]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/rbd.c
libceph, rbd, ceph: WRITE | ONDISK -> WRITE
[karo-tx-linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48
49 #include "rbd_types.h"
50
51 #define RBD_DEBUG       /* Activate rbd_assert() calls */
52
53 /*
54  * The basic unit of block I/O is a sector.  It is interpreted in a
55  * number of contexts in Linux (blk, bio, genhd), but the default is
56  * universally 512 bytes.  These symbols are just slightly more
57  * meaningful than the bare numbers they represent.
58  */
59 #define SECTOR_SHIFT    9
60 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
61
62 /*
63  * Increment the given counter and return its updated value.
64  * If the counter is already 0 it will not be incremented.
65  * If the counter is already at its maximum value returns
66  * -EINVAL without updating it.
67  */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70         unsigned int counter;
71
72         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73         if (counter <= (unsigned int)INT_MAX)
74                 return (int)counter;
75
76         atomic_dec(v);
77
78         return -EINVAL;
79 }
80
81 /* Decrement the counter.  Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84         int counter;
85
86         counter = atomic_dec_return(v);
87         if (counter >= 0)
88                 return counter;
89
90         atomic_inc(v);
91
92         return -EINVAL;
93 }
94
95 #define RBD_DRV_NAME "rbd"
96
97 #define RBD_MINORS_PER_MAJOR            256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
99
100 #define RBD_MAX_PARENT_CHAIN_LEN        16
101
102 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
103 #define RBD_MAX_SNAP_NAME_LEN   \
104                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105
106 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
107
108 #define RBD_SNAP_HEAD_NAME      "-"
109
110 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
111
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX    64
115
116 #define RBD_OBJ_PREFIX_LEN_MAX  64
117
118 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
119 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
120
121 /* Feature bits */
122
123 #define RBD_FEATURE_LAYERING    (1<<0)
124 #define RBD_FEATURE_STRIPINGV2  (1<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1<<2)
126 #define RBD_FEATURE_DATA_POOL (1<<7)
127 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
128                                  RBD_FEATURE_STRIPINGV2 |       \
129                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
130                                  RBD_FEATURE_DATA_POOL)
131
132 /* Features supported by this (client software) implementation. */
133
134 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
135
136 /*
137  * An RBD device name will be "rbd#", where the "rbd" comes from
138  * RBD_DRV_NAME above, and # is a unique integer identifier.
139  */
140 #define DEV_NAME_LEN            32
141
142 /*
143  * block device image metadata (in-memory version)
144  */
145 struct rbd_image_header {
146         /* These six fields never change for a given rbd image */
147         char *object_prefix;
148         __u8 obj_order;
149         u64 stripe_unit;
150         u64 stripe_count;
151         s64 data_pool_id;
152         u64 features;           /* Might be changeable someday? */
153
154         /* The remaining fields need to be updated occasionally */
155         u64 image_size;
156         struct ceph_snap_context *snapc;
157         char *snap_names;       /* format 1 only */
158         u64 *snap_sizes;        /* format 1 only */
159 };
160
161 /*
162  * An rbd image specification.
163  *
164  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
165  * identify an image.  Each rbd_dev structure includes a pointer to
166  * an rbd_spec structure that encapsulates this identity.
167  *
168  * Each of the id's in an rbd_spec has an associated name.  For a
169  * user-mapped image, the names are supplied and the id's associated
170  * with them are looked up.  For a layered image, a parent image is
171  * defined by the tuple, and the names are looked up.
172  *
173  * An rbd_dev structure contains a parent_spec pointer which is
174  * non-null if the image it represents is a child in a layered
175  * image.  This pointer will refer to the rbd_spec structure used
176  * by the parent rbd_dev for its own identity (i.e., the structure
177  * is shared between the parent and child).
178  *
179  * Since these structures are populated once, during the discovery
180  * phase of image construction, they are effectively immutable so
181  * we make no effort to synchronize access to them.
182  *
183  * Note that code herein does not assume the image name is known (it
184  * could be a null pointer).
185  */
186 struct rbd_spec {
187         u64             pool_id;
188         const char      *pool_name;
189
190         const char      *image_id;
191         const char      *image_name;
192
193         u64             snap_id;
194         const char      *snap_name;
195
196         struct kref     kref;
197 };
198
199 /*
200  * an instance of the client.  multiple devices may share an rbd client.
201  */
202 struct rbd_client {
203         struct ceph_client      *client;
204         struct kref             kref;
205         struct list_head        node;
206 };
207
208 struct rbd_img_request;
209 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
210
211 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
212
213 struct rbd_obj_request;
214 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
215
216 enum obj_request_type {
217         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
218 };
219
220 enum obj_operation_type {
221         OBJ_OP_WRITE,
222         OBJ_OP_READ,
223         OBJ_OP_DISCARD,
224 };
225
226 enum obj_req_flags {
227         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
228         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
229         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
230         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
231 };
232
233 struct rbd_obj_request {
234         u64                     object_no;
235         u64                     offset;         /* object start byte */
236         u64                     length;         /* bytes from offset */
237         unsigned long           flags;
238
239         /*
240          * An object request associated with an image will have its
241          * img_data flag set; a standalone object request will not.
242          *
243          * A standalone object request will have which == BAD_WHICH
244          * and a null obj_request pointer.
245          *
246          * An object request initiated in support of a layered image
247          * object (to check for its existence before a write) will
248          * have which == BAD_WHICH and a non-null obj_request pointer.
249          *
250          * Finally, an object request for rbd image data will have
251          * which != BAD_WHICH, and will have a non-null img_request
252          * pointer.  The value of which will be in the range
253          * 0..(img_request->obj_request_count-1).
254          */
255         union {
256                 struct rbd_obj_request  *obj_request;   /* STAT op */
257                 struct {
258                         struct rbd_img_request  *img_request;
259                         u64                     img_offset;
260                         /* links for img_request->obj_requests list */
261                         struct list_head        links;
262                 };
263         };
264         u32                     which;          /* posn image request list */
265
266         enum obj_request_type   type;
267         union {
268                 struct bio      *bio_list;
269                 struct {
270                         struct page     **pages;
271                         u32             page_count;
272                 };
273         };
274         struct page             **copyup_pages;
275         u32                     copyup_page_count;
276
277         struct ceph_osd_request *osd_req;
278
279         u64                     xferred;        /* bytes transferred */
280         int                     result;
281
282         rbd_obj_callback_t      callback;
283         struct completion       completion;
284
285         struct kref             kref;
286 };
287
288 enum img_req_flags {
289         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
290         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
291         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
292         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
293 };
294
295 struct rbd_img_request {
296         struct rbd_device       *rbd_dev;
297         u64                     offset; /* starting image byte offset */
298         u64                     length; /* byte count from offset */
299         unsigned long           flags;
300         union {
301                 u64                     snap_id;        /* for reads */
302                 struct ceph_snap_context *snapc;        /* for writes */
303         };
304         union {
305                 struct request          *rq;            /* block request */
306                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
307         };
308         struct page             **copyup_pages;
309         u32                     copyup_page_count;
310         spinlock_t              completion_lock;/* protects next_completion */
311         u32                     next_completion;
312         rbd_img_callback_t      callback;
313         u64                     xferred;/* aggregate bytes transferred */
314         int                     result; /* first nonzero obj_request result */
315
316         u32                     obj_request_count;
317         struct list_head        obj_requests;   /* rbd_obj_request structs */
318
319         struct kref             kref;
320 };
321
322 #define for_each_obj_request(ireq, oreq) \
323         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
324 #define for_each_obj_request_from(ireq, oreq) \
325         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
326 #define for_each_obj_request_safe(ireq, oreq, n) \
327         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
328
329 enum rbd_watch_state {
330         RBD_WATCH_STATE_UNREGISTERED,
331         RBD_WATCH_STATE_REGISTERED,
332         RBD_WATCH_STATE_ERROR,
333 };
334
335 enum rbd_lock_state {
336         RBD_LOCK_STATE_UNLOCKED,
337         RBD_LOCK_STATE_LOCKED,
338         RBD_LOCK_STATE_RELEASING,
339 };
340
341 /* WatchNotify::ClientId */
342 struct rbd_client_id {
343         u64 gid;
344         u64 handle;
345 };
346
347 struct rbd_mapping {
348         u64                     size;
349         u64                     features;
350         bool                    read_only;
351 };
352
353 /*
354  * a single device
355  */
356 struct rbd_device {
357         int                     dev_id;         /* blkdev unique id */
358
359         int                     major;          /* blkdev assigned major */
360         int                     minor;
361         struct gendisk          *disk;          /* blkdev's gendisk and rq */
362
363         u32                     image_format;   /* Either 1 or 2 */
364         struct rbd_client       *rbd_client;
365
366         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
367
368         spinlock_t              lock;           /* queue, flags, open_count */
369
370         struct rbd_image_header header;
371         unsigned long           flags;          /* possibly lock protected */
372         struct rbd_spec         *spec;
373         struct rbd_options      *opts;
374         char                    *config_info;   /* add{,_single_major} string */
375
376         struct ceph_object_id   header_oid;
377         struct ceph_object_locator header_oloc;
378
379         struct ceph_file_layout layout;         /* used for all rbd requests */
380
381         struct mutex            watch_mutex;
382         enum rbd_watch_state    watch_state;
383         struct ceph_osd_linger_request *watch_handle;
384         u64                     watch_cookie;
385         struct delayed_work     watch_dwork;
386
387         struct rw_semaphore     lock_rwsem;
388         enum rbd_lock_state     lock_state;
389         struct rbd_client_id    owner_cid;
390         struct work_struct      acquired_lock_work;
391         struct work_struct      released_lock_work;
392         struct delayed_work     lock_dwork;
393         struct work_struct      unlock_work;
394         wait_queue_head_t       lock_waitq;
395
396         struct workqueue_struct *task_wq;
397
398         struct rbd_spec         *parent_spec;
399         u64                     parent_overlap;
400         atomic_t                parent_ref;
401         struct rbd_device       *parent;
402
403         /* Block layer tags. */
404         struct blk_mq_tag_set   tag_set;
405
406         /* protects updating the header */
407         struct rw_semaphore     header_rwsem;
408
409         struct rbd_mapping      mapping;
410
411         struct list_head        node;
412
413         /* sysfs related */
414         struct device           dev;
415         unsigned long           open_count;     /* protected by lock */
416 };
417
418 /*
419  * Flag bits for rbd_dev->flags:
420  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
421  *   by rbd_dev->lock
422  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
423  */
424 enum rbd_dev_flags {
425         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
426         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
427         RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
428 };
429
430 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
431
432 static LIST_HEAD(rbd_dev_list);    /* devices */
433 static DEFINE_SPINLOCK(rbd_dev_list_lock);
434
435 static LIST_HEAD(rbd_client_list);              /* clients */
436 static DEFINE_SPINLOCK(rbd_client_list_lock);
437
438 /* Slab caches for frequently-allocated structures */
439
440 static struct kmem_cache        *rbd_img_request_cache;
441 static struct kmem_cache        *rbd_obj_request_cache;
442
443 static int rbd_major;
444 static DEFINE_IDA(rbd_dev_id_ida);
445
446 static struct workqueue_struct *rbd_wq;
447
448 /*
449  * Default to false for now, as single-major requires >= 0.75 version of
450  * userspace rbd utility.
451  */
452 static bool single_major = false;
453 module_param(single_major, bool, S_IRUGO);
454 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
455
456 static int rbd_img_request_submit(struct rbd_img_request *img_request);
457
458 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
459                        size_t count);
460 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
461                           size_t count);
462 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
463                                     size_t count);
464 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
465                                        size_t count);
466 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
467 static void rbd_spec_put(struct rbd_spec *spec);
468
469 static int rbd_dev_id_to_minor(int dev_id)
470 {
471         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
472 }
473
474 static int minor_to_rbd_dev_id(int minor)
475 {
476         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
477 }
478
479 static bool rbd_is_lock_supported(struct rbd_device *rbd_dev)
480 {
481         return (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
482                rbd_dev->spec->snap_id == CEPH_NOSNAP &&
483                !rbd_dev->mapping.read_only;
484 }
485
486 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
487 {
488         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
489                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
490 }
491
492 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
493 {
494         bool is_lock_owner;
495
496         down_read(&rbd_dev->lock_rwsem);
497         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
498         up_read(&rbd_dev->lock_rwsem);
499         return is_lock_owner;
500 }
501
502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
506
507 static struct attribute *rbd_bus_attrs[] = {
508         &bus_attr_add.attr,
509         &bus_attr_remove.attr,
510         &bus_attr_add_single_major.attr,
511         &bus_attr_remove_single_major.attr,
512         NULL,
513 };
514
515 static umode_t rbd_bus_is_visible(struct kobject *kobj,
516                                   struct attribute *attr, int index)
517 {
518         if (!single_major &&
519             (attr == &bus_attr_add_single_major.attr ||
520              attr == &bus_attr_remove_single_major.attr))
521                 return 0;
522
523         return attr->mode;
524 }
525
526 static const struct attribute_group rbd_bus_group = {
527         .attrs = rbd_bus_attrs,
528         .is_visible = rbd_bus_is_visible,
529 };
530 __ATTRIBUTE_GROUPS(rbd_bus);
531
532 static struct bus_type rbd_bus_type = {
533         .name           = "rbd",
534         .bus_groups     = rbd_bus_groups,
535 };
536
537 static void rbd_root_dev_release(struct device *dev)
538 {
539 }
540
541 static struct device rbd_root_dev = {
542         .init_name =    "rbd",
543         .release =      rbd_root_dev_release,
544 };
545
546 static __printf(2, 3)
547 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
548 {
549         struct va_format vaf;
550         va_list args;
551
552         va_start(args, fmt);
553         vaf.fmt = fmt;
554         vaf.va = &args;
555
556         if (!rbd_dev)
557                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
558         else if (rbd_dev->disk)
559                 printk(KERN_WARNING "%s: %s: %pV\n",
560                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
561         else if (rbd_dev->spec && rbd_dev->spec->image_name)
562                 printk(KERN_WARNING "%s: image %s: %pV\n",
563                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
564         else if (rbd_dev->spec && rbd_dev->spec->image_id)
565                 printk(KERN_WARNING "%s: id %s: %pV\n",
566                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
567         else    /* punt */
568                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
569                         RBD_DRV_NAME, rbd_dev, &vaf);
570         va_end(args);
571 }
572
573 #ifdef RBD_DEBUG
574 #define rbd_assert(expr)                                                \
575                 if (unlikely(!(expr))) {                                \
576                         printk(KERN_ERR "\nAssertion failure in %s() "  \
577                                                 "at line %d:\n\n"       \
578                                         "\trbd_assert(%s);\n\n",        \
579                                         __func__, __LINE__, #expr);     \
580                         BUG();                                          \
581                 }
582 #else /* !RBD_DEBUG */
583 #  define rbd_assert(expr)      ((void) 0)
584 #endif /* !RBD_DEBUG */
585
586 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
587 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
588 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
589 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
590
591 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
592 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
593 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
594 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
595 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
596                                         u64 snap_id);
597 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
598                                 u8 *order, u64 *snap_size);
599 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
600                 u64 *snap_features);
601
602 static int rbd_open(struct block_device *bdev, fmode_t mode)
603 {
604         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
605         bool removing = false;
606
607         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
608                 return -EROFS;
609
610         spin_lock_irq(&rbd_dev->lock);
611         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
612                 removing = true;
613         else
614                 rbd_dev->open_count++;
615         spin_unlock_irq(&rbd_dev->lock);
616         if (removing)
617                 return -ENOENT;
618
619         (void) get_device(&rbd_dev->dev);
620
621         return 0;
622 }
623
624 static void rbd_release(struct gendisk *disk, fmode_t mode)
625 {
626         struct rbd_device *rbd_dev = disk->private_data;
627         unsigned long open_count_before;
628
629         spin_lock_irq(&rbd_dev->lock);
630         open_count_before = rbd_dev->open_count--;
631         spin_unlock_irq(&rbd_dev->lock);
632         rbd_assert(open_count_before > 0);
633
634         put_device(&rbd_dev->dev);
635 }
636
637 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
638 {
639         int ret = 0;
640         int val;
641         bool ro;
642         bool ro_changed = false;
643
644         /* get_user() may sleep, so call it before taking rbd_dev->lock */
645         if (get_user(val, (int __user *)(arg)))
646                 return -EFAULT;
647
648         ro = val ? true : false;
649         /* Snapshot doesn't allow to write*/
650         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
651                 return -EROFS;
652
653         spin_lock_irq(&rbd_dev->lock);
654         /* prevent others open this device */
655         if (rbd_dev->open_count > 1) {
656                 ret = -EBUSY;
657                 goto out;
658         }
659
660         if (rbd_dev->mapping.read_only != ro) {
661                 rbd_dev->mapping.read_only = ro;
662                 ro_changed = true;
663         }
664
665 out:
666         spin_unlock_irq(&rbd_dev->lock);
667         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
668         if (ret == 0 && ro_changed)
669                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
670
671         return ret;
672 }
673
674 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
675                         unsigned int cmd, unsigned long arg)
676 {
677         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
678         int ret = 0;
679
680         switch (cmd) {
681         case BLKROSET:
682                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
683                 break;
684         default:
685                 ret = -ENOTTY;
686         }
687
688         return ret;
689 }
690
691 #ifdef CONFIG_COMPAT
692 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
693                                 unsigned int cmd, unsigned long arg)
694 {
695         return rbd_ioctl(bdev, mode, cmd, arg);
696 }
697 #endif /* CONFIG_COMPAT */
698
699 static const struct block_device_operations rbd_bd_ops = {
700         .owner                  = THIS_MODULE,
701         .open                   = rbd_open,
702         .release                = rbd_release,
703         .ioctl                  = rbd_ioctl,
704 #ifdef CONFIG_COMPAT
705         .compat_ioctl           = rbd_compat_ioctl,
706 #endif
707 };
708
709 /*
710  * Initialize an rbd client instance.  Success or not, this function
711  * consumes ceph_opts.  Caller holds client_mutex.
712  */
713 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
714 {
715         struct rbd_client *rbdc;
716         int ret = -ENOMEM;
717
718         dout("%s:\n", __func__);
719         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
720         if (!rbdc)
721                 goto out_opt;
722
723         kref_init(&rbdc->kref);
724         INIT_LIST_HEAD(&rbdc->node);
725
726         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
727         if (IS_ERR(rbdc->client))
728                 goto out_rbdc;
729         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
730
731         ret = ceph_open_session(rbdc->client);
732         if (ret < 0)
733                 goto out_client;
734
735         spin_lock(&rbd_client_list_lock);
736         list_add_tail(&rbdc->node, &rbd_client_list);
737         spin_unlock(&rbd_client_list_lock);
738
739         dout("%s: rbdc %p\n", __func__, rbdc);
740
741         return rbdc;
742 out_client:
743         ceph_destroy_client(rbdc->client);
744 out_rbdc:
745         kfree(rbdc);
746 out_opt:
747         if (ceph_opts)
748                 ceph_destroy_options(ceph_opts);
749         dout("%s: error %d\n", __func__, ret);
750
751         return ERR_PTR(ret);
752 }
753
754 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
755 {
756         kref_get(&rbdc->kref);
757
758         return rbdc;
759 }
760
761 /*
762  * Find a ceph client with specific addr and configuration.  If
763  * found, bump its reference count.
764  */
765 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
766 {
767         struct rbd_client *client_node;
768         bool found = false;
769
770         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
771                 return NULL;
772
773         spin_lock(&rbd_client_list_lock);
774         list_for_each_entry(client_node, &rbd_client_list, node) {
775                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
776                         __rbd_get_client(client_node);
777
778                         found = true;
779                         break;
780                 }
781         }
782         spin_unlock(&rbd_client_list_lock);
783
784         return found ? client_node : NULL;
785 }
786
787 /*
788  * (Per device) rbd map options
789  */
790 enum {
791         Opt_queue_depth,
792         Opt_last_int,
793         /* int args above */
794         Opt_last_string,
795         /* string args above */
796         Opt_read_only,
797         Opt_read_write,
798         Opt_lock_on_read,
799         Opt_err
800 };
801
802 static match_table_t rbd_opts_tokens = {
803         {Opt_queue_depth, "queue_depth=%d"},
804         /* int args above */
805         /* string args above */
806         {Opt_read_only, "read_only"},
807         {Opt_read_only, "ro"},          /* Alternate spelling */
808         {Opt_read_write, "read_write"},
809         {Opt_read_write, "rw"},         /* Alternate spelling */
810         {Opt_lock_on_read, "lock_on_read"},
811         {Opt_err, NULL}
812 };
813
814 struct rbd_options {
815         int     queue_depth;
816         bool    read_only;
817         bool    lock_on_read;
818 };
819
820 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
821 #define RBD_READ_ONLY_DEFAULT   false
822 #define RBD_LOCK_ON_READ_DEFAULT false
823
824 static int parse_rbd_opts_token(char *c, void *private)
825 {
826         struct rbd_options *rbd_opts = private;
827         substring_t argstr[MAX_OPT_ARGS];
828         int token, intval, ret;
829
830         token = match_token(c, rbd_opts_tokens, argstr);
831         if (token < Opt_last_int) {
832                 ret = match_int(&argstr[0], &intval);
833                 if (ret < 0) {
834                         pr_err("bad mount option arg (not int) at '%s'\n", c);
835                         return ret;
836                 }
837                 dout("got int token %d val %d\n", token, intval);
838         } else if (token > Opt_last_int && token < Opt_last_string) {
839                 dout("got string token %d val %s\n", token, argstr[0].from);
840         } else {
841                 dout("got token %d\n", token);
842         }
843
844         switch (token) {
845         case Opt_queue_depth:
846                 if (intval < 1) {
847                         pr_err("queue_depth out of range\n");
848                         return -EINVAL;
849                 }
850                 rbd_opts->queue_depth = intval;
851                 break;
852         case Opt_read_only:
853                 rbd_opts->read_only = true;
854                 break;
855         case Opt_read_write:
856                 rbd_opts->read_only = false;
857                 break;
858         case Opt_lock_on_read:
859                 rbd_opts->lock_on_read = true;
860                 break;
861         default:
862                 /* libceph prints "bad option" msg */
863                 return -EINVAL;
864         }
865
866         return 0;
867 }
868
869 static char* obj_op_name(enum obj_operation_type op_type)
870 {
871         switch (op_type) {
872         case OBJ_OP_READ:
873                 return "read";
874         case OBJ_OP_WRITE:
875                 return "write";
876         case OBJ_OP_DISCARD:
877                 return "discard";
878         default:
879                 return "???";
880         }
881 }
882
883 /*
884  * Get a ceph client with specific addr and configuration, if one does
885  * not exist create it.  Either way, ceph_opts is consumed by this
886  * function.
887  */
888 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
889 {
890         struct rbd_client *rbdc;
891
892         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
893         rbdc = rbd_client_find(ceph_opts);
894         if (rbdc)       /* using an existing client */
895                 ceph_destroy_options(ceph_opts);
896         else
897                 rbdc = rbd_client_create(ceph_opts);
898         mutex_unlock(&client_mutex);
899
900         return rbdc;
901 }
902
903 /*
904  * Destroy ceph client
905  *
906  * Caller must hold rbd_client_list_lock.
907  */
908 static void rbd_client_release(struct kref *kref)
909 {
910         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
911
912         dout("%s: rbdc %p\n", __func__, rbdc);
913         spin_lock(&rbd_client_list_lock);
914         list_del(&rbdc->node);
915         spin_unlock(&rbd_client_list_lock);
916
917         ceph_destroy_client(rbdc->client);
918         kfree(rbdc);
919 }
920
921 /*
922  * Drop reference to ceph client node. If it's not referenced anymore, release
923  * it.
924  */
925 static void rbd_put_client(struct rbd_client *rbdc)
926 {
927         if (rbdc)
928                 kref_put(&rbdc->kref, rbd_client_release);
929 }
930
931 static bool rbd_image_format_valid(u32 image_format)
932 {
933         return image_format == 1 || image_format == 2;
934 }
935
936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
937 {
938         size_t size;
939         u32 snap_count;
940
941         /* The header has to start with the magic rbd header text */
942         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
943                 return false;
944
945         /* The bio layer requires at least sector-sized I/O */
946
947         if (ondisk->options.order < SECTOR_SHIFT)
948                 return false;
949
950         /* If we use u64 in a few spots we may be able to loosen this */
951
952         if (ondisk->options.order > 8 * sizeof (int) - 1)
953                 return false;
954
955         /*
956          * The size of a snapshot header has to fit in a size_t, and
957          * that limits the number of snapshots.
958          */
959         snap_count = le32_to_cpu(ondisk->snap_count);
960         size = SIZE_MAX - sizeof (struct ceph_snap_context);
961         if (snap_count > size / sizeof (__le64))
962                 return false;
963
964         /*
965          * Not only that, but the size of the entire the snapshot
966          * header must also be representable in a size_t.
967          */
968         size -= snap_count * sizeof (__le64);
969         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
970                 return false;
971
972         return true;
973 }
974
975 /*
976  * returns the size of an object in the image
977  */
978 static u32 rbd_obj_bytes(struct rbd_image_header *header)
979 {
980         return 1U << header->obj_order;
981 }
982
983 static void rbd_init_layout(struct rbd_device *rbd_dev)
984 {
985         if (rbd_dev->header.stripe_unit == 0 ||
986             rbd_dev->header.stripe_count == 0) {
987                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
988                 rbd_dev->header.stripe_count = 1;
989         }
990
991         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
992         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
993         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
994         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
995                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
996         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
997 }
998
999 /*
1000  * Fill an rbd image header with information from the given format 1
1001  * on-disk header.
1002  */
1003 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1004                                  struct rbd_image_header_ondisk *ondisk)
1005 {
1006         struct rbd_image_header *header = &rbd_dev->header;
1007         bool first_time = header->object_prefix == NULL;
1008         struct ceph_snap_context *snapc;
1009         char *object_prefix = NULL;
1010         char *snap_names = NULL;
1011         u64 *snap_sizes = NULL;
1012         u32 snap_count;
1013         int ret = -ENOMEM;
1014         u32 i;
1015
1016         /* Allocate this now to avoid having to handle failure below */
1017
1018         if (first_time) {
1019                 object_prefix = kstrndup(ondisk->object_prefix,
1020                                          sizeof(ondisk->object_prefix),
1021                                          GFP_KERNEL);
1022                 if (!object_prefix)
1023                         return -ENOMEM;
1024         }
1025
1026         /* Allocate the snapshot context and fill it in */
1027
1028         snap_count = le32_to_cpu(ondisk->snap_count);
1029         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1030         if (!snapc)
1031                 goto out_err;
1032         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1033         if (snap_count) {
1034                 struct rbd_image_snap_ondisk *snaps;
1035                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1036
1037                 /* We'll keep a copy of the snapshot names... */
1038
1039                 if (snap_names_len > (u64)SIZE_MAX)
1040                         goto out_2big;
1041                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1042                 if (!snap_names)
1043                         goto out_err;
1044
1045                 /* ...as well as the array of their sizes. */
1046                 snap_sizes = kmalloc_array(snap_count,
1047                                            sizeof(*header->snap_sizes),
1048                                            GFP_KERNEL);
1049                 if (!snap_sizes)
1050                         goto out_err;
1051
1052                 /*
1053                  * Copy the names, and fill in each snapshot's id
1054                  * and size.
1055                  *
1056                  * Note that rbd_dev_v1_header_info() guarantees the
1057                  * ondisk buffer we're working with has
1058                  * snap_names_len bytes beyond the end of the
1059                  * snapshot id array, this memcpy() is safe.
1060                  */
1061                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1062                 snaps = ondisk->snaps;
1063                 for (i = 0; i < snap_count; i++) {
1064                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1065                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1066                 }
1067         }
1068
1069         /* We won't fail any more, fill in the header */
1070
1071         if (first_time) {
1072                 header->object_prefix = object_prefix;
1073                 header->obj_order = ondisk->options.order;
1074                 rbd_init_layout(rbd_dev);
1075         } else {
1076                 ceph_put_snap_context(header->snapc);
1077                 kfree(header->snap_names);
1078                 kfree(header->snap_sizes);
1079         }
1080
1081         /* The remaining fields always get updated (when we refresh) */
1082
1083         header->image_size = le64_to_cpu(ondisk->image_size);
1084         header->snapc = snapc;
1085         header->snap_names = snap_names;
1086         header->snap_sizes = snap_sizes;
1087
1088         return 0;
1089 out_2big:
1090         ret = -EIO;
1091 out_err:
1092         kfree(snap_sizes);
1093         kfree(snap_names);
1094         ceph_put_snap_context(snapc);
1095         kfree(object_prefix);
1096
1097         return ret;
1098 }
1099
1100 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1101 {
1102         const char *snap_name;
1103
1104         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1105
1106         /* Skip over names until we find the one we are looking for */
1107
1108         snap_name = rbd_dev->header.snap_names;
1109         while (which--)
1110                 snap_name += strlen(snap_name) + 1;
1111
1112         return kstrdup(snap_name, GFP_KERNEL);
1113 }
1114
1115 /*
1116  * Snapshot id comparison function for use with qsort()/bsearch().
1117  * Note that result is for snapshots in *descending* order.
1118  */
1119 static int snapid_compare_reverse(const void *s1, const void *s2)
1120 {
1121         u64 snap_id1 = *(u64 *)s1;
1122         u64 snap_id2 = *(u64 *)s2;
1123
1124         if (snap_id1 < snap_id2)
1125                 return 1;
1126         return snap_id1 == snap_id2 ? 0 : -1;
1127 }
1128
1129 /*
1130  * Search a snapshot context to see if the given snapshot id is
1131  * present.
1132  *
1133  * Returns the position of the snapshot id in the array if it's found,
1134  * or BAD_SNAP_INDEX otherwise.
1135  *
1136  * Note: The snapshot array is in kept sorted (by the osd) in
1137  * reverse order, highest snapshot id first.
1138  */
1139 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1140 {
1141         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1142         u64 *found;
1143
1144         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1145                                 sizeof (snap_id), snapid_compare_reverse);
1146
1147         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1148 }
1149
1150 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1151                                         u64 snap_id)
1152 {
1153         u32 which;
1154         const char *snap_name;
1155
1156         which = rbd_dev_snap_index(rbd_dev, snap_id);
1157         if (which == BAD_SNAP_INDEX)
1158                 return ERR_PTR(-ENOENT);
1159
1160         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1161         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1162 }
1163
1164 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1165 {
1166         if (snap_id == CEPH_NOSNAP)
1167                 return RBD_SNAP_HEAD_NAME;
1168
1169         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1170         if (rbd_dev->image_format == 1)
1171                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1172
1173         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1174 }
1175
1176 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1177                                 u64 *snap_size)
1178 {
1179         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1180         if (snap_id == CEPH_NOSNAP) {
1181                 *snap_size = rbd_dev->header.image_size;
1182         } else if (rbd_dev->image_format == 1) {
1183                 u32 which;
1184
1185                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1186                 if (which == BAD_SNAP_INDEX)
1187                         return -ENOENT;
1188
1189                 *snap_size = rbd_dev->header.snap_sizes[which];
1190         } else {
1191                 u64 size = 0;
1192                 int ret;
1193
1194                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1195                 if (ret)
1196                         return ret;
1197
1198                 *snap_size = size;
1199         }
1200         return 0;
1201 }
1202
1203 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1204                         u64 *snap_features)
1205 {
1206         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1207         if (snap_id == CEPH_NOSNAP) {
1208                 *snap_features = rbd_dev->header.features;
1209         } else if (rbd_dev->image_format == 1) {
1210                 *snap_features = 0;     /* No features for format 1 */
1211         } else {
1212                 u64 features = 0;
1213                 int ret;
1214
1215                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1216                 if (ret)
1217                         return ret;
1218
1219                 *snap_features = features;
1220         }
1221         return 0;
1222 }
1223
1224 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1225 {
1226         u64 snap_id = rbd_dev->spec->snap_id;
1227         u64 size = 0;
1228         u64 features = 0;
1229         int ret;
1230
1231         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1232         if (ret)
1233                 return ret;
1234         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1235         if (ret)
1236                 return ret;
1237
1238         rbd_dev->mapping.size = size;
1239         rbd_dev->mapping.features = features;
1240
1241         return 0;
1242 }
1243
1244 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1245 {
1246         rbd_dev->mapping.size = 0;
1247         rbd_dev->mapping.features = 0;
1248 }
1249
1250 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1251 {
1252         u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1253
1254         return offset & (segment_size - 1);
1255 }
1256
1257 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1258                                 u64 offset, u64 length)
1259 {
1260         u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1261
1262         offset &= segment_size - 1;
1263
1264         rbd_assert(length <= U64_MAX - offset);
1265         if (offset + length > segment_size)
1266                 length = segment_size - offset;
1267
1268         return length;
1269 }
1270
1271 /*
1272  * bio helpers
1273  */
1274
1275 static void bio_chain_put(struct bio *chain)
1276 {
1277         struct bio *tmp;
1278
1279         while (chain) {
1280                 tmp = chain;
1281                 chain = chain->bi_next;
1282                 bio_put(tmp);
1283         }
1284 }
1285
1286 /*
1287  * zeros a bio chain, starting at specific offset
1288  */
1289 static void zero_bio_chain(struct bio *chain, int start_ofs)
1290 {
1291         struct bio_vec bv;
1292         struct bvec_iter iter;
1293         unsigned long flags;
1294         void *buf;
1295         int pos = 0;
1296
1297         while (chain) {
1298                 bio_for_each_segment(bv, chain, iter) {
1299                         if (pos + bv.bv_len > start_ofs) {
1300                                 int remainder = max(start_ofs - pos, 0);
1301                                 buf = bvec_kmap_irq(&bv, &flags);
1302                                 memset(buf + remainder, 0,
1303                                        bv.bv_len - remainder);
1304                                 flush_dcache_page(bv.bv_page);
1305                                 bvec_kunmap_irq(buf, &flags);
1306                         }
1307                         pos += bv.bv_len;
1308                 }
1309
1310                 chain = chain->bi_next;
1311         }
1312 }
1313
1314 /*
1315  * similar to zero_bio_chain(), zeros data defined by a page array,
1316  * starting at the given byte offset from the start of the array and
1317  * continuing up to the given end offset.  The pages array is
1318  * assumed to be big enough to hold all bytes up to the end.
1319  */
1320 static void zero_pages(struct page **pages, u64 offset, u64 end)
1321 {
1322         struct page **page = &pages[offset >> PAGE_SHIFT];
1323
1324         rbd_assert(end > offset);
1325         rbd_assert(end - offset <= (u64)SIZE_MAX);
1326         while (offset < end) {
1327                 size_t page_offset;
1328                 size_t length;
1329                 unsigned long flags;
1330                 void *kaddr;
1331
1332                 page_offset = offset & ~PAGE_MASK;
1333                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1334                 local_irq_save(flags);
1335                 kaddr = kmap_atomic(*page);
1336                 memset(kaddr + page_offset, 0, length);
1337                 flush_dcache_page(*page);
1338                 kunmap_atomic(kaddr);
1339                 local_irq_restore(flags);
1340
1341                 offset += length;
1342                 page++;
1343         }
1344 }
1345
1346 /*
1347  * Clone a portion of a bio, starting at the given byte offset
1348  * and continuing for the number of bytes indicated.
1349  */
1350 static struct bio *bio_clone_range(struct bio *bio_src,
1351                                         unsigned int offset,
1352                                         unsigned int len,
1353                                         gfp_t gfpmask)
1354 {
1355         struct bio *bio;
1356
1357         bio = bio_clone(bio_src, gfpmask);
1358         if (!bio)
1359                 return NULL;    /* ENOMEM */
1360
1361         bio_advance(bio, offset);
1362         bio->bi_iter.bi_size = len;
1363
1364         return bio;
1365 }
1366
1367 /*
1368  * Clone a portion of a bio chain, starting at the given byte offset
1369  * into the first bio in the source chain and continuing for the
1370  * number of bytes indicated.  The result is another bio chain of
1371  * exactly the given length, or a null pointer on error.
1372  *
1373  * The bio_src and offset parameters are both in-out.  On entry they
1374  * refer to the first source bio and the offset into that bio where
1375  * the start of data to be cloned is located.
1376  *
1377  * On return, bio_src is updated to refer to the bio in the source
1378  * chain that contains first un-cloned byte, and *offset will
1379  * contain the offset of that byte within that bio.
1380  */
1381 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1382                                         unsigned int *offset,
1383                                         unsigned int len,
1384                                         gfp_t gfpmask)
1385 {
1386         struct bio *bi = *bio_src;
1387         unsigned int off = *offset;
1388         struct bio *chain = NULL;
1389         struct bio **end;
1390
1391         /* Build up a chain of clone bios up to the limit */
1392
1393         if (!bi || off >= bi->bi_iter.bi_size || !len)
1394                 return NULL;            /* Nothing to clone */
1395
1396         end = &chain;
1397         while (len) {
1398                 unsigned int bi_size;
1399                 struct bio *bio;
1400
1401                 if (!bi) {
1402                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1403                         goto out_err;   /* EINVAL; ran out of bio's */
1404                 }
1405                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1406                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1407                 if (!bio)
1408                         goto out_err;   /* ENOMEM */
1409
1410                 *end = bio;
1411                 end = &bio->bi_next;
1412
1413                 off += bi_size;
1414                 if (off == bi->bi_iter.bi_size) {
1415                         bi = bi->bi_next;
1416                         off = 0;
1417                 }
1418                 len -= bi_size;
1419         }
1420         *bio_src = bi;
1421         *offset = off;
1422
1423         return chain;
1424 out_err:
1425         bio_chain_put(chain);
1426
1427         return NULL;
1428 }
1429
1430 /*
1431  * The default/initial value for all object request flags is 0.  For
1432  * each flag, once its value is set to 1 it is never reset to 0
1433  * again.
1434  */
1435 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1436 {
1437         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1438                 struct rbd_device *rbd_dev;
1439
1440                 rbd_dev = obj_request->img_request->rbd_dev;
1441                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1442                         obj_request);
1443         }
1444 }
1445
1446 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1447 {
1448         smp_mb();
1449         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1450 }
1451
1452 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1453 {
1454         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1455                 struct rbd_device *rbd_dev = NULL;
1456
1457                 if (obj_request_img_data_test(obj_request))
1458                         rbd_dev = obj_request->img_request->rbd_dev;
1459                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1460                         obj_request);
1461         }
1462 }
1463
1464 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1465 {
1466         smp_mb();
1467         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1468 }
1469
1470 /*
1471  * This sets the KNOWN flag after (possibly) setting the EXISTS
1472  * flag.  The latter is set based on the "exists" value provided.
1473  *
1474  * Note that for our purposes once an object exists it never goes
1475  * away again.  It's possible that the response from two existence
1476  * checks are separated by the creation of the target object, and
1477  * the first ("doesn't exist") response arrives *after* the second
1478  * ("does exist").  In that case we ignore the second one.
1479  */
1480 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1481                                 bool exists)
1482 {
1483         if (exists)
1484                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1485         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1486         smp_mb();
1487 }
1488
1489 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1490 {
1491         smp_mb();
1492         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1493 }
1494
1495 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1496 {
1497         smp_mb();
1498         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1499 }
1500
1501 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1502 {
1503         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1504
1505         return obj_request->img_offset <
1506             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1507 }
1508
1509 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1510 {
1511         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1512                 atomic_read(&obj_request->kref.refcount));
1513         kref_get(&obj_request->kref);
1514 }
1515
1516 static void rbd_obj_request_destroy(struct kref *kref);
1517 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1518 {
1519         rbd_assert(obj_request != NULL);
1520         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1521                 atomic_read(&obj_request->kref.refcount));
1522         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1523 }
1524
1525 static void rbd_img_request_get(struct rbd_img_request *img_request)
1526 {
1527         dout("%s: img %p (was %d)\n", __func__, img_request,
1528              atomic_read(&img_request->kref.refcount));
1529         kref_get(&img_request->kref);
1530 }
1531
1532 static bool img_request_child_test(struct rbd_img_request *img_request);
1533 static void rbd_parent_request_destroy(struct kref *kref);
1534 static void rbd_img_request_destroy(struct kref *kref);
1535 static void rbd_img_request_put(struct rbd_img_request *img_request)
1536 {
1537         rbd_assert(img_request != NULL);
1538         dout("%s: img %p (was %d)\n", __func__, img_request,
1539                 atomic_read(&img_request->kref.refcount));
1540         if (img_request_child_test(img_request))
1541                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1542         else
1543                 kref_put(&img_request->kref, rbd_img_request_destroy);
1544 }
1545
1546 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1547                                         struct rbd_obj_request *obj_request)
1548 {
1549         rbd_assert(obj_request->img_request == NULL);
1550
1551         /* Image request now owns object's original reference */
1552         obj_request->img_request = img_request;
1553         obj_request->which = img_request->obj_request_count;
1554         rbd_assert(!obj_request_img_data_test(obj_request));
1555         obj_request_img_data_set(obj_request);
1556         rbd_assert(obj_request->which != BAD_WHICH);
1557         img_request->obj_request_count++;
1558         list_add_tail(&obj_request->links, &img_request->obj_requests);
1559         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1560                 obj_request->which);
1561 }
1562
1563 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1564                                         struct rbd_obj_request *obj_request)
1565 {
1566         rbd_assert(obj_request->which != BAD_WHICH);
1567
1568         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1569                 obj_request->which);
1570         list_del(&obj_request->links);
1571         rbd_assert(img_request->obj_request_count > 0);
1572         img_request->obj_request_count--;
1573         rbd_assert(obj_request->which == img_request->obj_request_count);
1574         obj_request->which = BAD_WHICH;
1575         rbd_assert(obj_request_img_data_test(obj_request));
1576         rbd_assert(obj_request->img_request == img_request);
1577         obj_request->img_request = NULL;
1578         obj_request->callback = NULL;
1579         rbd_obj_request_put(obj_request);
1580 }
1581
1582 static bool obj_request_type_valid(enum obj_request_type type)
1583 {
1584         switch (type) {
1585         case OBJ_REQUEST_NODATA:
1586         case OBJ_REQUEST_BIO:
1587         case OBJ_REQUEST_PAGES:
1588                 return true;
1589         default:
1590                 return false;
1591         }
1592 }
1593
1594 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1595
1596 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1597 {
1598         struct ceph_osd_request *osd_req = obj_request->osd_req;
1599
1600         dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1601              obj_request, obj_request->object_no, obj_request->offset,
1602              obj_request->length, osd_req);
1603         if (obj_request_img_data_test(obj_request)) {
1604                 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1605                 rbd_img_request_get(obj_request->img_request);
1606         }
1607         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1608 }
1609
1610 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1611 {
1612
1613         dout("%s: img %p\n", __func__, img_request);
1614
1615         /*
1616          * If no error occurred, compute the aggregate transfer
1617          * count for the image request.  We could instead use
1618          * atomic64_cmpxchg() to update it as each object request
1619          * completes; not clear which way is better off hand.
1620          */
1621         if (!img_request->result) {
1622                 struct rbd_obj_request *obj_request;
1623                 u64 xferred = 0;
1624
1625                 for_each_obj_request(img_request, obj_request)
1626                         xferred += obj_request->xferred;
1627                 img_request->xferred = xferred;
1628         }
1629
1630         if (img_request->callback)
1631                 img_request->callback(img_request);
1632         else
1633                 rbd_img_request_put(img_request);
1634 }
1635
1636 /*
1637  * The default/initial value for all image request flags is 0.  Each
1638  * is conditionally set to 1 at image request initialization time
1639  * and currently never change thereafter.
1640  */
1641 static void img_request_write_set(struct rbd_img_request *img_request)
1642 {
1643         set_bit(IMG_REQ_WRITE, &img_request->flags);
1644         smp_mb();
1645 }
1646
1647 static bool img_request_write_test(struct rbd_img_request *img_request)
1648 {
1649         smp_mb();
1650         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1651 }
1652
1653 /*
1654  * Set the discard flag when the img_request is an discard request
1655  */
1656 static void img_request_discard_set(struct rbd_img_request *img_request)
1657 {
1658         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1659         smp_mb();
1660 }
1661
1662 static bool img_request_discard_test(struct rbd_img_request *img_request)
1663 {
1664         smp_mb();
1665         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1666 }
1667
1668 static void img_request_child_set(struct rbd_img_request *img_request)
1669 {
1670         set_bit(IMG_REQ_CHILD, &img_request->flags);
1671         smp_mb();
1672 }
1673
1674 static void img_request_child_clear(struct rbd_img_request *img_request)
1675 {
1676         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1677         smp_mb();
1678 }
1679
1680 static bool img_request_child_test(struct rbd_img_request *img_request)
1681 {
1682         smp_mb();
1683         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1684 }
1685
1686 static void img_request_layered_set(struct rbd_img_request *img_request)
1687 {
1688         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1689         smp_mb();
1690 }
1691
1692 static void img_request_layered_clear(struct rbd_img_request *img_request)
1693 {
1694         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1695         smp_mb();
1696 }
1697
1698 static bool img_request_layered_test(struct rbd_img_request *img_request)
1699 {
1700         smp_mb();
1701         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1702 }
1703
1704 static enum obj_operation_type
1705 rbd_img_request_op_type(struct rbd_img_request *img_request)
1706 {
1707         if (img_request_write_test(img_request))
1708                 return OBJ_OP_WRITE;
1709         else if (img_request_discard_test(img_request))
1710                 return OBJ_OP_DISCARD;
1711         else
1712                 return OBJ_OP_READ;
1713 }
1714
1715 static void
1716 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1717 {
1718         u64 xferred = obj_request->xferred;
1719         u64 length = obj_request->length;
1720
1721         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1722                 obj_request, obj_request->img_request, obj_request->result,
1723                 xferred, length);
1724         /*
1725          * ENOENT means a hole in the image.  We zero-fill the entire
1726          * length of the request.  A short read also implies zero-fill
1727          * to the end of the request.  An error requires the whole
1728          * length of the request to be reported finished with an error
1729          * to the block layer.  In each case we update the xferred
1730          * count to indicate the whole request was satisfied.
1731          */
1732         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1733         if (obj_request->result == -ENOENT) {
1734                 if (obj_request->type == OBJ_REQUEST_BIO)
1735                         zero_bio_chain(obj_request->bio_list, 0);
1736                 else
1737                         zero_pages(obj_request->pages, 0, length);
1738                 obj_request->result = 0;
1739         } else if (xferred < length && !obj_request->result) {
1740                 if (obj_request->type == OBJ_REQUEST_BIO)
1741                         zero_bio_chain(obj_request->bio_list, xferred);
1742                 else
1743                         zero_pages(obj_request->pages, xferred, length);
1744         }
1745         obj_request->xferred = length;
1746         obj_request_done_set(obj_request);
1747 }
1748
1749 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1750 {
1751         dout("%s: obj %p cb %p\n", __func__, obj_request,
1752                 obj_request->callback);
1753         if (obj_request->callback)
1754                 obj_request->callback(obj_request);
1755         else
1756                 complete_all(&obj_request->completion);
1757 }
1758
1759 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1760 {
1761         obj_request->result = err;
1762         obj_request->xferred = 0;
1763         /*
1764          * kludge - mirror rbd_obj_request_submit() to match a put in
1765          * rbd_img_obj_callback()
1766          */
1767         if (obj_request_img_data_test(obj_request)) {
1768                 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1769                 rbd_img_request_get(obj_request->img_request);
1770         }
1771         obj_request_done_set(obj_request);
1772         rbd_obj_request_complete(obj_request);
1773 }
1774
1775 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1776 {
1777         struct rbd_img_request *img_request = NULL;
1778         struct rbd_device *rbd_dev = NULL;
1779         bool layered = false;
1780
1781         if (obj_request_img_data_test(obj_request)) {
1782                 img_request = obj_request->img_request;
1783                 layered = img_request && img_request_layered_test(img_request);
1784                 rbd_dev = img_request->rbd_dev;
1785         }
1786
1787         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1788                 obj_request, img_request, obj_request->result,
1789                 obj_request->xferred, obj_request->length);
1790         if (layered && obj_request->result == -ENOENT &&
1791                         obj_request->img_offset < rbd_dev->parent_overlap)
1792                 rbd_img_parent_read(obj_request);
1793         else if (img_request)
1794                 rbd_img_obj_request_read_callback(obj_request);
1795         else
1796                 obj_request_done_set(obj_request);
1797 }
1798
1799 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1800 {
1801         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1802                 obj_request->result, obj_request->length);
1803         /*
1804          * There is no such thing as a successful short write.  Set
1805          * it to our originally-requested length.
1806          */
1807         obj_request->xferred = obj_request->length;
1808         obj_request_done_set(obj_request);
1809 }
1810
1811 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1812 {
1813         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1814                 obj_request->result, obj_request->length);
1815         /*
1816          * There is no such thing as a successful short discard.  Set
1817          * it to our originally-requested length.
1818          */
1819         obj_request->xferred = obj_request->length;
1820         /* discarding a non-existent object is not a problem */
1821         if (obj_request->result == -ENOENT)
1822                 obj_request->result = 0;
1823         obj_request_done_set(obj_request);
1824 }
1825
1826 /*
1827  * For a simple stat call there's nothing to do.  We'll do more if
1828  * this is part of a write sequence for a layered image.
1829  */
1830 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1831 {
1832         dout("%s: obj %p\n", __func__, obj_request);
1833         obj_request_done_set(obj_request);
1834 }
1835
1836 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1837 {
1838         dout("%s: obj %p\n", __func__, obj_request);
1839
1840         if (obj_request_img_data_test(obj_request))
1841                 rbd_osd_copyup_callback(obj_request);
1842         else
1843                 obj_request_done_set(obj_request);
1844 }
1845
1846 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1847 {
1848         struct rbd_obj_request *obj_request = osd_req->r_priv;
1849         u16 opcode;
1850
1851         dout("%s: osd_req %p\n", __func__, osd_req);
1852         rbd_assert(osd_req == obj_request->osd_req);
1853         if (obj_request_img_data_test(obj_request)) {
1854                 rbd_assert(obj_request->img_request);
1855                 rbd_assert(obj_request->which != BAD_WHICH);
1856         } else {
1857                 rbd_assert(obj_request->which == BAD_WHICH);
1858         }
1859
1860         if (osd_req->r_result < 0)
1861                 obj_request->result = osd_req->r_result;
1862
1863         /*
1864          * We support a 64-bit length, but ultimately it has to be
1865          * passed to the block layer, which just supports a 32-bit
1866          * length field.
1867          */
1868         obj_request->xferred = osd_req->r_ops[0].outdata_len;
1869         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1870
1871         opcode = osd_req->r_ops[0].op;
1872         switch (opcode) {
1873         case CEPH_OSD_OP_READ:
1874                 rbd_osd_read_callback(obj_request);
1875                 break;
1876         case CEPH_OSD_OP_SETALLOCHINT:
1877                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1878                            osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1879                 /* fall through */
1880         case CEPH_OSD_OP_WRITE:
1881         case CEPH_OSD_OP_WRITEFULL:
1882                 rbd_osd_write_callback(obj_request);
1883                 break;
1884         case CEPH_OSD_OP_STAT:
1885                 rbd_osd_stat_callback(obj_request);
1886                 break;
1887         case CEPH_OSD_OP_DELETE:
1888         case CEPH_OSD_OP_TRUNCATE:
1889         case CEPH_OSD_OP_ZERO:
1890                 rbd_osd_discard_callback(obj_request);
1891                 break;
1892         case CEPH_OSD_OP_CALL:
1893                 rbd_osd_call_callback(obj_request);
1894                 break;
1895         default:
1896                 rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d",
1897                          obj_request->object_no, opcode);
1898                 break;
1899         }
1900
1901         if (obj_request_done_test(obj_request))
1902                 rbd_obj_request_complete(obj_request);
1903 }
1904
1905 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1906 {
1907         struct ceph_osd_request *osd_req = obj_request->osd_req;
1908
1909         rbd_assert(obj_request_img_data_test(obj_request));
1910         osd_req->r_snapid = obj_request->img_request->snap_id;
1911 }
1912
1913 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1914 {
1915         struct ceph_osd_request *osd_req = obj_request->osd_req;
1916
1917         osd_req->r_mtime = CURRENT_TIME;
1918         osd_req->r_data_offset = obj_request->offset;
1919 }
1920
1921 static struct ceph_osd_request *
1922 __rbd_osd_req_create(struct rbd_device *rbd_dev,
1923                      struct ceph_snap_context *snapc,
1924                      int num_ops, unsigned int flags,
1925                      struct rbd_obj_request *obj_request)
1926 {
1927         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1928         struct ceph_osd_request *req;
1929         const char *name_format = rbd_dev->image_format == 1 ?
1930                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1931
1932         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1933         if (!req)
1934                 return NULL;
1935
1936         req->r_flags = flags;
1937         req->r_callback = rbd_osd_req_callback;
1938         req->r_priv = obj_request;
1939
1940         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1941         if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1942                         rbd_dev->header.object_prefix, obj_request->object_no))
1943                 goto err_req;
1944
1945         if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1946                 goto err_req;
1947
1948         return req;
1949
1950 err_req:
1951         ceph_osdc_put_request(req);
1952         return NULL;
1953 }
1954
1955 /*
1956  * Create an osd request.  A read request has one osd op (read).
1957  * A write request has either one (watch) or two (hint+write) osd ops.
1958  * (All rbd data writes are prefixed with an allocation hint op, but
1959  * technically osd watch is a write request, hence this distinction.)
1960  */
1961 static struct ceph_osd_request *rbd_osd_req_create(
1962                                         struct rbd_device *rbd_dev,
1963                                         enum obj_operation_type op_type,
1964                                         unsigned int num_ops,
1965                                         struct rbd_obj_request *obj_request)
1966 {
1967         struct ceph_snap_context *snapc = NULL;
1968
1969         if (obj_request_img_data_test(obj_request) &&
1970                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1971                 struct rbd_img_request *img_request = obj_request->img_request;
1972                 if (op_type == OBJ_OP_WRITE) {
1973                         rbd_assert(img_request_write_test(img_request));
1974                 } else {
1975                         rbd_assert(img_request_discard_test(img_request));
1976                 }
1977                 snapc = img_request->snapc;
1978         }
1979
1980         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1981
1982         return __rbd_osd_req_create(rbd_dev, snapc, num_ops,
1983             (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ?
1984             CEPH_OSD_FLAG_WRITE : CEPH_OSD_FLAG_READ, obj_request);
1985 }
1986
1987 /*
1988  * Create a copyup osd request based on the information in the object
1989  * request supplied.  A copyup request has two or three osd ops, a
1990  * copyup method call, potentially a hint op, and a write or truncate
1991  * or zero op.
1992  */
1993 static struct ceph_osd_request *
1994 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1995 {
1996         struct rbd_img_request *img_request;
1997         int num_osd_ops = 3;
1998
1999         rbd_assert(obj_request_img_data_test(obj_request));
2000         img_request = obj_request->img_request;
2001         rbd_assert(img_request);
2002         rbd_assert(img_request_write_test(img_request) ||
2003                         img_request_discard_test(img_request));
2004
2005         if (img_request_discard_test(img_request))
2006                 num_osd_ops = 2;
2007
2008         return __rbd_osd_req_create(img_request->rbd_dev,
2009                                     img_request->snapc, num_osd_ops,
2010                                     CEPH_OSD_FLAG_WRITE, obj_request);
2011 }
2012
2013 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2014 {
2015         ceph_osdc_put_request(osd_req);
2016 }
2017
2018 static struct rbd_obj_request *
2019 rbd_obj_request_create(enum obj_request_type type)
2020 {
2021         struct rbd_obj_request *obj_request;
2022
2023         rbd_assert(obj_request_type_valid(type));
2024
2025         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2026         if (!obj_request)
2027                 return NULL;
2028
2029         obj_request->which = BAD_WHICH;
2030         obj_request->type = type;
2031         INIT_LIST_HEAD(&obj_request->links);
2032         init_completion(&obj_request->completion);
2033         kref_init(&obj_request->kref);
2034
2035         dout("%s %p\n", __func__, obj_request);
2036         return obj_request;
2037 }
2038
2039 static void rbd_obj_request_destroy(struct kref *kref)
2040 {
2041         struct rbd_obj_request *obj_request;
2042
2043         obj_request = container_of(kref, struct rbd_obj_request, kref);
2044
2045         dout("%s: obj %p\n", __func__, obj_request);
2046
2047         rbd_assert(obj_request->img_request == NULL);
2048         rbd_assert(obj_request->which == BAD_WHICH);
2049
2050         if (obj_request->osd_req)
2051                 rbd_osd_req_destroy(obj_request->osd_req);
2052
2053         rbd_assert(obj_request_type_valid(obj_request->type));
2054         switch (obj_request->type) {
2055         case OBJ_REQUEST_NODATA:
2056                 break;          /* Nothing to do */
2057         case OBJ_REQUEST_BIO:
2058                 if (obj_request->bio_list)
2059                         bio_chain_put(obj_request->bio_list);
2060                 break;
2061         case OBJ_REQUEST_PAGES:
2062                 /* img_data requests don't own their page array */
2063                 if (obj_request->pages &&
2064                     !obj_request_img_data_test(obj_request))
2065                         ceph_release_page_vector(obj_request->pages,
2066                                                 obj_request->page_count);
2067                 break;
2068         }
2069
2070         kmem_cache_free(rbd_obj_request_cache, obj_request);
2071 }
2072
2073 /* It's OK to call this for a device with no parent */
2074
2075 static void rbd_spec_put(struct rbd_spec *spec);
2076 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2077 {
2078         rbd_dev_remove_parent(rbd_dev);
2079         rbd_spec_put(rbd_dev->parent_spec);
2080         rbd_dev->parent_spec = NULL;
2081         rbd_dev->parent_overlap = 0;
2082 }
2083
2084 /*
2085  * Parent image reference counting is used to determine when an
2086  * image's parent fields can be safely torn down--after there are no
2087  * more in-flight requests to the parent image.  When the last
2088  * reference is dropped, cleaning them up is safe.
2089  */
2090 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2091 {
2092         int counter;
2093
2094         if (!rbd_dev->parent_spec)
2095                 return;
2096
2097         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2098         if (counter > 0)
2099                 return;
2100
2101         /* Last reference; clean up parent data structures */
2102
2103         if (!counter)
2104                 rbd_dev_unparent(rbd_dev);
2105         else
2106                 rbd_warn(rbd_dev, "parent reference underflow");
2107 }
2108
2109 /*
2110  * If an image has a non-zero parent overlap, get a reference to its
2111  * parent.
2112  *
2113  * Returns true if the rbd device has a parent with a non-zero
2114  * overlap and a reference for it was successfully taken, or
2115  * false otherwise.
2116  */
2117 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2118 {
2119         int counter = 0;
2120
2121         if (!rbd_dev->parent_spec)
2122                 return false;
2123
2124         down_read(&rbd_dev->header_rwsem);
2125         if (rbd_dev->parent_overlap)
2126                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2127         up_read(&rbd_dev->header_rwsem);
2128
2129         if (counter < 0)
2130                 rbd_warn(rbd_dev, "parent reference overflow");
2131
2132         return counter > 0;
2133 }
2134
2135 /*
2136  * Caller is responsible for filling in the list of object requests
2137  * that comprises the image request, and the Linux request pointer
2138  * (if there is one).
2139  */
2140 static struct rbd_img_request *rbd_img_request_create(
2141                                         struct rbd_device *rbd_dev,
2142                                         u64 offset, u64 length,
2143                                         enum obj_operation_type op_type,
2144                                         struct ceph_snap_context *snapc)
2145 {
2146         struct rbd_img_request *img_request;
2147
2148         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2149         if (!img_request)
2150                 return NULL;
2151
2152         img_request->rq = NULL;
2153         img_request->rbd_dev = rbd_dev;
2154         img_request->offset = offset;
2155         img_request->length = length;
2156         img_request->flags = 0;
2157         if (op_type == OBJ_OP_DISCARD) {
2158                 img_request_discard_set(img_request);
2159                 img_request->snapc = snapc;
2160         } else if (op_type == OBJ_OP_WRITE) {
2161                 img_request_write_set(img_request);
2162                 img_request->snapc = snapc;
2163         } else {
2164                 img_request->snap_id = rbd_dev->spec->snap_id;
2165         }
2166         if (rbd_dev_parent_get(rbd_dev))
2167                 img_request_layered_set(img_request);
2168         spin_lock_init(&img_request->completion_lock);
2169         img_request->next_completion = 0;
2170         img_request->callback = NULL;
2171         img_request->result = 0;
2172         img_request->obj_request_count = 0;
2173         INIT_LIST_HEAD(&img_request->obj_requests);
2174         kref_init(&img_request->kref);
2175
2176         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2177                 obj_op_name(op_type), offset, length, img_request);
2178
2179         return img_request;
2180 }
2181
2182 static void rbd_img_request_destroy(struct kref *kref)
2183 {
2184         struct rbd_img_request *img_request;
2185         struct rbd_obj_request *obj_request;
2186         struct rbd_obj_request *next_obj_request;
2187
2188         img_request = container_of(kref, struct rbd_img_request, kref);
2189
2190         dout("%s: img %p\n", __func__, img_request);
2191
2192         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2193                 rbd_img_obj_request_del(img_request, obj_request);
2194         rbd_assert(img_request->obj_request_count == 0);
2195
2196         if (img_request_layered_test(img_request)) {
2197                 img_request_layered_clear(img_request);
2198                 rbd_dev_parent_put(img_request->rbd_dev);
2199         }
2200
2201         if (img_request_write_test(img_request) ||
2202                 img_request_discard_test(img_request))
2203                 ceph_put_snap_context(img_request->snapc);
2204
2205         kmem_cache_free(rbd_img_request_cache, img_request);
2206 }
2207
2208 static struct rbd_img_request *rbd_parent_request_create(
2209                                         struct rbd_obj_request *obj_request,
2210                                         u64 img_offset, u64 length)
2211 {
2212         struct rbd_img_request *parent_request;
2213         struct rbd_device *rbd_dev;
2214
2215         rbd_assert(obj_request->img_request);
2216         rbd_dev = obj_request->img_request->rbd_dev;
2217
2218         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2219                                                 length, OBJ_OP_READ, NULL);
2220         if (!parent_request)
2221                 return NULL;
2222
2223         img_request_child_set(parent_request);
2224         rbd_obj_request_get(obj_request);
2225         parent_request->obj_request = obj_request;
2226
2227         return parent_request;
2228 }
2229
2230 static void rbd_parent_request_destroy(struct kref *kref)
2231 {
2232         struct rbd_img_request *parent_request;
2233         struct rbd_obj_request *orig_request;
2234
2235         parent_request = container_of(kref, struct rbd_img_request, kref);
2236         orig_request = parent_request->obj_request;
2237
2238         parent_request->obj_request = NULL;
2239         rbd_obj_request_put(orig_request);
2240         img_request_child_clear(parent_request);
2241
2242         rbd_img_request_destroy(kref);
2243 }
2244
2245 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2246 {
2247         struct rbd_img_request *img_request;
2248         unsigned int xferred;
2249         int result;
2250         bool more;
2251
2252         rbd_assert(obj_request_img_data_test(obj_request));
2253         img_request = obj_request->img_request;
2254
2255         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2256         xferred = (unsigned int)obj_request->xferred;
2257         result = obj_request->result;
2258         if (result) {
2259                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2260                 enum obj_operation_type op_type;
2261
2262                 if (img_request_discard_test(img_request))
2263                         op_type = OBJ_OP_DISCARD;
2264                 else if (img_request_write_test(img_request))
2265                         op_type = OBJ_OP_WRITE;
2266                 else
2267                         op_type = OBJ_OP_READ;
2268
2269                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2270                         obj_op_name(op_type), obj_request->length,
2271                         obj_request->img_offset, obj_request->offset);
2272                 rbd_warn(rbd_dev, "  result %d xferred %x",
2273                         result, xferred);
2274                 if (!img_request->result)
2275                         img_request->result = result;
2276                 /*
2277                  * Need to end I/O on the entire obj_request worth of
2278                  * bytes in case of error.
2279                  */
2280                 xferred = obj_request->length;
2281         }
2282
2283         if (img_request_child_test(img_request)) {
2284                 rbd_assert(img_request->obj_request != NULL);
2285                 more = obj_request->which < img_request->obj_request_count - 1;
2286         } else {
2287                 rbd_assert(img_request->rq != NULL);
2288
2289                 more = blk_update_request(img_request->rq, result, xferred);
2290                 if (!more)
2291                         __blk_mq_end_request(img_request->rq, result);
2292         }
2293
2294         return more;
2295 }
2296
2297 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2298 {
2299         struct rbd_img_request *img_request;
2300         u32 which = obj_request->which;
2301         bool more = true;
2302
2303         rbd_assert(obj_request_img_data_test(obj_request));
2304         img_request = obj_request->img_request;
2305
2306         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2307         rbd_assert(img_request != NULL);
2308         rbd_assert(img_request->obj_request_count > 0);
2309         rbd_assert(which != BAD_WHICH);
2310         rbd_assert(which < img_request->obj_request_count);
2311
2312         spin_lock_irq(&img_request->completion_lock);
2313         if (which != img_request->next_completion)
2314                 goto out;
2315
2316         for_each_obj_request_from(img_request, obj_request) {
2317                 rbd_assert(more);
2318                 rbd_assert(which < img_request->obj_request_count);
2319
2320                 if (!obj_request_done_test(obj_request))
2321                         break;
2322                 more = rbd_img_obj_end_request(obj_request);
2323                 which++;
2324         }
2325
2326         rbd_assert(more ^ (which == img_request->obj_request_count));
2327         img_request->next_completion = which;
2328 out:
2329         spin_unlock_irq(&img_request->completion_lock);
2330         rbd_img_request_put(img_request);
2331
2332         if (!more)
2333                 rbd_img_request_complete(img_request);
2334 }
2335
2336 /*
2337  * Add individual osd ops to the given ceph_osd_request and prepare
2338  * them for submission. num_ops is the current number of
2339  * osd operations already to the object request.
2340  */
2341 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2342                                 struct ceph_osd_request *osd_request,
2343                                 enum obj_operation_type op_type,
2344                                 unsigned int num_ops)
2345 {
2346         struct rbd_img_request *img_request = obj_request->img_request;
2347         struct rbd_device *rbd_dev = img_request->rbd_dev;
2348         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2349         u64 offset = obj_request->offset;
2350         u64 length = obj_request->length;
2351         u64 img_end;
2352         u16 opcode;
2353
2354         if (op_type == OBJ_OP_DISCARD) {
2355                 if (!offset && length == object_size &&
2356                     (!img_request_layered_test(img_request) ||
2357                      !obj_request_overlaps_parent(obj_request))) {
2358                         opcode = CEPH_OSD_OP_DELETE;
2359                 } else if ((offset + length == object_size)) {
2360                         opcode = CEPH_OSD_OP_TRUNCATE;
2361                 } else {
2362                         down_read(&rbd_dev->header_rwsem);
2363                         img_end = rbd_dev->header.image_size;
2364                         up_read(&rbd_dev->header_rwsem);
2365
2366                         if (obj_request->img_offset + length == img_end)
2367                                 opcode = CEPH_OSD_OP_TRUNCATE;
2368                         else
2369                                 opcode = CEPH_OSD_OP_ZERO;
2370                 }
2371         } else if (op_type == OBJ_OP_WRITE) {
2372                 if (!offset && length == object_size)
2373                         opcode = CEPH_OSD_OP_WRITEFULL;
2374                 else
2375                         opcode = CEPH_OSD_OP_WRITE;
2376                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2377                                         object_size, object_size);
2378                 num_ops++;
2379         } else {
2380                 opcode = CEPH_OSD_OP_READ;
2381         }
2382
2383         if (opcode == CEPH_OSD_OP_DELETE)
2384                 osd_req_op_init(osd_request, num_ops, opcode, 0);
2385         else
2386                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2387                                        offset, length, 0, 0);
2388
2389         if (obj_request->type == OBJ_REQUEST_BIO)
2390                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2391                                         obj_request->bio_list, length);
2392         else if (obj_request->type == OBJ_REQUEST_PAGES)
2393                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2394                                         obj_request->pages, length,
2395                                         offset & ~PAGE_MASK, false, false);
2396
2397         /* Discards are also writes */
2398         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2399                 rbd_osd_req_format_write(obj_request);
2400         else
2401                 rbd_osd_req_format_read(obj_request);
2402 }
2403
2404 /*
2405  * Split up an image request into one or more object requests, each
2406  * to a different object.  The "type" parameter indicates whether
2407  * "data_desc" is the pointer to the head of a list of bio
2408  * structures, or the base of a page array.  In either case this
2409  * function assumes data_desc describes memory sufficient to hold
2410  * all data described by the image request.
2411  */
2412 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2413                                         enum obj_request_type type,
2414                                         void *data_desc)
2415 {
2416         struct rbd_device *rbd_dev = img_request->rbd_dev;
2417         struct rbd_obj_request *obj_request = NULL;
2418         struct rbd_obj_request *next_obj_request;
2419         struct bio *bio_list = NULL;
2420         unsigned int bio_offset = 0;
2421         struct page **pages = NULL;
2422         enum obj_operation_type op_type;
2423         u64 img_offset;
2424         u64 resid;
2425
2426         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2427                 (int)type, data_desc);
2428
2429         img_offset = img_request->offset;
2430         resid = img_request->length;
2431         rbd_assert(resid > 0);
2432         op_type = rbd_img_request_op_type(img_request);
2433
2434         if (type == OBJ_REQUEST_BIO) {
2435                 bio_list = data_desc;
2436                 rbd_assert(img_offset ==
2437                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2438         } else if (type == OBJ_REQUEST_PAGES) {
2439                 pages = data_desc;
2440         }
2441
2442         while (resid) {
2443                 struct ceph_osd_request *osd_req;
2444                 u64 object_no = img_offset >> rbd_dev->header.obj_order;
2445                 u64 offset = rbd_segment_offset(rbd_dev, img_offset);
2446                 u64 length = rbd_segment_length(rbd_dev, img_offset, resid);
2447
2448                 obj_request = rbd_obj_request_create(type);
2449                 if (!obj_request)
2450                         goto out_unwind;
2451
2452                 obj_request->object_no = object_no;
2453                 obj_request->offset = offset;
2454                 obj_request->length = length;
2455
2456                 /*
2457                  * set obj_request->img_request before creating the
2458                  * osd_request so that it gets the right snapc
2459                  */
2460                 rbd_img_obj_request_add(img_request, obj_request);
2461
2462                 if (type == OBJ_REQUEST_BIO) {
2463                         unsigned int clone_size;
2464
2465                         rbd_assert(length <= (u64)UINT_MAX);
2466                         clone_size = (unsigned int)length;
2467                         obj_request->bio_list =
2468                                         bio_chain_clone_range(&bio_list,
2469                                                                 &bio_offset,
2470                                                                 clone_size,
2471                                                                 GFP_NOIO);
2472                         if (!obj_request->bio_list)
2473                                 goto out_unwind;
2474                 } else if (type == OBJ_REQUEST_PAGES) {
2475                         unsigned int page_count;
2476
2477                         obj_request->pages = pages;
2478                         page_count = (u32)calc_pages_for(offset, length);
2479                         obj_request->page_count = page_count;
2480                         if ((offset + length) & ~PAGE_MASK)
2481                                 page_count--;   /* more on last page */
2482                         pages += page_count;
2483                 }
2484
2485                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2486                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2487                                         obj_request);
2488                 if (!osd_req)
2489                         goto out_unwind;
2490
2491                 obj_request->osd_req = osd_req;
2492                 obj_request->callback = rbd_img_obj_callback;
2493                 obj_request->img_offset = img_offset;
2494
2495                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2496
2497                 img_offset += length;
2498                 resid -= length;
2499         }
2500
2501         return 0;
2502
2503 out_unwind:
2504         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2505                 rbd_img_obj_request_del(img_request, obj_request);
2506
2507         return -ENOMEM;
2508 }
2509
2510 static void
2511 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2512 {
2513         struct rbd_img_request *img_request;
2514         struct rbd_device *rbd_dev;
2515         struct page **pages;
2516         u32 page_count;
2517
2518         dout("%s: obj %p\n", __func__, obj_request);
2519
2520         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2521                 obj_request->type == OBJ_REQUEST_NODATA);
2522         rbd_assert(obj_request_img_data_test(obj_request));
2523         img_request = obj_request->img_request;
2524         rbd_assert(img_request);
2525
2526         rbd_dev = img_request->rbd_dev;
2527         rbd_assert(rbd_dev);
2528
2529         pages = obj_request->copyup_pages;
2530         rbd_assert(pages != NULL);
2531         obj_request->copyup_pages = NULL;
2532         page_count = obj_request->copyup_page_count;
2533         rbd_assert(page_count);
2534         obj_request->copyup_page_count = 0;
2535         ceph_release_page_vector(pages, page_count);
2536
2537         /*
2538          * We want the transfer count to reflect the size of the
2539          * original write request.  There is no such thing as a
2540          * successful short write, so if the request was successful
2541          * we can just set it to the originally-requested length.
2542          */
2543         if (!obj_request->result)
2544                 obj_request->xferred = obj_request->length;
2545
2546         obj_request_done_set(obj_request);
2547 }
2548
2549 static void
2550 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2551 {
2552         struct rbd_obj_request *orig_request;
2553         struct ceph_osd_request *osd_req;
2554         struct rbd_device *rbd_dev;
2555         struct page **pages;
2556         enum obj_operation_type op_type;
2557         u32 page_count;
2558         int img_result;
2559         u64 parent_length;
2560
2561         rbd_assert(img_request_child_test(img_request));
2562
2563         /* First get what we need from the image request */
2564
2565         pages = img_request->copyup_pages;
2566         rbd_assert(pages != NULL);
2567         img_request->copyup_pages = NULL;
2568         page_count = img_request->copyup_page_count;
2569         rbd_assert(page_count);
2570         img_request->copyup_page_count = 0;
2571
2572         orig_request = img_request->obj_request;
2573         rbd_assert(orig_request != NULL);
2574         rbd_assert(obj_request_type_valid(orig_request->type));
2575         img_result = img_request->result;
2576         parent_length = img_request->length;
2577         rbd_assert(img_result || parent_length == img_request->xferred);
2578         rbd_img_request_put(img_request);
2579
2580         rbd_assert(orig_request->img_request);
2581         rbd_dev = orig_request->img_request->rbd_dev;
2582         rbd_assert(rbd_dev);
2583
2584         /*
2585          * If the overlap has become 0 (most likely because the
2586          * image has been flattened) we need to free the pages
2587          * and re-submit the original write request.
2588          */
2589         if (!rbd_dev->parent_overlap) {
2590                 ceph_release_page_vector(pages, page_count);
2591                 rbd_obj_request_submit(orig_request);
2592                 return;
2593         }
2594
2595         if (img_result)
2596                 goto out_err;
2597
2598         /*
2599          * The original osd request is of no use to use any more.
2600          * We need a new one that can hold the three ops in a copyup
2601          * request.  Allocate the new copyup osd request for the
2602          * original request, and release the old one.
2603          */
2604         img_result = -ENOMEM;
2605         osd_req = rbd_osd_req_create_copyup(orig_request);
2606         if (!osd_req)
2607                 goto out_err;
2608         rbd_osd_req_destroy(orig_request->osd_req);
2609         orig_request->osd_req = osd_req;
2610         orig_request->copyup_pages = pages;
2611         orig_request->copyup_page_count = page_count;
2612
2613         /* Initialize the copyup op */
2614
2615         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2616         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2617                                                 false, false);
2618
2619         /* Add the other op(s) */
2620
2621         op_type = rbd_img_request_op_type(orig_request->img_request);
2622         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2623
2624         /* All set, send it off. */
2625
2626         rbd_obj_request_submit(orig_request);
2627         return;
2628
2629 out_err:
2630         ceph_release_page_vector(pages, page_count);
2631         rbd_obj_request_error(orig_request, img_result);
2632 }
2633
2634 /*
2635  * Read from the parent image the range of data that covers the
2636  * entire target of the given object request.  This is used for
2637  * satisfying a layered image write request when the target of an
2638  * object request from the image request does not exist.
2639  *
2640  * A page array big enough to hold the returned data is allocated
2641  * and supplied to rbd_img_request_fill() as the "data descriptor."
2642  * When the read completes, this page array will be transferred to
2643  * the original object request for the copyup operation.
2644  *
2645  * If an error occurs, it is recorded as the result of the original
2646  * object request in rbd_img_obj_exists_callback().
2647  */
2648 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2649 {
2650         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2651         struct rbd_img_request *parent_request = NULL;
2652         u64 img_offset;
2653         u64 length;
2654         struct page **pages = NULL;
2655         u32 page_count;
2656         int result;
2657
2658         rbd_assert(rbd_dev->parent != NULL);
2659
2660         /*
2661          * Determine the byte range covered by the object in the
2662          * child image to which the original request was to be sent.
2663          */
2664         img_offset = obj_request->img_offset - obj_request->offset;
2665         length = rbd_obj_bytes(&rbd_dev->header);
2666
2667         /*
2668          * There is no defined parent data beyond the parent
2669          * overlap, so limit what we read at that boundary if
2670          * necessary.
2671          */
2672         if (img_offset + length > rbd_dev->parent_overlap) {
2673                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2674                 length = rbd_dev->parent_overlap - img_offset;
2675         }
2676
2677         /*
2678          * Allocate a page array big enough to receive the data read
2679          * from the parent.
2680          */
2681         page_count = (u32)calc_pages_for(0, length);
2682         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2683         if (IS_ERR(pages)) {
2684                 result = PTR_ERR(pages);
2685                 pages = NULL;
2686                 goto out_err;
2687         }
2688
2689         result = -ENOMEM;
2690         parent_request = rbd_parent_request_create(obj_request,
2691                                                 img_offset, length);
2692         if (!parent_request)
2693                 goto out_err;
2694
2695         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2696         if (result)
2697                 goto out_err;
2698
2699         parent_request->copyup_pages = pages;
2700         parent_request->copyup_page_count = page_count;
2701         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2702
2703         result = rbd_img_request_submit(parent_request);
2704         if (!result)
2705                 return 0;
2706
2707         parent_request->copyup_pages = NULL;
2708         parent_request->copyup_page_count = 0;
2709         parent_request->obj_request = NULL;
2710         rbd_obj_request_put(obj_request);
2711 out_err:
2712         if (pages)
2713                 ceph_release_page_vector(pages, page_count);
2714         if (parent_request)
2715                 rbd_img_request_put(parent_request);
2716         return result;
2717 }
2718
2719 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2720 {
2721         struct rbd_obj_request *orig_request;
2722         struct rbd_device *rbd_dev;
2723         int result;
2724
2725         rbd_assert(!obj_request_img_data_test(obj_request));
2726
2727         /*
2728          * All we need from the object request is the original
2729          * request and the result of the STAT op.  Grab those, then
2730          * we're done with the request.
2731          */
2732         orig_request = obj_request->obj_request;
2733         obj_request->obj_request = NULL;
2734         rbd_obj_request_put(orig_request);
2735         rbd_assert(orig_request);
2736         rbd_assert(orig_request->img_request);
2737
2738         result = obj_request->result;
2739         obj_request->result = 0;
2740
2741         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2742                 obj_request, orig_request, result,
2743                 obj_request->xferred, obj_request->length);
2744         rbd_obj_request_put(obj_request);
2745
2746         /*
2747          * If the overlap has become 0 (most likely because the
2748          * image has been flattened) we need to re-submit the
2749          * original request.
2750          */
2751         rbd_dev = orig_request->img_request->rbd_dev;
2752         if (!rbd_dev->parent_overlap) {
2753                 rbd_obj_request_submit(orig_request);
2754                 return;
2755         }
2756
2757         /*
2758          * Our only purpose here is to determine whether the object
2759          * exists, and we don't want to treat the non-existence as
2760          * an error.  If something else comes back, transfer the
2761          * error to the original request and complete it now.
2762          */
2763         if (!result) {
2764                 obj_request_existence_set(orig_request, true);
2765         } else if (result == -ENOENT) {
2766                 obj_request_existence_set(orig_request, false);
2767         } else {
2768                 goto fail_orig_request;
2769         }
2770
2771         /*
2772          * Resubmit the original request now that we have recorded
2773          * whether the target object exists.
2774          */
2775         result = rbd_img_obj_request_submit(orig_request);
2776         if (result)
2777                 goto fail_orig_request;
2778
2779         return;
2780
2781 fail_orig_request:
2782         rbd_obj_request_error(orig_request, result);
2783 }
2784
2785 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2786 {
2787         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2788         struct rbd_obj_request *stat_request;
2789         struct page **pages;
2790         u32 page_count;
2791         size_t size;
2792         int ret;
2793
2794         stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES);
2795         if (!stat_request)
2796                 return -ENOMEM;
2797
2798         stat_request->object_no = obj_request->object_no;
2799
2800         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2801                                                    stat_request);
2802         if (!stat_request->osd_req) {
2803                 ret = -ENOMEM;
2804                 goto fail_stat_request;
2805         }
2806
2807         /*
2808          * The response data for a STAT call consists of:
2809          *     le64 length;
2810          *     struct {
2811          *         le32 tv_sec;
2812          *         le32 tv_nsec;
2813          *     } mtime;
2814          */
2815         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2816         page_count = (u32)calc_pages_for(0, size);
2817         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2818         if (IS_ERR(pages)) {
2819                 ret = PTR_ERR(pages);
2820                 goto fail_stat_request;
2821         }
2822
2823         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2824         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2825                                      false, false);
2826
2827         rbd_obj_request_get(obj_request);
2828         stat_request->obj_request = obj_request;
2829         stat_request->pages = pages;
2830         stat_request->page_count = page_count;
2831         stat_request->callback = rbd_img_obj_exists_callback;
2832
2833         rbd_obj_request_submit(stat_request);
2834         return 0;
2835
2836 fail_stat_request:
2837         rbd_obj_request_put(stat_request);
2838         return ret;
2839 }
2840
2841 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2842 {
2843         struct rbd_img_request *img_request = obj_request->img_request;
2844         struct rbd_device *rbd_dev = img_request->rbd_dev;
2845
2846         /* Reads */
2847         if (!img_request_write_test(img_request) &&
2848             !img_request_discard_test(img_request))
2849                 return true;
2850
2851         /* Non-layered writes */
2852         if (!img_request_layered_test(img_request))
2853                 return true;
2854
2855         /*
2856          * Layered writes outside of the parent overlap range don't
2857          * share any data with the parent.
2858          */
2859         if (!obj_request_overlaps_parent(obj_request))
2860                 return true;
2861
2862         /*
2863          * Entire-object layered writes - we will overwrite whatever
2864          * parent data there is anyway.
2865          */
2866         if (!obj_request->offset &&
2867             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2868                 return true;
2869
2870         /*
2871          * If the object is known to already exist, its parent data has
2872          * already been copied.
2873          */
2874         if (obj_request_known_test(obj_request) &&
2875             obj_request_exists_test(obj_request))
2876                 return true;
2877
2878         return false;
2879 }
2880
2881 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2882 {
2883         rbd_assert(obj_request_img_data_test(obj_request));
2884         rbd_assert(obj_request_type_valid(obj_request->type));
2885         rbd_assert(obj_request->img_request);
2886
2887         if (img_obj_request_simple(obj_request)) {
2888                 rbd_obj_request_submit(obj_request);
2889                 return 0;
2890         }
2891
2892         /*
2893          * It's a layered write.  The target object might exist but
2894          * we may not know that yet.  If we know it doesn't exist,
2895          * start by reading the data for the full target object from
2896          * the parent so we can use it for a copyup to the target.
2897          */
2898         if (obj_request_known_test(obj_request))
2899                 return rbd_img_obj_parent_read_full(obj_request);
2900
2901         /* We don't know whether the target exists.  Go find out. */
2902
2903         return rbd_img_obj_exists_submit(obj_request);
2904 }
2905
2906 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2907 {
2908         struct rbd_obj_request *obj_request;
2909         struct rbd_obj_request *next_obj_request;
2910         int ret = 0;
2911
2912         dout("%s: img %p\n", __func__, img_request);
2913
2914         rbd_img_request_get(img_request);
2915         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2916                 ret = rbd_img_obj_request_submit(obj_request);
2917                 if (ret)
2918                         goto out_put_ireq;
2919         }
2920
2921 out_put_ireq:
2922         rbd_img_request_put(img_request);
2923         return ret;
2924 }
2925
2926 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2927 {
2928         struct rbd_obj_request *obj_request;
2929         struct rbd_device *rbd_dev;
2930         u64 obj_end;
2931         u64 img_xferred;
2932         int img_result;
2933
2934         rbd_assert(img_request_child_test(img_request));
2935
2936         /* First get what we need from the image request and release it */
2937
2938         obj_request = img_request->obj_request;
2939         img_xferred = img_request->xferred;
2940         img_result = img_request->result;
2941         rbd_img_request_put(img_request);
2942
2943         /*
2944          * If the overlap has become 0 (most likely because the
2945          * image has been flattened) we need to re-submit the
2946          * original request.
2947          */
2948         rbd_assert(obj_request);
2949         rbd_assert(obj_request->img_request);
2950         rbd_dev = obj_request->img_request->rbd_dev;
2951         if (!rbd_dev->parent_overlap) {
2952                 rbd_obj_request_submit(obj_request);
2953                 return;
2954         }
2955
2956         obj_request->result = img_result;
2957         if (obj_request->result)
2958                 goto out;
2959
2960         /*
2961          * We need to zero anything beyond the parent overlap
2962          * boundary.  Since rbd_img_obj_request_read_callback()
2963          * will zero anything beyond the end of a short read, an
2964          * easy way to do this is to pretend the data from the
2965          * parent came up short--ending at the overlap boundary.
2966          */
2967         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2968         obj_end = obj_request->img_offset + obj_request->length;
2969         if (obj_end > rbd_dev->parent_overlap) {
2970                 u64 xferred = 0;
2971
2972                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2973                         xferred = rbd_dev->parent_overlap -
2974                                         obj_request->img_offset;
2975
2976                 obj_request->xferred = min(img_xferred, xferred);
2977         } else {
2978                 obj_request->xferred = img_xferred;
2979         }
2980 out:
2981         rbd_img_obj_request_read_callback(obj_request);
2982         rbd_obj_request_complete(obj_request);
2983 }
2984
2985 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2986 {
2987         struct rbd_img_request *img_request;
2988         int result;
2989
2990         rbd_assert(obj_request_img_data_test(obj_request));
2991         rbd_assert(obj_request->img_request != NULL);
2992         rbd_assert(obj_request->result == (s32) -ENOENT);
2993         rbd_assert(obj_request_type_valid(obj_request->type));
2994
2995         /* rbd_read_finish(obj_request, obj_request->length); */
2996         img_request = rbd_parent_request_create(obj_request,
2997                                                 obj_request->img_offset,
2998                                                 obj_request->length);
2999         result = -ENOMEM;
3000         if (!img_request)
3001                 goto out_err;
3002
3003         if (obj_request->type == OBJ_REQUEST_BIO)
3004                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3005                                                 obj_request->bio_list);
3006         else
3007                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3008                                                 obj_request->pages);
3009         if (result)
3010                 goto out_err;
3011
3012         img_request->callback = rbd_img_parent_read_callback;
3013         result = rbd_img_request_submit(img_request);
3014         if (result)
3015                 goto out_err;
3016
3017         return;
3018 out_err:
3019         if (img_request)
3020                 rbd_img_request_put(img_request);
3021         obj_request->result = result;
3022         obj_request->xferred = 0;
3023         obj_request_done_set(obj_request);
3024 }
3025
3026 static const struct rbd_client_id rbd_empty_cid;
3027
3028 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3029                           const struct rbd_client_id *rhs)
3030 {
3031         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3032 }
3033
3034 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3035 {
3036         struct rbd_client_id cid;
3037
3038         mutex_lock(&rbd_dev->watch_mutex);
3039         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3040         cid.handle = rbd_dev->watch_cookie;
3041         mutex_unlock(&rbd_dev->watch_mutex);
3042         return cid;
3043 }
3044
3045 /*
3046  * lock_rwsem must be held for write
3047  */
3048 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3049                               const struct rbd_client_id *cid)
3050 {
3051         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3052              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3053              cid->gid, cid->handle);
3054         rbd_dev->owner_cid = *cid; /* struct */
3055 }
3056
3057 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3058 {
3059         mutex_lock(&rbd_dev->watch_mutex);
3060         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3061         mutex_unlock(&rbd_dev->watch_mutex);
3062 }
3063
3064 /*
3065  * lock_rwsem must be held for write
3066  */
3067 static int rbd_lock(struct rbd_device *rbd_dev)
3068 {
3069         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3070         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3071         char cookie[32];
3072         int ret;
3073
3074         WARN_ON(__rbd_is_lock_owner(rbd_dev));
3075
3076         format_lock_cookie(rbd_dev, cookie);
3077         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3078                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3079                             RBD_LOCK_TAG, "", 0);
3080         if (ret)
3081                 return ret;
3082
3083         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3084         rbd_set_owner_cid(rbd_dev, &cid);
3085         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3086         return 0;
3087 }
3088
3089 /*
3090  * lock_rwsem must be held for write
3091  */
3092 static int rbd_unlock(struct rbd_device *rbd_dev)
3093 {
3094         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3095         char cookie[32];
3096         int ret;
3097
3098         WARN_ON(!__rbd_is_lock_owner(rbd_dev));
3099
3100         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3101
3102         format_lock_cookie(rbd_dev, cookie);
3103         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3104                               RBD_LOCK_NAME, cookie);
3105         if (ret && ret != -ENOENT) {
3106                 rbd_warn(rbd_dev, "cls_unlock failed: %d", ret);
3107                 return ret;
3108         }
3109
3110         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3111         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3112         return 0;
3113 }
3114
3115 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3116                                 enum rbd_notify_op notify_op,
3117                                 struct page ***preply_pages,
3118                                 size_t *preply_len)
3119 {
3120         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3121         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3122         int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3123         char buf[buf_size];
3124         void *p = buf;
3125
3126         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3127
3128         /* encode *LockPayload NotifyMessage (op + ClientId) */
3129         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3130         ceph_encode_32(&p, notify_op);
3131         ceph_encode_64(&p, cid.gid);
3132         ceph_encode_64(&p, cid.handle);
3133
3134         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3135                                 &rbd_dev->header_oloc, buf, buf_size,
3136                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3137 }
3138
3139 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3140                                enum rbd_notify_op notify_op)
3141 {
3142         struct page **reply_pages;
3143         size_t reply_len;
3144
3145         __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3146         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3147 }
3148
3149 static void rbd_notify_acquired_lock(struct work_struct *work)
3150 {
3151         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3152                                                   acquired_lock_work);
3153
3154         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3155 }
3156
3157 static void rbd_notify_released_lock(struct work_struct *work)
3158 {
3159         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3160                                                   released_lock_work);
3161
3162         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3163 }
3164
3165 static int rbd_request_lock(struct rbd_device *rbd_dev)
3166 {
3167         struct page **reply_pages;
3168         size_t reply_len;
3169         bool lock_owner_responded = false;
3170         int ret;
3171
3172         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3173
3174         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3175                                    &reply_pages, &reply_len);
3176         if (ret && ret != -ETIMEDOUT) {
3177                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3178                 goto out;
3179         }
3180
3181         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3182                 void *p = page_address(reply_pages[0]);
3183                 void *const end = p + reply_len;
3184                 u32 n;
3185
3186                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3187                 while (n--) {
3188                         u8 struct_v;
3189                         u32 len;
3190
3191                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3192                         p += 8 + 8; /* skip gid and cookie */
3193
3194                         ceph_decode_32_safe(&p, end, len, e_inval);
3195                         if (!len)
3196                                 continue;
3197
3198                         if (lock_owner_responded) {
3199                                 rbd_warn(rbd_dev,
3200                                          "duplicate lock owners detected");
3201                                 ret = -EIO;
3202                                 goto out;
3203                         }
3204
3205                         lock_owner_responded = true;
3206                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3207                                                   &struct_v, &len);
3208                         if (ret) {
3209                                 rbd_warn(rbd_dev,
3210                                          "failed to decode ResponseMessage: %d",
3211                                          ret);
3212                                 goto e_inval;
3213                         }
3214
3215                         ret = ceph_decode_32(&p);
3216                 }
3217         }
3218
3219         if (!lock_owner_responded) {
3220                 rbd_warn(rbd_dev, "no lock owners detected");
3221                 ret = -ETIMEDOUT;
3222         }
3223
3224 out:
3225         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3226         return ret;
3227
3228 e_inval:
3229         ret = -EINVAL;
3230         goto out;
3231 }
3232
3233 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3234 {
3235         dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3236
3237         cancel_delayed_work(&rbd_dev->lock_dwork);
3238         if (wake_all)
3239                 wake_up_all(&rbd_dev->lock_waitq);
3240         else
3241                 wake_up(&rbd_dev->lock_waitq);
3242 }
3243
3244 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3245                                struct ceph_locker **lockers, u32 *num_lockers)
3246 {
3247         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3248         u8 lock_type;
3249         char *lock_tag;
3250         int ret;
3251
3252         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3253
3254         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3255                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3256                                  &lock_type, &lock_tag, lockers, num_lockers);
3257         if (ret)
3258                 return ret;
3259
3260         if (*num_lockers == 0) {
3261                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3262                 goto out;
3263         }
3264
3265         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3266                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3267                          lock_tag);
3268                 ret = -EBUSY;
3269                 goto out;
3270         }
3271
3272         if (lock_type == CEPH_CLS_LOCK_SHARED) {
3273                 rbd_warn(rbd_dev, "shared lock type detected");
3274                 ret = -EBUSY;
3275                 goto out;
3276         }
3277
3278         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3279                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
3280                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3281                          (*lockers)[0].id.cookie);
3282                 ret = -EBUSY;
3283                 goto out;
3284         }
3285
3286 out:
3287         kfree(lock_tag);
3288         return ret;
3289 }
3290
3291 static int find_watcher(struct rbd_device *rbd_dev,
3292                         const struct ceph_locker *locker)
3293 {
3294         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3295         struct ceph_watch_item *watchers;
3296         u32 num_watchers;
3297         u64 cookie;
3298         int i;
3299         int ret;
3300
3301         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3302                                       &rbd_dev->header_oloc, &watchers,
3303                                       &num_watchers);
3304         if (ret)
3305                 return ret;
3306
3307         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3308         for (i = 0; i < num_watchers; i++) {
3309                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3310                             sizeof(locker->info.addr)) &&
3311                     watchers[i].cookie == cookie) {
3312                         struct rbd_client_id cid = {
3313                                 .gid = le64_to_cpu(watchers[i].name.num),
3314                                 .handle = cookie,
3315                         };
3316
3317                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3318                              rbd_dev, cid.gid, cid.handle);
3319                         rbd_set_owner_cid(rbd_dev, &cid);
3320                         ret = 1;
3321                         goto out;
3322                 }
3323         }
3324
3325         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3326         ret = 0;
3327 out:
3328         kfree(watchers);
3329         return ret;
3330 }
3331
3332 /*
3333  * lock_rwsem must be held for write
3334  */
3335 static int rbd_try_lock(struct rbd_device *rbd_dev)
3336 {
3337         struct ceph_client *client = rbd_dev->rbd_client->client;
3338         struct ceph_locker *lockers;
3339         u32 num_lockers;
3340         int ret;
3341
3342         for (;;) {
3343                 ret = rbd_lock(rbd_dev);
3344                 if (ret != -EBUSY)
3345                         return ret;
3346
3347                 /* determine if the current lock holder is still alive */
3348                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3349                 if (ret)
3350                         return ret;
3351
3352                 if (num_lockers == 0)
3353                         goto again;
3354
3355                 ret = find_watcher(rbd_dev, lockers);
3356                 if (ret) {
3357                         if (ret > 0)
3358                                 ret = 0; /* have to request lock */
3359                         goto out;
3360                 }
3361
3362                 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3363                          ENTITY_NAME(lockers[0].id.name));
3364
3365                 ret = ceph_monc_blacklist_add(&client->monc,
3366                                               &lockers[0].info.addr);
3367                 if (ret) {
3368                         rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3369                                  ENTITY_NAME(lockers[0].id.name), ret);
3370                         goto out;
3371                 }
3372
3373                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3374                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
3375                                           lockers[0].id.cookie,
3376                                           &lockers[0].id.name);
3377                 if (ret && ret != -ENOENT)
3378                         goto out;
3379
3380 again:
3381                 ceph_free_lockers(lockers, num_lockers);
3382         }
3383
3384 out:
3385         ceph_free_lockers(lockers, num_lockers);
3386         return ret;
3387 }
3388
3389 /*
3390  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3391  */
3392 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3393                                                 int *pret)
3394 {
3395         enum rbd_lock_state lock_state;
3396
3397         down_read(&rbd_dev->lock_rwsem);
3398         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3399              rbd_dev->lock_state);
3400         if (__rbd_is_lock_owner(rbd_dev)) {
3401                 lock_state = rbd_dev->lock_state;
3402                 up_read(&rbd_dev->lock_rwsem);
3403                 return lock_state;
3404         }
3405
3406         up_read(&rbd_dev->lock_rwsem);
3407         down_write(&rbd_dev->lock_rwsem);
3408         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3409              rbd_dev->lock_state);
3410         if (!__rbd_is_lock_owner(rbd_dev)) {
3411                 *pret = rbd_try_lock(rbd_dev);
3412                 if (*pret)
3413                         rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3414         }
3415
3416         lock_state = rbd_dev->lock_state;
3417         up_write(&rbd_dev->lock_rwsem);
3418         return lock_state;
3419 }
3420
3421 static void rbd_acquire_lock(struct work_struct *work)
3422 {
3423         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3424                                             struct rbd_device, lock_dwork);
3425         enum rbd_lock_state lock_state;
3426         int ret;
3427
3428         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3429 again:
3430         lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3431         if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3432                 if (lock_state == RBD_LOCK_STATE_LOCKED)
3433                         wake_requests(rbd_dev, true);
3434                 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3435                      rbd_dev, lock_state, ret);
3436                 return;
3437         }
3438
3439         ret = rbd_request_lock(rbd_dev);
3440         if (ret == -ETIMEDOUT) {
3441                 goto again; /* treat this as a dead client */
3442         } else if (ret < 0) {
3443                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3444                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3445                                  RBD_RETRY_DELAY);
3446         } else {
3447                 /*
3448                  * lock owner acked, but resend if we don't see them
3449                  * release the lock
3450                  */
3451                 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3452                      rbd_dev);
3453                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3454                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3455         }
3456 }
3457
3458 /*
3459  * lock_rwsem must be held for write
3460  */
3461 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3462 {
3463         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3464              rbd_dev->lock_state);
3465         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3466                 return false;
3467
3468         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3469         downgrade_write(&rbd_dev->lock_rwsem);
3470         /*
3471          * Ensure that all in-flight IO is flushed.
3472          *
3473          * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3474          * may be shared with other devices.
3475          */
3476         ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3477         up_read(&rbd_dev->lock_rwsem);
3478
3479         down_write(&rbd_dev->lock_rwsem);
3480         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3481              rbd_dev->lock_state);
3482         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3483                 return false;
3484
3485         if (!rbd_unlock(rbd_dev))
3486                 /*
3487                  * Give others a chance to grab the lock - we would re-acquire
3488                  * almost immediately if we got new IO during ceph_osdc_sync()
3489                  * otherwise.  We need to ack our own notifications, so this
3490                  * lock_dwork will be requeued from rbd_wait_state_locked()
3491                  * after wake_requests() in rbd_handle_released_lock().
3492                  */
3493                 cancel_delayed_work(&rbd_dev->lock_dwork);
3494
3495         return true;
3496 }
3497
3498 static void rbd_release_lock_work(struct work_struct *work)
3499 {
3500         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3501                                                   unlock_work);
3502
3503         down_write(&rbd_dev->lock_rwsem);
3504         rbd_release_lock(rbd_dev);
3505         up_write(&rbd_dev->lock_rwsem);
3506 }
3507
3508 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3509                                      void **p)
3510 {
3511         struct rbd_client_id cid = { 0 };
3512
3513         if (struct_v >= 2) {
3514                 cid.gid = ceph_decode_64(p);
3515                 cid.handle = ceph_decode_64(p);
3516         }
3517
3518         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3519              cid.handle);
3520         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3521                 down_write(&rbd_dev->lock_rwsem);
3522                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3523                         /*
3524                          * we already know that the remote client is
3525                          * the owner
3526                          */
3527                         up_write(&rbd_dev->lock_rwsem);
3528                         return;
3529                 }
3530
3531                 rbd_set_owner_cid(rbd_dev, &cid);
3532                 downgrade_write(&rbd_dev->lock_rwsem);
3533         } else {
3534                 down_read(&rbd_dev->lock_rwsem);
3535         }
3536
3537         if (!__rbd_is_lock_owner(rbd_dev))
3538                 wake_requests(rbd_dev, false);
3539         up_read(&rbd_dev->lock_rwsem);
3540 }
3541
3542 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3543                                      void **p)
3544 {
3545         struct rbd_client_id cid = { 0 };
3546
3547         if (struct_v >= 2) {
3548                 cid.gid = ceph_decode_64(p);
3549                 cid.handle = ceph_decode_64(p);
3550         }
3551
3552         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3553              cid.handle);
3554         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3555                 down_write(&rbd_dev->lock_rwsem);
3556                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3557                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3558                              __func__, rbd_dev, cid.gid, cid.handle,
3559                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3560                         up_write(&rbd_dev->lock_rwsem);
3561                         return;
3562                 }
3563
3564                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3565                 downgrade_write(&rbd_dev->lock_rwsem);
3566         } else {
3567                 down_read(&rbd_dev->lock_rwsem);
3568         }
3569
3570         if (!__rbd_is_lock_owner(rbd_dev))
3571                 wake_requests(rbd_dev, false);
3572         up_read(&rbd_dev->lock_rwsem);
3573 }
3574
3575 static bool rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3576                                     void **p)
3577 {
3578         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3579         struct rbd_client_id cid = { 0 };
3580         bool need_to_send;
3581
3582         if (struct_v >= 2) {
3583                 cid.gid = ceph_decode_64(p);
3584                 cid.handle = ceph_decode_64(p);
3585         }
3586
3587         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3588              cid.handle);
3589         if (rbd_cid_equal(&cid, &my_cid))
3590                 return false;
3591
3592         down_read(&rbd_dev->lock_rwsem);
3593         need_to_send = __rbd_is_lock_owner(rbd_dev);
3594         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3595                 if (!rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) {
3596                         dout("%s rbd_dev %p queueing unlock_work\n", __func__,
3597                              rbd_dev);
3598                         queue_work(rbd_dev->task_wq, &rbd_dev->unlock_work);
3599                 }
3600         }
3601         up_read(&rbd_dev->lock_rwsem);
3602         return need_to_send;
3603 }
3604
3605 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3606                                      u64 notify_id, u64 cookie, s32 *result)
3607 {
3608         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3609         int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3610         char buf[buf_size];
3611         int ret;
3612
3613         if (result) {
3614                 void *p = buf;
3615
3616                 /* encode ResponseMessage */
3617                 ceph_start_encoding(&p, 1, 1,
3618                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
3619                 ceph_encode_32(&p, *result);
3620         } else {
3621                 buf_size = 0;
3622         }
3623
3624         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3625                                    &rbd_dev->header_oloc, notify_id, cookie,
3626                                    buf, buf_size);
3627         if (ret)
3628                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3629 }
3630
3631 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3632                                    u64 cookie)
3633 {
3634         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3635         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3636 }
3637
3638 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3639                                           u64 notify_id, u64 cookie, s32 result)
3640 {
3641         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3642         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3643 }
3644
3645 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3646                          u64 notifier_id, void *data, size_t data_len)
3647 {
3648         struct rbd_device *rbd_dev = arg;
3649         void *p = data;
3650         void *const end = p + data_len;
3651         u8 struct_v = 0;
3652         u32 len;
3653         u32 notify_op;
3654         int ret;
3655
3656         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3657              __func__, rbd_dev, cookie, notify_id, data_len);
3658         if (data_len) {
3659                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3660                                           &struct_v, &len);
3661                 if (ret) {
3662                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3663                                  ret);
3664                         return;
3665                 }
3666
3667                 notify_op = ceph_decode_32(&p);
3668         } else {
3669                 /* legacy notification for header updates */
3670                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3671                 len = 0;
3672         }
3673
3674         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3675         switch (notify_op) {
3676         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3677                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3678                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3679                 break;
3680         case RBD_NOTIFY_OP_RELEASED_LOCK:
3681                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3682                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3683                 break;
3684         case RBD_NOTIFY_OP_REQUEST_LOCK:
3685                 if (rbd_handle_request_lock(rbd_dev, struct_v, &p))
3686                         /*
3687                          * send ResponseMessage(0) back so the client
3688                          * can detect a missing owner
3689                          */
3690                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3691                                                       cookie, 0);
3692                 else
3693                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3694                 break;
3695         case RBD_NOTIFY_OP_HEADER_UPDATE:
3696                 ret = rbd_dev_refresh(rbd_dev);
3697                 if (ret)
3698                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
3699
3700                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3701                 break;
3702         default:
3703                 if (rbd_is_lock_owner(rbd_dev))
3704                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3705                                                       cookie, -EOPNOTSUPP);
3706                 else
3707                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3708                 break;
3709         }
3710 }
3711
3712 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3713
3714 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3715 {
3716         struct rbd_device *rbd_dev = arg;
3717
3718         rbd_warn(rbd_dev, "encountered watch error: %d", err);
3719
3720         down_write(&rbd_dev->lock_rwsem);
3721         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3722         up_write(&rbd_dev->lock_rwsem);
3723
3724         mutex_lock(&rbd_dev->watch_mutex);
3725         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3726                 __rbd_unregister_watch(rbd_dev);
3727                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3728
3729                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3730         }
3731         mutex_unlock(&rbd_dev->watch_mutex);
3732 }
3733
3734 /*
3735  * watch_mutex must be locked
3736  */
3737 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3738 {
3739         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3740         struct ceph_osd_linger_request *handle;
3741
3742         rbd_assert(!rbd_dev->watch_handle);
3743         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3744
3745         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3746                                  &rbd_dev->header_oloc, rbd_watch_cb,
3747                                  rbd_watch_errcb, rbd_dev);
3748         if (IS_ERR(handle))
3749                 return PTR_ERR(handle);
3750
3751         rbd_dev->watch_handle = handle;
3752         return 0;
3753 }
3754
3755 /*
3756  * watch_mutex must be locked
3757  */
3758 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3759 {
3760         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3761         int ret;
3762
3763         rbd_assert(rbd_dev->watch_handle);
3764         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3765
3766         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3767         if (ret)
3768                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3769
3770         rbd_dev->watch_handle = NULL;
3771 }
3772
3773 static int rbd_register_watch(struct rbd_device *rbd_dev)
3774 {
3775         int ret;
3776
3777         mutex_lock(&rbd_dev->watch_mutex);
3778         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3779         ret = __rbd_register_watch(rbd_dev);
3780         if (ret)
3781                 goto out;
3782
3783         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3784         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3785
3786 out:
3787         mutex_unlock(&rbd_dev->watch_mutex);
3788         return ret;
3789 }
3790
3791 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3792 {
3793         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3794
3795         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3796         cancel_work_sync(&rbd_dev->acquired_lock_work);
3797         cancel_work_sync(&rbd_dev->released_lock_work);
3798         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3799         cancel_work_sync(&rbd_dev->unlock_work);
3800 }
3801
3802 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3803 {
3804         WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3805         cancel_tasks_sync(rbd_dev);
3806
3807         mutex_lock(&rbd_dev->watch_mutex);
3808         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3809                 __rbd_unregister_watch(rbd_dev);
3810         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3811         mutex_unlock(&rbd_dev->watch_mutex);
3812
3813         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3814 }
3815
3816 static void rbd_reregister_watch(struct work_struct *work)
3817 {
3818         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3819                                             struct rbd_device, watch_dwork);
3820         bool was_lock_owner = false;
3821         bool need_to_wake = false;
3822         int ret;
3823
3824         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3825
3826         down_write(&rbd_dev->lock_rwsem);
3827         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3828                 was_lock_owner = rbd_release_lock(rbd_dev);
3829
3830         mutex_lock(&rbd_dev->watch_mutex);
3831         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3832                 mutex_unlock(&rbd_dev->watch_mutex);
3833                 goto out;
3834         }
3835
3836         ret = __rbd_register_watch(rbd_dev);
3837         if (ret) {
3838                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3839                 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3840                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3841                         need_to_wake = true;
3842                 } else {
3843                         queue_delayed_work(rbd_dev->task_wq,
3844                                            &rbd_dev->watch_dwork,
3845                                            RBD_RETRY_DELAY);
3846                 }
3847                 mutex_unlock(&rbd_dev->watch_mutex);
3848                 goto out;
3849         }
3850
3851         need_to_wake = true;
3852         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3853         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3854         mutex_unlock(&rbd_dev->watch_mutex);
3855
3856         ret = rbd_dev_refresh(rbd_dev);
3857         if (ret)
3858                 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3859
3860         if (was_lock_owner) {
3861                 ret = rbd_try_lock(rbd_dev);
3862                 if (ret)
3863                         rbd_warn(rbd_dev, "reregisteration lock failed: %d",
3864                                  ret);
3865         }
3866
3867 out:
3868         up_write(&rbd_dev->lock_rwsem);
3869         if (need_to_wake)
3870                 wake_requests(rbd_dev, true);
3871 }
3872
3873 /*
3874  * Synchronous osd object method call.  Returns the number of bytes
3875  * returned in the outbound buffer, or a negative error code.
3876  */
3877 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3878                              struct ceph_object_id *oid,
3879                              struct ceph_object_locator *oloc,
3880                              const char *method_name,
3881                              const void *outbound,
3882                              size_t outbound_size,
3883                              void *inbound,
3884                              size_t inbound_size)
3885 {
3886         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3887         struct page *req_page = NULL;
3888         struct page *reply_page;
3889         int ret;
3890
3891         /*
3892          * Method calls are ultimately read operations.  The result
3893          * should placed into the inbound buffer provided.  They
3894          * also supply outbound data--parameters for the object
3895          * method.  Currently if this is present it will be a
3896          * snapshot id.
3897          */
3898         if (outbound) {
3899                 if (outbound_size > PAGE_SIZE)
3900                         return -E2BIG;
3901
3902                 req_page = alloc_page(GFP_KERNEL);
3903                 if (!req_page)
3904                         return -ENOMEM;
3905
3906                 memcpy(page_address(req_page), outbound, outbound_size);
3907         }
3908
3909         reply_page = alloc_page(GFP_KERNEL);
3910         if (!reply_page) {
3911                 if (req_page)
3912                         __free_page(req_page);
3913                 return -ENOMEM;
3914         }
3915
3916         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3917                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
3918                              reply_page, &inbound_size);
3919         if (!ret) {
3920                 memcpy(inbound, page_address(reply_page), inbound_size);
3921                 ret = inbound_size;
3922         }
3923
3924         if (req_page)
3925                 __free_page(req_page);
3926         __free_page(reply_page);
3927         return ret;
3928 }
3929
3930 /*
3931  * lock_rwsem must be held for read
3932  */
3933 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
3934 {
3935         DEFINE_WAIT(wait);
3936
3937         do {
3938                 /*
3939                  * Note the use of mod_delayed_work() in rbd_acquire_lock()
3940                  * and cancel_delayed_work() in wake_requests().
3941                  */
3942                 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3943                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3944                 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3945                                           TASK_UNINTERRUPTIBLE);
3946                 up_read(&rbd_dev->lock_rwsem);
3947                 schedule();
3948                 down_read(&rbd_dev->lock_rwsem);
3949         } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
3950                  !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
3951
3952         finish_wait(&rbd_dev->lock_waitq, &wait);
3953 }
3954
3955 static void rbd_queue_workfn(struct work_struct *work)
3956 {
3957         struct request *rq = blk_mq_rq_from_pdu(work);
3958         struct rbd_device *rbd_dev = rq->q->queuedata;
3959         struct rbd_img_request *img_request;
3960         struct ceph_snap_context *snapc = NULL;
3961         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3962         u64 length = blk_rq_bytes(rq);
3963         enum obj_operation_type op_type;
3964         u64 mapping_size;
3965         bool must_be_locked;
3966         int result;
3967
3968         if (rq->cmd_type != REQ_TYPE_FS) {
3969                 dout("%s: non-fs request type %d\n", __func__,
3970                         (int) rq->cmd_type);
3971                 result = -EIO;
3972                 goto err;
3973         }
3974
3975         if (req_op(rq) == REQ_OP_DISCARD)
3976                 op_type = OBJ_OP_DISCARD;
3977         else if (req_op(rq) == REQ_OP_WRITE)
3978                 op_type = OBJ_OP_WRITE;
3979         else
3980                 op_type = OBJ_OP_READ;
3981
3982         /* Ignore/skip any zero-length requests */
3983
3984         if (!length) {
3985                 dout("%s: zero-length request\n", __func__);
3986                 result = 0;
3987                 goto err_rq;
3988         }
3989
3990         /* Only reads are allowed to a read-only device */
3991
3992         if (op_type != OBJ_OP_READ) {
3993                 if (rbd_dev->mapping.read_only) {
3994                         result = -EROFS;
3995                         goto err_rq;
3996                 }
3997                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3998         }
3999
4000         /*
4001          * Quit early if the mapped snapshot no longer exists.  It's
4002          * still possible the snapshot will have disappeared by the
4003          * time our request arrives at the osd, but there's no sense in
4004          * sending it if we already know.
4005          */
4006         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4007                 dout("request for non-existent snapshot");
4008                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4009                 result = -ENXIO;
4010                 goto err_rq;
4011         }
4012
4013         if (offset && length > U64_MAX - offset + 1) {
4014                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4015                          length);
4016                 result = -EINVAL;
4017                 goto err_rq;    /* Shouldn't happen */
4018         }
4019
4020         blk_mq_start_request(rq);
4021
4022         down_read(&rbd_dev->header_rwsem);
4023         mapping_size = rbd_dev->mapping.size;
4024         if (op_type != OBJ_OP_READ) {
4025                 snapc = rbd_dev->header.snapc;
4026                 ceph_get_snap_context(snapc);
4027                 must_be_locked = rbd_is_lock_supported(rbd_dev);
4028         } else {
4029                 must_be_locked = rbd_dev->opts->lock_on_read &&
4030                                         rbd_is_lock_supported(rbd_dev);
4031         }
4032         up_read(&rbd_dev->header_rwsem);
4033
4034         if (offset + length > mapping_size) {
4035                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4036                          length, mapping_size);
4037                 result = -EIO;
4038                 goto err_rq;
4039         }
4040
4041         if (must_be_locked) {
4042                 down_read(&rbd_dev->lock_rwsem);
4043                 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4044                     !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
4045                         rbd_wait_state_locked(rbd_dev);
4046
4047                 WARN_ON((rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) ^
4048                         !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
4049                 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4050                         result = -EBLACKLISTED;
4051                         goto err_unlock;
4052                 }
4053         }
4054
4055         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4056                                              snapc);
4057         if (!img_request) {
4058                 result = -ENOMEM;
4059                 goto err_unlock;
4060         }
4061         img_request->rq = rq;
4062         snapc = NULL; /* img_request consumes a ref */
4063
4064         if (op_type == OBJ_OP_DISCARD)
4065                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4066                                               NULL);
4067         else
4068                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4069                                               rq->bio);
4070         if (result)
4071                 goto err_img_request;
4072
4073         result = rbd_img_request_submit(img_request);
4074         if (result)
4075                 goto err_img_request;
4076
4077         if (must_be_locked)
4078                 up_read(&rbd_dev->lock_rwsem);
4079         return;
4080
4081 err_img_request:
4082         rbd_img_request_put(img_request);
4083 err_unlock:
4084         if (must_be_locked)
4085                 up_read(&rbd_dev->lock_rwsem);
4086 err_rq:
4087         if (result)
4088                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4089                          obj_op_name(op_type), length, offset, result);
4090         ceph_put_snap_context(snapc);
4091 err:
4092         blk_mq_end_request(rq, result);
4093 }
4094
4095 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4096                 const struct blk_mq_queue_data *bd)
4097 {
4098         struct request *rq = bd->rq;
4099         struct work_struct *work = blk_mq_rq_to_pdu(rq);
4100
4101         queue_work(rbd_wq, work);
4102         return BLK_MQ_RQ_QUEUE_OK;
4103 }
4104
4105 static void rbd_free_disk(struct rbd_device *rbd_dev)
4106 {
4107         struct gendisk *disk = rbd_dev->disk;
4108
4109         if (!disk)
4110                 return;
4111
4112         rbd_dev->disk = NULL;
4113         if (disk->flags & GENHD_FL_UP) {
4114                 del_gendisk(disk);
4115                 if (disk->queue)
4116                         blk_cleanup_queue(disk->queue);
4117                 blk_mq_free_tag_set(&rbd_dev->tag_set);
4118         }
4119         put_disk(disk);
4120 }
4121
4122 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4123                              struct ceph_object_id *oid,
4124                              struct ceph_object_locator *oloc,
4125                              void *buf, int buf_len)
4126
4127 {
4128         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4129         struct ceph_osd_request *req;
4130         struct page **pages;
4131         int num_pages = calc_pages_for(0, buf_len);
4132         int ret;
4133
4134         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4135         if (!req)
4136                 return -ENOMEM;
4137
4138         ceph_oid_copy(&req->r_base_oid, oid);
4139         ceph_oloc_copy(&req->r_base_oloc, oloc);
4140         req->r_flags = CEPH_OSD_FLAG_READ;
4141
4142         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4143         if (ret)
4144                 goto out_req;
4145
4146         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4147         if (IS_ERR(pages)) {
4148                 ret = PTR_ERR(pages);
4149                 goto out_req;
4150         }
4151
4152         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4153         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4154                                          true);
4155
4156         ceph_osdc_start_request(osdc, req, false);
4157         ret = ceph_osdc_wait_request(osdc, req);
4158         if (ret >= 0)
4159                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4160
4161 out_req:
4162         ceph_osdc_put_request(req);
4163         return ret;
4164 }
4165
4166 /*
4167  * Read the complete header for the given rbd device.  On successful
4168  * return, the rbd_dev->header field will contain up-to-date
4169  * information about the image.
4170  */
4171 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4172 {
4173         struct rbd_image_header_ondisk *ondisk = NULL;
4174         u32 snap_count = 0;
4175         u64 names_size = 0;
4176         u32 want_count;
4177         int ret;
4178
4179         /*
4180          * The complete header will include an array of its 64-bit
4181          * snapshot ids, followed by the names of those snapshots as
4182          * a contiguous block of NUL-terminated strings.  Note that
4183          * the number of snapshots could change by the time we read
4184          * it in, in which case we re-read it.
4185          */
4186         do {
4187                 size_t size;
4188
4189                 kfree(ondisk);
4190
4191                 size = sizeof (*ondisk);
4192                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4193                 size += names_size;
4194                 ondisk = kmalloc(size, GFP_KERNEL);
4195                 if (!ondisk)
4196                         return -ENOMEM;
4197
4198                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4199                                         &rbd_dev->header_oloc, ondisk, size);
4200                 if (ret < 0)
4201                         goto out;
4202                 if ((size_t)ret < size) {
4203                         ret = -ENXIO;
4204                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4205                                 size, ret);
4206                         goto out;
4207                 }
4208                 if (!rbd_dev_ondisk_valid(ondisk)) {
4209                         ret = -ENXIO;
4210                         rbd_warn(rbd_dev, "invalid header");
4211                         goto out;
4212                 }
4213
4214                 names_size = le64_to_cpu(ondisk->snap_names_len);
4215                 want_count = snap_count;
4216                 snap_count = le32_to_cpu(ondisk->snap_count);
4217         } while (snap_count != want_count);
4218
4219         ret = rbd_header_from_disk(rbd_dev, ondisk);
4220 out:
4221         kfree(ondisk);
4222
4223         return ret;
4224 }
4225
4226 /*
4227  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4228  * has disappeared from the (just updated) snapshot context.
4229  */
4230 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4231 {
4232         u64 snap_id;
4233
4234         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4235                 return;
4236
4237         snap_id = rbd_dev->spec->snap_id;
4238         if (snap_id == CEPH_NOSNAP)
4239                 return;
4240
4241         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4242                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4243 }
4244
4245 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4246 {
4247         sector_t size;
4248
4249         /*
4250          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4251          * try to update its size.  If REMOVING is set, updating size
4252          * is just useless work since the device can't be opened.
4253          */
4254         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4255             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4256                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4257                 dout("setting size to %llu sectors", (unsigned long long)size);
4258                 set_capacity(rbd_dev->disk, size);
4259                 revalidate_disk(rbd_dev->disk);
4260         }
4261 }
4262
4263 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4264 {
4265         u64 mapping_size;
4266         int ret;
4267
4268         down_write(&rbd_dev->header_rwsem);
4269         mapping_size = rbd_dev->mapping.size;
4270
4271         ret = rbd_dev_header_info(rbd_dev);
4272         if (ret)
4273                 goto out;
4274
4275         /*
4276          * If there is a parent, see if it has disappeared due to the
4277          * mapped image getting flattened.
4278          */
4279         if (rbd_dev->parent) {
4280                 ret = rbd_dev_v2_parent_info(rbd_dev);
4281                 if (ret)
4282                         goto out;
4283         }
4284
4285         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4286                 rbd_dev->mapping.size = rbd_dev->header.image_size;
4287         } else {
4288                 /* validate mapped snapshot's EXISTS flag */
4289                 rbd_exists_validate(rbd_dev);
4290         }
4291
4292 out:
4293         up_write(&rbd_dev->header_rwsem);
4294         if (!ret && mapping_size != rbd_dev->mapping.size)
4295                 rbd_dev_update_size(rbd_dev);
4296
4297         return ret;
4298 }
4299
4300 static int rbd_init_request(void *data, struct request *rq,
4301                 unsigned int hctx_idx, unsigned int request_idx,
4302                 unsigned int numa_node)
4303 {
4304         struct work_struct *work = blk_mq_rq_to_pdu(rq);
4305
4306         INIT_WORK(work, rbd_queue_workfn);
4307         return 0;
4308 }
4309
4310 static struct blk_mq_ops rbd_mq_ops = {
4311         .queue_rq       = rbd_queue_rq,
4312         .init_request   = rbd_init_request,
4313 };
4314
4315 static int rbd_init_disk(struct rbd_device *rbd_dev)
4316 {
4317         struct gendisk *disk;
4318         struct request_queue *q;
4319         u64 segment_size;
4320         int err;
4321
4322         /* create gendisk info */
4323         disk = alloc_disk(single_major ?
4324                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4325                           RBD_MINORS_PER_MAJOR);
4326         if (!disk)
4327                 return -ENOMEM;
4328
4329         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4330                  rbd_dev->dev_id);
4331         disk->major = rbd_dev->major;
4332         disk->first_minor = rbd_dev->minor;
4333         if (single_major)
4334                 disk->flags |= GENHD_FL_EXT_DEVT;
4335         disk->fops = &rbd_bd_ops;
4336         disk->private_data = rbd_dev;
4337
4338         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4339         rbd_dev->tag_set.ops = &rbd_mq_ops;
4340         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4341         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4342         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4343         rbd_dev->tag_set.nr_hw_queues = 1;
4344         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4345
4346         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4347         if (err)
4348                 goto out_disk;
4349
4350         q = blk_mq_init_queue(&rbd_dev->tag_set);
4351         if (IS_ERR(q)) {
4352                 err = PTR_ERR(q);
4353                 goto out_tag_set;
4354         }
4355
4356         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4357         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4358
4359         /* set io sizes to object size */
4360         segment_size = rbd_obj_bytes(&rbd_dev->header);
4361         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4362         q->limits.max_sectors = queue_max_hw_sectors(q);
4363         blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
4364         blk_queue_max_segment_size(q, segment_size);
4365         blk_queue_io_min(q, segment_size);
4366         blk_queue_io_opt(q, segment_size);
4367
4368         /* enable the discard support */
4369         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4370         q->limits.discard_granularity = segment_size;
4371         q->limits.discard_alignment = segment_size;
4372         blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4373         q->limits.discard_zeroes_data = 1;
4374
4375         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4376                 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
4377
4378         disk->queue = q;
4379
4380         q->queuedata = rbd_dev;
4381
4382         rbd_dev->disk = disk;
4383
4384         return 0;
4385 out_tag_set:
4386         blk_mq_free_tag_set(&rbd_dev->tag_set);
4387 out_disk:
4388         put_disk(disk);
4389         return err;
4390 }
4391
4392 /*
4393   sysfs
4394 */
4395
4396 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4397 {
4398         return container_of(dev, struct rbd_device, dev);
4399 }
4400
4401 static ssize_t rbd_size_show(struct device *dev,
4402                              struct device_attribute *attr, char *buf)
4403 {
4404         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4405
4406         return sprintf(buf, "%llu\n",
4407                 (unsigned long long)rbd_dev->mapping.size);
4408 }
4409
4410 /*
4411  * Note this shows the features for whatever's mapped, which is not
4412  * necessarily the base image.
4413  */
4414 static ssize_t rbd_features_show(struct device *dev,
4415                              struct device_attribute *attr, char *buf)
4416 {
4417         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4418
4419         return sprintf(buf, "0x%016llx\n",
4420                         (unsigned long long)rbd_dev->mapping.features);
4421 }
4422
4423 static ssize_t rbd_major_show(struct device *dev,
4424                               struct device_attribute *attr, char *buf)
4425 {
4426         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4427
4428         if (rbd_dev->major)
4429                 return sprintf(buf, "%d\n", rbd_dev->major);
4430
4431         return sprintf(buf, "(none)\n");
4432 }
4433
4434 static ssize_t rbd_minor_show(struct device *dev,
4435                               struct device_attribute *attr, char *buf)
4436 {
4437         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4438
4439         return sprintf(buf, "%d\n", rbd_dev->minor);
4440 }
4441
4442 static ssize_t rbd_client_addr_show(struct device *dev,
4443                                     struct device_attribute *attr, char *buf)
4444 {
4445         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4446         struct ceph_entity_addr *client_addr =
4447             ceph_client_addr(rbd_dev->rbd_client->client);
4448
4449         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4450                        le32_to_cpu(client_addr->nonce));
4451 }
4452
4453 static ssize_t rbd_client_id_show(struct device *dev,
4454                                   struct device_attribute *attr, char *buf)
4455 {
4456         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4457
4458         return sprintf(buf, "client%lld\n",
4459                        ceph_client_gid(rbd_dev->rbd_client->client));
4460 }
4461
4462 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4463                                      struct device_attribute *attr, char *buf)
4464 {
4465         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4466
4467         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4468 }
4469
4470 static ssize_t rbd_config_info_show(struct device *dev,
4471                                     struct device_attribute *attr, char *buf)
4472 {
4473         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4474
4475         return sprintf(buf, "%s\n", rbd_dev->config_info);
4476 }
4477
4478 static ssize_t rbd_pool_show(struct device *dev,
4479                              struct device_attribute *attr, char *buf)
4480 {
4481         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4482
4483         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4484 }
4485
4486 static ssize_t rbd_pool_id_show(struct device *dev,
4487                              struct device_attribute *attr, char *buf)
4488 {
4489         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4490
4491         return sprintf(buf, "%llu\n",
4492                         (unsigned long long) rbd_dev->spec->pool_id);
4493 }
4494
4495 static ssize_t rbd_name_show(struct device *dev,
4496                              struct device_attribute *attr, char *buf)
4497 {
4498         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4499
4500         if (rbd_dev->spec->image_name)
4501                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4502
4503         return sprintf(buf, "(unknown)\n");
4504 }
4505
4506 static ssize_t rbd_image_id_show(struct device *dev,
4507                              struct device_attribute *attr, char *buf)
4508 {
4509         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4510
4511         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4512 }
4513
4514 /*
4515  * Shows the name of the currently-mapped snapshot (or
4516  * RBD_SNAP_HEAD_NAME for the base image).
4517  */
4518 static ssize_t rbd_snap_show(struct device *dev,
4519                              struct device_attribute *attr,
4520                              char *buf)
4521 {
4522         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4523
4524         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4525 }
4526
4527 static ssize_t rbd_snap_id_show(struct device *dev,
4528                                 struct device_attribute *attr, char *buf)
4529 {
4530         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4531
4532         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4533 }
4534
4535 /*
4536  * For a v2 image, shows the chain of parent images, separated by empty
4537  * lines.  For v1 images or if there is no parent, shows "(no parent
4538  * image)".
4539  */
4540 static ssize_t rbd_parent_show(struct device *dev,
4541                                struct device_attribute *attr,
4542                                char *buf)
4543 {
4544         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4545         ssize_t count = 0;
4546
4547         if (!rbd_dev->parent)
4548                 return sprintf(buf, "(no parent image)\n");
4549
4550         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4551                 struct rbd_spec *spec = rbd_dev->parent_spec;
4552
4553                 count += sprintf(&buf[count], "%s"
4554                             "pool_id %llu\npool_name %s\n"
4555                             "image_id %s\nimage_name %s\n"
4556                             "snap_id %llu\nsnap_name %s\n"
4557                             "overlap %llu\n",
4558                             !count ? "" : "\n", /* first? */
4559                             spec->pool_id, spec->pool_name,
4560                             spec->image_id, spec->image_name ?: "(unknown)",
4561                             spec->snap_id, spec->snap_name,
4562                             rbd_dev->parent_overlap);
4563         }
4564
4565         return count;
4566 }
4567
4568 static ssize_t rbd_image_refresh(struct device *dev,
4569                                  struct device_attribute *attr,
4570                                  const char *buf,
4571                                  size_t size)
4572 {
4573         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4574         int ret;
4575
4576         ret = rbd_dev_refresh(rbd_dev);
4577         if (ret)
4578                 return ret;
4579
4580         return size;
4581 }
4582
4583 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4584 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4585 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4586 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4587 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4588 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4589 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4590 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4591 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4592 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4593 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4594 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4595 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4596 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4597 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4598 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4599
4600 static struct attribute *rbd_attrs[] = {
4601         &dev_attr_size.attr,
4602         &dev_attr_features.attr,
4603         &dev_attr_major.attr,
4604         &dev_attr_minor.attr,
4605         &dev_attr_client_addr.attr,
4606         &dev_attr_client_id.attr,
4607         &dev_attr_cluster_fsid.attr,
4608         &dev_attr_config_info.attr,
4609         &dev_attr_pool.attr,
4610         &dev_attr_pool_id.attr,
4611         &dev_attr_name.attr,
4612         &dev_attr_image_id.attr,
4613         &dev_attr_current_snap.attr,
4614         &dev_attr_snap_id.attr,
4615         &dev_attr_parent.attr,
4616         &dev_attr_refresh.attr,
4617         NULL
4618 };
4619
4620 static struct attribute_group rbd_attr_group = {
4621         .attrs = rbd_attrs,
4622 };
4623
4624 static const struct attribute_group *rbd_attr_groups[] = {
4625         &rbd_attr_group,
4626         NULL
4627 };
4628
4629 static void rbd_dev_release(struct device *dev);
4630
4631 static const struct device_type rbd_device_type = {
4632         .name           = "rbd",
4633         .groups         = rbd_attr_groups,
4634         .release        = rbd_dev_release,
4635 };
4636
4637 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4638 {
4639         kref_get(&spec->kref);
4640
4641         return spec;
4642 }
4643
4644 static void rbd_spec_free(struct kref *kref);
4645 static void rbd_spec_put(struct rbd_spec *spec)
4646 {
4647         if (spec)
4648                 kref_put(&spec->kref, rbd_spec_free);
4649 }
4650
4651 static struct rbd_spec *rbd_spec_alloc(void)
4652 {
4653         struct rbd_spec *spec;
4654
4655         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4656         if (!spec)
4657                 return NULL;
4658
4659         spec->pool_id = CEPH_NOPOOL;
4660         spec->snap_id = CEPH_NOSNAP;
4661         kref_init(&spec->kref);
4662
4663         return spec;
4664 }
4665
4666 static void rbd_spec_free(struct kref *kref)
4667 {
4668         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4669
4670         kfree(spec->pool_name);
4671         kfree(spec->image_id);
4672         kfree(spec->image_name);
4673         kfree(spec->snap_name);
4674         kfree(spec);
4675 }
4676
4677 static void rbd_dev_free(struct rbd_device *rbd_dev)
4678 {
4679         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4680         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4681
4682         ceph_oid_destroy(&rbd_dev->header_oid);
4683         ceph_oloc_destroy(&rbd_dev->header_oloc);
4684         kfree(rbd_dev->config_info);
4685
4686         rbd_put_client(rbd_dev->rbd_client);
4687         rbd_spec_put(rbd_dev->spec);
4688         kfree(rbd_dev->opts);
4689         kfree(rbd_dev);
4690 }
4691
4692 static void rbd_dev_release(struct device *dev)
4693 {
4694         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4695         bool need_put = !!rbd_dev->opts;
4696
4697         if (need_put) {
4698                 destroy_workqueue(rbd_dev->task_wq);
4699                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4700         }
4701
4702         rbd_dev_free(rbd_dev);
4703
4704         /*
4705          * This is racy, but way better than putting module outside of
4706          * the release callback.  The race window is pretty small, so
4707          * doing something similar to dm (dm-builtin.c) is overkill.
4708          */
4709         if (need_put)
4710                 module_put(THIS_MODULE);
4711 }
4712
4713 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4714                                            struct rbd_spec *spec)
4715 {
4716         struct rbd_device *rbd_dev;
4717
4718         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4719         if (!rbd_dev)
4720                 return NULL;
4721
4722         spin_lock_init(&rbd_dev->lock);
4723         INIT_LIST_HEAD(&rbd_dev->node);
4724         init_rwsem(&rbd_dev->header_rwsem);
4725
4726         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4727         ceph_oid_init(&rbd_dev->header_oid);
4728         rbd_dev->header_oloc.pool = spec->pool_id;
4729
4730         mutex_init(&rbd_dev->watch_mutex);
4731         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4732         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4733
4734         init_rwsem(&rbd_dev->lock_rwsem);
4735         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4736         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4737         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4738         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4739         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4740         init_waitqueue_head(&rbd_dev->lock_waitq);
4741
4742         rbd_dev->dev.bus = &rbd_bus_type;
4743         rbd_dev->dev.type = &rbd_device_type;
4744         rbd_dev->dev.parent = &rbd_root_dev;
4745         device_initialize(&rbd_dev->dev);
4746
4747         rbd_dev->rbd_client = rbdc;
4748         rbd_dev->spec = spec;
4749
4750         return rbd_dev;
4751 }
4752
4753 /*
4754  * Create a mapping rbd_dev.
4755  */
4756 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4757                                          struct rbd_spec *spec,
4758                                          struct rbd_options *opts)
4759 {
4760         struct rbd_device *rbd_dev;
4761
4762         rbd_dev = __rbd_dev_create(rbdc, spec);
4763         if (!rbd_dev)
4764                 return NULL;
4765
4766         rbd_dev->opts = opts;
4767
4768         /* get an id and fill in device name */
4769         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4770                                          minor_to_rbd_dev_id(1 << MINORBITS),
4771                                          GFP_KERNEL);
4772         if (rbd_dev->dev_id < 0)
4773                 goto fail_rbd_dev;
4774
4775         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4776         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4777                                                    rbd_dev->name);
4778         if (!rbd_dev->task_wq)
4779                 goto fail_dev_id;
4780
4781         /* we have a ref from do_rbd_add() */
4782         __module_get(THIS_MODULE);
4783
4784         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4785         return rbd_dev;
4786
4787 fail_dev_id:
4788         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4789 fail_rbd_dev:
4790         rbd_dev_free(rbd_dev);
4791         return NULL;
4792 }
4793
4794 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4795 {
4796         if (rbd_dev)
4797                 put_device(&rbd_dev->dev);
4798 }
4799
4800 /*
4801  * Get the size and object order for an image snapshot, or if
4802  * snap_id is CEPH_NOSNAP, gets this information for the base
4803  * image.
4804  */
4805 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4806                                 u8 *order, u64 *snap_size)
4807 {
4808         __le64 snapid = cpu_to_le64(snap_id);
4809         int ret;
4810         struct {
4811                 u8 order;
4812                 __le64 size;
4813         } __attribute__ ((packed)) size_buf = { 0 };
4814
4815         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4816                                   &rbd_dev->header_oloc, "get_size",
4817                                   &snapid, sizeof(snapid),
4818                                   &size_buf, sizeof(size_buf));
4819         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4820         if (ret < 0)
4821                 return ret;
4822         if (ret < sizeof (size_buf))
4823                 return -ERANGE;
4824
4825         if (order) {
4826                 *order = size_buf.order;
4827                 dout("  order %u", (unsigned int)*order);
4828         }
4829         *snap_size = le64_to_cpu(size_buf.size);
4830
4831         dout("  snap_id 0x%016llx snap_size = %llu\n",
4832                 (unsigned long long)snap_id,
4833                 (unsigned long long)*snap_size);
4834
4835         return 0;
4836 }
4837
4838 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4839 {
4840         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4841                                         &rbd_dev->header.obj_order,
4842                                         &rbd_dev->header.image_size);
4843 }
4844
4845 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4846 {
4847         void *reply_buf;
4848         int ret;
4849         void *p;
4850
4851         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4852         if (!reply_buf)
4853                 return -ENOMEM;
4854
4855         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4856                                   &rbd_dev->header_oloc, "get_object_prefix",
4857                                   NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4858         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4859         if (ret < 0)
4860                 goto out;
4861
4862         p = reply_buf;
4863         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4864                                                 p + ret, NULL, GFP_NOIO);
4865         ret = 0;
4866
4867         if (IS_ERR(rbd_dev->header.object_prefix)) {
4868                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4869                 rbd_dev->header.object_prefix = NULL;
4870         } else {
4871                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4872         }
4873 out:
4874         kfree(reply_buf);
4875
4876         return ret;
4877 }
4878
4879 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4880                 u64 *snap_features)
4881 {
4882         __le64 snapid = cpu_to_le64(snap_id);
4883         struct {
4884                 __le64 features;
4885                 __le64 incompat;
4886         } __attribute__ ((packed)) features_buf = { 0 };
4887         u64 unsup;
4888         int ret;
4889
4890         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4891                                   &rbd_dev->header_oloc, "get_features",
4892                                   &snapid, sizeof(snapid),
4893                                   &features_buf, sizeof(features_buf));
4894         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4895         if (ret < 0)
4896                 return ret;
4897         if (ret < sizeof (features_buf))
4898                 return -ERANGE;
4899
4900         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4901         if (unsup) {
4902                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4903                          unsup);
4904                 return -ENXIO;
4905         }
4906
4907         *snap_features = le64_to_cpu(features_buf.features);
4908
4909         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4910                 (unsigned long long)snap_id,
4911                 (unsigned long long)*snap_features,
4912                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4913
4914         return 0;
4915 }
4916
4917 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4918 {
4919         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4920                                                 &rbd_dev->header.features);
4921 }
4922
4923 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4924 {
4925         struct rbd_spec *parent_spec;
4926         size_t size;
4927         void *reply_buf = NULL;
4928         __le64 snapid;
4929         void *p;
4930         void *end;
4931         u64 pool_id;
4932         char *image_id;
4933         u64 snap_id;
4934         u64 overlap;
4935         int ret;
4936
4937         parent_spec = rbd_spec_alloc();
4938         if (!parent_spec)
4939                 return -ENOMEM;
4940
4941         size = sizeof (__le64) +                                /* pool_id */
4942                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4943                 sizeof (__le64) +                               /* snap_id */
4944                 sizeof (__le64);                                /* overlap */
4945         reply_buf = kmalloc(size, GFP_KERNEL);
4946         if (!reply_buf) {
4947                 ret = -ENOMEM;
4948                 goto out_err;
4949         }
4950
4951         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4952         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4953                                   &rbd_dev->header_oloc, "get_parent",
4954                                   &snapid, sizeof(snapid), reply_buf, size);
4955         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4956         if (ret < 0)
4957                 goto out_err;
4958
4959         p = reply_buf;
4960         end = reply_buf + ret;
4961         ret = -ERANGE;
4962         ceph_decode_64_safe(&p, end, pool_id, out_err);
4963         if (pool_id == CEPH_NOPOOL) {
4964                 /*
4965                  * Either the parent never existed, or we have
4966                  * record of it but the image got flattened so it no
4967                  * longer has a parent.  When the parent of a
4968                  * layered image disappears we immediately set the
4969                  * overlap to 0.  The effect of this is that all new
4970                  * requests will be treated as if the image had no
4971                  * parent.
4972                  */
4973                 if (rbd_dev->parent_overlap) {
4974                         rbd_dev->parent_overlap = 0;
4975                         rbd_dev_parent_put(rbd_dev);
4976                         pr_info("%s: clone image has been flattened\n",
4977                                 rbd_dev->disk->disk_name);
4978                 }
4979
4980                 goto out;       /* No parent?  No problem. */
4981         }
4982
4983         /* The ceph file layout needs to fit pool id in 32 bits */
4984
4985         ret = -EIO;
4986         if (pool_id > (u64)U32_MAX) {
4987                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4988                         (unsigned long long)pool_id, U32_MAX);
4989                 goto out_err;
4990         }
4991
4992         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4993         if (IS_ERR(image_id)) {
4994                 ret = PTR_ERR(image_id);
4995                 goto out_err;
4996         }
4997         ceph_decode_64_safe(&p, end, snap_id, out_err);
4998         ceph_decode_64_safe(&p, end, overlap, out_err);
4999
5000         /*
5001          * The parent won't change (except when the clone is
5002          * flattened, already handled that).  So we only need to
5003          * record the parent spec we have not already done so.
5004          */
5005         if (!rbd_dev->parent_spec) {
5006                 parent_spec->pool_id = pool_id;
5007                 parent_spec->image_id = image_id;
5008                 parent_spec->snap_id = snap_id;
5009                 rbd_dev->parent_spec = parent_spec;
5010                 parent_spec = NULL;     /* rbd_dev now owns this */
5011         } else {
5012                 kfree(image_id);
5013         }
5014
5015         /*
5016          * We always update the parent overlap.  If it's zero we issue
5017          * a warning, as we will proceed as if there was no parent.
5018          */
5019         if (!overlap) {
5020                 if (parent_spec) {
5021                         /* refresh, careful to warn just once */
5022                         if (rbd_dev->parent_overlap)
5023                                 rbd_warn(rbd_dev,
5024                                     "clone now standalone (overlap became 0)");
5025                 } else {
5026                         /* initial probe */
5027                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5028                 }
5029         }
5030         rbd_dev->parent_overlap = overlap;
5031
5032 out:
5033         ret = 0;
5034 out_err:
5035         kfree(reply_buf);
5036         rbd_spec_put(parent_spec);
5037
5038         return ret;
5039 }
5040
5041 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5042 {
5043         struct {
5044                 __le64 stripe_unit;
5045                 __le64 stripe_count;
5046         } __attribute__ ((packed)) striping_info_buf = { 0 };
5047         size_t size = sizeof (striping_info_buf);
5048         void *p;
5049         u64 obj_size;
5050         u64 stripe_unit;
5051         u64 stripe_count;
5052         int ret;
5053
5054         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5055                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5056                                 NULL, 0, &striping_info_buf, size);
5057         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5058         if (ret < 0)
5059                 return ret;
5060         if (ret < size)
5061                 return -ERANGE;
5062
5063         /*
5064          * We don't actually support the "fancy striping" feature
5065          * (STRIPINGV2) yet, but if the striping sizes are the
5066          * defaults the behavior is the same as before.  So find
5067          * out, and only fail if the image has non-default values.
5068          */
5069         ret = -EINVAL;
5070         obj_size = rbd_obj_bytes(&rbd_dev->header);
5071         p = &striping_info_buf;
5072         stripe_unit = ceph_decode_64(&p);
5073         if (stripe_unit != obj_size) {
5074                 rbd_warn(rbd_dev, "unsupported stripe unit "
5075                                 "(got %llu want %llu)",
5076                                 stripe_unit, obj_size);
5077                 return -EINVAL;
5078         }
5079         stripe_count = ceph_decode_64(&p);
5080         if (stripe_count != 1) {
5081                 rbd_warn(rbd_dev, "unsupported stripe count "
5082                                 "(got %llu want 1)", stripe_count);
5083                 return -EINVAL;
5084         }
5085         rbd_dev->header.stripe_unit = stripe_unit;
5086         rbd_dev->header.stripe_count = stripe_count;
5087
5088         return 0;
5089 }
5090
5091 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5092 {
5093         __le64 data_pool_id;
5094         int ret;
5095
5096         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5097                                   &rbd_dev->header_oloc, "get_data_pool",
5098                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
5099         if (ret < 0)
5100                 return ret;
5101         if (ret < sizeof(data_pool_id))
5102                 return -EBADMSG;
5103
5104         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5105         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5106         return 0;
5107 }
5108
5109 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5110 {
5111         CEPH_DEFINE_OID_ONSTACK(oid);
5112         size_t image_id_size;
5113         char *image_id;
5114         void *p;
5115         void *end;
5116         size_t size;
5117         void *reply_buf = NULL;
5118         size_t len = 0;
5119         char *image_name = NULL;
5120         int ret;
5121
5122         rbd_assert(!rbd_dev->spec->image_name);
5123
5124         len = strlen(rbd_dev->spec->image_id);
5125         image_id_size = sizeof (__le32) + len;
5126         image_id = kmalloc(image_id_size, GFP_KERNEL);
5127         if (!image_id)
5128                 return NULL;
5129
5130         p = image_id;
5131         end = image_id + image_id_size;
5132         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5133
5134         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5135         reply_buf = kmalloc(size, GFP_KERNEL);
5136         if (!reply_buf)
5137                 goto out;
5138
5139         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5140         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5141                                   "dir_get_name", image_id, image_id_size,
5142                                   reply_buf, size);
5143         if (ret < 0)
5144                 goto out;
5145         p = reply_buf;
5146         end = reply_buf + ret;
5147
5148         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5149         if (IS_ERR(image_name))
5150                 image_name = NULL;
5151         else
5152                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5153 out:
5154         kfree(reply_buf);
5155         kfree(image_id);
5156
5157         return image_name;
5158 }
5159
5160 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5161 {
5162         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5163         const char *snap_name;
5164         u32 which = 0;
5165
5166         /* Skip over names until we find the one we are looking for */
5167
5168         snap_name = rbd_dev->header.snap_names;
5169         while (which < snapc->num_snaps) {
5170                 if (!strcmp(name, snap_name))
5171                         return snapc->snaps[which];
5172                 snap_name += strlen(snap_name) + 1;
5173                 which++;
5174         }
5175         return CEPH_NOSNAP;
5176 }
5177
5178 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5179 {
5180         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5181         u32 which;
5182         bool found = false;
5183         u64 snap_id;
5184
5185         for (which = 0; !found && which < snapc->num_snaps; which++) {
5186                 const char *snap_name;
5187
5188                 snap_id = snapc->snaps[which];
5189                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5190                 if (IS_ERR(snap_name)) {
5191                         /* ignore no-longer existing snapshots */
5192                         if (PTR_ERR(snap_name) == -ENOENT)
5193                                 continue;
5194                         else
5195                                 break;
5196                 }
5197                 found = !strcmp(name, snap_name);
5198                 kfree(snap_name);
5199         }
5200         return found ? snap_id : CEPH_NOSNAP;
5201 }
5202
5203 /*
5204  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5205  * no snapshot by that name is found, or if an error occurs.
5206  */
5207 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5208 {
5209         if (rbd_dev->image_format == 1)
5210                 return rbd_v1_snap_id_by_name(rbd_dev, name);
5211
5212         return rbd_v2_snap_id_by_name(rbd_dev, name);
5213 }
5214
5215 /*
5216  * An image being mapped will have everything but the snap id.
5217  */
5218 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5219 {
5220         struct rbd_spec *spec = rbd_dev->spec;
5221
5222         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5223         rbd_assert(spec->image_id && spec->image_name);
5224         rbd_assert(spec->snap_name);
5225
5226         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5227                 u64 snap_id;
5228
5229                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5230                 if (snap_id == CEPH_NOSNAP)
5231                         return -ENOENT;
5232
5233                 spec->snap_id = snap_id;
5234         } else {
5235                 spec->snap_id = CEPH_NOSNAP;
5236         }
5237
5238         return 0;
5239 }
5240
5241 /*
5242  * A parent image will have all ids but none of the names.
5243  *
5244  * All names in an rbd spec are dynamically allocated.  It's OK if we
5245  * can't figure out the name for an image id.
5246  */
5247 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5248 {
5249         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5250         struct rbd_spec *spec = rbd_dev->spec;
5251         const char *pool_name;
5252         const char *image_name;
5253         const char *snap_name;
5254         int ret;
5255
5256         rbd_assert(spec->pool_id != CEPH_NOPOOL);
5257         rbd_assert(spec->image_id);
5258         rbd_assert(spec->snap_id != CEPH_NOSNAP);
5259
5260         /* Get the pool name; we have to make our own copy of this */
5261
5262         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5263         if (!pool_name) {
5264                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5265                 return -EIO;
5266         }
5267         pool_name = kstrdup(pool_name, GFP_KERNEL);
5268         if (!pool_name)
5269                 return -ENOMEM;
5270
5271         /* Fetch the image name; tolerate failure here */
5272
5273         image_name = rbd_dev_image_name(rbd_dev);
5274         if (!image_name)
5275                 rbd_warn(rbd_dev, "unable to get image name");
5276
5277         /* Fetch the snapshot name */
5278
5279         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5280         if (IS_ERR(snap_name)) {
5281                 ret = PTR_ERR(snap_name);
5282                 goto out_err;
5283         }
5284
5285         spec->pool_name = pool_name;
5286         spec->image_name = image_name;
5287         spec->snap_name = snap_name;
5288
5289         return 0;
5290
5291 out_err:
5292         kfree(image_name);
5293         kfree(pool_name);
5294         return ret;
5295 }
5296
5297 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5298 {
5299         size_t size;
5300         int ret;
5301         void *reply_buf;
5302         void *p;
5303         void *end;
5304         u64 seq;
5305         u32 snap_count;
5306         struct ceph_snap_context *snapc;
5307         u32 i;
5308
5309         /*
5310          * We'll need room for the seq value (maximum snapshot id),
5311          * snapshot count, and array of that many snapshot ids.
5312          * For now we have a fixed upper limit on the number we're
5313          * prepared to receive.
5314          */
5315         size = sizeof (__le64) + sizeof (__le32) +
5316                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
5317         reply_buf = kzalloc(size, GFP_KERNEL);
5318         if (!reply_buf)
5319                 return -ENOMEM;
5320
5321         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5322                                   &rbd_dev->header_oloc, "get_snapcontext",
5323                                   NULL, 0, reply_buf, size);
5324         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5325         if (ret < 0)
5326                 goto out;
5327
5328         p = reply_buf;
5329         end = reply_buf + ret;
5330         ret = -ERANGE;
5331         ceph_decode_64_safe(&p, end, seq, out);
5332         ceph_decode_32_safe(&p, end, snap_count, out);
5333
5334         /*
5335          * Make sure the reported number of snapshot ids wouldn't go
5336          * beyond the end of our buffer.  But before checking that,
5337          * make sure the computed size of the snapshot context we
5338          * allocate is representable in a size_t.
5339          */
5340         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5341                                  / sizeof (u64)) {
5342                 ret = -EINVAL;
5343                 goto out;
5344         }
5345         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5346                 goto out;
5347         ret = 0;
5348
5349         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5350         if (!snapc) {
5351                 ret = -ENOMEM;
5352                 goto out;
5353         }
5354         snapc->seq = seq;
5355         for (i = 0; i < snap_count; i++)
5356                 snapc->snaps[i] = ceph_decode_64(&p);
5357
5358         ceph_put_snap_context(rbd_dev->header.snapc);
5359         rbd_dev->header.snapc = snapc;
5360
5361         dout("  snap context seq = %llu, snap_count = %u\n",
5362                 (unsigned long long)seq, (unsigned int)snap_count);
5363 out:
5364         kfree(reply_buf);
5365
5366         return ret;
5367 }
5368
5369 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5370                                         u64 snap_id)
5371 {
5372         size_t size;
5373         void *reply_buf;
5374         __le64 snapid;
5375         int ret;
5376         void *p;
5377         void *end;
5378         char *snap_name;
5379
5380         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5381         reply_buf = kmalloc(size, GFP_KERNEL);
5382         if (!reply_buf)
5383                 return ERR_PTR(-ENOMEM);
5384
5385         snapid = cpu_to_le64(snap_id);
5386         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5387                                   &rbd_dev->header_oloc, "get_snapshot_name",
5388                                   &snapid, sizeof(snapid), reply_buf, size);
5389         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5390         if (ret < 0) {
5391                 snap_name = ERR_PTR(ret);
5392                 goto out;
5393         }
5394
5395         p = reply_buf;
5396         end = reply_buf + ret;
5397         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5398         if (IS_ERR(snap_name))
5399                 goto out;
5400
5401         dout("  snap_id 0x%016llx snap_name = %s\n",
5402                 (unsigned long long)snap_id, snap_name);
5403 out:
5404         kfree(reply_buf);
5405
5406         return snap_name;
5407 }
5408
5409 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5410 {
5411         bool first_time = rbd_dev->header.object_prefix == NULL;
5412         int ret;
5413
5414         ret = rbd_dev_v2_image_size(rbd_dev);
5415         if (ret)
5416                 return ret;
5417
5418         if (first_time) {
5419                 ret = rbd_dev_v2_header_onetime(rbd_dev);
5420                 if (ret)
5421                         return ret;
5422         }
5423
5424         ret = rbd_dev_v2_snap_context(rbd_dev);
5425         if (ret && first_time) {
5426                 kfree(rbd_dev->header.object_prefix);
5427                 rbd_dev->header.object_prefix = NULL;
5428         }
5429
5430         return ret;
5431 }
5432
5433 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5434 {
5435         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5436
5437         if (rbd_dev->image_format == 1)
5438                 return rbd_dev_v1_header_info(rbd_dev);
5439
5440         return rbd_dev_v2_header_info(rbd_dev);
5441 }
5442
5443 /*
5444  * Skips over white space at *buf, and updates *buf to point to the
5445  * first found non-space character (if any). Returns the length of
5446  * the token (string of non-white space characters) found.  Note
5447  * that *buf must be terminated with '\0'.
5448  */
5449 static inline size_t next_token(const char **buf)
5450 {
5451         /*
5452         * These are the characters that produce nonzero for
5453         * isspace() in the "C" and "POSIX" locales.
5454         */
5455         const char *spaces = " \f\n\r\t\v";
5456
5457         *buf += strspn(*buf, spaces);   /* Find start of token */
5458
5459         return strcspn(*buf, spaces);   /* Return token length */
5460 }
5461
5462 /*
5463  * Finds the next token in *buf, dynamically allocates a buffer big
5464  * enough to hold a copy of it, and copies the token into the new
5465  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5466  * that a duplicate buffer is created even for a zero-length token.
5467  *
5468  * Returns a pointer to the newly-allocated duplicate, or a null
5469  * pointer if memory for the duplicate was not available.  If
5470  * the lenp argument is a non-null pointer, the length of the token
5471  * (not including the '\0') is returned in *lenp.
5472  *
5473  * If successful, the *buf pointer will be updated to point beyond
5474  * the end of the found token.
5475  *
5476  * Note: uses GFP_KERNEL for allocation.
5477  */
5478 static inline char *dup_token(const char **buf, size_t *lenp)
5479 {
5480         char *dup;
5481         size_t len;
5482
5483         len = next_token(buf);
5484         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5485         if (!dup)
5486                 return NULL;
5487         *(dup + len) = '\0';
5488         *buf += len;
5489
5490         if (lenp)
5491                 *lenp = len;
5492
5493         return dup;
5494 }
5495
5496 /*
5497  * Parse the options provided for an "rbd add" (i.e., rbd image
5498  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5499  * and the data written is passed here via a NUL-terminated buffer.
5500  * Returns 0 if successful or an error code otherwise.
5501  *
5502  * The information extracted from these options is recorded in
5503  * the other parameters which return dynamically-allocated
5504  * structures:
5505  *  ceph_opts
5506  *      The address of a pointer that will refer to a ceph options
5507  *      structure.  Caller must release the returned pointer using
5508  *      ceph_destroy_options() when it is no longer needed.
5509  *  rbd_opts
5510  *      Address of an rbd options pointer.  Fully initialized by
5511  *      this function; caller must release with kfree().
5512  *  spec
5513  *      Address of an rbd image specification pointer.  Fully
5514  *      initialized by this function based on parsed options.
5515  *      Caller must release with rbd_spec_put().
5516  *
5517  * The options passed take this form:
5518  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5519  * where:
5520  *  <mon_addrs>
5521  *      A comma-separated list of one or more monitor addresses.
5522  *      A monitor address is an ip address, optionally followed
5523  *      by a port number (separated by a colon).
5524  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5525  *  <options>
5526  *      A comma-separated list of ceph and/or rbd options.
5527  *  <pool_name>
5528  *      The name of the rados pool containing the rbd image.
5529  *  <image_name>
5530  *      The name of the image in that pool to map.
5531  *  <snap_id>
5532  *      An optional snapshot id.  If provided, the mapping will
5533  *      present data from the image at the time that snapshot was
5534  *      created.  The image head is used if no snapshot id is
5535  *      provided.  Snapshot mappings are always read-only.
5536  */
5537 static int rbd_add_parse_args(const char *buf,
5538                                 struct ceph_options **ceph_opts,
5539                                 struct rbd_options **opts,
5540                                 struct rbd_spec **rbd_spec)
5541 {
5542         size_t len;
5543         char *options;
5544         const char *mon_addrs;
5545         char *snap_name;
5546         size_t mon_addrs_size;
5547         struct rbd_spec *spec = NULL;
5548         struct rbd_options *rbd_opts = NULL;
5549         struct ceph_options *copts;
5550         int ret;
5551
5552         /* The first four tokens are required */
5553
5554         len = next_token(&buf);
5555         if (!len) {
5556                 rbd_warn(NULL, "no monitor address(es) provided");
5557                 return -EINVAL;
5558         }
5559         mon_addrs = buf;
5560         mon_addrs_size = len + 1;
5561         buf += len;
5562
5563         ret = -EINVAL;
5564         options = dup_token(&buf, NULL);
5565         if (!options)
5566                 return -ENOMEM;
5567         if (!*options) {
5568                 rbd_warn(NULL, "no options provided");
5569                 goto out_err;
5570         }
5571
5572         spec = rbd_spec_alloc();
5573         if (!spec)
5574                 goto out_mem;
5575
5576         spec->pool_name = dup_token(&buf, NULL);
5577         if (!spec->pool_name)
5578                 goto out_mem;
5579         if (!*spec->pool_name) {
5580                 rbd_warn(NULL, "no pool name provided");
5581                 goto out_err;
5582         }
5583
5584         spec->image_name = dup_token(&buf, NULL);
5585         if (!spec->image_name)
5586                 goto out_mem;
5587         if (!*spec->image_name) {
5588                 rbd_warn(NULL, "no image name provided");
5589                 goto out_err;
5590         }
5591
5592         /*
5593          * Snapshot name is optional; default is to use "-"
5594          * (indicating the head/no snapshot).
5595          */
5596         len = next_token(&buf);
5597         if (!len) {
5598                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5599                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5600         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5601                 ret = -ENAMETOOLONG;
5602                 goto out_err;
5603         }
5604         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5605         if (!snap_name)
5606                 goto out_mem;
5607         *(snap_name + len) = '\0';
5608         spec->snap_name = snap_name;
5609
5610         /* Initialize all rbd options to the defaults */
5611
5612         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5613         if (!rbd_opts)
5614                 goto out_mem;
5615
5616         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5617         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5618         rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5619
5620         copts = ceph_parse_options(options, mon_addrs,
5621                                         mon_addrs + mon_addrs_size - 1,
5622                                         parse_rbd_opts_token, rbd_opts);
5623         if (IS_ERR(copts)) {
5624                 ret = PTR_ERR(copts);
5625                 goto out_err;
5626         }
5627         kfree(options);
5628
5629         *ceph_opts = copts;
5630         *opts = rbd_opts;
5631         *rbd_spec = spec;
5632
5633         return 0;
5634 out_mem:
5635         ret = -ENOMEM;
5636 out_err:
5637         kfree(rbd_opts);
5638         rbd_spec_put(spec);
5639         kfree(options);
5640
5641         return ret;
5642 }
5643
5644 /*
5645  * Return pool id (>= 0) or a negative error code.
5646  */
5647 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5648 {
5649         struct ceph_options *opts = rbdc->client->options;
5650         u64 newest_epoch;
5651         int tries = 0;
5652         int ret;
5653
5654 again:
5655         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5656         if (ret == -ENOENT && tries++ < 1) {
5657                 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5658                                             &newest_epoch);
5659                 if (ret < 0)
5660                         return ret;
5661
5662                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5663                         ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5664                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5665                                                      newest_epoch,
5666                                                      opts->mount_timeout);
5667                         goto again;
5668                 } else {
5669                         /* the osdmap we have is new enough */
5670                         return -ENOENT;
5671                 }
5672         }
5673
5674         return ret;
5675 }
5676
5677 /*
5678  * An rbd format 2 image has a unique identifier, distinct from the
5679  * name given to it by the user.  Internally, that identifier is
5680  * what's used to specify the names of objects related to the image.
5681  *
5682  * A special "rbd id" object is used to map an rbd image name to its
5683  * id.  If that object doesn't exist, then there is no v2 rbd image
5684  * with the supplied name.
5685  *
5686  * This function will record the given rbd_dev's image_id field if
5687  * it can be determined, and in that case will return 0.  If any
5688  * errors occur a negative errno will be returned and the rbd_dev's
5689  * image_id field will be unchanged (and should be NULL).
5690  */
5691 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5692 {
5693         int ret;
5694         size_t size;
5695         CEPH_DEFINE_OID_ONSTACK(oid);
5696         void *response;
5697         char *image_id;
5698
5699         /*
5700          * When probing a parent image, the image id is already
5701          * known (and the image name likely is not).  There's no
5702          * need to fetch the image id again in this case.  We
5703          * do still need to set the image format though.
5704          */
5705         if (rbd_dev->spec->image_id) {
5706                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5707
5708                 return 0;
5709         }
5710
5711         /*
5712          * First, see if the format 2 image id file exists, and if
5713          * so, get the image's persistent id from it.
5714          */
5715         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5716                                rbd_dev->spec->image_name);
5717         if (ret)
5718                 return ret;
5719
5720         dout("rbd id object name is %s\n", oid.name);
5721
5722         /* Response will be an encoded string, which includes a length */
5723
5724         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5725         response = kzalloc(size, GFP_NOIO);
5726         if (!response) {
5727                 ret = -ENOMEM;
5728                 goto out;
5729         }
5730
5731         /* If it doesn't exist we'll assume it's a format 1 image */
5732
5733         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5734                                   "get_id", NULL, 0,
5735                                   response, RBD_IMAGE_ID_LEN_MAX);
5736         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5737         if (ret == -ENOENT) {
5738                 image_id = kstrdup("", GFP_KERNEL);
5739                 ret = image_id ? 0 : -ENOMEM;
5740                 if (!ret)
5741                         rbd_dev->image_format = 1;
5742         } else if (ret >= 0) {
5743                 void *p = response;
5744
5745                 image_id = ceph_extract_encoded_string(&p, p + ret,
5746                                                 NULL, GFP_NOIO);
5747                 ret = PTR_ERR_OR_ZERO(image_id);
5748                 if (!ret)
5749                         rbd_dev->image_format = 2;
5750         }
5751
5752         if (!ret) {
5753                 rbd_dev->spec->image_id = image_id;
5754                 dout("image_id is %s\n", image_id);
5755         }
5756 out:
5757         kfree(response);
5758         ceph_oid_destroy(&oid);
5759         return ret;
5760 }
5761
5762 /*
5763  * Undo whatever state changes are made by v1 or v2 header info
5764  * call.
5765  */
5766 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5767 {
5768         struct rbd_image_header *header;
5769
5770         rbd_dev_parent_put(rbd_dev);
5771
5772         /* Free dynamic fields from the header, then zero it out */
5773
5774         header = &rbd_dev->header;
5775         ceph_put_snap_context(header->snapc);
5776         kfree(header->snap_sizes);
5777         kfree(header->snap_names);
5778         kfree(header->object_prefix);
5779         memset(header, 0, sizeof (*header));
5780 }
5781
5782 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5783 {
5784         int ret;
5785
5786         ret = rbd_dev_v2_object_prefix(rbd_dev);
5787         if (ret)
5788                 goto out_err;
5789
5790         /*
5791          * Get the and check features for the image.  Currently the
5792          * features are assumed to never change.
5793          */
5794         ret = rbd_dev_v2_features(rbd_dev);
5795         if (ret)
5796                 goto out_err;
5797
5798         /* If the image supports fancy striping, get its parameters */
5799
5800         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5801                 ret = rbd_dev_v2_striping_info(rbd_dev);
5802                 if (ret < 0)
5803                         goto out_err;
5804         }
5805
5806         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5807                 ret = rbd_dev_v2_data_pool(rbd_dev);
5808                 if (ret)
5809                         goto out_err;
5810         }
5811
5812         rbd_init_layout(rbd_dev);
5813         return 0;
5814
5815 out_err:
5816         rbd_dev->header.features = 0;
5817         kfree(rbd_dev->header.object_prefix);
5818         rbd_dev->header.object_prefix = NULL;
5819         return ret;
5820 }
5821
5822 /*
5823  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5824  * rbd_dev_image_probe() recursion depth, which means it's also the
5825  * length of the already discovered part of the parent chain.
5826  */
5827 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5828 {
5829         struct rbd_device *parent = NULL;
5830         int ret;
5831
5832         if (!rbd_dev->parent_spec)
5833                 return 0;
5834
5835         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5836                 pr_info("parent chain is too long (%d)\n", depth);
5837                 ret = -EINVAL;
5838                 goto out_err;
5839         }
5840
5841         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5842         if (!parent) {
5843                 ret = -ENOMEM;
5844                 goto out_err;
5845         }
5846
5847         /*
5848          * Images related by parent/child relationships always share
5849          * rbd_client and spec/parent_spec, so bump their refcounts.
5850          */
5851         __rbd_get_client(rbd_dev->rbd_client);
5852         rbd_spec_get(rbd_dev->parent_spec);
5853
5854         ret = rbd_dev_image_probe(parent, depth);
5855         if (ret < 0)
5856                 goto out_err;
5857
5858         rbd_dev->parent = parent;
5859         atomic_set(&rbd_dev->parent_ref, 1);
5860         return 0;
5861
5862 out_err:
5863         rbd_dev_unparent(rbd_dev);
5864         rbd_dev_destroy(parent);
5865         return ret;
5866 }
5867
5868 /*
5869  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5870  * upon return.
5871  */
5872 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5873 {
5874         int ret;
5875
5876         /* Record our major and minor device numbers. */
5877
5878         if (!single_major) {
5879                 ret = register_blkdev(0, rbd_dev->name);
5880                 if (ret < 0)
5881                         goto err_out_unlock;
5882
5883                 rbd_dev->major = ret;
5884                 rbd_dev->minor = 0;
5885         } else {
5886                 rbd_dev->major = rbd_major;
5887                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5888         }
5889
5890         /* Set up the blkdev mapping. */
5891
5892         ret = rbd_init_disk(rbd_dev);
5893         if (ret)
5894                 goto err_out_blkdev;
5895
5896         ret = rbd_dev_mapping_set(rbd_dev);
5897         if (ret)
5898                 goto err_out_disk;
5899
5900         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5901         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5902
5903         dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5904         ret = device_add(&rbd_dev->dev);
5905         if (ret)
5906                 goto err_out_mapping;
5907
5908         /* Everything's ready.  Announce the disk to the world. */
5909
5910         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5911         up_write(&rbd_dev->header_rwsem);
5912
5913         spin_lock(&rbd_dev_list_lock);
5914         list_add_tail(&rbd_dev->node, &rbd_dev_list);
5915         spin_unlock(&rbd_dev_list_lock);
5916
5917         add_disk(rbd_dev->disk);
5918         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
5919                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
5920                 rbd_dev->header.features);
5921
5922         return ret;
5923
5924 err_out_mapping:
5925         rbd_dev_mapping_clear(rbd_dev);
5926 err_out_disk:
5927         rbd_free_disk(rbd_dev);
5928 err_out_blkdev:
5929         if (!single_major)
5930                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5931 err_out_unlock:
5932         up_write(&rbd_dev->header_rwsem);
5933         return ret;
5934 }
5935
5936 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5937 {
5938         struct rbd_spec *spec = rbd_dev->spec;
5939         int ret;
5940
5941         /* Record the header object name for this rbd image. */
5942
5943         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5944         if (rbd_dev->image_format == 1)
5945                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5946                                        spec->image_name, RBD_SUFFIX);
5947         else
5948                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5949                                        RBD_HEADER_PREFIX, spec->image_id);
5950
5951         return ret;
5952 }
5953
5954 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5955 {
5956         rbd_dev_unprobe(rbd_dev);
5957         rbd_dev->image_format = 0;
5958         kfree(rbd_dev->spec->image_id);
5959         rbd_dev->spec->image_id = NULL;
5960
5961         rbd_dev_destroy(rbd_dev);
5962 }
5963
5964 /*
5965  * Probe for the existence of the header object for the given rbd
5966  * device.  If this image is the one being mapped (i.e., not a
5967  * parent), initiate a watch on its header object before using that
5968  * object to get detailed information about the rbd image.
5969  */
5970 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5971 {
5972         int ret;
5973
5974         /*
5975          * Get the id from the image id object.  Unless there's an
5976          * error, rbd_dev->spec->image_id will be filled in with
5977          * a dynamically-allocated string, and rbd_dev->image_format
5978          * will be set to either 1 or 2.
5979          */
5980         ret = rbd_dev_image_id(rbd_dev);
5981         if (ret)
5982                 return ret;
5983
5984         ret = rbd_dev_header_name(rbd_dev);
5985         if (ret)
5986                 goto err_out_format;
5987
5988         if (!depth) {
5989                 ret = rbd_register_watch(rbd_dev);
5990                 if (ret) {
5991                         if (ret == -ENOENT)
5992                                 pr_info("image %s/%s does not exist\n",
5993                                         rbd_dev->spec->pool_name,
5994                                         rbd_dev->spec->image_name);
5995                         goto err_out_format;
5996                 }
5997         }
5998
5999         ret = rbd_dev_header_info(rbd_dev);
6000         if (ret)
6001                 goto err_out_watch;
6002
6003         /*
6004          * If this image is the one being mapped, we have pool name and
6005          * id, image name and id, and snap name - need to fill snap id.
6006          * Otherwise this is a parent image, identified by pool, image
6007          * and snap ids - need to fill in names for those ids.
6008          */
6009         if (!depth)
6010                 ret = rbd_spec_fill_snap_id(rbd_dev);
6011         else
6012                 ret = rbd_spec_fill_names(rbd_dev);
6013         if (ret) {
6014                 if (ret == -ENOENT)
6015                         pr_info("snap %s/%s@%s does not exist\n",
6016                                 rbd_dev->spec->pool_name,
6017                                 rbd_dev->spec->image_name,
6018                                 rbd_dev->spec->snap_name);
6019                 goto err_out_probe;
6020         }
6021
6022         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6023                 ret = rbd_dev_v2_parent_info(rbd_dev);
6024                 if (ret)
6025                         goto err_out_probe;
6026
6027                 /*
6028                  * Need to warn users if this image is the one being
6029                  * mapped and has a parent.
6030                  */
6031                 if (!depth && rbd_dev->parent_spec)
6032                         rbd_warn(rbd_dev,
6033                                  "WARNING: kernel layering is EXPERIMENTAL!");
6034         }
6035
6036         ret = rbd_dev_probe_parent(rbd_dev, depth);
6037         if (ret)
6038                 goto err_out_probe;
6039
6040         dout("discovered format %u image, header name is %s\n",
6041                 rbd_dev->image_format, rbd_dev->header_oid.name);
6042         return 0;
6043
6044 err_out_probe:
6045         rbd_dev_unprobe(rbd_dev);
6046 err_out_watch:
6047         if (!depth)
6048                 rbd_unregister_watch(rbd_dev);
6049 err_out_format:
6050         rbd_dev->image_format = 0;
6051         kfree(rbd_dev->spec->image_id);
6052         rbd_dev->spec->image_id = NULL;
6053         return ret;
6054 }
6055
6056 static ssize_t do_rbd_add(struct bus_type *bus,
6057                           const char *buf,
6058                           size_t count)
6059 {
6060         struct rbd_device *rbd_dev = NULL;
6061         struct ceph_options *ceph_opts = NULL;
6062         struct rbd_options *rbd_opts = NULL;
6063         struct rbd_spec *spec = NULL;
6064         struct rbd_client *rbdc;
6065         bool read_only;
6066         int rc;
6067
6068         if (!try_module_get(THIS_MODULE))
6069                 return -ENODEV;
6070
6071         /* parse add command */
6072         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6073         if (rc < 0)
6074                 goto out;
6075
6076         rbdc = rbd_get_client(ceph_opts);
6077         if (IS_ERR(rbdc)) {
6078                 rc = PTR_ERR(rbdc);
6079                 goto err_out_args;
6080         }
6081
6082         /* pick the pool */
6083         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6084         if (rc < 0) {
6085                 if (rc == -ENOENT)
6086                         pr_info("pool %s does not exist\n", spec->pool_name);
6087                 goto err_out_client;
6088         }
6089         spec->pool_id = (u64)rc;
6090
6091         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6092         if (!rbd_dev) {
6093                 rc = -ENOMEM;
6094                 goto err_out_client;
6095         }
6096         rbdc = NULL;            /* rbd_dev now owns this */
6097         spec = NULL;            /* rbd_dev now owns this */
6098         rbd_opts = NULL;        /* rbd_dev now owns this */
6099
6100         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6101         if (!rbd_dev->config_info) {
6102                 rc = -ENOMEM;
6103                 goto err_out_rbd_dev;
6104         }
6105
6106         down_write(&rbd_dev->header_rwsem);
6107         rc = rbd_dev_image_probe(rbd_dev, 0);
6108         if (rc < 0) {
6109                 up_write(&rbd_dev->header_rwsem);
6110                 goto err_out_rbd_dev;
6111         }
6112
6113         /* If we are mapping a snapshot it must be marked read-only */
6114
6115         read_only = rbd_dev->opts->read_only;
6116         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6117                 read_only = true;
6118         rbd_dev->mapping.read_only = read_only;
6119
6120         rc = rbd_dev_device_setup(rbd_dev);
6121         if (rc) {
6122                 /*
6123                  * rbd_unregister_watch() can't be moved into
6124                  * rbd_dev_image_release() without refactoring, see
6125                  * commit 1f3ef78861ac.
6126                  */
6127                 rbd_unregister_watch(rbd_dev);
6128                 rbd_dev_image_release(rbd_dev);
6129                 goto out;
6130         }
6131
6132         rc = count;
6133 out:
6134         module_put(THIS_MODULE);
6135         return rc;
6136
6137 err_out_rbd_dev:
6138         rbd_dev_destroy(rbd_dev);
6139 err_out_client:
6140         rbd_put_client(rbdc);
6141 err_out_args:
6142         rbd_spec_put(spec);
6143         kfree(rbd_opts);
6144         goto out;
6145 }
6146
6147 static ssize_t rbd_add(struct bus_type *bus,
6148                        const char *buf,
6149                        size_t count)
6150 {
6151         if (single_major)
6152                 return -EINVAL;
6153
6154         return do_rbd_add(bus, buf, count);
6155 }
6156
6157 static ssize_t rbd_add_single_major(struct bus_type *bus,
6158                                     const char *buf,
6159                                     size_t count)
6160 {
6161         return do_rbd_add(bus, buf, count);
6162 }
6163
6164 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6165 {
6166         rbd_free_disk(rbd_dev);
6167
6168         spin_lock(&rbd_dev_list_lock);
6169         list_del_init(&rbd_dev->node);
6170         spin_unlock(&rbd_dev_list_lock);
6171
6172         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6173         device_del(&rbd_dev->dev);
6174         rbd_dev_mapping_clear(rbd_dev);
6175         if (!single_major)
6176                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6177 }
6178
6179 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6180 {
6181         while (rbd_dev->parent) {
6182                 struct rbd_device *first = rbd_dev;
6183                 struct rbd_device *second = first->parent;
6184                 struct rbd_device *third;
6185
6186                 /*
6187                  * Follow to the parent with no grandparent and
6188                  * remove it.
6189                  */
6190                 while (second && (third = second->parent)) {
6191                         first = second;
6192                         second = third;
6193                 }
6194                 rbd_assert(second);
6195                 rbd_dev_image_release(second);
6196                 first->parent = NULL;
6197                 first->parent_overlap = 0;
6198
6199                 rbd_assert(first->parent_spec);
6200                 rbd_spec_put(first->parent_spec);
6201                 first->parent_spec = NULL;
6202         }
6203 }
6204
6205 static ssize_t do_rbd_remove(struct bus_type *bus,
6206                              const char *buf,
6207                              size_t count)
6208 {
6209         struct rbd_device *rbd_dev = NULL;
6210         struct list_head *tmp;
6211         int dev_id;
6212         char opt_buf[6];
6213         bool already = false;
6214         bool force = false;
6215         int ret;
6216
6217         dev_id = -1;
6218         opt_buf[0] = '\0';
6219         sscanf(buf, "%d %5s", &dev_id, opt_buf);
6220         if (dev_id < 0) {
6221                 pr_err("dev_id out of range\n");
6222                 return -EINVAL;
6223         }
6224         if (opt_buf[0] != '\0') {
6225                 if (!strcmp(opt_buf, "force")) {
6226                         force = true;
6227                 } else {
6228                         pr_err("bad remove option at '%s'\n", opt_buf);
6229                         return -EINVAL;
6230                 }
6231         }
6232
6233         ret = -ENOENT;
6234         spin_lock(&rbd_dev_list_lock);
6235         list_for_each(tmp, &rbd_dev_list) {
6236                 rbd_dev = list_entry(tmp, struct rbd_device, node);
6237                 if (rbd_dev->dev_id == dev_id) {
6238                         ret = 0;
6239                         break;
6240                 }
6241         }
6242         if (!ret) {
6243                 spin_lock_irq(&rbd_dev->lock);
6244                 if (rbd_dev->open_count && !force)
6245                         ret = -EBUSY;
6246                 else
6247                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6248                                                         &rbd_dev->flags);
6249                 spin_unlock_irq(&rbd_dev->lock);
6250         }
6251         spin_unlock(&rbd_dev_list_lock);
6252         if (ret < 0 || already)
6253                 return ret;
6254
6255         if (force) {
6256                 /*
6257                  * Prevent new IO from being queued and wait for existing
6258                  * IO to complete/fail.
6259                  */
6260                 blk_mq_freeze_queue(rbd_dev->disk->queue);
6261                 blk_set_queue_dying(rbd_dev->disk->queue);
6262         }
6263
6264         down_write(&rbd_dev->lock_rwsem);
6265         if (__rbd_is_lock_owner(rbd_dev))
6266                 rbd_unlock(rbd_dev);
6267         up_write(&rbd_dev->lock_rwsem);
6268         rbd_unregister_watch(rbd_dev);
6269
6270         /*
6271          * Don't free anything from rbd_dev->disk until after all
6272          * notifies are completely processed. Otherwise
6273          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
6274          * in a potential use after free of rbd_dev->disk or rbd_dev.
6275          */
6276         rbd_dev_device_release(rbd_dev);
6277         rbd_dev_image_release(rbd_dev);
6278
6279         return count;
6280 }
6281
6282 static ssize_t rbd_remove(struct bus_type *bus,
6283                           const char *buf,
6284                           size_t count)
6285 {
6286         if (single_major)
6287                 return -EINVAL;
6288
6289         return do_rbd_remove(bus, buf, count);
6290 }
6291
6292 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6293                                        const char *buf,
6294                                        size_t count)
6295 {
6296         return do_rbd_remove(bus, buf, count);
6297 }
6298
6299 /*
6300  * create control files in sysfs
6301  * /sys/bus/rbd/...
6302  */
6303 static int rbd_sysfs_init(void)
6304 {
6305         int ret;
6306
6307         ret = device_register(&rbd_root_dev);
6308         if (ret < 0)
6309                 return ret;
6310
6311         ret = bus_register(&rbd_bus_type);
6312         if (ret < 0)
6313                 device_unregister(&rbd_root_dev);
6314
6315         return ret;
6316 }
6317
6318 static void rbd_sysfs_cleanup(void)
6319 {
6320         bus_unregister(&rbd_bus_type);
6321         device_unregister(&rbd_root_dev);
6322 }
6323
6324 static int rbd_slab_init(void)
6325 {
6326         rbd_assert(!rbd_img_request_cache);
6327         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6328         if (!rbd_img_request_cache)
6329                 return -ENOMEM;
6330
6331         rbd_assert(!rbd_obj_request_cache);
6332         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6333         if (!rbd_obj_request_cache)
6334                 goto out_err;
6335
6336         return 0;
6337
6338 out_err:
6339         kmem_cache_destroy(rbd_img_request_cache);
6340         rbd_img_request_cache = NULL;
6341         return -ENOMEM;
6342 }
6343
6344 static void rbd_slab_exit(void)
6345 {
6346         rbd_assert(rbd_obj_request_cache);
6347         kmem_cache_destroy(rbd_obj_request_cache);
6348         rbd_obj_request_cache = NULL;
6349
6350         rbd_assert(rbd_img_request_cache);
6351         kmem_cache_destroy(rbd_img_request_cache);
6352         rbd_img_request_cache = NULL;
6353 }
6354
6355 static int __init rbd_init(void)
6356 {
6357         int rc;
6358
6359         if (!libceph_compatible(NULL)) {
6360                 rbd_warn(NULL, "libceph incompatibility (quitting)");
6361                 return -EINVAL;
6362         }
6363
6364         rc = rbd_slab_init();
6365         if (rc)
6366                 return rc;
6367
6368         /*
6369          * The number of active work items is limited by the number of
6370          * rbd devices * queue depth, so leave @max_active at default.
6371          */
6372         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6373         if (!rbd_wq) {
6374                 rc = -ENOMEM;
6375                 goto err_out_slab;
6376         }
6377
6378         if (single_major) {
6379                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6380                 if (rbd_major < 0) {
6381                         rc = rbd_major;
6382                         goto err_out_wq;
6383                 }
6384         }
6385
6386         rc = rbd_sysfs_init();
6387         if (rc)
6388                 goto err_out_blkdev;
6389
6390         if (single_major)
6391                 pr_info("loaded (major %d)\n", rbd_major);
6392         else
6393                 pr_info("loaded\n");
6394
6395         return 0;
6396
6397 err_out_blkdev:
6398         if (single_major)
6399                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6400 err_out_wq:
6401         destroy_workqueue(rbd_wq);
6402 err_out_slab:
6403         rbd_slab_exit();
6404         return rc;
6405 }
6406
6407 static void __exit rbd_exit(void)
6408 {
6409         ida_destroy(&rbd_dev_id_ida);
6410         rbd_sysfs_cleanup();
6411         if (single_major)
6412                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6413         destroy_workqueue(rbd_wq);
6414         rbd_slab_exit();
6415 }
6416
6417 module_init(rbd_init);
6418 module_exit(rbd_exit);
6419
6420 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6421 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6422 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6423 /* following authorship retained from original osdblk.c */
6424 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6425
6426 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6427 MODULE_LICENSE("GPL");