]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/nvme-core.c
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <scsi/sg.h>
42 #include <asm-generic/io-64-nonatomic-lo-hi.h>
43
44 #define NVME_Q_DEPTH            1024
45 #define NVME_AQ_DEPTH           64
46 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
48 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
49 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
50 #define IOD_TIMEOUT             (retry_time * HZ)
51
52 static unsigned char admin_timeout = 60;
53 module_param(admin_timeout, byte, 0644);
54 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
55
56 unsigned char nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59
60 static unsigned char retry_time = 30;
61 module_param(retry_time, byte, 0644);
62 MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");
63
64 static unsigned char shutdown_timeout = 5;
65 module_param(shutdown_timeout, byte, 0644);
66 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
67
68 static int nvme_major;
69 module_param(nvme_major, int, 0);
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79 static struct notifier_block nvme_nb;
80
81 static void nvme_reset_failed_dev(struct work_struct *ws);
82 static int nvme_process_cq(struct nvme_queue *nvmeq);
83
84 struct async_cmd_info {
85         struct kthread_work work;
86         struct kthread_worker *worker;
87         struct request *req;
88         u32 result;
89         int status;
90         void *ctx;
91 };
92
93 /*
94  * An NVM Express queue.  Each device has at least two (one for admin
95  * commands and one for I/O commands).
96  */
97 struct nvme_queue {
98         struct llist_node node;
99         struct device *q_dmadev;
100         struct nvme_dev *dev;
101         char irqname[24];       /* nvme4294967295-65535\0 */
102         spinlock_t q_lock;
103         struct nvme_command *sq_cmds;
104         volatile struct nvme_completion *cqes;
105         dma_addr_t sq_dma_addr;
106         dma_addr_t cq_dma_addr;
107         u32 __iomem *q_db;
108         u16 q_depth;
109         s16 cq_vector;
110         u16 sq_head;
111         u16 sq_tail;
112         u16 cq_head;
113         u16 qid;
114         u8 cq_phase;
115         u8 cqe_seen;
116         struct async_cmd_info cmdinfo;
117         struct blk_mq_hw_ctx *hctx;
118 };
119
120 /*
121  * Check we didin't inadvertently grow the command struct
122  */
123 static inline void _nvme_check_size(void)
124 {
125         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140                                                 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143         nvme_completion_fn fn;
144         void *ctx;
145         int aborted;
146         struct nvme_queue *nvmeq;
147         struct nvme_iod iod[0];
148 };
149
150 /*
151  * Max size of iod being embedded in the request payload
152  */
153 #define NVME_INT_PAGES          2
154 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
155
156 /*
157  * Will slightly overestimate the number of pages needed.  This is OK
158  * as it only leads to a small amount of wasted memory for the lifetime of
159  * the I/O.
160  */
161 static int nvme_npages(unsigned size, struct nvme_dev *dev)
162 {
163         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
164         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
165 }
166
167 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
168 {
169         unsigned int ret = sizeof(struct nvme_cmd_info);
170
171         ret += sizeof(struct nvme_iod);
172         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
173         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
174
175         return ret;
176 }
177
178 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
179                                 unsigned int hctx_idx)
180 {
181         struct nvme_dev *dev = data;
182         struct nvme_queue *nvmeq = dev->queues[0];
183
184         WARN_ON(nvmeq->hctx);
185         nvmeq->hctx = hctx;
186         hctx->driver_data = nvmeq;
187         return 0;
188 }
189
190 static int nvme_admin_init_request(void *data, struct request *req,
191                                 unsigned int hctx_idx, unsigned int rq_idx,
192                                 unsigned int numa_node)
193 {
194         struct nvme_dev *dev = data;
195         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
196         struct nvme_queue *nvmeq = dev->queues[0];
197
198         BUG_ON(!nvmeq);
199         cmd->nvmeq = nvmeq;
200         return 0;
201 }
202
203 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
204 {
205         struct nvme_queue *nvmeq = hctx->driver_data;
206
207         nvmeq->hctx = NULL;
208 }
209
210 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
211                           unsigned int hctx_idx)
212 {
213         struct nvme_dev *dev = data;
214         struct nvme_queue *nvmeq = dev->queues[
215                                         (hctx_idx % dev->queue_count) + 1];
216
217         if (!nvmeq->hctx)
218                 nvmeq->hctx = hctx;
219
220         /* nvmeq queues are shared between namespaces. We assume here that
221          * blk-mq map the tags so they match up with the nvme queue tags. */
222         WARN_ON(nvmeq->hctx->tags != hctx->tags);
223
224         hctx->driver_data = nvmeq;
225         return 0;
226 }
227
228 static int nvme_init_request(void *data, struct request *req,
229                                 unsigned int hctx_idx, unsigned int rq_idx,
230                                 unsigned int numa_node)
231 {
232         struct nvme_dev *dev = data;
233         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
234         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
235
236         BUG_ON(!nvmeq);
237         cmd->nvmeq = nvmeq;
238         return 0;
239 }
240
241 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
242                                 nvme_completion_fn handler)
243 {
244         cmd->fn = handler;
245         cmd->ctx = ctx;
246         cmd->aborted = 0;
247         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
248 }
249
250 static void *iod_get_private(struct nvme_iod *iod)
251 {
252         return (void *) (iod->private & ~0x1UL);
253 }
254
255 /*
256  * If bit 0 is set, the iod is embedded in the request payload.
257  */
258 static bool iod_should_kfree(struct nvme_iod *iod)
259 {
260         return (iod->private & 0x01) == 0;
261 }
262
263 /* Special values must be less than 0x1000 */
264 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
265 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
266 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
267 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
268
269 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
270                                                 struct nvme_completion *cqe)
271 {
272         if (ctx == CMD_CTX_CANCELLED)
273                 return;
274         if (ctx == CMD_CTX_COMPLETED) {
275                 dev_warn(nvmeq->q_dmadev,
276                                 "completed id %d twice on queue %d\n",
277                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
278                 return;
279         }
280         if (ctx == CMD_CTX_INVALID) {
281                 dev_warn(nvmeq->q_dmadev,
282                                 "invalid id %d completed on queue %d\n",
283                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
284                 return;
285         }
286         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
287 }
288
289 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
290 {
291         void *ctx;
292
293         if (fn)
294                 *fn = cmd->fn;
295         ctx = cmd->ctx;
296         cmd->fn = special_completion;
297         cmd->ctx = CMD_CTX_CANCELLED;
298         return ctx;
299 }
300
301 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
302                                                 struct nvme_completion *cqe)
303 {
304         struct request *req = ctx;
305
306         u32 result = le32_to_cpup(&cqe->result);
307         u16 status = le16_to_cpup(&cqe->status) >> 1;
308
309         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
310                 ++nvmeq->dev->event_limit;
311         if (status == NVME_SC_SUCCESS)
312                 dev_warn(nvmeq->q_dmadev,
313                         "async event result %08x\n", result);
314
315         blk_mq_free_hctx_request(nvmeq->hctx, req);
316 }
317
318 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
319                                                 struct nvme_completion *cqe)
320 {
321         struct request *req = ctx;
322
323         u16 status = le16_to_cpup(&cqe->status) >> 1;
324         u32 result = le32_to_cpup(&cqe->result);
325
326         blk_mq_free_hctx_request(nvmeq->hctx, req);
327
328         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
329         ++nvmeq->dev->abort_limit;
330 }
331
332 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
333                                                 struct nvme_completion *cqe)
334 {
335         struct async_cmd_info *cmdinfo = ctx;
336         cmdinfo->result = le32_to_cpup(&cqe->result);
337         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
338         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
339         blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
340 }
341
342 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
343                                   unsigned int tag)
344 {
345         struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
346         struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
347
348         return blk_mq_rq_to_pdu(req);
349 }
350
351 /*
352  * Called with local interrupts disabled and the q_lock held.  May not sleep.
353  */
354 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
355                                                 nvme_completion_fn *fn)
356 {
357         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
358         void *ctx;
359         if (tag >= nvmeq->q_depth) {
360                 *fn = special_completion;
361                 return CMD_CTX_INVALID;
362         }
363         if (fn)
364                 *fn = cmd->fn;
365         ctx = cmd->ctx;
366         cmd->fn = special_completion;
367         cmd->ctx = CMD_CTX_COMPLETED;
368         return ctx;
369 }
370
371 /**
372  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
373  * @nvmeq: The queue to use
374  * @cmd: The command to send
375  *
376  * Safe to use from interrupt context
377  */
378 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
379 {
380         u16 tail = nvmeq->sq_tail;
381
382         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
383         if (++tail == nvmeq->q_depth)
384                 tail = 0;
385         writel(tail, nvmeq->q_db);
386         nvmeq->sq_tail = tail;
387
388         return 0;
389 }
390
391 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
392 {
393         unsigned long flags;
394         int ret;
395         spin_lock_irqsave(&nvmeq->q_lock, flags);
396         ret = __nvme_submit_cmd(nvmeq, cmd);
397         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
398         return ret;
399 }
400
401 static __le64 **iod_list(struct nvme_iod *iod)
402 {
403         return ((void *)iod) + iod->offset;
404 }
405
406 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
407                             unsigned nseg, unsigned long private)
408 {
409         iod->private = private;
410         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
411         iod->npages = -1;
412         iod->length = nbytes;
413         iod->nents = 0;
414 }
415
416 static struct nvme_iod *
417 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
418                  unsigned long priv, gfp_t gfp)
419 {
420         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
421                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
422                                 sizeof(struct scatterlist) * nseg, gfp);
423
424         if (iod)
425                 iod_init(iod, bytes, nseg, priv);
426
427         return iod;
428 }
429
430 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
431                                        gfp_t gfp)
432 {
433         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
434                                                 sizeof(struct nvme_dsm_range);
435         unsigned long mask = 0;
436         struct nvme_iod *iod;
437
438         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
439             size <= NVME_INT_BYTES(dev)) {
440                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
441
442                 iod = cmd->iod;
443                 mask = 0x01;
444                 iod_init(iod, size, rq->nr_phys_segments,
445                                 (unsigned long) rq | 0x01);
446                 return iod;
447         }
448
449         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
450                                 (unsigned long) rq, gfp);
451 }
452
453 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
454 {
455         const int last_prp = dev->page_size / 8 - 1;
456         int i;
457         __le64 **list = iod_list(iod);
458         dma_addr_t prp_dma = iod->first_dma;
459
460         if (iod->npages == 0)
461                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
462         for (i = 0; i < iod->npages; i++) {
463                 __le64 *prp_list = list[i];
464                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
465                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
466                 prp_dma = next_prp_dma;
467         }
468
469         if (iod_should_kfree(iod))
470                 kfree(iod);
471 }
472
473 static int nvme_error_status(u16 status)
474 {
475         switch (status & 0x7ff) {
476         case NVME_SC_SUCCESS:
477                 return 0;
478         case NVME_SC_CAP_EXCEEDED:
479                 return -ENOSPC;
480         default:
481                 return -EIO;
482         }
483 }
484
485 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
486                                                 struct nvme_completion *cqe)
487 {
488         struct nvme_iod *iod = ctx;
489         struct request *req = iod_get_private(iod);
490         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
491
492         u16 status = le16_to_cpup(&cqe->status) >> 1;
493
494         if (unlikely(status)) {
495                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
496                     && (jiffies - req->start_time) < req->timeout) {
497                         unsigned long flags;
498
499                         blk_mq_requeue_request(req);
500                         spin_lock_irqsave(req->q->queue_lock, flags);
501                         if (!blk_queue_stopped(req->q))
502                                 blk_mq_kick_requeue_list(req->q);
503                         spin_unlock_irqrestore(req->q->queue_lock, flags);
504                         return;
505                 }
506                 req->errors = nvme_error_status(status);
507         } else
508                 req->errors = 0;
509
510         if (cmd_rq->aborted)
511                 dev_warn(&nvmeq->dev->pci_dev->dev,
512                         "completing aborted command with status:%04x\n",
513                         status);
514
515         if (iod->nents)
516                 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
517                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
518         nvme_free_iod(nvmeq->dev, iod);
519
520         blk_mq_complete_request(req);
521 }
522
523 /* length is in bytes.  gfp flags indicates whether we may sleep. */
524 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
525                                                                 gfp_t gfp)
526 {
527         struct dma_pool *pool;
528         int length = total_len;
529         struct scatterlist *sg = iod->sg;
530         int dma_len = sg_dma_len(sg);
531         u64 dma_addr = sg_dma_address(sg);
532         int offset = offset_in_page(dma_addr);
533         __le64 *prp_list;
534         __le64 **list = iod_list(iod);
535         dma_addr_t prp_dma;
536         int nprps, i;
537         u32 page_size = dev->page_size;
538
539         length -= (page_size - offset);
540         if (length <= 0)
541                 return total_len;
542
543         dma_len -= (page_size - offset);
544         if (dma_len) {
545                 dma_addr += (page_size - offset);
546         } else {
547                 sg = sg_next(sg);
548                 dma_addr = sg_dma_address(sg);
549                 dma_len = sg_dma_len(sg);
550         }
551
552         if (length <= page_size) {
553                 iod->first_dma = dma_addr;
554                 return total_len;
555         }
556
557         nprps = DIV_ROUND_UP(length, page_size);
558         if (nprps <= (256 / 8)) {
559                 pool = dev->prp_small_pool;
560                 iod->npages = 0;
561         } else {
562                 pool = dev->prp_page_pool;
563                 iod->npages = 1;
564         }
565
566         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
567         if (!prp_list) {
568                 iod->first_dma = dma_addr;
569                 iod->npages = -1;
570                 return (total_len - length) + page_size;
571         }
572         list[0] = prp_list;
573         iod->first_dma = prp_dma;
574         i = 0;
575         for (;;) {
576                 if (i == page_size >> 3) {
577                         __le64 *old_prp_list = prp_list;
578                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
579                         if (!prp_list)
580                                 return total_len - length;
581                         list[iod->npages++] = prp_list;
582                         prp_list[0] = old_prp_list[i - 1];
583                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
584                         i = 1;
585                 }
586                 prp_list[i++] = cpu_to_le64(dma_addr);
587                 dma_len -= page_size;
588                 dma_addr += page_size;
589                 length -= page_size;
590                 if (length <= 0)
591                         break;
592                 if (dma_len > 0)
593                         continue;
594                 BUG_ON(dma_len < 0);
595                 sg = sg_next(sg);
596                 dma_addr = sg_dma_address(sg);
597                 dma_len = sg_dma_len(sg);
598         }
599
600         return total_len;
601 }
602
603 /*
604  * We reuse the small pool to allocate the 16-byte range here as it is not
605  * worth having a special pool for these or additional cases to handle freeing
606  * the iod.
607  */
608 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
609                 struct request *req, struct nvme_iod *iod)
610 {
611         struct nvme_dsm_range *range =
612                                 (struct nvme_dsm_range *)iod_list(iod)[0];
613         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
614
615         range->cattr = cpu_to_le32(0);
616         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
617         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
618
619         memset(cmnd, 0, sizeof(*cmnd));
620         cmnd->dsm.opcode = nvme_cmd_dsm;
621         cmnd->dsm.command_id = req->tag;
622         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
623         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
624         cmnd->dsm.nr = 0;
625         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
626
627         if (++nvmeq->sq_tail == nvmeq->q_depth)
628                 nvmeq->sq_tail = 0;
629         writel(nvmeq->sq_tail, nvmeq->q_db);
630 }
631
632 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
633                                                                 int cmdid)
634 {
635         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
636
637         memset(cmnd, 0, sizeof(*cmnd));
638         cmnd->common.opcode = nvme_cmd_flush;
639         cmnd->common.command_id = cmdid;
640         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
641
642         if (++nvmeq->sq_tail == nvmeq->q_depth)
643                 nvmeq->sq_tail = 0;
644         writel(nvmeq->sq_tail, nvmeq->q_db);
645 }
646
647 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
648                                                         struct nvme_ns *ns)
649 {
650         struct request *req = iod_get_private(iod);
651         struct nvme_command *cmnd;
652         u16 control = 0;
653         u32 dsmgmt = 0;
654
655         if (req->cmd_flags & REQ_FUA)
656                 control |= NVME_RW_FUA;
657         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
658                 control |= NVME_RW_LR;
659
660         if (req->cmd_flags & REQ_RAHEAD)
661                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
662
663         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
664         memset(cmnd, 0, sizeof(*cmnd));
665
666         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
667         cmnd->rw.command_id = req->tag;
668         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
669         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
670         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
671         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
672         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
673         cmnd->rw.control = cpu_to_le16(control);
674         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
675
676         if (++nvmeq->sq_tail == nvmeq->q_depth)
677                 nvmeq->sq_tail = 0;
678         writel(nvmeq->sq_tail, nvmeq->q_db);
679
680         return 0;
681 }
682
683 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
684                          const struct blk_mq_queue_data *bd)
685 {
686         struct nvme_ns *ns = hctx->queue->queuedata;
687         struct nvme_queue *nvmeq = hctx->driver_data;
688         struct request *req = bd->rq;
689         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
690         struct nvme_iod *iod;
691         enum dma_data_direction dma_dir;
692
693         iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
694         if (!iod)
695                 return BLK_MQ_RQ_QUEUE_BUSY;
696
697         if (req->cmd_flags & REQ_DISCARD) {
698                 void *range;
699                 /*
700                  * We reuse the small pool to allocate the 16-byte range here
701                  * as it is not worth having a special pool for these or
702                  * additional cases to handle freeing the iod.
703                  */
704                 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
705                                                 GFP_ATOMIC,
706                                                 &iod->first_dma);
707                 if (!range)
708                         goto retry_cmd;
709                 iod_list(iod)[0] = (__le64 *)range;
710                 iod->npages = 0;
711         } else if (req->nr_phys_segments) {
712                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
713
714                 sg_init_table(iod->sg, req->nr_phys_segments);
715                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
716                 if (!iod->nents)
717                         goto error_cmd;
718
719                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
720                         goto retry_cmd;
721
722                 if (blk_rq_bytes(req) !=
723                     nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
724                         dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
725                                         iod->nents, dma_dir);
726                         goto retry_cmd;
727                 }
728         }
729
730         nvme_set_info(cmd, iod, req_completion);
731         spin_lock_irq(&nvmeq->q_lock);
732         if (req->cmd_flags & REQ_DISCARD)
733                 nvme_submit_discard(nvmeq, ns, req, iod);
734         else if (req->cmd_flags & REQ_FLUSH)
735                 nvme_submit_flush(nvmeq, ns, req->tag);
736         else
737                 nvme_submit_iod(nvmeq, iod, ns);
738
739         nvme_process_cq(nvmeq);
740         spin_unlock_irq(&nvmeq->q_lock);
741         return BLK_MQ_RQ_QUEUE_OK;
742
743  error_cmd:
744         nvme_free_iod(nvmeq->dev, iod);
745         return BLK_MQ_RQ_QUEUE_ERROR;
746  retry_cmd:
747         nvme_free_iod(nvmeq->dev, iod);
748         return BLK_MQ_RQ_QUEUE_BUSY;
749 }
750
751 static int nvme_process_cq(struct nvme_queue *nvmeq)
752 {
753         u16 head, phase;
754
755         head = nvmeq->cq_head;
756         phase = nvmeq->cq_phase;
757
758         for (;;) {
759                 void *ctx;
760                 nvme_completion_fn fn;
761                 struct nvme_completion cqe = nvmeq->cqes[head];
762                 if ((le16_to_cpu(cqe.status) & 1) != phase)
763                         break;
764                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
765                 if (++head == nvmeq->q_depth) {
766                         head = 0;
767                         phase = !phase;
768                 }
769                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
770                 fn(nvmeq, ctx, &cqe);
771         }
772
773         /* If the controller ignores the cq head doorbell and continuously
774          * writes to the queue, it is theoretically possible to wrap around
775          * the queue twice and mistakenly return IRQ_NONE.  Linux only
776          * requires that 0.1% of your interrupts are handled, so this isn't
777          * a big problem.
778          */
779         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
780                 return 0;
781
782         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
783         nvmeq->cq_head = head;
784         nvmeq->cq_phase = phase;
785
786         nvmeq->cqe_seen = 1;
787         return 1;
788 }
789
790 /* Admin queue isn't initialized as a request queue. If at some point this
791  * happens anyway, make sure to notify the user */
792 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
793                                const struct blk_mq_queue_data *bd)
794 {
795         WARN_ON_ONCE(1);
796         return BLK_MQ_RQ_QUEUE_ERROR;
797 }
798
799 static irqreturn_t nvme_irq(int irq, void *data)
800 {
801         irqreturn_t result;
802         struct nvme_queue *nvmeq = data;
803         spin_lock(&nvmeq->q_lock);
804         nvme_process_cq(nvmeq);
805         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
806         nvmeq->cqe_seen = 0;
807         spin_unlock(&nvmeq->q_lock);
808         return result;
809 }
810
811 static irqreturn_t nvme_irq_check(int irq, void *data)
812 {
813         struct nvme_queue *nvmeq = data;
814         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
815         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
816                 return IRQ_NONE;
817         return IRQ_WAKE_THREAD;
818 }
819
820 static void nvme_abort_cmd_info(struct nvme_queue *nvmeq, struct nvme_cmd_info *
821                                                                 cmd_info)
822 {
823         spin_lock_irq(&nvmeq->q_lock);
824         cancel_cmd_info(cmd_info, NULL);
825         spin_unlock_irq(&nvmeq->q_lock);
826 }
827
828 struct sync_cmd_info {
829         struct task_struct *task;
830         u32 result;
831         int status;
832 };
833
834 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
835                                                 struct nvme_completion *cqe)
836 {
837         struct sync_cmd_info *cmdinfo = ctx;
838         cmdinfo->result = le32_to_cpup(&cqe->result);
839         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
840         wake_up_process(cmdinfo->task);
841 }
842
843 /*
844  * Returns 0 on success.  If the result is negative, it's a Linux error code;
845  * if the result is positive, it's an NVM Express status code
846  */
847 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
848                                                 u32 *result, unsigned timeout)
849 {
850         int ret;
851         struct sync_cmd_info cmdinfo;
852         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
853         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
854
855         cmdinfo.task = current;
856         cmdinfo.status = -EINTR;
857
858         cmd->common.command_id = req->tag;
859
860         nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
861
862         set_current_state(TASK_KILLABLE);
863         ret = nvme_submit_cmd(nvmeq, cmd);
864         if (ret) {
865                 nvme_finish_cmd(nvmeq, req->tag, NULL);
866                 set_current_state(TASK_RUNNING);
867         }
868         ret = schedule_timeout(timeout);
869
870         /*
871          * Ensure that sync_completion has either run, or that it will
872          * never run.
873          */
874         nvme_abort_cmd_info(nvmeq, blk_mq_rq_to_pdu(req));
875
876         /*
877          * We never got the completion
878          */
879         if (cmdinfo.status == -EINTR)
880                 return -EINTR;
881
882         if (result)
883                 *result = cmdinfo.result;
884
885         return cmdinfo.status;
886 }
887
888 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
889 {
890         struct nvme_queue *nvmeq = dev->queues[0];
891         struct nvme_command c;
892         struct nvme_cmd_info *cmd_info;
893         struct request *req;
894
895         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
896         if (IS_ERR(req))
897                 return PTR_ERR(req);
898
899         req->cmd_flags |= REQ_NO_TIMEOUT;
900         cmd_info = blk_mq_rq_to_pdu(req);
901         nvme_set_info(cmd_info, req, async_req_completion);
902
903         memset(&c, 0, sizeof(c));
904         c.common.opcode = nvme_admin_async_event;
905         c.common.command_id = req->tag;
906
907         return __nvme_submit_cmd(nvmeq, &c);
908 }
909
910 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
911                         struct nvme_command *cmd,
912                         struct async_cmd_info *cmdinfo, unsigned timeout)
913 {
914         struct nvme_queue *nvmeq = dev->queues[0];
915         struct request *req;
916         struct nvme_cmd_info *cmd_rq;
917
918         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
919         if (IS_ERR(req))
920                 return PTR_ERR(req);
921
922         req->timeout = timeout;
923         cmd_rq = blk_mq_rq_to_pdu(req);
924         cmdinfo->req = req;
925         nvme_set_info(cmd_rq, cmdinfo, async_completion);
926         cmdinfo->status = -EINTR;
927
928         cmd->common.command_id = req->tag;
929
930         return nvme_submit_cmd(nvmeq, cmd);
931 }
932
933 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
934                                                 u32 *result, unsigned timeout)
935 {
936         int res;
937         struct request *req;
938
939         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
940         if (IS_ERR(req))
941                 return PTR_ERR(req);
942         res = nvme_submit_sync_cmd(req, cmd, result, timeout);
943         blk_mq_free_request(req);
944         return res;
945 }
946
947 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
948                                                                 u32 *result)
949 {
950         return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
951 }
952
953 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
954                                         struct nvme_command *cmd, u32 *result)
955 {
956         int res;
957         struct request *req;
958
959         req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
960                                                                         false);
961         if (IS_ERR(req))
962                 return PTR_ERR(req);
963         res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
964         blk_mq_free_request(req);
965         return res;
966 }
967
968 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
969 {
970         struct nvme_command c;
971
972         memset(&c, 0, sizeof(c));
973         c.delete_queue.opcode = opcode;
974         c.delete_queue.qid = cpu_to_le16(id);
975
976         return nvme_submit_admin_cmd(dev, &c, NULL);
977 }
978
979 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
980                                                 struct nvme_queue *nvmeq)
981 {
982         struct nvme_command c;
983         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
984
985         memset(&c, 0, sizeof(c));
986         c.create_cq.opcode = nvme_admin_create_cq;
987         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
988         c.create_cq.cqid = cpu_to_le16(qid);
989         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
990         c.create_cq.cq_flags = cpu_to_le16(flags);
991         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
992
993         return nvme_submit_admin_cmd(dev, &c, NULL);
994 }
995
996 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
997                                                 struct nvme_queue *nvmeq)
998 {
999         struct nvme_command c;
1000         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1001
1002         memset(&c, 0, sizeof(c));
1003         c.create_sq.opcode = nvme_admin_create_sq;
1004         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1005         c.create_sq.sqid = cpu_to_le16(qid);
1006         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1007         c.create_sq.sq_flags = cpu_to_le16(flags);
1008         c.create_sq.cqid = cpu_to_le16(qid);
1009
1010         return nvme_submit_admin_cmd(dev, &c, NULL);
1011 }
1012
1013 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1014 {
1015         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1016 }
1017
1018 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1019 {
1020         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1021 }
1022
1023 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1024                                                         dma_addr_t dma_addr)
1025 {
1026         struct nvme_command c;
1027
1028         memset(&c, 0, sizeof(c));
1029         c.identify.opcode = nvme_admin_identify;
1030         c.identify.nsid = cpu_to_le32(nsid);
1031         c.identify.prp1 = cpu_to_le64(dma_addr);
1032         c.identify.cns = cpu_to_le32(cns);
1033
1034         return nvme_submit_admin_cmd(dev, &c, NULL);
1035 }
1036
1037 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1038                                         dma_addr_t dma_addr, u32 *result)
1039 {
1040         struct nvme_command c;
1041
1042         memset(&c, 0, sizeof(c));
1043         c.features.opcode = nvme_admin_get_features;
1044         c.features.nsid = cpu_to_le32(nsid);
1045         c.features.prp1 = cpu_to_le64(dma_addr);
1046         c.features.fid = cpu_to_le32(fid);
1047
1048         return nvme_submit_admin_cmd(dev, &c, result);
1049 }
1050
1051 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1052                                         dma_addr_t dma_addr, u32 *result)
1053 {
1054         struct nvme_command c;
1055
1056         memset(&c, 0, sizeof(c));
1057         c.features.opcode = nvme_admin_set_features;
1058         c.features.prp1 = cpu_to_le64(dma_addr);
1059         c.features.fid = cpu_to_le32(fid);
1060         c.features.dword11 = cpu_to_le32(dword11);
1061
1062         return nvme_submit_admin_cmd(dev, &c, result);
1063 }
1064
1065 /**
1066  * nvme_abort_req - Attempt aborting a request
1067  *
1068  * Schedule controller reset if the command was already aborted once before and
1069  * still hasn't been returned to the driver, or if this is the admin queue.
1070  */
1071 static void nvme_abort_req(struct request *req)
1072 {
1073         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1074         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1075         struct nvme_dev *dev = nvmeq->dev;
1076         struct request *abort_req;
1077         struct nvme_cmd_info *abort_cmd;
1078         struct nvme_command cmd;
1079
1080         if (!nvmeq->qid || cmd_rq->aborted) {
1081                 unsigned long flags;
1082
1083                 spin_lock_irqsave(&dev_list_lock, flags);
1084                 if (work_busy(&dev->reset_work))
1085                         goto out;
1086                 list_del_init(&dev->node);
1087                 dev_warn(&dev->pci_dev->dev,
1088                         "I/O %d QID %d timeout, reset controller\n",
1089                                                         req->tag, nvmeq->qid);
1090                 dev->reset_workfn = nvme_reset_failed_dev;
1091                 queue_work(nvme_workq, &dev->reset_work);
1092  out:
1093                 spin_unlock_irqrestore(&dev_list_lock, flags);
1094                 return;
1095         }
1096
1097         if (!dev->abort_limit)
1098                 return;
1099
1100         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1101                                                                         false);
1102         if (IS_ERR(abort_req))
1103                 return;
1104
1105         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1106         nvme_set_info(abort_cmd, abort_req, abort_completion);
1107
1108         memset(&cmd, 0, sizeof(cmd));
1109         cmd.abort.opcode = nvme_admin_abort_cmd;
1110         cmd.abort.cid = req->tag;
1111         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1112         cmd.abort.command_id = abort_req->tag;
1113
1114         --dev->abort_limit;
1115         cmd_rq->aborted = 1;
1116
1117         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1118                                                         nvmeq->qid);
1119         if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1120                 dev_warn(nvmeq->q_dmadev,
1121                                 "Could not abort I/O %d QID %d",
1122                                 req->tag, nvmeq->qid);
1123                 blk_mq_free_request(abort_req);
1124         }
1125 }
1126
1127 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1128                                 struct request *req, void *data, bool reserved)
1129 {
1130         struct nvme_queue *nvmeq = data;
1131         void *ctx;
1132         nvme_completion_fn fn;
1133         struct nvme_cmd_info *cmd;
1134         struct nvme_completion cqe;
1135
1136         if (!blk_mq_request_started(req))
1137                 return;
1138
1139         cmd = blk_mq_rq_to_pdu(req);
1140
1141         if (cmd->ctx == CMD_CTX_CANCELLED)
1142                 return;
1143
1144         if (blk_queue_dying(req->q))
1145                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1146         else
1147                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1148
1149
1150         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1151                                                 req->tag, nvmeq->qid);
1152         ctx = cancel_cmd_info(cmd, &fn);
1153         fn(nvmeq, ctx, &cqe);
1154 }
1155
1156 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1157 {
1158         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1159         struct nvme_queue *nvmeq = cmd->nvmeq;
1160
1161         /*
1162          * The aborted req will be completed on receiving the abort req.
1163          * We enable the timer again. If hit twice, it'll cause a device reset,
1164          * as the device then is in a faulty state.
1165          */
1166         int ret = BLK_EH_RESET_TIMER;
1167
1168         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1169                                                         nvmeq->qid);
1170
1171         spin_lock_irq(&nvmeq->q_lock);
1172         if (!nvmeq->dev->initialized) {
1173                 /*
1174                  * Force cancelled command frees the request, which requires we
1175                  * return BLK_EH_NOT_HANDLED.
1176                  */
1177                 nvme_cancel_queue_ios(nvmeq->hctx, req, nvmeq, reserved);
1178                 ret = BLK_EH_NOT_HANDLED;
1179         } else
1180                 nvme_abort_req(req);
1181         spin_unlock_irq(&nvmeq->q_lock);
1182
1183         return ret;
1184 }
1185
1186 static void nvme_free_queue(struct nvme_queue *nvmeq)
1187 {
1188         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1189                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1190         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1191                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1192         kfree(nvmeq);
1193 }
1194
1195 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1196 {
1197         int i;
1198
1199         for (i = dev->queue_count - 1; i >= lowest; i--) {
1200                 struct nvme_queue *nvmeq = dev->queues[i];
1201                 dev->queue_count--;
1202                 dev->queues[i] = NULL;
1203                 nvme_free_queue(nvmeq);
1204         }
1205 }
1206
1207 /**
1208  * nvme_suspend_queue - put queue into suspended state
1209  * @nvmeq - queue to suspend
1210  */
1211 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1212 {
1213         int vector;
1214
1215         spin_lock_irq(&nvmeq->q_lock);
1216         if (nvmeq->cq_vector == -1) {
1217                 spin_unlock_irq(&nvmeq->q_lock);
1218                 return 1;
1219         }
1220         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1221         nvmeq->dev->online_queues--;
1222         nvmeq->cq_vector = -1;
1223         spin_unlock_irq(&nvmeq->q_lock);
1224
1225         irq_set_affinity_hint(vector, NULL);
1226         free_irq(vector, nvmeq);
1227
1228         return 0;
1229 }
1230
1231 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1232 {
1233         struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1234
1235         spin_lock_irq(&nvmeq->q_lock);
1236         nvme_process_cq(nvmeq);
1237         if (hctx && hctx->tags)
1238                 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1239         spin_unlock_irq(&nvmeq->q_lock);
1240 }
1241
1242 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1243 {
1244         struct nvme_queue *nvmeq = dev->queues[qid];
1245
1246         if (!nvmeq)
1247                 return;
1248         if (nvme_suspend_queue(nvmeq))
1249                 return;
1250
1251         /* Don't tell the adapter to delete the admin queue.
1252          * Don't tell a removed adapter to delete IO queues. */
1253         if (qid && readl(&dev->bar->csts) != -1) {
1254                 adapter_delete_sq(dev, qid);
1255                 adapter_delete_cq(dev, qid);
1256         }
1257         if (!qid && dev->admin_q)
1258                 blk_mq_freeze_queue_start(dev->admin_q);
1259         nvme_clear_queue(nvmeq);
1260 }
1261
1262 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1263                                                         int depth)
1264 {
1265         struct device *dmadev = &dev->pci_dev->dev;
1266         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1267         if (!nvmeq)
1268                 return NULL;
1269
1270         nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1271                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1272         if (!nvmeq->cqes)
1273                 goto free_nvmeq;
1274
1275         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1276                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1277         if (!nvmeq->sq_cmds)
1278                 goto free_cqdma;
1279
1280         nvmeq->q_dmadev = dmadev;
1281         nvmeq->dev = dev;
1282         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1283                         dev->instance, qid);
1284         spin_lock_init(&nvmeq->q_lock);
1285         nvmeq->cq_head = 0;
1286         nvmeq->cq_phase = 1;
1287         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1288         nvmeq->q_depth = depth;
1289         nvmeq->qid = qid;
1290         dev->queue_count++;
1291         dev->queues[qid] = nvmeq;
1292
1293         return nvmeq;
1294
1295  free_cqdma:
1296         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1297                                                         nvmeq->cq_dma_addr);
1298  free_nvmeq:
1299         kfree(nvmeq);
1300         return NULL;
1301 }
1302
1303 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1304                                                         const char *name)
1305 {
1306         if (use_threaded_interrupts)
1307                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1308                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1309                                         name, nvmeq);
1310         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1311                                 IRQF_SHARED, name, nvmeq);
1312 }
1313
1314 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1315 {
1316         struct nvme_dev *dev = nvmeq->dev;
1317
1318         spin_lock_irq(&nvmeq->q_lock);
1319         nvmeq->sq_tail = 0;
1320         nvmeq->cq_head = 0;
1321         nvmeq->cq_phase = 1;
1322         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1323         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1324         dev->online_queues++;
1325         spin_unlock_irq(&nvmeq->q_lock);
1326 }
1327
1328 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1329 {
1330         struct nvme_dev *dev = nvmeq->dev;
1331         int result;
1332
1333         nvmeq->cq_vector = qid - 1;
1334         result = adapter_alloc_cq(dev, qid, nvmeq);
1335         if (result < 0)
1336                 return result;
1337
1338         result = adapter_alloc_sq(dev, qid, nvmeq);
1339         if (result < 0)
1340                 goto release_cq;
1341
1342         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1343         if (result < 0)
1344                 goto release_sq;
1345
1346         nvme_init_queue(nvmeq, qid);
1347         return result;
1348
1349  release_sq:
1350         adapter_delete_sq(dev, qid);
1351  release_cq:
1352         adapter_delete_cq(dev, qid);
1353         return result;
1354 }
1355
1356 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1357 {
1358         unsigned long timeout;
1359         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1360
1361         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1362
1363         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1364                 msleep(100);
1365                 if (fatal_signal_pending(current))
1366                         return -EINTR;
1367                 if (time_after(jiffies, timeout)) {
1368                         dev_err(&dev->pci_dev->dev,
1369                                 "Device not ready; aborting %s\n", enabled ?
1370                                                 "initialisation" : "reset");
1371                         return -ENODEV;
1372                 }
1373         }
1374
1375         return 0;
1376 }
1377
1378 /*
1379  * If the device has been passed off to us in an enabled state, just clear
1380  * the enabled bit.  The spec says we should set the 'shutdown notification
1381  * bits', but doing so may cause the device to complete commands to the
1382  * admin queue ... and we don't know what memory that might be pointing at!
1383  */
1384 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1385 {
1386         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1387         dev->ctrl_config &= ~NVME_CC_ENABLE;
1388         writel(dev->ctrl_config, &dev->bar->cc);
1389
1390         return nvme_wait_ready(dev, cap, false);
1391 }
1392
1393 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1394 {
1395         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1396         dev->ctrl_config |= NVME_CC_ENABLE;
1397         writel(dev->ctrl_config, &dev->bar->cc);
1398
1399         return nvme_wait_ready(dev, cap, true);
1400 }
1401
1402 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1403 {
1404         unsigned long timeout;
1405
1406         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1407         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1408
1409         writel(dev->ctrl_config, &dev->bar->cc);
1410
1411         timeout = SHUTDOWN_TIMEOUT + jiffies;
1412         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1413                                                         NVME_CSTS_SHST_CMPLT) {
1414                 msleep(100);
1415                 if (fatal_signal_pending(current))
1416                         return -EINTR;
1417                 if (time_after(jiffies, timeout)) {
1418                         dev_err(&dev->pci_dev->dev,
1419                                 "Device shutdown incomplete; abort shutdown\n");
1420                         return -ENODEV;
1421                 }
1422         }
1423
1424         return 0;
1425 }
1426
1427 static struct blk_mq_ops nvme_mq_admin_ops = {
1428         .queue_rq       = nvme_admin_queue_rq,
1429         .map_queue      = blk_mq_map_queue,
1430         .init_hctx      = nvme_admin_init_hctx,
1431         .exit_hctx      = nvme_exit_hctx,
1432         .init_request   = nvme_admin_init_request,
1433         .timeout        = nvme_timeout,
1434 };
1435
1436 static struct blk_mq_ops nvme_mq_ops = {
1437         .queue_rq       = nvme_queue_rq,
1438         .map_queue      = blk_mq_map_queue,
1439         .init_hctx      = nvme_init_hctx,
1440         .exit_hctx      = nvme_exit_hctx,
1441         .init_request   = nvme_init_request,
1442         .timeout        = nvme_timeout,
1443 };
1444
1445 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1446 {
1447         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1448                 blk_cleanup_queue(dev->admin_q);
1449                 blk_mq_free_tag_set(&dev->admin_tagset);
1450         }
1451 }
1452
1453 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1454 {
1455         if (!dev->admin_q) {
1456                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1457                 dev->admin_tagset.nr_hw_queues = 1;
1458                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1459                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1460                 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1461                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1462                 dev->admin_tagset.driver_data = dev;
1463
1464                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1465                         return -ENOMEM;
1466
1467                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1468                 if (IS_ERR(dev->admin_q)) {
1469                         blk_mq_free_tag_set(&dev->admin_tagset);
1470                         return -ENOMEM;
1471                 }
1472                 if (!blk_get_queue(dev->admin_q)) {
1473                         nvme_dev_remove_admin(dev);
1474                         return -ENODEV;
1475                 }
1476         } else
1477                 blk_mq_unfreeze_queue(dev->admin_q);
1478
1479         return 0;
1480 }
1481
1482 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1483 {
1484         int result;
1485         u32 aqa;
1486         u64 cap = readq(&dev->bar->cap);
1487         struct nvme_queue *nvmeq;
1488         unsigned page_shift = PAGE_SHIFT;
1489         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1490         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1491
1492         if (page_shift < dev_page_min) {
1493                 dev_err(&dev->pci_dev->dev,
1494                                 "Minimum device page size (%u) too large for "
1495                                 "host (%u)\n", 1 << dev_page_min,
1496                                 1 << page_shift);
1497                 return -ENODEV;
1498         }
1499         if (page_shift > dev_page_max) {
1500                 dev_info(&dev->pci_dev->dev,
1501                                 "Device maximum page size (%u) smaller than "
1502                                 "host (%u); enabling work-around\n",
1503                                 1 << dev_page_max, 1 << page_shift);
1504                 page_shift = dev_page_max;
1505         }
1506
1507         result = nvme_disable_ctrl(dev, cap);
1508         if (result < 0)
1509                 return result;
1510
1511         nvmeq = dev->queues[0];
1512         if (!nvmeq) {
1513                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1514                 if (!nvmeq)
1515                         return -ENOMEM;
1516         }
1517
1518         aqa = nvmeq->q_depth - 1;
1519         aqa |= aqa << 16;
1520
1521         dev->page_size = 1 << page_shift;
1522
1523         dev->ctrl_config = NVME_CC_CSS_NVM;
1524         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1525         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1526         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1527
1528         writel(aqa, &dev->bar->aqa);
1529         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1530         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1531
1532         result = nvme_enable_ctrl(dev, cap);
1533         if (result)
1534                 goto free_nvmeq;
1535
1536         nvmeq->cq_vector = 0;
1537         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1538         if (result)
1539                 goto free_nvmeq;
1540
1541         return result;
1542
1543  free_nvmeq:
1544         nvme_free_queues(dev, 0);
1545         return result;
1546 }
1547
1548 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1549                                 unsigned long addr, unsigned length)
1550 {
1551         int i, err, count, nents, offset;
1552         struct scatterlist *sg;
1553         struct page **pages;
1554         struct nvme_iod *iod;
1555
1556         if (addr & 3)
1557                 return ERR_PTR(-EINVAL);
1558         if (!length || length > INT_MAX - PAGE_SIZE)
1559                 return ERR_PTR(-EINVAL);
1560
1561         offset = offset_in_page(addr);
1562         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1563         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1564         if (!pages)
1565                 return ERR_PTR(-ENOMEM);
1566
1567         err = get_user_pages_fast(addr, count, 1, pages);
1568         if (err < count) {
1569                 count = err;
1570                 err = -EFAULT;
1571                 goto put_pages;
1572         }
1573
1574         err = -ENOMEM;
1575         iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1576         if (!iod)
1577                 goto put_pages;
1578
1579         sg = iod->sg;
1580         sg_init_table(sg, count);
1581         for (i = 0; i < count; i++) {
1582                 sg_set_page(&sg[i], pages[i],
1583                             min_t(unsigned, length, PAGE_SIZE - offset),
1584                             offset);
1585                 length -= (PAGE_SIZE - offset);
1586                 offset = 0;
1587         }
1588         sg_mark_end(&sg[i - 1]);
1589         iod->nents = count;
1590
1591         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1592                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1593         if (!nents)
1594                 goto free_iod;
1595
1596         kfree(pages);
1597         return iod;
1598
1599  free_iod:
1600         kfree(iod);
1601  put_pages:
1602         for (i = 0; i < count; i++)
1603                 put_page(pages[i]);
1604         kfree(pages);
1605         return ERR_PTR(err);
1606 }
1607
1608 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1609                         struct nvme_iod *iod)
1610 {
1611         int i;
1612
1613         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1614                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1615
1616         for (i = 0; i < iod->nents; i++)
1617                 put_page(sg_page(&iod->sg[i]));
1618 }
1619
1620 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1621 {
1622         struct nvme_dev *dev = ns->dev;
1623         struct nvme_user_io io;
1624         struct nvme_command c;
1625         unsigned length, meta_len;
1626         int status, i;
1627         struct nvme_iod *iod, *meta_iod = NULL;
1628         dma_addr_t meta_dma_addr;
1629         void *meta, *uninitialized_var(meta_mem);
1630
1631         if (copy_from_user(&io, uio, sizeof(io)))
1632                 return -EFAULT;
1633         length = (io.nblocks + 1) << ns->lba_shift;
1634         meta_len = (io.nblocks + 1) * ns->ms;
1635
1636         if (meta_len && ((io.metadata & 3) || !io.metadata))
1637                 return -EINVAL;
1638
1639         switch (io.opcode) {
1640         case nvme_cmd_write:
1641         case nvme_cmd_read:
1642         case nvme_cmd_compare:
1643                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1644                 break;
1645         default:
1646                 return -EINVAL;
1647         }
1648
1649         if (IS_ERR(iod))
1650                 return PTR_ERR(iod);
1651
1652         memset(&c, 0, sizeof(c));
1653         c.rw.opcode = io.opcode;
1654         c.rw.flags = io.flags;
1655         c.rw.nsid = cpu_to_le32(ns->ns_id);
1656         c.rw.slba = cpu_to_le64(io.slba);
1657         c.rw.length = cpu_to_le16(io.nblocks);
1658         c.rw.control = cpu_to_le16(io.control);
1659         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1660         c.rw.reftag = cpu_to_le32(io.reftag);
1661         c.rw.apptag = cpu_to_le16(io.apptag);
1662         c.rw.appmask = cpu_to_le16(io.appmask);
1663
1664         if (meta_len) {
1665                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1666                                                                 meta_len);
1667                 if (IS_ERR(meta_iod)) {
1668                         status = PTR_ERR(meta_iod);
1669                         meta_iod = NULL;
1670                         goto unmap;
1671                 }
1672
1673                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1674                                                 &meta_dma_addr, GFP_KERNEL);
1675                 if (!meta_mem) {
1676                         status = -ENOMEM;
1677                         goto unmap;
1678                 }
1679
1680                 if (io.opcode & 1) {
1681                         int meta_offset = 0;
1682
1683                         for (i = 0; i < meta_iod->nents; i++) {
1684                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1685                                                 meta_iod->sg[i].offset;
1686                                 memcpy(meta_mem + meta_offset, meta,
1687                                                 meta_iod->sg[i].length);
1688                                 kunmap_atomic(meta);
1689                                 meta_offset += meta_iod->sg[i].length;
1690                         }
1691                 }
1692
1693                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1694         }
1695
1696         length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1697         c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1698         c.rw.prp2 = cpu_to_le64(iod->first_dma);
1699
1700         if (length != (io.nblocks + 1) << ns->lba_shift)
1701                 status = -ENOMEM;
1702         else
1703                 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1704
1705         if (meta_len) {
1706                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1707                         int meta_offset = 0;
1708
1709                         for (i = 0; i < meta_iod->nents; i++) {
1710                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1711                                                 meta_iod->sg[i].offset;
1712                                 memcpy(meta, meta_mem + meta_offset,
1713                                                 meta_iod->sg[i].length);
1714                                 kunmap_atomic(meta);
1715                                 meta_offset += meta_iod->sg[i].length;
1716                         }
1717                 }
1718
1719                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1720                                                                 meta_dma_addr);
1721         }
1722
1723  unmap:
1724         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1725         nvme_free_iod(dev, iod);
1726
1727         if (meta_iod) {
1728                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1729                 nvme_free_iod(dev, meta_iod);
1730         }
1731
1732         return status;
1733 }
1734
1735 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1736                         struct nvme_passthru_cmd __user *ucmd)
1737 {
1738         struct nvme_passthru_cmd cmd;
1739         struct nvme_command c;
1740         int status, length;
1741         struct nvme_iod *uninitialized_var(iod);
1742         unsigned timeout;
1743
1744         if (!capable(CAP_SYS_ADMIN))
1745                 return -EACCES;
1746         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1747                 return -EFAULT;
1748
1749         memset(&c, 0, sizeof(c));
1750         c.common.opcode = cmd.opcode;
1751         c.common.flags = cmd.flags;
1752         c.common.nsid = cpu_to_le32(cmd.nsid);
1753         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1754         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1755         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1756         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1757         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1758         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1759         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1760         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1761
1762         length = cmd.data_len;
1763         if (cmd.data_len) {
1764                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1765                                                                 length);
1766                 if (IS_ERR(iod))
1767                         return PTR_ERR(iod);
1768                 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1769                 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1770                 c.common.prp2 = cpu_to_le64(iod->first_dma);
1771         }
1772
1773         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1774                                                                 ADMIN_TIMEOUT;
1775
1776         if (length != cmd.data_len)
1777                 status = -ENOMEM;
1778         else if (ns) {
1779                 struct request *req;
1780
1781                 req = blk_mq_alloc_request(ns->queue, WRITE,
1782                                                 (GFP_KERNEL|__GFP_WAIT), false);
1783                 if (IS_ERR(req))
1784                         status = PTR_ERR(req);
1785                 else {
1786                         status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1787                                                                 timeout);
1788                         blk_mq_free_request(req);
1789                 }
1790         } else
1791                 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1792
1793         if (cmd.data_len) {
1794                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1795                 nvme_free_iod(dev, iod);
1796         }
1797
1798         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1799                                                         sizeof(cmd.result)))
1800                 status = -EFAULT;
1801
1802         return status;
1803 }
1804
1805 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1806                                                         unsigned long arg)
1807 {
1808         struct nvme_ns *ns = bdev->bd_disk->private_data;
1809
1810         switch (cmd) {
1811         case NVME_IOCTL_ID:
1812                 force_successful_syscall_return();
1813                 return ns->ns_id;
1814         case NVME_IOCTL_ADMIN_CMD:
1815                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1816         case NVME_IOCTL_IO_CMD:
1817                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1818         case NVME_IOCTL_SUBMIT_IO:
1819                 return nvme_submit_io(ns, (void __user *)arg);
1820         case SG_GET_VERSION_NUM:
1821                 return nvme_sg_get_version_num((void __user *)arg);
1822         case SG_IO:
1823                 return nvme_sg_io(ns, (void __user *)arg);
1824         default:
1825                 return -ENOTTY;
1826         }
1827 }
1828
1829 #ifdef CONFIG_COMPAT
1830 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1831                                         unsigned int cmd, unsigned long arg)
1832 {
1833         switch (cmd) {
1834         case SG_IO:
1835                 return -ENOIOCTLCMD;
1836         }
1837         return nvme_ioctl(bdev, mode, cmd, arg);
1838 }
1839 #else
1840 #define nvme_compat_ioctl       NULL
1841 #endif
1842
1843 static int nvme_open(struct block_device *bdev, fmode_t mode)
1844 {
1845         int ret = 0;
1846         struct nvme_ns *ns;
1847
1848         spin_lock(&dev_list_lock);
1849         ns = bdev->bd_disk->private_data;
1850         if (!ns)
1851                 ret = -ENXIO;
1852         else if (!kref_get_unless_zero(&ns->dev->kref))
1853                 ret = -ENXIO;
1854         spin_unlock(&dev_list_lock);
1855
1856         return ret;
1857 }
1858
1859 static void nvme_free_dev(struct kref *kref);
1860
1861 static void nvme_release(struct gendisk *disk, fmode_t mode)
1862 {
1863         struct nvme_ns *ns = disk->private_data;
1864         struct nvme_dev *dev = ns->dev;
1865
1866         kref_put(&dev->kref, nvme_free_dev);
1867 }
1868
1869 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1870 {
1871         /* some standard values */
1872         geo->heads = 1 << 6;
1873         geo->sectors = 1 << 5;
1874         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1875         return 0;
1876 }
1877
1878 static int nvme_revalidate_disk(struct gendisk *disk)
1879 {
1880         struct nvme_ns *ns = disk->private_data;
1881         struct nvme_dev *dev = ns->dev;
1882         struct nvme_id_ns *id;
1883         dma_addr_t dma_addr;
1884         int lbaf;
1885
1886         id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
1887                                                                 GFP_KERNEL);
1888         if (!id) {
1889                 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
1890                                                                 __func__);
1891                 return 0;
1892         }
1893
1894         if (nvme_identify(dev, ns->ns_id, 0, dma_addr))
1895                 goto free;
1896
1897         lbaf = id->flbas & 0xf;
1898         ns->lba_shift = id->lbaf[lbaf].ds;
1899
1900         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1901         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1902  free:
1903         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1904         return 0;
1905 }
1906
1907 static const struct block_device_operations nvme_fops = {
1908         .owner          = THIS_MODULE,
1909         .ioctl          = nvme_ioctl,
1910         .compat_ioctl   = nvme_compat_ioctl,
1911         .open           = nvme_open,
1912         .release        = nvme_release,
1913         .getgeo         = nvme_getgeo,
1914         .revalidate_disk= nvme_revalidate_disk,
1915 };
1916
1917 static int nvme_kthread(void *data)
1918 {
1919         struct nvme_dev *dev, *next;
1920
1921         while (!kthread_should_stop()) {
1922                 set_current_state(TASK_INTERRUPTIBLE);
1923                 spin_lock(&dev_list_lock);
1924                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1925                         int i;
1926                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1927                                                         dev->initialized) {
1928                                 if (work_busy(&dev->reset_work))
1929                                         continue;
1930                                 list_del_init(&dev->node);
1931                                 dev_warn(&dev->pci_dev->dev,
1932                                         "Failed status: %x, reset controller\n",
1933                                         readl(&dev->bar->csts));
1934                                 dev->reset_workfn = nvme_reset_failed_dev;
1935                                 queue_work(nvme_workq, &dev->reset_work);
1936                                 continue;
1937                         }
1938                         for (i = 0; i < dev->queue_count; i++) {
1939                                 struct nvme_queue *nvmeq = dev->queues[i];
1940                                 if (!nvmeq)
1941                                         continue;
1942                                 spin_lock_irq(&nvmeq->q_lock);
1943                                 nvme_process_cq(nvmeq);
1944
1945                                 while ((i == 0) && (dev->event_limit > 0)) {
1946                                         if (nvme_submit_async_admin_req(dev))
1947                                                 break;
1948                                         dev->event_limit--;
1949                                 }
1950                                 spin_unlock_irq(&nvmeq->q_lock);
1951                         }
1952                 }
1953                 spin_unlock(&dev_list_lock);
1954                 schedule_timeout(round_jiffies_relative(HZ));
1955         }
1956         return 0;
1957 }
1958
1959 static void nvme_config_discard(struct nvme_ns *ns)
1960 {
1961         u32 logical_block_size = queue_logical_block_size(ns->queue);
1962         ns->queue->limits.discard_zeroes_data = 0;
1963         ns->queue->limits.discard_alignment = logical_block_size;
1964         ns->queue->limits.discard_granularity = logical_block_size;
1965         ns->queue->limits.max_discard_sectors = 0xffffffff;
1966         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1967 }
1968
1969 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1970                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1971 {
1972         struct nvme_ns *ns;
1973         struct gendisk *disk;
1974         int node = dev_to_node(&dev->pci_dev->dev);
1975         int lbaf;
1976
1977         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1978                 return NULL;
1979
1980         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1981         if (!ns)
1982                 return NULL;
1983         ns->queue = blk_mq_init_queue(&dev->tagset);
1984         if (IS_ERR(ns->queue))
1985                 goto out_free_ns;
1986         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1987         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1988         queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
1989         ns->dev = dev;
1990         ns->queue->queuedata = ns;
1991
1992         disk = alloc_disk_node(0, node);
1993         if (!disk)
1994                 goto out_free_queue;
1995
1996         ns->ns_id = nsid;
1997         ns->disk = disk;
1998         lbaf = id->flbas & 0xf;
1999         ns->lba_shift = id->lbaf[lbaf].ds;
2000         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2001         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2002         if (dev->max_hw_sectors)
2003                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2004         if (dev->stripe_size)
2005                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2006         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2007                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2008
2009         disk->major = nvme_major;
2010         disk->first_minor = 0;
2011         disk->fops = &nvme_fops;
2012         disk->private_data = ns;
2013         disk->queue = ns->queue;
2014         disk->driverfs_dev = &dev->pci_dev->dev;
2015         disk->flags = GENHD_FL_EXT_DEVT;
2016         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2017         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2018
2019         if (dev->oncs & NVME_CTRL_ONCS_DSM)
2020                 nvme_config_discard(ns);
2021
2022         return ns;
2023
2024  out_free_queue:
2025         blk_cleanup_queue(ns->queue);
2026  out_free_ns:
2027         kfree(ns);
2028         return NULL;
2029 }
2030
2031 static void nvme_create_io_queues(struct nvme_dev *dev)
2032 {
2033         unsigned i;
2034
2035         for (i = dev->queue_count; i <= dev->max_qid; i++)
2036                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2037                         break;
2038
2039         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2040                 if (nvme_create_queue(dev->queues[i], i))
2041                         break;
2042 }
2043
2044 static int set_queue_count(struct nvme_dev *dev, int count)
2045 {
2046         int status;
2047         u32 result;
2048         u32 q_count = (count - 1) | ((count - 1) << 16);
2049
2050         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2051                                                                 &result);
2052         if (status < 0)
2053                 return status;
2054         if (status > 0) {
2055                 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2056                                                                         status);
2057                 return 0;
2058         }
2059         return min(result & 0xffff, result >> 16) + 1;
2060 }
2061
2062 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2063 {
2064         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2065 }
2066
2067 static int nvme_setup_io_queues(struct nvme_dev *dev)
2068 {
2069         struct nvme_queue *adminq = dev->queues[0];
2070         struct pci_dev *pdev = dev->pci_dev;
2071         int result, i, vecs, nr_io_queues, size;
2072
2073         nr_io_queues = num_possible_cpus();
2074         result = set_queue_count(dev, nr_io_queues);
2075         if (result <= 0)
2076                 return result;
2077         if (result < nr_io_queues)
2078                 nr_io_queues = result;
2079
2080         size = db_bar_size(dev, nr_io_queues);
2081         if (size > 8192) {
2082                 iounmap(dev->bar);
2083                 do {
2084                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2085                         if (dev->bar)
2086                                 break;
2087                         if (!--nr_io_queues)
2088                                 return -ENOMEM;
2089                         size = db_bar_size(dev, nr_io_queues);
2090                 } while (1);
2091                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2092                 adminq->q_db = dev->dbs;
2093         }
2094
2095         /* Deregister the admin queue's interrupt */
2096         free_irq(dev->entry[0].vector, adminq);
2097
2098         /*
2099          * If we enable msix early due to not intx, disable it again before
2100          * setting up the full range we need.
2101          */
2102         if (!pdev->irq)
2103                 pci_disable_msix(pdev);
2104
2105         for (i = 0; i < nr_io_queues; i++)
2106                 dev->entry[i].entry = i;
2107         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2108         if (vecs < 0) {
2109                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2110                 if (vecs < 0) {
2111                         vecs = 1;
2112                 } else {
2113                         for (i = 0; i < vecs; i++)
2114                                 dev->entry[i].vector = i + pdev->irq;
2115                 }
2116         }
2117
2118         /*
2119          * Should investigate if there's a performance win from allocating
2120          * more queues than interrupt vectors; it might allow the submission
2121          * path to scale better, even if the receive path is limited by the
2122          * number of interrupts.
2123          */
2124         nr_io_queues = vecs;
2125         dev->max_qid = nr_io_queues;
2126
2127         result = queue_request_irq(dev, adminq, adminq->irqname);
2128         if (result)
2129                 goto free_queues;
2130
2131         /* Free previously allocated queues that are no longer usable */
2132         nvme_free_queues(dev, nr_io_queues + 1);
2133         nvme_create_io_queues(dev);
2134
2135         return 0;
2136
2137  free_queues:
2138         nvme_free_queues(dev, 1);
2139         return result;
2140 }
2141
2142 /*
2143  * Return: error value if an error occurred setting up the queues or calling
2144  * Identify Device.  0 if these succeeded, even if adding some of the
2145  * namespaces failed.  At the moment, these failures are silent.  TBD which
2146  * failures should be reported.
2147  */
2148 static int nvme_dev_add(struct nvme_dev *dev)
2149 {
2150         struct pci_dev *pdev = dev->pci_dev;
2151         int res;
2152         unsigned nn, i;
2153         struct nvme_ns *ns;
2154         struct nvme_id_ctrl *ctrl;
2155         struct nvme_id_ns *id_ns;
2156         void *mem;
2157         dma_addr_t dma_addr;
2158         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2159
2160         mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2161         if (!mem)
2162                 return -ENOMEM;
2163
2164         res = nvme_identify(dev, 0, 1, dma_addr);
2165         if (res) {
2166                 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2167                 res = -EIO;
2168                 goto out;
2169         }
2170
2171         ctrl = mem;
2172         nn = le32_to_cpup(&ctrl->nn);
2173         dev->oncs = le16_to_cpup(&ctrl->oncs);
2174         dev->abort_limit = ctrl->acl + 1;
2175         dev->vwc = ctrl->vwc;
2176         dev->event_limit = min(ctrl->aerl + 1, 8);
2177         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2178         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2179         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2180         if (ctrl->mdts)
2181                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2182         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2183                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2184                 unsigned int max_hw_sectors;
2185
2186                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2187                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2188                 if (dev->max_hw_sectors) {
2189                         dev->max_hw_sectors = min(max_hw_sectors,
2190                                                         dev->max_hw_sectors);
2191                 } else
2192                         dev->max_hw_sectors = max_hw_sectors;
2193         }
2194
2195         dev->tagset.ops = &nvme_mq_ops;
2196         dev->tagset.nr_hw_queues = dev->online_queues - 1;
2197         dev->tagset.timeout = NVME_IO_TIMEOUT;
2198         dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2199         dev->tagset.queue_depth =
2200                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2201         dev->tagset.cmd_size = nvme_cmd_size(dev);
2202         dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2203         dev->tagset.driver_data = dev;
2204
2205         if (blk_mq_alloc_tag_set(&dev->tagset))
2206                 goto out;
2207
2208         id_ns = mem;
2209         for (i = 1; i <= nn; i++) {
2210                 res = nvme_identify(dev, i, 0, dma_addr);
2211                 if (res)
2212                         continue;
2213
2214                 if (id_ns->ncap == 0)
2215                         continue;
2216
2217                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2218                                                         dma_addr + 4096, NULL);
2219                 if (res)
2220                         memset(mem + 4096, 0, 4096);
2221
2222                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2223                 if (ns)
2224                         list_add_tail(&ns->list, &dev->namespaces);
2225         }
2226         list_for_each_entry(ns, &dev->namespaces, list)
2227                 add_disk(ns->disk);
2228         res = 0;
2229
2230  out:
2231         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2232         return res;
2233 }
2234
2235 static int nvme_dev_map(struct nvme_dev *dev)
2236 {
2237         u64 cap;
2238         int bars, result = -ENOMEM;
2239         struct pci_dev *pdev = dev->pci_dev;
2240
2241         if (pci_enable_device_mem(pdev))
2242                 return result;
2243
2244         dev->entry[0].vector = pdev->irq;
2245         pci_set_master(pdev);
2246         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2247         if (!bars)
2248                 goto disable_pci;
2249
2250         if (pci_request_selected_regions(pdev, bars, "nvme"))
2251                 goto disable_pci;
2252
2253         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2254             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2255                 goto disable;
2256
2257         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2258         if (!dev->bar)
2259                 goto disable;
2260
2261         if (readl(&dev->bar->csts) == -1) {
2262                 result = -ENODEV;
2263                 goto unmap;
2264         }
2265
2266         /*
2267          * Some devices don't advertse INTx interrupts, pre-enable a single
2268          * MSIX vec for setup. We'll adjust this later.
2269          */
2270         if (!pdev->irq) {
2271                 result = pci_enable_msix(pdev, dev->entry, 1);
2272                 if (result < 0)
2273                         goto unmap;
2274         }
2275
2276         cap = readq(&dev->bar->cap);
2277         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2278         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2279         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2280
2281         return 0;
2282
2283  unmap:
2284         iounmap(dev->bar);
2285         dev->bar = NULL;
2286  disable:
2287         pci_release_regions(pdev);
2288  disable_pci:
2289         pci_disable_device(pdev);
2290         return result;
2291 }
2292
2293 static void nvme_dev_unmap(struct nvme_dev *dev)
2294 {
2295         if (dev->pci_dev->msi_enabled)
2296                 pci_disable_msi(dev->pci_dev);
2297         else if (dev->pci_dev->msix_enabled)
2298                 pci_disable_msix(dev->pci_dev);
2299
2300         if (dev->bar) {
2301                 iounmap(dev->bar);
2302                 dev->bar = NULL;
2303                 pci_release_regions(dev->pci_dev);
2304         }
2305
2306         if (pci_is_enabled(dev->pci_dev))
2307                 pci_disable_device(dev->pci_dev);
2308 }
2309
2310 struct nvme_delq_ctx {
2311         struct task_struct *waiter;
2312         struct kthread_worker *worker;
2313         atomic_t refcount;
2314 };
2315
2316 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2317 {
2318         dq->waiter = current;
2319         mb();
2320
2321         for (;;) {
2322                 set_current_state(TASK_KILLABLE);
2323                 if (!atomic_read(&dq->refcount))
2324                         break;
2325                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2326                                         fatal_signal_pending(current)) {
2327                         /*
2328                          * Disable the controller first since we can't trust it
2329                          * at this point, but leave the admin queue enabled
2330                          * until all queue deletion requests are flushed.
2331                          * FIXME: This may take a while if there are more h/w
2332                          * queues than admin tags.
2333                          */
2334                         set_current_state(TASK_RUNNING);
2335                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2336                         nvme_clear_queue(dev->queues[0]);
2337                         flush_kthread_worker(dq->worker);
2338                         nvme_disable_queue(dev, 0);
2339                         return;
2340                 }
2341         }
2342         set_current_state(TASK_RUNNING);
2343 }
2344
2345 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2346 {
2347         atomic_dec(&dq->refcount);
2348         if (dq->waiter)
2349                 wake_up_process(dq->waiter);
2350 }
2351
2352 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2353 {
2354         atomic_inc(&dq->refcount);
2355         return dq;
2356 }
2357
2358 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2359 {
2360         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2361
2362         nvme_clear_queue(nvmeq);
2363         nvme_put_dq(dq);
2364 }
2365
2366 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2367                                                 kthread_work_func_t fn)
2368 {
2369         struct nvme_command c;
2370
2371         memset(&c, 0, sizeof(c));
2372         c.delete_queue.opcode = opcode;
2373         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2374
2375         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2376         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2377                                                                 ADMIN_TIMEOUT);
2378 }
2379
2380 static void nvme_del_cq_work_handler(struct kthread_work *work)
2381 {
2382         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2383                                                         cmdinfo.work);
2384         nvme_del_queue_end(nvmeq);
2385 }
2386
2387 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2388 {
2389         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2390                                                 nvme_del_cq_work_handler);
2391 }
2392
2393 static void nvme_del_sq_work_handler(struct kthread_work *work)
2394 {
2395         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2396                                                         cmdinfo.work);
2397         int status = nvmeq->cmdinfo.status;
2398
2399         if (!status)
2400                 status = nvme_delete_cq(nvmeq);
2401         if (status)
2402                 nvme_del_queue_end(nvmeq);
2403 }
2404
2405 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2406 {
2407         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2408                                                 nvme_del_sq_work_handler);
2409 }
2410
2411 static void nvme_del_queue_start(struct kthread_work *work)
2412 {
2413         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2414                                                         cmdinfo.work);
2415         if (nvme_delete_sq(nvmeq))
2416                 nvme_del_queue_end(nvmeq);
2417 }
2418
2419 static void nvme_disable_io_queues(struct nvme_dev *dev)
2420 {
2421         int i;
2422         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2423         struct nvme_delq_ctx dq;
2424         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2425                                         &worker, "nvme%d", dev->instance);
2426
2427         if (IS_ERR(kworker_task)) {
2428                 dev_err(&dev->pci_dev->dev,
2429                         "Failed to create queue del task\n");
2430                 for (i = dev->queue_count - 1; i > 0; i--)
2431                         nvme_disable_queue(dev, i);
2432                 return;
2433         }
2434
2435         dq.waiter = NULL;
2436         atomic_set(&dq.refcount, 0);
2437         dq.worker = &worker;
2438         for (i = dev->queue_count - 1; i > 0; i--) {
2439                 struct nvme_queue *nvmeq = dev->queues[i];
2440
2441                 if (nvme_suspend_queue(nvmeq))
2442                         continue;
2443                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2444                 nvmeq->cmdinfo.worker = dq.worker;
2445                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2446                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2447         }
2448         nvme_wait_dq(&dq, dev);
2449         kthread_stop(kworker_task);
2450 }
2451
2452 /*
2453 * Remove the node from the device list and check
2454 * for whether or not we need to stop the nvme_thread.
2455 */
2456 static void nvme_dev_list_remove(struct nvme_dev *dev)
2457 {
2458         struct task_struct *tmp = NULL;
2459
2460         spin_lock(&dev_list_lock);
2461         list_del_init(&dev->node);
2462         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2463                 tmp = nvme_thread;
2464                 nvme_thread = NULL;
2465         }
2466         spin_unlock(&dev_list_lock);
2467
2468         if (tmp)
2469                 kthread_stop(tmp);
2470 }
2471
2472 static void nvme_freeze_queues(struct nvme_dev *dev)
2473 {
2474         struct nvme_ns *ns;
2475
2476         list_for_each_entry(ns, &dev->namespaces, list) {
2477                 blk_mq_freeze_queue_start(ns->queue);
2478
2479                 spin_lock(ns->queue->queue_lock);
2480                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2481                 spin_unlock(ns->queue->queue_lock);
2482
2483                 blk_mq_cancel_requeue_work(ns->queue);
2484                 blk_mq_stop_hw_queues(ns->queue);
2485         }
2486 }
2487
2488 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2489 {
2490         struct nvme_ns *ns;
2491
2492         list_for_each_entry(ns, &dev->namespaces, list) {
2493                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2494                 blk_mq_unfreeze_queue(ns->queue);
2495                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2496                 blk_mq_kick_requeue_list(ns->queue);
2497         }
2498 }
2499
2500 static void nvme_dev_shutdown(struct nvme_dev *dev)
2501 {
2502         int i;
2503         u32 csts = -1;
2504
2505         dev->initialized = 0;
2506         nvme_dev_list_remove(dev);
2507
2508         if (dev->bar) {
2509                 nvme_freeze_queues(dev);
2510                 csts = readl(&dev->bar->csts);
2511         }
2512         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2513                 for (i = dev->queue_count - 1; i >= 0; i--) {
2514                         struct nvme_queue *nvmeq = dev->queues[i];
2515                         nvme_suspend_queue(nvmeq);
2516                         nvme_clear_queue(nvmeq);
2517                 }
2518         } else {
2519                 nvme_disable_io_queues(dev);
2520                 nvme_shutdown_ctrl(dev);
2521                 nvme_disable_queue(dev, 0);
2522         }
2523         nvme_dev_unmap(dev);
2524 }
2525
2526 static void nvme_dev_remove(struct nvme_dev *dev)
2527 {
2528         struct nvme_ns *ns;
2529
2530         list_for_each_entry(ns, &dev->namespaces, list) {
2531                 if (ns->disk->flags & GENHD_FL_UP)
2532                         del_gendisk(ns->disk);
2533                 if (!blk_queue_dying(ns->queue)) {
2534                         blk_mq_abort_requeue_list(ns->queue);
2535                         blk_cleanup_queue(ns->queue);
2536                 }
2537         }
2538 }
2539
2540 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2541 {
2542         struct device *dmadev = &dev->pci_dev->dev;
2543         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2544                                                 PAGE_SIZE, PAGE_SIZE, 0);
2545         if (!dev->prp_page_pool)
2546                 return -ENOMEM;
2547
2548         /* Optimisation for I/Os between 4k and 128k */
2549         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2550                                                 256, 256, 0);
2551         if (!dev->prp_small_pool) {
2552                 dma_pool_destroy(dev->prp_page_pool);
2553                 return -ENOMEM;
2554         }
2555         return 0;
2556 }
2557
2558 static void nvme_release_prp_pools(struct nvme_dev *dev)
2559 {
2560         dma_pool_destroy(dev->prp_page_pool);
2561         dma_pool_destroy(dev->prp_small_pool);
2562 }
2563
2564 static DEFINE_IDA(nvme_instance_ida);
2565
2566 static int nvme_set_instance(struct nvme_dev *dev)
2567 {
2568         int instance, error;
2569
2570         do {
2571                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2572                         return -ENODEV;
2573
2574                 spin_lock(&dev_list_lock);
2575                 error = ida_get_new(&nvme_instance_ida, &instance);
2576                 spin_unlock(&dev_list_lock);
2577         } while (error == -EAGAIN);
2578
2579         if (error)
2580                 return -ENODEV;
2581
2582         dev->instance = instance;
2583         return 0;
2584 }
2585
2586 static void nvme_release_instance(struct nvme_dev *dev)
2587 {
2588         spin_lock(&dev_list_lock);
2589         ida_remove(&nvme_instance_ida, dev->instance);
2590         spin_unlock(&dev_list_lock);
2591 }
2592
2593 static void nvme_free_namespaces(struct nvme_dev *dev)
2594 {
2595         struct nvme_ns *ns, *next;
2596
2597         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2598                 list_del(&ns->list);
2599
2600                 spin_lock(&dev_list_lock);
2601                 ns->disk->private_data = NULL;
2602                 spin_unlock(&dev_list_lock);
2603
2604                 put_disk(ns->disk);
2605                 kfree(ns);
2606         }
2607 }
2608
2609 static void nvme_free_dev(struct kref *kref)
2610 {
2611         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2612
2613         pci_dev_put(dev->pci_dev);
2614         nvme_free_namespaces(dev);
2615         nvme_release_instance(dev);
2616         blk_mq_free_tag_set(&dev->tagset);
2617         blk_put_queue(dev->admin_q);
2618         kfree(dev->queues);
2619         kfree(dev->entry);
2620         kfree(dev);
2621 }
2622
2623 static int nvme_dev_open(struct inode *inode, struct file *f)
2624 {
2625         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2626                                                                 miscdev);
2627         kref_get(&dev->kref);
2628         f->private_data = dev;
2629         return 0;
2630 }
2631
2632 static int nvme_dev_release(struct inode *inode, struct file *f)
2633 {
2634         struct nvme_dev *dev = f->private_data;
2635         kref_put(&dev->kref, nvme_free_dev);
2636         return 0;
2637 }
2638
2639 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2640 {
2641         struct nvme_dev *dev = f->private_data;
2642         struct nvme_ns *ns;
2643
2644         switch (cmd) {
2645         case NVME_IOCTL_ADMIN_CMD:
2646                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2647         case NVME_IOCTL_IO_CMD:
2648                 if (list_empty(&dev->namespaces))
2649                         return -ENOTTY;
2650                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2651                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2652         default:
2653                 return -ENOTTY;
2654         }
2655 }
2656
2657 static const struct file_operations nvme_dev_fops = {
2658         .owner          = THIS_MODULE,
2659         .open           = nvme_dev_open,
2660         .release        = nvme_dev_release,
2661         .unlocked_ioctl = nvme_dev_ioctl,
2662         .compat_ioctl   = nvme_dev_ioctl,
2663 };
2664
2665 static void nvme_set_irq_hints(struct nvme_dev *dev)
2666 {
2667         struct nvme_queue *nvmeq;
2668         int i;
2669
2670         for (i = 0; i < dev->online_queues; i++) {
2671                 nvmeq = dev->queues[i];
2672
2673                 if (!nvmeq->hctx)
2674                         continue;
2675
2676                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2677                                                         nvmeq->hctx->cpumask);
2678         }
2679 }
2680
2681 static int nvme_dev_start(struct nvme_dev *dev)
2682 {
2683         int result;
2684         bool start_thread = false;
2685
2686         result = nvme_dev_map(dev);
2687         if (result)
2688                 return result;
2689
2690         result = nvme_configure_admin_queue(dev);
2691         if (result)
2692                 goto unmap;
2693
2694         spin_lock(&dev_list_lock);
2695         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2696                 start_thread = true;
2697                 nvme_thread = NULL;
2698         }
2699         list_add(&dev->node, &dev_list);
2700         spin_unlock(&dev_list_lock);
2701
2702         if (start_thread) {
2703                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2704                 wake_up_all(&nvme_kthread_wait);
2705         } else
2706                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2707
2708         if (IS_ERR_OR_NULL(nvme_thread)) {
2709                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2710                 goto disable;
2711         }
2712
2713         nvme_init_queue(dev->queues[0], 0);
2714         result = nvme_alloc_admin_tags(dev);
2715         if (result)
2716                 goto disable;
2717
2718         result = nvme_setup_io_queues(dev);
2719         if (result)
2720                 goto free_tags;
2721
2722         nvme_set_irq_hints(dev);
2723
2724         return result;
2725
2726  free_tags:
2727         nvme_dev_remove_admin(dev);
2728  disable:
2729         nvme_disable_queue(dev, 0);
2730         nvme_dev_list_remove(dev);
2731  unmap:
2732         nvme_dev_unmap(dev);
2733         return result;
2734 }
2735
2736 static int nvme_remove_dead_ctrl(void *arg)
2737 {
2738         struct nvme_dev *dev = (struct nvme_dev *)arg;
2739         struct pci_dev *pdev = dev->pci_dev;
2740
2741         if (pci_get_drvdata(pdev))
2742                 pci_stop_and_remove_bus_device_locked(pdev);
2743         kref_put(&dev->kref, nvme_free_dev);
2744         return 0;
2745 }
2746
2747 static void nvme_remove_disks(struct work_struct *ws)
2748 {
2749         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2750
2751         nvme_free_queues(dev, 1);
2752         nvme_dev_remove(dev);
2753 }
2754
2755 static int nvme_dev_resume(struct nvme_dev *dev)
2756 {
2757         int ret;
2758
2759         ret = nvme_dev_start(dev);
2760         if (ret)
2761                 return ret;
2762         if (dev->online_queues < 2) {
2763                 spin_lock(&dev_list_lock);
2764                 dev->reset_workfn = nvme_remove_disks;
2765                 queue_work(nvme_workq, &dev->reset_work);
2766                 spin_unlock(&dev_list_lock);
2767         } else {
2768                 nvme_unfreeze_queues(dev);
2769                 nvme_set_irq_hints(dev);
2770         }
2771         dev->initialized = 1;
2772         return 0;
2773 }
2774
2775 static void nvme_dev_reset(struct nvme_dev *dev)
2776 {
2777         nvme_dev_shutdown(dev);
2778         if (nvme_dev_resume(dev)) {
2779                 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2780                 kref_get(&dev->kref);
2781                 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2782                                                         dev->instance))) {
2783                         dev_err(&dev->pci_dev->dev,
2784                                 "Failed to start controller remove task\n");
2785                         kref_put(&dev->kref, nvme_free_dev);
2786                 }
2787         }
2788 }
2789
2790 static void nvme_reset_failed_dev(struct work_struct *ws)
2791 {
2792         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2793         nvme_dev_reset(dev);
2794 }
2795
2796 static void nvme_reset_workfn(struct work_struct *work)
2797 {
2798         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2799         dev->reset_workfn(work);
2800 }
2801
2802 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2803 {
2804         int node, result = -ENOMEM;
2805         struct nvme_dev *dev;
2806
2807         node = dev_to_node(&pdev->dev);
2808         if (node == NUMA_NO_NODE)
2809                 set_dev_node(&pdev->dev, 0);
2810
2811         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2812         if (!dev)
2813                 return -ENOMEM;
2814         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2815                                                         GFP_KERNEL, node);
2816         if (!dev->entry)
2817                 goto free;
2818         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2819                                                         GFP_KERNEL, node);
2820         if (!dev->queues)
2821                 goto free;
2822
2823         INIT_LIST_HEAD(&dev->namespaces);
2824         dev->reset_workfn = nvme_reset_failed_dev;
2825         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2826         dev->pci_dev = pci_dev_get(pdev);
2827         pci_set_drvdata(pdev, dev);
2828         result = nvme_set_instance(dev);
2829         if (result)
2830                 goto put_pci;
2831
2832         result = nvme_setup_prp_pools(dev);
2833         if (result)
2834                 goto release;
2835
2836         kref_init(&dev->kref);
2837         result = nvme_dev_start(dev);
2838         if (result)
2839                 goto release_pools;
2840
2841         if (dev->online_queues > 1)
2842                 result = nvme_dev_add(dev);
2843         if (result)
2844                 goto shutdown;
2845
2846         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2847         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2848         dev->miscdev.parent = &pdev->dev;
2849         dev->miscdev.name = dev->name;
2850         dev->miscdev.fops = &nvme_dev_fops;
2851         result = misc_register(&dev->miscdev);
2852         if (result)
2853                 goto remove;
2854
2855         nvme_set_irq_hints(dev);
2856
2857         dev->initialized = 1;
2858         return 0;
2859
2860  remove:
2861         nvme_dev_remove(dev);
2862         nvme_dev_remove_admin(dev);
2863         nvme_free_namespaces(dev);
2864  shutdown:
2865         nvme_dev_shutdown(dev);
2866  release_pools:
2867         nvme_free_queues(dev, 0);
2868         nvme_release_prp_pools(dev);
2869  release:
2870         nvme_release_instance(dev);
2871  put_pci:
2872         pci_dev_put(dev->pci_dev);
2873  free:
2874         kfree(dev->queues);
2875         kfree(dev->entry);
2876         kfree(dev);
2877         return result;
2878 }
2879
2880 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2881 {
2882         struct nvme_dev *dev = pci_get_drvdata(pdev);
2883
2884         if (prepare)
2885                 nvme_dev_shutdown(dev);
2886         else
2887                 nvme_dev_resume(dev);
2888 }
2889
2890 static void nvme_shutdown(struct pci_dev *pdev)
2891 {
2892         struct nvme_dev *dev = pci_get_drvdata(pdev);
2893         nvme_dev_shutdown(dev);
2894 }
2895
2896 static void nvme_remove(struct pci_dev *pdev)
2897 {
2898         struct nvme_dev *dev = pci_get_drvdata(pdev);
2899
2900         spin_lock(&dev_list_lock);
2901         list_del_init(&dev->node);
2902         spin_unlock(&dev_list_lock);
2903
2904         pci_set_drvdata(pdev, NULL);
2905         flush_work(&dev->reset_work);
2906         misc_deregister(&dev->miscdev);
2907         nvme_dev_shutdown(dev);
2908         nvme_dev_remove(dev);
2909         nvme_dev_remove_admin(dev);
2910         nvme_free_queues(dev, 0);
2911         nvme_release_prp_pools(dev);
2912         kref_put(&dev->kref, nvme_free_dev);
2913 }
2914
2915 /* These functions are yet to be implemented */
2916 #define nvme_error_detected NULL
2917 #define nvme_dump_registers NULL
2918 #define nvme_link_reset NULL
2919 #define nvme_slot_reset NULL
2920 #define nvme_error_resume NULL
2921
2922 #ifdef CONFIG_PM_SLEEP
2923 static int nvme_suspend(struct device *dev)
2924 {
2925         struct pci_dev *pdev = to_pci_dev(dev);
2926         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2927
2928         nvme_dev_shutdown(ndev);
2929         return 0;
2930 }
2931
2932 static int nvme_resume(struct device *dev)
2933 {
2934         struct pci_dev *pdev = to_pci_dev(dev);
2935         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2936
2937         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2938                 ndev->reset_workfn = nvme_reset_failed_dev;
2939                 queue_work(nvme_workq, &ndev->reset_work);
2940         }
2941         return 0;
2942 }
2943 #endif
2944
2945 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2946
2947 static const struct pci_error_handlers nvme_err_handler = {
2948         .error_detected = nvme_error_detected,
2949         .mmio_enabled   = nvme_dump_registers,
2950         .link_reset     = nvme_link_reset,
2951         .slot_reset     = nvme_slot_reset,
2952         .resume         = nvme_error_resume,
2953         .reset_notify   = nvme_reset_notify,
2954 };
2955
2956 /* Move to pci_ids.h later */
2957 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2958
2959 static const struct pci_device_id nvme_id_table[] = {
2960         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2961         { 0, }
2962 };
2963 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2964
2965 static struct pci_driver nvme_driver = {
2966         .name           = "nvme",
2967         .id_table       = nvme_id_table,
2968         .probe          = nvme_probe,
2969         .remove         = nvme_remove,
2970         .shutdown       = nvme_shutdown,
2971         .driver         = {
2972                 .pm     = &nvme_dev_pm_ops,
2973         },
2974         .err_handler    = &nvme_err_handler,
2975 };
2976
2977 static int __init nvme_init(void)
2978 {
2979         int result;
2980
2981         init_waitqueue_head(&nvme_kthread_wait);
2982
2983         nvme_workq = create_singlethread_workqueue("nvme");
2984         if (!nvme_workq)
2985                 return -ENOMEM;
2986
2987         result = register_blkdev(nvme_major, "nvme");
2988         if (result < 0)
2989                 goto kill_workq;
2990         else if (result > 0)
2991                 nvme_major = result;
2992
2993         result = pci_register_driver(&nvme_driver);
2994         if (result)
2995                 goto unregister_blkdev;
2996         return 0;
2997
2998  unregister_blkdev:
2999         unregister_blkdev(nvme_major, "nvme");
3000  kill_workq:
3001         destroy_workqueue(nvme_workq);
3002         return result;
3003 }
3004
3005 static void __exit nvme_exit(void)
3006 {
3007         pci_unregister_driver(&nvme_driver);
3008         unregister_hotcpu_notifier(&nvme_nb);
3009         unregister_blkdev(nvme_major, "nvme");
3010         destroy_workqueue(nvme_workq);
3011         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3012         _nvme_check_size();
3013 }
3014
3015 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3016 MODULE_LICENSE("GPL");
3017 MODULE_VERSION("1.0");
3018 module_init(nvme_init);
3019 module_exit(nvme_exit);