add(&nvmeq->sq_cong, bio);
844         }
845
846         nvme_process_cq(nvmeq);
847         spin_unlock_irq(&nvmeq->q_lock);
848         put_nvmeq(nvmeq);
849 }
850
851 static irqreturn_t nvme_irq(int irq, void *data)
852 {
853         irqreturn_t result;
854         struct nvme_queue *nvmeq = data;
855         spin_lock(&nvmeq->q_lock);
856         nvme_process_cq(nvmeq);
857         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
858         nvmeq->cqe_seen = 0;
859         spin_unlock(&nvmeq->q_lock);
860         return result;
861 }
862
863 static irqreturn_t nvme_irq_check(int irq, void *data)
864 {
865         struct nvme_queue *nvmeq = data;
866         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
867         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
868                 return IRQ_NONE;
869         return IRQ_WAKE_THREAD;
870 }
871
872 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
873 {
874         spin_lock_irq(&nvmeq->q_lock);
875         cancel_cmdid(nvmeq, cmdid, NULL);
876         spin_unlock_irq(&nvmeq->q_lock);
877 }
878
879 struct sync_cmd_info {
880         struct task_struct *task;
881         u32 result;
882         int status;
883 };
884
885 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
886                                                 struct nvme_completion *cqe)
887 {
888         struct sync_cmd_info *cmdinfo = ctx;
889         cmdinfo->result = le32_to_cpup(&cqe->result);
890         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
891         wake_up_process(cmdinfo->task);
892 }
893
894 /*
895  * Returns 0 on success.  If the result is negative, it's a Linux error code;
896  * if the result is positive, it's an NVM Express status code
897  */
898 static int nvme_submit_sync_cmd(struct nvme_dev *dev, int q_idx,
899                                                 struct nvme_command *cmd,
900                                                 u32 *result, unsigned timeout)
901 {
902         int cmdid, ret;
903         struct sync_cmd_info cmdinfo;
904         struct nvme_queue *nvmeq;
905
906         nvmeq = lock_nvmeq(dev, q_idx);
907         if (!nvmeq)
908                 return -ENODEV;
909
910         cmdinfo.task = current;
911         cmdinfo.status = -EINTR;
912
913         cmdid = alloc_cmdid(nvmeq, &cmdinfo, sync_completion, timeout);
914         if (cmdid < 0) {
915                 unlock_nvmeq(nvmeq);
916                 return cmdid;
917         }
918         cmd->common.command_id = cmdid;
919
920         set_current_state(TASK_KILLABLE);
921         ret = nvme_submit_cmd(nvmeq, cmd);
922         if (ret) {
923                 free_cmdid(nvmeq, cmdid, NULL);
924                 unlock_nvmeq(nvmeq);
925                 set_current_state(TASK_RUNNING);
926                 return ret;
927         }
928         unlock_nvmeq(nvmeq);
929         schedule_timeout(timeout);
930
931         if (cmdinfo.status == -EINTR) {
932                 nvmeq = lock_nvmeq(dev, q_idx);
933                 if (nvmeq) {
934                         nvme_abort_command(nvmeq, cmdid);
935                         unlock_nvmeq(nvmeq);
936                 }
937                 return -EINTR;
938         }
939
940         if (result)
941                 *result = cmdinfo.result;
942
943         return cmdinfo.status;
944 }
945
946 static int nvme_submit_async_cmd(struct nvme_queue *nvmeq,
947                         struct nvme_command *cmd,
948                         struct async_cmd_info *cmdinfo, unsigned timeout)
949 {
950         int cmdid;
951
952         cmdid = alloc_cmdid_killable(nvmeq, cmdinfo, async_completion, timeout);
953         if (cmdid < 0)
954                 return cmdid;
955         cmdinfo->status = -EINTR;
956         cmd->common.command_id = cmdid;
957         return nvme_submit_cmd(nvmeq, cmd);
958 }
959
960 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
961                                                                 u32 *result)
962 {
963         return nvme_submit_sync_cmd(dev, 0, cmd, result, ADMIN_TIMEOUT);
964 }
965
966 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
967                                                                 u32 *result)
968 {
969         return nvme_submit_sync_cmd(dev, smp_processor_id() + 1, cmd, result,
970                                                         NVME_IO_TIMEOUT);
971 }
972
973 static int nvme_submit_admin_cmd_async(struct nvme_dev *dev,
974                 struct nvme_command *cmd, struct async_cmd_info *cmdinfo)
975 {
976         return nvme_submit_async_cmd(raw_nvmeq(dev, 0), cmd, cmdinfo,
977                                                                 ADMIN_TIMEOUT);
978 }
979
980 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
981 {
982         int status;
983         struct nvme_command c;
984
985         memset(&c, 0, sizeof(c));
986         c.delete_queue.opcode = opcode;
987         c.delete_queue.qid = cpu_to_le16(id);
988
989         status = nvme_submit_admin_cmd(dev, &c, NULL);
990         if (status)
991                 return -EIO;
992         return 0;
993 }
994
995 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
996                                                 struct nvme_queue *nvmeq)
997 {
998         int status;
999         struct nvme_command c;
1000         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1001
1002         memset(&c, 0, sizeof(c));
1003         c.create_cq.opcode = nvme_admin_create_cq;
1004         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1005         c.create_cq.cqid = cpu_to_le16(qid);
1006         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1007         c.create_cq.cq_flags = cpu_to_le16(flags);
1008         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1009
1010         status = nvme_submit_admin_cmd(dev, &c, NULL);
1011         if (status)
1012                 return -EIO;
1013         return 0;
1014 }
1015
1016 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1017                                                 struct nvme_queue *nvmeq)
1018 {
1019         int status;
1020         struct nvme_command c;
1021         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1022
1023         memset(&c, 0, sizeof(c));
1024         c.create_sq.opcode = nvme_admin_create_sq;
1025         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1026         c.create_sq.sqid = cpu_to_le16(qid);
1027         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1028         c.create_sq.sq_flags = cpu_to_le16(flags);
1029         c.create_sq.cqid = cpu_to_le16(qid);
1030
1031         status = nvme_submit_admin_cmd(dev, &c, NULL);
1032         if (status)
1033                 return -EIO;
1034         return 0;
1035 }
1036
1037 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1038 {
1039         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1040 }
1041
1042 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1043 {
1044         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1045 }
1046
1047 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1048                                                         dma_addr_t dma_addr)
1049 {
1050         struct nvme_command c;
1051
1052         memset(&c, 0, sizeof(c));
1053         c.identify.opcode = nvme_admin_identify;
1054         c.identify.nsid = cpu_to_le32(nsid);
1055         c.identify.prp1 = cpu_to_le64(dma_addr);
1056         c.identify.cns = cpu_to_le32(cns);
1057
1058         return nvme_submit_admin_cmd(dev, &c, NULL);
1059 }
1060
1061 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1062                                         dma_addr_t dma_addr, u32 *result)
1063 {
1064         struct nvme_command c;
1065
1066         memset(&c, 0, sizeof(c));
1067         c.features.opcode = nvme_admin_get_features;
1068         c.features.nsid = cpu_to_le32(nsid);
1069         c.features.prp1 = cpu_to_le64(dma_addr);
1070         c.features.fid = cpu_to_le32(fid);
1071
1072         return nvme_submit_admin_cmd(dev, &c, result);
1073 }
1074
1075 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1076                                         dma_addr_t dma_addr, u32 *result)
1077 {
1078         struct nvme_command c;
1079
1080         memset(&c, 0, sizeof(c));
1081         c.features.opcode = nvme_admin_set_features;
1082         c.features.prp1 = cpu_to_le64(dma_addr);
1083         c.features.fid = cpu_to_le32(fid);
1084         c.features.dword11 = cpu_to_le32(dword11);
1085
1086         return nvme_submit_admin_cmd(dev, &c, result);
1087 }
1088
1089 /**
1090  * nvme_abort_cmd - Attempt aborting a command
1091  * @cmdid: Command id of a timed out IO
1092  * @queue: The queue with timed out IO
1093  *
1094  * Schedule controller reset if the command was already aborted once before and
1095  * still hasn't been returned to the driver, or if this is the admin queue.
1096  */
1097 static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq)
1098 {
1099         int a_cmdid;
1100         struct nvme_command cmd;
1101         struct nvme_dev *dev = nvmeq->dev;
1102         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1103         struct nvme_queue *adminq;
1104
1105         if (!nvmeq->qid || info[cmdid].aborted) {
1106                 if (work_busy(&dev->reset_work))
1107                         return;
1108                 list_del_init(&dev->node);
1109                 dev_warn(&dev->pci_dev->dev,
1110                         "I/O %d QID %d timeout, reset controller\n", cmdid,
1111                                                                 nvmeq->qid);
1112                 dev->reset_workfn = nvme_reset_failed_dev;
1113                 queue_work(nvme_workq, &dev->reset_work);
1114                 return;
1115         }
1116
1117         if (!dev->abort_limit)
1118                 return;
1119
1120         adminq = rcu_dereference(dev->queues[0]);
1121         a_cmdid = alloc_cmdid(adminq, CMD_CTX_ABORT, special_completion,
1122                                                                 ADMIN_TIMEOUT);
1123         if (a_cmdid < 0)
1124                 return;
1125
1126         memset(&cmd, 0, sizeof(cmd));
1127         cmd.abort.opcode = nvme_admin_abort_cmd;
1128         cmd.abort.cid = cmdid;
1129         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1130         cmd.abort.command_id = a_cmdid;
1131
1132         --dev->abort_limit;
1133         info[cmdid].aborted = 1;
1134         info[cmdid].timeout = jiffies + ADMIN_TIMEOUT;
1135
1136         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", cmdid,
1137                                                         nvmeq->qid);
1138         nvme_submit_cmd(adminq, &cmd);
1139 }
1140
1141 /**
1142  * nvme_cancel_ios - Cancel outstanding I/Os
1143  * @queue: The queue to cancel I/Os on
1144  * @timeout: True to only cancel I/Os which have timed out
1145  */
1146 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
1147 {
1148         int depth = nvmeq->q_depth - 1;
1149         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1150         unsigned long now = jiffies;
1151         int cmdid;
1152
1153         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1154                 void *ctx;
1155                 nvme_completion_fn fn;
1156                 static struct nvme_completion cqe = {
1157                         .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1158                 };
1159
1160                 if (timeout && !time_after(now, info[cmdid].timeout))
1161                         continue;
1162                 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1163                         continue;
1164                 if (timeout && nvmeq->dev->initialized) {
1165                         nvme_abort_cmd(cmdid, nvmeq);
1166                         continue;
1167                 }
1168                 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", cmdid,
1169                                                                 nvmeq->qid);
1170                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1171                 fn(nvmeq, ctx, &cqe);
1172         }
1173 }
1174
1175 static void nvme_free_queue(struct rcu_head *r)
1176 {
1177         struct nvme_queue *nvmeq = container_of(r, struct nvme_queue, r_head);
1178
1179         spin_lock_irq(&nvmeq->q_lock);
1180         while (bio_list_peek(&nvmeq->sq_cong)) {
1181                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1182                 bio_endio(bio, -EIO);
1183         }
1184         while (!list_empty(&nvmeq->iod_bio)) {
1185                 static struct nvme_completion cqe = {
1186                         .status = cpu_to_le16(
1187                                 (NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1),
1188                 };
1189                 struct nvme_iod *iod = list_first_entry(&nvmeq->iod_bio,
1190                                                         struct nvme_iod,
1191                                                         node);
1192                 list_del(&iod->node);
1193                 bio_completion(nvmeq, iod, &cqe);
1194         }
1195         spin_unlock_irq(&nvmeq->q_lock);
1196
1197         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1198                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1199         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1200                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1201         if (nvmeq->qid)
1202                 free_cpumask_var(nvmeq->cpu_mask);
1203         kfree(nvmeq);
1204 }
1205
1206 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1207 {
1208         int i;
1209
1210         for (i = dev->queue_count - 1; i >= lowest; i--) {
1211                 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
1212                 rcu_assign_pointer(dev->queues[i], NULL);
1213                 call_rcu(&nvmeq->r_head, nvme_free_queue);
1214                 dev->queue_count--;
1215         }
1216 }
1217
1218 /**
1219  * nvme_suspend_queue - put queue into suspended state
1220  * @nvmeq - queue to suspend
1221  *
1222  * Returns 1 if already suspended, 0 otherwise.
1223  */
1224 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1225 {
1226         int vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1227
1228         spin_lock_irq(&nvmeq->q_lock);
1229         if (nvmeq->q_suspended) {
1230                 spin_unlock_irq(&nvmeq->q_lock);
1231                 return 1;
1232         }
1233         nvmeq->q_suspended = 1;
1234         nvmeq->dev->online_queues--;
1235         spin_unlock_irq(&nvmeq->q_lock);
1236
1237         irq_set_affinity_hint(vector, NULL);
1238         free_irq(vector, nvmeq);
1239
1240         return 0;
1241 }
1242
1243 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1244 {
1245         spin_lock_irq(&nvmeq->q_lock);
1246         nvme_process_cq(nvmeq);
1247         nvme_cancel_ios(nvmeq, false);
1248         spin_unlock_irq(&nvmeq->q_lock);
1249 }
1250
1251 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1252 {
1253         struct nvme_queue *nvmeq = raw_nvmeq(dev, qid);
1254
1255         if (!nvmeq)
1256                 return;
1257         if (nvme_suspend_queue(nvmeq))
1258                 return;
1259
1260         /* Don't tell the adapter to delete the admin queue.
1261          * Don't tell a removed adapter to delete IO queues. */
1262         if (qid && readl(&dev->bar->csts) != -1) {
1263                 adapter_delete_sq(dev, qid);
1264                 adapter_delete_cq(dev, qid);
1265         }
1266         nvme_clear_queue(nvmeq);
1267 }
1268
1269 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1270                                                         int depth, int vector)
1271 {
1272         struct device *dmadev = &dev->pci_dev->dev;
1273         unsigned extra = nvme_queue_extra(depth);
1274         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1275         if (!nvmeq)
1276                 return NULL;
1277
1278         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1279                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1280         if (!nvmeq->cqes)
1281                 goto free_nvmeq;
1282         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1283
1284         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1285                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1286         if (!nvmeq->sq_cmds)
1287                 goto free_cqdma;
1288
1289         if (qid && !zalloc_cpumask_var(&nvmeq->cpu_mask, GFP_KERNEL))
1290                 goto free_sqdma;
1291
1292         nvmeq->q_dmadev = dmadev;
1293         nvmeq->dev = dev;
1294         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1295                         dev->instance, qid);
1296         spin_lock_init(&nvmeq->q_lock);
1297         nvmeq->cq_head = 0;
1298         nvmeq->cq_phase = 1;
1299         init_waitqueue_head(&nvmeq->sq_full);
1300         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1301         bio_list_init(&nvmeq->sq_cong);
1302         INIT_LIST_HEAD(&nvmeq->iod_bio);
1303         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1304         nvmeq->q_depth = depth;
1305         nvmeq->cq_vector = vector;
1306         nvmeq->qid = qid;
1307         nvmeq->q_suspended = 1;
1308         dev->queue_count++;
1309         rcu_assign_pointer(dev->queues[qid], nvmeq);
1310
1311         return nvmeq;
1312
1313  free_sqdma:
1314         dma_free_coherent(dmadev, SQ_SIZE(depth), (void *)nvmeq->sq_cmds,
1315                                                         nvmeq->sq_dma_addr);
1316  free_cqdma:
1317         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1318                                                         nvmeq->cq_dma_addr);
1319  free_nvmeq:
1320         kfree(nvmeq);
1321         return NULL;
1322 }
1323
1324 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1325                                                         const char *name)
1326 {
1327         if (use_threaded_interrupts)
1328                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1329                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1330                                         name, nvmeq);
1331         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1332                                 IRQF_SHARED, name, nvmeq);
1333 }
1334
1335 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1336 {
1337         struct nvme_dev *dev = nvmeq->dev;
1338         unsigned extra = nvme_queue_extra(nvmeq->q_depth);
1339
1340         nvmeq->sq_tail = 0;
1341         nvmeq->cq_head = 0;
1342         nvmeq->cq_phase = 1;
1343         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1344         memset(nvmeq->cmdid_data, 0, extra);
1345         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1346         nvme_cancel_ios(nvmeq, false);
1347         nvmeq->q_suspended = 0;
1348         dev->online_queues++;
1349 }
1350
1351 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1352 {
1353         struct nvme_dev *dev = nvmeq->dev;
1354         int result;
1355
1356         result = adapter_alloc_cq(dev, qid, nvmeq);
1357         if (result < 0)
1358                 return result;
1359
1360         result = adapter_alloc_sq(dev, qid, nvmeq);
1361         if (result < 0)
1362                 goto release_cq;
1363
1364         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1365         if (result < 0)
1366                 goto release_sq;
1367
1368         spin_lock_irq(&nvmeq->q_lock);
1369         nvme_init_queue(nvmeq, qid);
1370         spin_unlock_irq(&nvmeq->q_lock);
1371
1372         return result;
1373
1374  release_sq:
1375         adapter_delete_sq(dev, qid);
1376  release_cq:
1377         adapter_delete_cq(dev, qid);
1378         return result;
1379 }
1380
1381 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1382 {
1383         unsigned long timeout;
1384         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1385
1386         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1387
1388         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1389                 msleep(100);
1390                 if (fatal_signal_pending(current))
1391                         return -EINTR;
1392                 if (time_after(jiffies, timeout)) {
1393                         dev_err(&dev->pci_dev->dev,
1394                                 "Device not ready; aborting %s\n", enabled ?
1395                                                 "initialisation" : "reset");
1396                         return -ENODEV;
1397                 }
1398         }
1399
1400         return 0;
1401 }
1402
1403 /*
1404  * If the device has been passed off to us in an enabled state, just clear
1405  * the enabled bit.  The spec says we should set the 'shutdown notification
1406  * bits', but doing so may cause the device to complete commands to the
1407  * admin queue ... and we don't know what memory that might be pointing at!
1408  */
1409 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1410 {
1411         u32 cc = readl(&dev->bar->cc);
1412
1413         if (cc & NVME_CC_ENABLE)
1414                 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1415         return nvme_wait_ready(dev, cap, false);
1416 }
1417
1418 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1419 {
1420         return nvme_wait_ready(dev, cap, true);
1421 }
1422
1423 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1424 {
1425         unsigned long timeout;
1426         u32 cc;
1427
1428         cc = (readl(&dev->bar->cc) & ~NVME_CC_SHN_MASK) | NVME_CC_SHN_NORMAL;
1429         writel(cc, &dev->bar->cc);
1430
1431         timeout = 2 * HZ + jiffies;
1432         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1433                                                         NVME_CSTS_SHST_CMPLT) {
1434                 msleep(100);
1435                 if (fatal_signal_pending(current))
1436                         return -EINTR;
1437                 if (time_after(jiffies, timeout)) {
1438                         dev_err(&dev->pci_dev->dev,
1439                                 "Device shutdown incomplete; abort shutdown\n");
1440                         return -ENODEV;
1441                 }
1442         }
1443
1444         return 0;
1445 }
1446
1447 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1448 {
1449         int result;
1450         u32 aqa;
1451         u64 cap = readq(&dev->bar->cap);
1452         struct nvme_queue *nvmeq;
1453
1454         result = nvme_disable_ctrl(dev, cap);
1455         if (result < 0)
1456                 return result;
1457
1458         nvmeq = raw_nvmeq(dev, 0);
1459         if (!nvmeq) {
1460                 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1461                 if (!nvmeq)
1462                         return -ENOMEM;
1463         }
1464
1465         aqa = nvmeq->q_depth - 1;
1466         aqa |= aqa << 16;
1467
1468         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1469         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1470         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1471         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1472
1473         writel(aqa, &dev->bar->aqa);
1474         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1475         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1476         writel(dev->ctrl_config, &dev->bar->cc);
1477
1478         result = nvme_enable_ctrl(dev, cap);
1479         if (result)
1480                 return result;
1481
1482         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1483         if (result)
1484                 return result;
1485
1486         spin_lock_irq(&nvmeq->q_lock);
1487         nvme_init_queue(nvmeq, 0);
1488         spin_unlock_irq(&nvmeq->q_lock);
1489         return result;
1490 }
1491
1492 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1493                                 unsigned long addr, unsigned length)
1494 {
1495         int i, err, count, nents, offset;
1496         struct scatterlist *sg;
1497         struct page **pages;
1498         struct nvme_iod *iod;
1499
1500         if (addr & 3)
1501                 return ERR_PTR(-EINVAL);
1502         if (!length || length > INT_MAX - PAGE_SIZE)
1503                 return ERR_PTR(-EINVAL);
1504
1505         offset = offset_in_page(addr);
1506         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1507         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1508         if (!pages)
1509                 return ERR_PTR(-ENOMEM);
1510
1511         err = get_user_pages_fast(addr, count, 1, pages);
1512         if (err < count) {
1513                 count = err;
1514                 err = -EFAULT;
1515                 goto put_pages;
1516         }
1517
1518         err = -ENOMEM;
1519         iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1520         if (!iod)
1521                 goto put_pages;
1522
1523         sg = iod->sg;
1524         sg_init_table(sg, count);
1525         for (i = 0; i < count; i++) {
1526                 sg_set_page(&sg[i], pages[i],
1527                             min_t(unsigned, length, PAGE_SIZE - offset),
1528                             offset);
1529                 length -= (PAGE_SIZE - offset);
1530                 offset = 0;
1531         }
1532         sg_mark_end(&sg[i - 1]);
1533         iod->nents = count;
1534
1535         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1536                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1537         if (!nents)
1538                 goto free_iod;
1539
1540         kfree(pages);
1541         return iod;
1542
1543  free_iod:
1544         kfree(iod);
1545  put_pages:
1546         for (i = 0; i < count; i++)
1547                 put_page(pages[i]);
1548         kfree(pages);
1549         return ERR_PTR(err);
1550 }
1551
1552 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1553                         struct nvme_iod *iod)
1554 {
1555         int i;
1556
1557         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1558                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1559
1560         for (i = 0; i < iod->nents; i++)
1561                 put_page(sg_page(&iod->sg[i]));
1562 }
1563
1564 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1565 {
1566         struct nvme_dev *dev = ns->dev;
1567         struct nvme_user_io io;
1568         struct nvme_command c;
1569         unsigned length, meta_len;
1570         int status, i;
1571         struct nvme_iod *iod, *meta_iod = NULL;
1572         dma_addr_t meta_dma_addr;
1573         void *meta, *uninitialized_var(meta_mem);
1574
1575         if (copy_from_user(&io, uio, sizeof(io)))
1576                 return -EFAULT;
1577         length = (io.nblocks + 1) << ns->lba_shift;
1578         meta_len = (io.nblocks + 1) * ns->ms;
1579
1580         if (meta_len && ((io.metadata & 3) || !io.metadata))
1581                 return -EINVAL;
1582
1583         switch (io.opcode) {
1584         case nvme_cmd_write:
1585         case nvme_cmd_read:
1586         case nvme_cmd_compare:
1587                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1588                 break;
1589         default:
1590                 return -EINVAL;
1591         }
1592
1593         if (IS_ERR(iod))
1594                 return PTR_ERR(iod);
1595
1596         memset(&c, 0, sizeof(c));
1597         c.rw.opcode = io.opcode;
1598         c.rw.flags = io.flags;
1599         c.rw.nsid = cpu_to_le32(ns->ns_id);
1600         c.rw.slba = cpu_to_le64(io.slba);
1601         c.rw.length = cpu_to_le16(io.nblocks);
1602         c.rw.control = cpu_to_le16(io.control);
1603         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1604         c.rw.reftag = cpu_to_le32(io.reftag);
1605         c.rw.apptag = cpu_to_le16(io.apptag);
1606         c.rw.appmask = cpu_to_le16(io.appmask);
1607
1608         if (meta_len) {
1609                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1610                                                                 meta_len);
1611                 if (IS_ERR(meta_iod)) {
1612                         status = PTR_ERR(meta_iod);
1613                         meta_iod = NULL;
1614                         goto unmap;
1615                 }
1616
1617                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1618                                                 &meta_dma_addr, GFP_KERNEL);
1619                 if (!meta_mem) {
1620                         status = -ENOMEM;
1621                         goto unmap;
1622                 }
1623
1624                 if (io.opcode & 1) {
1625                         int meta_offset = 0;
1626
1627                         for (i = 0; i < meta_iod->nents; i++) {
1628                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1629                                                 meta_iod->sg[i].offset;
1630                                 memcpy(meta_mem + meta_offset, meta,
1631                                                 meta_iod->sg[i].length);
1632                                 kunmap_atomic(meta);
1633                                 meta_offset += meta_iod->sg[i].length;
1634                         }
1635                 }
1636
1637                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1638         }
1639
1640         length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1641         c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1642         c.rw.prp2 = cpu_to_le64(iod->first_dma);
1643
1644         if (length != (io.nblocks + 1) << ns->lba_shift)
1645                 status = -ENOMEM;
1646         else
1647                 status = nvme_submit_io_cmd(dev, &c, NULL);
1648
1649         if (meta_len) {
1650                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1651                         int meta_offset = 0;
1652
1653                         for (i = 0; i < meta_iod->nents; i++) {
1654                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1655                                                 meta_iod->sg[i].offset;
1656                                 memcpy(meta, meta_mem + meta_offset,
1657                                                 meta_iod->sg[i].length);
1658                                 kunmap_atomic(meta);
1659                                 meta_offset += meta_iod->sg[i].length;
1660                         }
1661                 }
1662
1663                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1664                                                                 meta_dma_addr);
1665         }
1666
1667  unmap:
1668         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1669         nvme_free_iod(dev, iod);
1670
1671         if (meta_iod) {
1672                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1673                 nvme_free_iod(dev, meta_iod);
1674         }
1675
1676         return status;
1677 }
1678
1679 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1680                                         struct nvme_admin_cmd __user *ucmd)
1681 {
1682         struct nvme_admin_cmd cmd;
1683         struct nvme_command c;
1684         int status, length;
1685         struct nvme_iod *uninitialized_var(iod);
1686         unsigned timeout;
1687
1688         if (!capable(CAP_SYS_ADMIN))
1689                 return -EACCES;
1690         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1691                 return -EFAULT;
1692
1693         memset(&c, 0, sizeof(c));
1694         c.common.opcode = cmd.opcode;
1695         c.common.flags = cmd.flags;
1696         c.common.nsid = cpu_to_le32(cmd.nsid);
1697         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1698         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1699         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1700         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1701         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1702         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1703         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1704         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1705
1706         length = cmd.data_len;
1707         if (cmd.data_len) {
1708                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1709                                                                 length);
1710                 if (IS_ERR(iod))
1711                         return PTR_ERR(iod);
1712                 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1713                 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1714                 c.common.prp2 = cpu_to_le64(iod->first_dma);
1715         }
1716
1717         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1718                                                                 ADMIN_TIMEOUT;
1719         if (length != cmd.data_len)
1720                 status = -ENOMEM;
1721         else
1722                 status = nvme_submit_sync_cmd(dev, 0, &c, &cmd.result, timeout);
1723
1724         if (cmd.data_len) {
1725                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1726                 nvme_free_iod(dev, iod);
1727         }
1728
1729         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1730                                                         sizeof(cmd.result)))
1731                 status = -EFAULT;
1732
1733         return status;
1734 }
1735
1736 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1737                                                         unsigned long arg)
1738 {
1739         struct nvme_ns *ns = bdev->bd_disk->private_data;
1740
1741         switch (cmd) {
1742         case NVME_IOCTL_ID:
1743                 force_successful_syscall_return();
1744                 return ns->ns_id;
1745         case NVME_IOCTL_ADMIN_CMD:
1746                 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1747         case NVME_IOCTL_SUBMIT_IO:
1748                 return nvme_submit_io(ns, (void __user *)arg);
1749         case SG_GET_VERSION_NUM:
1750                 return nvme_sg_get_version_num((void __user *)arg);
1751         case SG_IO:
1752                 return nvme_sg_io(ns, (void __user *)arg);
1753         default:
1754                 return -ENOTTY;
1755         }
1756 }
1757
1758 #ifdef CONFIG_COMPAT
1759 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1760                                         unsigned int cmd, unsigned long arg)
1761 {
1762         struct nvme_ns *ns = bdev->bd_disk->private_data;
1763
1764         switch (cmd) {
1765         case SG_IO:
1766                 return nvme_sg_io32(ns, arg);
1767         }
1768         return nvme_ioctl(bdev, mode, cmd, arg);
1769 }
1770 #else
1771 #define nvme_compat_ioctl       NULL
1772 #endif
1773
1774 static int nvme_open(struct block_device *bdev, fmode_t mode)
1775 {
1776         struct nvme_ns *ns = bdev->bd_disk->private_data;
1777         struct nvme_dev *dev = ns->dev;
1778
1779         kref_get(&dev->kref);
1780         return 0;
1781 }
1782
1783 static void nvme_free_dev(struct kref *kref);
1784
1785 static void nvme_release(struct gendisk *disk, fmode_t mode)
1786 {
1787         struct nvme_ns *ns = disk->private_data;
1788         struct nvme_dev *dev = ns->dev;
1789
1790         kref_put(&dev->kref, nvme_free_dev);
1791 }
1792
1793 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1794 {
1795         /* some standard values */
1796         geo->heads = 1 << 6;
1797         geo->sectors = 1 << 5;
1798         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1799         return 0;
1800 }
1801
1802 static const struct block_device_operations nvme_fops = {
1803         .owner          = THIS_MODULE,
1804         .ioctl          = nvme_ioctl,
1805         .compat_ioctl   = nvme_compat_ioctl,
1806         .open           = nvme_open,
1807         .release        = nvme_release,
1808         .getgeo         = nvme_getgeo,
1809 };
1810
1811 static void nvme_resubmit_iods(struct nvme_queue *nvmeq)
1812 {
1813         struct nvme_iod *iod, *next;
1814
1815         list_for_each_entry_safe(iod, next, &nvmeq->iod_bio, node) {
1816                 if (unlikely(nvme_submit_iod(nvmeq, iod)))
1817                         break;
1818                 list_del(&iod->node);
1819                 if (bio_list_empty(&nvmeq->sq_cong) &&
1820                                                 list_empty(&nvmeq->iod_bio))
1821                         remove_wait_queue(&nvmeq->sq_full,
1822                                                 &nvmeq->sq_cong_wait);
1823         }
1824 }
1825
1826 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1827 {
1828         while (bio_list_peek(&nvmeq->sq_cong)) {
1829                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1830                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1831
1832                 if (bio_list_empty(&nvmeq->sq_cong) &&
1833                                                 list_empty(&nvmeq->iod_bio))
1834                         remove_wait_queue(&nvmeq->sq_full,
1835                                                         &nvmeq->sq_cong_wait);
1836                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1837                         if (!waitqueue_active(&nvmeq->sq_full))
1838                                 add_wait_queue(&nvmeq->sq_full,
1839                                                         &nvmeq->sq_cong_wait);
1840                         bio_list_add_head(&nvmeq->sq_cong, bio);
1841                         break;
1842                 }
1843         }
1844 }
1845
1846 static int nvme_kthread(void *data)
1847 {
1848         struct nvme_dev *dev, *next;
1849
1850         while (!kthread_should_stop()) {
1851                 set_current_state(TASK_INTERRUPTIBLE);
1852                 spin_lock(&dev_list_lock);
1853                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1854                         int i;
1855                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1856                                                         dev->initialized) {
1857                                 if (work_busy(&dev->reset_work))
1858                                         continue;
1859                                 list_del_init(&dev->node);
1860                                 dev_warn(&dev->pci_dev->dev,
1861                                         "Failed status, reset controller\n");
1862                                 dev->reset_workfn = nvme_reset_failed_dev;
1863                                 queue_work(nvme_workq, &dev->reset_work);
1864                                 continue;
1865                         }
1866                         rcu_read_lock();
1867                         for (i = 0; i < dev->queue_count; i++) {
1868                                 struct nvme_queue *nvmeq =
1869                                                 rcu_dereference(dev->queues[i]);
1870                                 if (!nvmeq)
1871                                         continue;
1872                                 spin_lock_irq(&nvmeq->q_lock);
1873                                 if (nvmeq->q_suspended)
1874                                         goto unlock;
1875                                 nvme_process_cq(nvmeq);
1876                                 nvme_cancel_ios(nvmeq, true);
1877                                 nvme_resubmit_bios(nvmeq);
1878                                 nvme_resubmit_iods(nvmeq);
1879  unlock:
1880                                 spin_unlock_irq(&nvmeq->q_lock);
1881                         }
1882                         rcu_read_unlock();
1883                 }
1884                 spin_unlock(&dev_list_lock);
1885                 schedule_timeout(round_jiffies_relative(HZ));
1886         }
1887         return 0;
1888 }
1889
1890 static void nvme_config_discard(struct nvme_ns *ns)
1891 {
1892         u32 logical_block_size = queue_logical_block_size(ns->queue);
1893         ns->queue->limits.discard_zeroes_data = 0;
1894         ns->queue->limits.discard_alignment = logical_block_size;
1895         ns->queue->limits.discard_granularity = logical_block_size;
1896         ns->queue->limits.max_discard_sectors = 0xffffffff;
1897         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1898 }
1899
1900 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1901                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1902 {
1903         struct nvme_ns *ns;
1904         struct gendisk *disk;
1905         int lbaf;
1906
1907         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1908                 return NULL;
1909
1910         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1911         if (!ns)
1912                 return NULL;
1913         ns->queue = blk_alloc_queue(GFP_KERNEL);
1914         if (!ns->queue)
1915                 goto out_free_ns;
1916         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1917         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1918         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1919         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, ns->queue);
1920         blk_queue_make_request(ns->queue, nvme_make_request);
1921         ns->dev = dev;
1922         ns->queue->queuedata = ns;
1923
1924         disk = alloc_disk(0);
1925         if (!disk)
1926                 goto out_free_queue;
1927         ns->ns_id = nsid;
1928         ns->disk = disk;
1929         lbaf = id->flbas & 0xf;
1930         ns->lba_shift = id->lbaf[lbaf].ds;
1931         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1932         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1933         if (dev->max_hw_sectors)
1934                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1935         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
1936                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1937
1938         disk->major = nvme_major;
1939         disk->first_minor = 0;
1940         disk->fops = &nvme_fops;
1941         disk->private_data = ns;
1942         disk->queue = ns->queue;
1943         disk->driverfs_dev = &dev->pci_dev->dev;
1944         disk->flags = GENHD_FL_EXT_DEVT;
1945         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1946         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1947
1948         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1949                 nvme_config_discard(ns);
1950
1951         return ns;
1952
1953  out_free_queue:
1954         blk_cleanup_queue(ns->queue);
1955  out_free_ns:
1956         kfree(ns);
1957         return NULL;
1958 }
1959
1960 static int nvme_find_closest_node(int node)
1961 {
1962         int n, val, min_val = INT_MAX, best_node = node;
1963
1964         for_each_online_node(n) {
1965                 if (n == node)
1966                         continue;
1967                 val = node_distance(node, n);
1968                 if (val < min_val) {
1969                         min_val = val;
1970                         best_node = n;
1971                 }
1972         }
1973         return best_node;
1974 }
1975
1976 static void nvme_set_queue_cpus(cpumask_t *qmask, struct nvme_queue *nvmeq,
1977                                                                 int count)
1978 {
1979         int cpu;
1980         for_each_cpu(cpu, qmask) {
1981                 if (cpumask_weight(nvmeq->cpu_mask) >= count)
1982                         break;
1983                 if (!cpumask_test_and_set_cpu(cpu, nvmeq->cpu_mask))
1984                         *per_cpu_ptr(nvmeq->dev->io_queue, cpu) = nvmeq->qid;
1985         }
1986 }
1987
1988 static void nvme_add_cpus(cpumask_t *mask, const cpumask_t *unassigned_cpus,
1989         const cpumask_t *new_mask, struct nvme_queue *nvmeq, int cpus_per_queue)
1990 {
1991         int next_cpu;
1992         for_each_cpu(next_cpu, new_mask) {
1993                 cpumask_or(mask, mask, get_cpu_mask(next_cpu));
1994                 cpumask_or(mask, mask, topology_thread_cpumask(next_cpu));
1995                 cpumask_and(mask, mask, unassigned_cpus);
1996                 nvme_set_queue_cpus(mask, nvmeq, cpus_per_queue);
1997         }
1998 }
1999
2000 static void nvme_create_io_queues(struct nvme_dev *dev)
2001 {
2002         unsigned i, max;
2003
2004         max = min(dev->max_qid, num_online_cpus());
2005         for (i = dev->queue_count; i <= max; i++)
2006                 if (!nvme_alloc_queue(dev, i, dev->q_depth, i - 1))
2007                         break;
2008
2009         max = min(dev->queue_count - 1, num_online_cpus());
2010         for (i = dev->online_queues; i <= max; i++)
2011                 if (nvme_create_queue(raw_nvmeq(dev, i), i))
2012                         break;
2013 }
2014
2015 /*
2016  * If there are fewer queues than online cpus, this will try to optimally
2017  * assign a queue to multiple cpus by grouping cpus that are "close" together:
2018  * thread siblings, core, socket, closest node, then whatever else is
2019  * available.
2020  */
2021 static void nvme_assign_io_queues(struct nvme_dev *dev)
2022 {
2023         unsigned cpu, cpus_per_queue, queues, remainder, i;
2024         cpumask_var_t unassigned_cpus;
2025
2026         nvme_create_io_queues(dev);
2027
2028         queues = min(dev->online_queues - 1, num_online_cpus());
2029         if (!queues)
2030                 return;
2031
2032         cpus_per_queue = num_online_cpus() / queues;
2033         remainder = queues - (num_online_cpus() - queues * cpus_per_queue);
2034
2035         if (!alloc_cpumask_var(&unassigned_cpus, GFP_KERNEL))
2036                 return;
2037
2038         cpumask_copy(unassigned_cpus, cpu_online_mask);
2039         cpu = cpumask_first(unassigned_cpus);
2040         for (i = 1; i <= queues; i++) {
2041                 struct nvme_queue *nvmeq = lock_nvmeq(dev, i);
2042                 cpumask_t mask;
2043
2044                 cpumask_clear(nvmeq->cpu_mask);
2045                 if (!cpumask_weight(unassigned_cpus)) {
2046                         unlock_nvmeq(nvmeq);
2047                         break;
2048                 }
2049
2050                 mask = *get_cpu_mask(cpu);
2051                 nvme_set_queue_cpus(&mask, nvmeq, cpus_per_queue);
2052                 if (cpus_weight(mask) < cpus_per_queue)
2053                         nvme_add_cpus(&mask, unassigned_cpus,
2054                                 topology_thread_cpumask(cpu),
2055                                 nvmeq, cpus_per_queue);
2056                 if (cpus_weight(mask) < cpus_per_queue)
2057                         nvme_add_cpus(&mask, unassigned_cpus,
2058                                 topology_core_cpumask(cpu),
2059                                 nvmeq, cpus_per_queue);
2060                 if (cpus_weight(mask) < cpus_per_queue)
2061                         nvme_add_cpus(&mask, unassigned_cpus,
2062                                 cpumask_of_node(cpu_to_node(cpu)),
2063                                 nvmeq, cpus_per_queue);
2064                 if (cpus_weight(mask) < cpus_per_queue)
2065                         nvme_add_cpus(&mask, unassigned_cpus,
2066                                 cpumask_of_node(
2067                                         nvme_find_closest_node(
2068                                                 cpu_to_node(cpu))),
2069                                 nvmeq, cpus_per_queue);
2070                 if (cpus_weight(mask) < cpus_per_queue)
2071                         nvme_add_cpus(&mask, unassigned_cpus,
2072                                 unassigned_cpus,
2073                                 nvmeq, cpus_per_queue);
2074
2075                 WARN(cpumask_weight(nvmeq->cpu_mask) != cpus_per_queue,
2076                         "nvme%d qid:%d mis-matched queue-to-cpu assignment\n",
2077                         dev->instance, i);
2078
2079                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2080                                                         nvmeq->cpu_mask);
2081                 cpumask_andnot(unassigned_cpus, unassigned_cpus,
2082                                                 nvmeq->cpu_mask);
2083                 cpu = cpumask_next(cpu, unassigned_cpus);
2084                 if (remainder && !--remainder)
2085                         cpus_per_queue++;
2086                 unlock_nvmeq(nvmeq);
2087         }
2088         WARN(cpumask_weight(unassigned_cpus), "nvme%d unassigned online cpus\n",
2089                                                                 dev->instance);
2090         i = 0;
2091         cpumask_andnot(unassigned_cpus, cpu_possible_mask, cpu_online_mask);
2092         for_each_cpu(cpu, unassigned_cpus)
2093                 *per_cpu_ptr(dev->io_queue, cpu) = (i++ % queues) + 1;
2094         free_cpumask_var(unassigned_cpus);
2095 }
2096
2097 static int set_queue_count(struct nvme_dev *dev, int count)
2098 {
2099         int status;
2100         u32 result;
2101         u32 q_count = (count - 1) | ((count - 1) << 16);
2102
2103         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2104                                                                 &result);
2105         if (status < 0)
2106                 return status;
2107         if (status > 0) {
2108                 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2109                                                                         status);
2110                 return -EBUSY;
2111         }
2112         return min(result & 0xffff, result >> 16) + 1;
2113 }
2114
2115 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2116 {
2117         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2118 }
2119
2120 static void nvme_cpu_workfn(struct work_struct *work)
2121 {
2122         struct nvme_dev *dev = container_of(work, struct nvme_dev, cpu_work);
2123         if (dev->initialized)
2124                 nvme_assign_io_queues(dev);
2125 }
2126
2127 static int nvme_cpu_notify(struct notifier_block *self,
2128                                 unsigned long action, void *hcpu)
2129 {
2130         struct nvme_dev *dev;
2131
2132         switch (action) {
2133         case CPU_ONLINE:
2134         case CPU_DEAD:
2135                 spin_lock(&dev_list_lock);
2136                 list_for_each_entry(dev, &dev_list, node)
2137                         schedule_work(&dev->cpu_work);
2138                 spin_unlock(&dev_list_lock);
2139                 break;
2140         }
2141         return NOTIFY_OK;
2142 }
2143
2144 static int nvme_setup_io_queues(struct nvme_dev *dev)
2145 {
2146         struct nvme_queue *adminq = raw_nvmeq(dev, 0);
2147         struct pci_dev *pdev = dev->pci_dev;
2148         int result, i, vecs, nr_io_queues, size;
2149
2150         nr_io_queues = num_possible_cpus();
2151         result = set_queue_count(dev, nr_io_queues);
2152         if (result < 0)
2153                 return result;
2154         if (result < nr_io_queues)
2155                 nr_io_queues = result;
2156
2157         size = db_bar_size(dev, nr_io_queues);
2158         if (size > 8192) {
2159                 iounmap(dev->bar);
2160                 do {
2161                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2162                         if (dev->bar)
2163                                 break;
2164                         if (!--nr_io_queues)
2165                                 return -ENOMEM;
2166                         size = db_bar_size(dev, nr_io_queues);
2167                 } while (1);
2168                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2169                 adminq->q_db = dev->dbs;
2170         }
2171
2172         /* Deregister the admin queue's interrupt */
2173         free_irq(dev->entry[0].vector, adminq);
2174
2175         for (i = 0; i < nr_io_queues; i++)
2176                 dev->entry[i].entry = i;
2177         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2178         if (vecs < 0) {
2179                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2180                 if (vecs < 0) {
2181                         vecs = 1;
2182                 } else {
2183                         for (i = 0; i < vecs; i++)
2184                                 dev->entry[i].vector = i + pdev->irq;
2185                 }
2186         }
2187
2188         /*
2189          * Should investigate if there's a performance win from allocating
2190          * more queues than interrupt vectors; it might allow the submission
2191          * path to scale better, even if the receive path is limited by the
2192          * number of interrupts.
2193          */
2194         nr_io_queues = vecs;
2195         dev->max_qid = nr_io_queues;
2196
2197         result = queue_request_irq(dev, adminq, adminq->irqname);
2198         if (result) {
2199                 adminq->q_suspended = 1;
2200                 goto free_queues;
2201         }
2202
2203         /* Free previously allocated queues that are no longer usable */
2204         nvme_free_queues(dev, nr_io_queues + 1);
2205         nvme_assign_io_queues(dev);
2206
2207         return 0;
2208
2209  free_queues:
2210         nvme_free_queues(dev, 1);
2211         return result;
2212 }
2213
2214 /*
2215  * Return: error value if an error occurred setting up the queues or calling
2216  * Identify Device.  0 if these succeeded, even if adding some of the
2217  * namespaces failed.  At the moment, these failures are silent.  TBD which
2218  * failures should be reported.
2219  */
2220 static int nvme_dev_add(struct nvme_dev *dev)
2221 {
2222         struct pci_dev *pdev = dev->pci_dev;
2223         int res;
2224         unsigned nn, i;
2225         struct nvme_ns *ns;
2226         struct nvme_id_ctrl *ctrl;
2227         struct nvme_id_ns *id_ns;
2228         void *mem;
2229         dma_addr_t dma_addr;
2230         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2231
2232         mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2233         if (!mem)
2234                 return -ENOMEM;
2235
2236         res = nvme_identify(dev, 0, 1, dma_addr);
2237         if (res) {
2238                 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2239                 res = -EIO;
2240                 goto out;
2241         }
2242
2243         ctrl = mem;
2244         nn = le32_to_cpup(&ctrl->nn);
2245         dev->oncs = le16_to_cpup(&ctrl->oncs);
2246         dev->abort_limit = ctrl->acl + 1;
2247         dev->vwc = ctrl->vwc;
2248         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2249         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2250         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2251         if (ctrl->mdts)
2252                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2253         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2254                         (pdev->device == 0x0953) && ctrl->vs[3])
2255                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2256
2257         id_ns = mem;
2258         for (i = 1; i <= nn; i++) {
2259                 res = nvme_identify(dev, i, 0, dma_addr);
2260                 if (res)
2261                         continue;
2262
2263                 if (id_ns->ncap == 0)
2264                         continue;
2265
2266                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2267                                                         dma_addr + 4096, NULL);
2268                 if (res)
2269                         memset(mem + 4096, 0, 4096);
2270
2271                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2272                 if (ns)
2273                         list_add_tail(&ns->list, &dev->namespaces);
2274         }
2275         list_for_each_entry(ns, &dev->namespaces, list)
2276                 add_disk(ns->disk);
2277         res = 0;
2278
2279  out:
2280         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2281         return res;
2282 }
2283
2284 static int nvme_dev_map(struct nvme_dev *dev)
2285 {
2286         u64 cap;
2287         int bars, result = -ENOMEM;
2288         struct pci_dev *pdev = dev->pci_dev;
2289
2290         if (pci_enable_device_mem(pdev))
2291                 return result;
2292
2293         dev->entry[0].vector = pdev->irq;
2294         pci_set_master(pdev);
2295         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2296         if (pci_request_selected_regions(pdev, bars, "nvme"))
2297                 goto disable_pci;
2298
2299         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2300             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2301                 goto disable;
2302
2303         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2304         if (!dev->bar)
2305                 goto disable;
2306         if (readl(&dev->bar->csts) == -1) {
2307                 result = -ENODEV;
2308                 goto unmap;
2309         }
2310         cap = readq(&dev->bar->cap);
2311         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2312         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2313         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2314
2315         return 0;
2316
2317  unmap:
2318         iounmap(dev->bar);
2319         dev->bar = NULL;
2320  disable:
2321         pci_release_regions(pdev);
2322  disable_pci:
2323         pci_disable_device(pdev);
2324         return result;
2325 }
2326
2327 static void nvme_dev_unmap(struct nvme_dev *dev)
2328 {
2329         if (dev->pci_dev->msi_enabled)
2330                 pci_disable_msi(dev->pci_dev);
2331         else if (dev->pci_dev->msix_enabled)
2332                 pci_disable_msix(dev->pci_dev);
2333
2334         if (dev->bar) {
2335                 iounmap(dev->bar);
2336                 dev->bar = NULL;
2337                 pci_release_regions(dev->pci_dev);
2338         }
2339
2340         if (pci_is_enabled(dev->pci_dev))
2341                 pci_disable_device(dev->pci_dev);
2342 }
2343
2344 struct nvme_delq_ctx {
2345         struct task_struct *waiter;
2346         struct kthread_worker *worker;
2347         atomic_t refcount;
2348 };
2349
2350 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2351 {
2352         dq->waiter = current;
2353         mb();
2354
2355         for (;;) {
2356                 set_current_state(TASK_KILLABLE);
2357                 if (!atomic_read(&dq->refcount))
2358                         break;
2359                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2360                                         fatal_signal_pending(current)) {
2361                         set_current_state(TASK_RUNNING);
2362
2363                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2364                         nvme_disable_queue(dev, 0);
2365
2366                         send_sig(SIGKILL, dq->worker->task, 1);
2367                         flush_kthread_worker(dq->worker);
2368                         return;
2369                 }
2370         }
2371         set_current_state(TASK_RUNNING);
2372 }
2373
2374 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2375 {
2376         atomic_dec(&dq->refcount);
2377         if (dq->waiter)
2378                 wake_up_process(dq->waiter);
2379 }
2380
2381 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2382 {
2383         atomic_inc(&dq->refcount);
2384         return dq;
2385 }
2386
2387 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2388 {
2389         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2390
2391         nvme_clear_queue(nvmeq);
2392         nvme_put_dq(dq);
2393 }
2394
2395 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2396                                                 kthread_work_func_t fn)
2397 {
2398         struct nvme_command c;
2399
2400         memset(&c, 0, sizeof(c));
2401         c.delete_queue.opcode = opcode;
2402         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2403
2404         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2405         return nvme_submit_admin_cmd_async(nvmeq->dev, &c, &nvmeq->cmdinfo);
2406 }
2407
2408 static void nvme_del_cq_work_handler(struct kthread_work *work)
2409 {
2410         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2411                                                         cmdinfo.work);
2412         nvme_del_queue_end(nvmeq);
2413 }
2414
2415 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2416 {
2417         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2418                                                 nvme_del_cq_work_handler);
2419 }
2420
2421 static void nvme_del_sq_work_handler(struct kthread_work *work)
2422 {
2423         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2424                                                         cmdinfo.work);
2425         int status = nvmeq->cmdinfo.status;
2426
2427         if (!status)
2428                 status = nvme_delete_cq(nvmeq);
2429         if (status)
2430                 nvme_del_queue_end(nvmeq);
2431 }
2432
2433 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2434 {
2435         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2436                                                 nvme_del_sq_work_handler);
2437 }
2438
2439 static void nvme_del_queue_start(struct kthread_work *work)
2440 {
2441         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2442                                                         cmdinfo.work);
2443         allow_signal(SIGKILL);
2444         if (nvme_delete_sq(nvmeq))
2445                 nvme_del_queue_end(nvmeq);
2446 }
2447
2448 static void nvme_disable_io_queues(struct nvme_dev *dev)
2449 {
2450         int i;
2451         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2452         struct nvme_delq_ctx dq;
2453         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2454                                         &worker, "nvme%d", dev->instance);
2455
2456         if (IS_ERR(kworker_task)) {
2457                 dev_err(&dev->pci_dev->dev,
2458                         "Failed to create queue del task\n");
2459                 for (i = dev->queue_count - 1; i > 0; i--)
2460                         nvme_disable_queue(dev, i);
2461                 return;
2462         }
2463
2464         dq.waiter = NULL;
2465         atomic_set(&dq.refcount, 0);
2466         dq.worker = &worker;
2467         for (i = dev->queue_count - 1; i > 0; i--) {
2468                 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2469
2470                 if (nvme_suspend_queue(nvmeq))
2471                         continue;
2472                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2473                 nvmeq->cmdinfo.worker = dq.worker;
2474                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2475                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2476         }
2477         nvme_wait_dq(&dq, dev);
2478         kthread_stop(kworker_task);
2479 }
2480
2481 /*
2482 * Remove the node from the device list and check
2483 * for whether or not we need to stop the nvme_thread.
2484 */
2485 static void nvme_dev_list_remove(struct nvme_dev *dev)
2486 {
2487         struct task_struct *tmp = NULL;
2488
2489         spin_lock(&dev_list_lock);
2490         list_del_init(&dev->node);
2491         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2492                 tmp = nvme_thread;
2493                 nvme_thread = NULL;
2494         }
2495         spin_unlock(&dev_list_lock);
2496
2497         if (tmp)
2498                 kthread_stop(tmp);
2499 }
2500
2501 static void nvme_dev_shutdown(struct nvme_dev *dev)
2502 {
2503         int i;
2504
2505         dev->initialized = 0;
2506         nvme_dev_list_remove(dev);
2507
2508         if (!dev->bar || (dev->bar && readl(&dev->bar->csts) == -1)) {
2509                 for (i = dev->queue_count - 1; i >= 0; i--) {
2510                         struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2511                         nvme_suspend_queue(nvmeq);
2512                         nvme_clear_queue(nvmeq);
2513                 }
2514         } else {
2515                 nvme_disable_io_queues(dev);
2516                 nvme_shutdown_ctrl(dev);
2517                 nvme_disable_queue(dev, 0);
2518         }
2519         nvme_dev_unmap(dev);
2520 }
2521
2522 static void nvme_dev_remove(struct nvme_dev *dev)
2523 {
2524         struct nvme_ns *ns;
2525
2526         list_for_each_entry(ns, &dev->namespaces, list) {
2527                 if (ns->disk->flags & GENHD_FL_UP)
2528                         del_gendisk(ns->disk);
2529                 if (!blk_queue_dying(ns->queue))
2530                         blk_cleanup_queue(ns->queue);
2531         }
2532 }
2533
2534 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2535 {
2536         struct device *dmadev = &dev->pci_dev->dev;
2537         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2538                                                 PAGE_SIZE, PAGE_SIZE, 0);
2539         if (!dev->prp_page_pool)
2540                 return -ENOMEM;
2541
2542         /* Optimisation for I/Os between 4k and 128k */
2543         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2544                                                 256, 256, 0);
2545         if (!dev->prp_small_pool) {
2546                 dma_pool_destroy(dev->prp_page_pool);
2547                 return -ENOMEM;
2548         }
2549         return 0;
2550 }
2551
2552 static void nvme_release_prp_pools(struct nvme_dev *dev)
2553 {
2554         dma_pool_destroy(dev->prp_page_pool);
2555         dma_pool_destroy(dev->prp_small_pool);
2556 }
2557
2558 static DEFINE_IDA(nvme_instance_ida);
2559
2560 static int nvme_set_instance(struct nvme_dev *dev)
2561 {
2562         int instance, error;
2563
2564         do {
2565                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2566                         return -ENODEV;
2567
2568                 spin_lock(&dev_list_lock);
2569                 error = ida_get_new(&nvme_instance_ida, &instance);
2570                 spin_unlock(&dev_list_lock);
2571         } while (error == -EAGAIN);
2572
2573         if (error)
2574                 return -ENODEV;
2575
2576         dev->instance = instance;
2577         return 0;
2578 }
2579
2580 static void nvme_release_instance(struct nvme_dev *dev)
2581 {
2582         spin_lock(&dev_list_lock);
2583         ida_remove(&nvme_instance_ida, dev->instance);
2584         spin_unlock(&dev_list_lock);
2585 }
2586
2587 static void nvme_free_namespaces(struct nvme_dev *dev)
2588 {
2589         struct nvme_ns *ns, *next;
2590
2591         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2592                 list_del(&ns->list);
2593                 put_disk(ns->disk);
2594                 kfree(ns);
2595         }
2596 }
2597
2598 static void nvme_free_dev(struct kref *kref)
2599 {
2600         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2601
2602         nvme_free_namespaces(dev);
2603         free_percpu(dev->io_queue);
2604         kfree(dev->queues);
2605         kfree(dev->entry);
2606         kfree(dev);
2607 }
2608
2609 static int nvme_dev_open(struct inode *inode, struct file *f)
2610 {
2611         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2612                                                                 miscdev);
2613         kref_get(&dev->kref);
2614         f->private_data = dev;
2615         return 0;
2616 }
2617
2618 static int nvme_dev_release(struct inode *inode, struct file *f)
2619 {
2620         struct nvme_dev *dev = f->private_data;
2621         kref_put(&dev->kref, nvme_free_dev);
2622         return 0;
2623 }
2624
2625 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2626 {
2627         struct nvme_dev *dev = f->private_data;
2628         switch (cmd) {
2629         case NVME_IOCTL_ADMIN_CMD:
2630                 return nvme_user_admin_cmd(dev, (void __user *)arg);
2631         default:
2632                 return -ENOTTY;
2633         }
2634 }
2635
2636 static const struct file_operations nvme_dev_fops = {
2637         .owner          = THIS_MODULE,
2638         .open           = nvme_dev_open,
2639         .release        = nvme_dev_release,
2640         .unlocked_ioctl = nvme_dev_ioctl,
2641         .compat_ioctl   = nvme_dev_ioctl,
2642 };
2643
2644 static int nvme_dev_start(struct nvme_dev *dev)
2645 {
2646         int result;
2647         bool start_thread = false;
2648
2649         result = nvme_dev_map(dev);
2650         if (result)
2651                 return result;
2652
2653         result = nvme_configure_admin_queue(dev);
2654         if (result)
2655                 goto unmap;
2656
2657         spin_lock(&dev_list_lock);
2658         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2659                 start_thread = true;
2660                 nvme_thread = NULL;
2661         }
2662         list_add(&dev->node, &dev_list);
2663         spin_unlock(&dev_list_lock);
2664
2665         if (start_thread) {
2666                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2667                 wake_up(&nvme_kthread_wait);
2668         } else
2669                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2670
2671         if (IS_ERR_OR_NULL(nvme_thread)) {
2672                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2673                 goto disable;
2674         }
2675
2676         result = nvme_setup_io_queues(dev);
2677         if (result && result != -EBUSY)
2678                 goto disable;
2679
2680         return result;
2681
2682  disable:
2683         nvme_disable_queue(dev, 0);
2684         nvme_dev_list_remove(dev);
2685  unmap:
2686         nvme_dev_unmap(dev);
2687         return result;
2688 }
2689
2690 static int nvme_remove_dead_ctrl(void *arg)
2691 {
2692         struct nvme_dev *dev = (struct nvme_dev *)arg;
2693         struct pci_dev *pdev = dev->pci_dev;
2694
2695         if (pci_get_drvdata(pdev))
2696                 pci_stop_and_remove_bus_device(pdev);
2697         kref_put(&dev->kref, nvme_free_dev);
2698         return 0;
2699 }
2700
2701 static void nvme_remove_disks(struct work_struct *ws)
2702 {
2703         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2704
2705         nvme_dev_remove(dev);
2706         nvme_free_queues(dev, 1);
2707 }
2708
2709 static int nvme_dev_resume(struct nvme_dev *dev)
2710 {
2711         int ret;
2712
2713         ret = nvme_dev_start(dev);
2714         if (ret && ret != -EBUSY)
2715                 return ret;
2716         if (ret == -EBUSY) {
2717                 spin_lock(&dev_list_lock);
2718                 dev->reset_workfn = nvme_remove_disks;
2719                 queue_work(nvme_workq, &dev->reset_work);
2720                 spin_unlock(&dev_list_lock);
2721         }
2722         dev->initialized = 1;
2723         return 0;
2724 }
2725
2726 static void nvme_dev_reset(struct nvme_dev *dev)
2727 {
2728         nvme_dev_shutdown(dev);
2729         if (nvme_dev_resume(dev)) {
2730                 dev_err(&dev->pci_dev->dev, "Device failed to resume\n");
2731                 kref_get(&dev->kref);
2732                 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2733                                                         dev->instance))) {
2734                         dev_err(&dev->pci_dev->dev,
2735                                 "Failed to start controller remove task\n");
2736                         kref_put(&dev->kref, nvme_free_dev);
2737                 }
2738         }
2739 }
2740
2741 static void nvme_reset_failed_dev(struct work_struct *ws)
2742 {
2743         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2744         nvme_dev_reset(dev);
2745 }
2746
2747 static void nvme_reset_workfn(struct work_struct *work)
2748 {
2749         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2750         dev->reset_workfn(work);
2751 }
2752
2753 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2754 {
2755         int result = -ENOMEM;
2756         struct nvme_dev *dev;
2757
2758         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2759         if (!dev)
2760                 return -ENOMEM;
2761         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2762                                                                 GFP_KERNEL);
2763         if (!dev->entry)
2764                 goto free;
2765         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2766                                                                 GFP_KERNEL);
2767         if (!dev->queues)
2768                 goto free;
2769         dev->io_queue = alloc_percpu(unsigned short);
2770         if (!dev->io_queue)
2771                 goto free;
2772
2773         INIT_LIST_HEAD(&dev->namespaces);
2774         dev->reset_workfn = nvme_reset_failed_dev;
2775         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2776         INIT_WORK(&dev->cpu_work, nvme_cpu_workfn);
2777         dev->pci_dev = pdev;
2778         pci_set_drvdata(pdev, dev);
2779         result = nvme_set_instance(dev);
2780         if (result)
2781                 goto free;
2782
2783         result = nvme_setup_prp_pools(dev);
2784         if (result)
2785                 goto release;
2786
2787         kref_init(&dev->kref);
2788         result = nvme_dev_start(dev);
2789         if (result) {
2790                 if (result == -EBUSY)
2791                         goto create_cdev;
2792                 goto release_pools;
2793         }
2794
2795         result = nvme_dev_add(dev);
2796         if (result)
2797                 goto shutdown;
2798
2799  create_cdev:
2800         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2801         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2802         dev->miscdev.parent = &pdev->dev;
2803         dev->miscdev.name = dev->name;
2804         dev->miscdev.fops = &nvme_dev_fops;
2805         result = misc_register(&dev->miscdev);
2806         if (result)
2807                 goto remove;
2808
2809         dev->initialized = 1;
2810         return 0;
2811
2812  remove:
2813         nvme_dev_remove(dev);
2814         nvme_free_namespaces(dev);
2815  shutdown:
2816         nvme_dev_shutdown(dev);
2817  release_pools:
2818         nvme_free_queues(dev, 0);
2819         nvme_release_prp_pools(dev);
2820  release:
2821         nvme_release_instance(dev);
2822  free:
2823         free_percpu(dev->io_queue);
2824         kfree(dev->queues);
2825         kfree(dev->entry);
2826         kfree(dev);
2827         return result;
2828 }
2829
2830 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2831 {
2832        struct nvme_dev *dev = pci_get_drvdata(pdev);
2833
2834        if (prepare)
2835                nvme_dev_shutdown(dev);
2836        else
2837                nvme_dev_resume(dev);
2838 }
2839
2840 static void nvme_shutdown(struct pci_dev *pdev)
2841 {
2842         struct nvme_dev *dev = pci_get_drvdata(pdev);
2843         nvme_dev_shutdown(dev);
2844 }
2845
2846 static void nvme_remove(struct pci_dev *pdev)
2847 {
2848         struct nvme_dev *dev = pci_get_drvdata(pdev);
2849
2850         spin_lock(&dev_list_lock);
2851         list_del_init(&dev->node);
2852         spin_unlock(&dev_list_lock);
2853
2854         pci_set_drvdata(pdev, NULL);
2855         flush_work(&dev->reset_work);
2856         flush_work(&dev->cpu_work);
2857         misc_deregister(&dev->miscdev);
2858         nvme_dev_remove(dev);
2859         nvme_dev_shutdown(dev);
2860         nvme_free_queues(dev, 0);
2861         rcu_barrier();
2862         nvme_release_instance(dev);
2863         nvme_release_prp_pools(dev);
2864         kref_put(&dev->kref, nvme_free_dev);
2865 }
2866
2867 /* These functions are yet to be implemented */
2868 #define nvme_error_detected NULL
2869 #define nvme_dump_registers NULL
2870 #define nvme_link_reset NULL
2871 #define nvme_slot_reset NULL
2872 #define nvme_error_resume NULL
2873
2874 #ifdef CONFIG_PM_SLEEP
2875 static int nvme_suspend(struct device *dev)
2876 {
2877         struct pci_dev *pdev = to_pci_dev(dev);
2878         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2879
2880         nvme_dev_shutdown(ndev);
2881         return 0;
2882 }
2883
2884 static int nvme_resume(struct device *dev)
2885 {
2886         struct pci_dev *pdev = to_pci_dev(dev);
2887         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2888
2889         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2890                 ndev->reset_workfn = nvme_reset_failed_dev;
2891                 queue_work(nvme_workq, &ndev->reset_work);
2892         }
2893         return 0;
2894 }
2895 #endif
2896
2897 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2898
2899 static const struct pci_error_handlers nvme_err_handler = {
2900         .error_detected = nvme_error_detected,
2901         .mmio_enabled   = nvme_dump_registers,
2902         .link_reset     = nvme_link_reset,
2903         .slot_reset     = nvme_slot_reset,
2904         .resume         = nvme_error_resume,
2905         .reset_notify   = nvme_reset_notify,
2906 };
2907
2908 /* Move to pci_ids.h later */
2909 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2910
2911 static const struct pci_device_id nvme_id_table[] = {
2912         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2913         { 0, }
2914 };
2915 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2916
2917 static struct pci_driver nvme_driver = {
2918         .name           = "nvme",
2919         .id_table       = nvme_id_table,
2920         .probe          = nvme_probe,
2921         .remove         = nvme_remove,
2922         .shutdown       = nvme_shutdown,
2923         .driver         = {
2924                 .pm     = &nvme_dev_pm_ops,
2925         },
2926         .err_handler    = &nvme_err_handler,
2927 };
2928
2929 static int __init nvme_init(void)
2930 {
2931         int result;
2932
2933         init_waitqueue_head(&nvme_kthread_wait);
2934
2935         nvme_workq = create_singlethread_workqueue("nvme");
2936         if (!nvme_workq)
2937                 return -ENOMEM;
2938
2939         result = register_blkdev(nvme_major, "nvme");
2940         if (result < 0)
2941                 goto kill_workq;
2942         else if (result > 0)
2943                 nvme_major = result;
2944
2945         nvme_nb.notifier_call = &nvme_cpu_notify;
2946         result = register_hotcpu_notifier(&nvme_nb);
2947         if (result)
2948                 goto unregister_blkdev;
2949
2950         result = pci_register_driver(&nvme_driver);
2951         if (result)
2952                 goto unregister_hotcpu;
2953         return 0;
2954
2955  unregister_hotcpu:
2956         unregister_hotcpu_notifier(&nvme_nb);
2957  unregister_blkdev:
2958         unregister_blkdev(nvme_major, "nvme");
2959  kill_workq:
2960         destroy_workqueue(nvme_workq);
2961         return result;
2962 }
2963
2964 static void __exit nvme_exit(void)
2965 {
2966         pci_unregister_driver(&nvme_driver);
2967         unregister_hotcpu_notifier(&nvme_nb);
2968         unregister_blkdev(nvme_major, "nvme");
2969         destroy_workqueue(nvme_workq);
2970         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2971         _nvme_check_size();
2972 }
2973
2974 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2975 MODULE_LICENSE("GPL");
2976 MODULE_VERSION("0.9");
2977 module_init(nvme_init);
2978 module_exit(nvme_exit);