]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/rbd.c
rbd: fix osd_request memory leak in __rbd_dev_header_watch_sync()
[karo-tx-linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544         set_device_ro(bdev, rbd_dev->mapping.read_only);
545
546         return 0;
547 }
548
549 static void rbd_release(struct gendisk *disk, fmode_t mode)
550 {
551         struct rbd_device *rbd_dev = disk->private_data;
552         unsigned long open_count_before;
553
554         spin_lock_irq(&rbd_dev->lock);
555         open_count_before = rbd_dev->open_count--;
556         spin_unlock_irq(&rbd_dev->lock);
557         rbd_assert(open_count_before > 0);
558
559         put_device(&rbd_dev->dev);
560 }
561
562 static const struct block_device_operations rbd_bd_ops = {
563         .owner                  = THIS_MODULE,
564         .open                   = rbd_open,
565         .release                = rbd_release,
566 };
567
568 /*
569  * Initialize an rbd client instance.  Success or not, this function
570  * consumes ceph_opts.  Caller holds client_mutex.
571  */
572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
573 {
574         struct rbd_client *rbdc;
575         int ret = -ENOMEM;
576
577         dout("%s:\n", __func__);
578         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
579         if (!rbdc)
580                 goto out_opt;
581
582         kref_init(&rbdc->kref);
583         INIT_LIST_HEAD(&rbdc->node);
584
585         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
586         if (IS_ERR(rbdc->client))
587                 goto out_rbdc;
588         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
589
590         ret = ceph_open_session(rbdc->client);
591         if (ret < 0)
592                 goto out_client;
593
594         spin_lock(&rbd_client_list_lock);
595         list_add_tail(&rbdc->node, &rbd_client_list);
596         spin_unlock(&rbd_client_list_lock);
597
598         dout("%s: rbdc %p\n", __func__, rbdc);
599
600         return rbdc;
601 out_client:
602         ceph_destroy_client(rbdc->client);
603 out_rbdc:
604         kfree(rbdc);
605 out_opt:
606         if (ceph_opts)
607                 ceph_destroy_options(ceph_opts);
608         dout("%s: error %d\n", __func__, ret);
609
610         return ERR_PTR(ret);
611 }
612
613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
614 {
615         kref_get(&rbdc->kref);
616
617         return rbdc;
618 }
619
620 /*
621  * Find a ceph client with specific addr and configuration.  If
622  * found, bump its reference count.
623  */
624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
625 {
626         struct rbd_client *client_node;
627         bool found = false;
628
629         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
630                 return NULL;
631
632         spin_lock(&rbd_client_list_lock);
633         list_for_each_entry(client_node, &rbd_client_list, node) {
634                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
635                         __rbd_get_client(client_node);
636
637                         found = true;
638                         break;
639                 }
640         }
641         spin_unlock(&rbd_client_list_lock);
642
643         return found ? client_node : NULL;
644 }
645
646 /*
647  * mount options
648  */
649 enum {
650         Opt_last_int,
651         /* int args above */
652         Opt_last_string,
653         /* string args above */
654         Opt_read_only,
655         Opt_read_write,
656         /* Boolean args above */
657         Opt_last_bool,
658 };
659
660 static match_table_t rbd_opts_tokens = {
661         /* int args above */
662         /* string args above */
663         {Opt_read_only, "read_only"},
664         {Opt_read_only, "ro"},          /* Alternate spelling */
665         {Opt_read_write, "read_write"},
666         {Opt_read_write, "rw"},         /* Alternate spelling */
667         /* Boolean args above */
668         {-1, NULL}
669 };
670
671 struct rbd_options {
672         bool    read_only;
673 };
674
675 #define RBD_READ_ONLY_DEFAULT   false
676
677 static int parse_rbd_opts_token(char *c, void *private)
678 {
679         struct rbd_options *rbd_opts = private;
680         substring_t argstr[MAX_OPT_ARGS];
681         int token, intval, ret;
682
683         token = match_token(c, rbd_opts_tokens, argstr);
684         if (token < 0)
685                 return -EINVAL;
686
687         if (token < Opt_last_int) {
688                 ret = match_int(&argstr[0], &intval);
689                 if (ret < 0) {
690                         pr_err("bad mount option arg (not int) "
691                                "at '%s'\n", c);
692                         return ret;
693                 }
694                 dout("got int token %d val %d\n", token, intval);
695         } else if (token > Opt_last_int && token < Opt_last_string) {
696                 dout("got string token %d val %s\n", token,
697                      argstr[0].from);
698         } else if (token > Opt_last_string && token < Opt_last_bool) {
699                 dout("got Boolean token %d\n", token);
700         } else {
701                 dout("got token %d\n", token);
702         }
703
704         switch (token) {
705         case Opt_read_only:
706                 rbd_opts->read_only = true;
707                 break;
708         case Opt_read_write:
709                 rbd_opts->read_only = false;
710                 break;
711         default:
712                 rbd_assert(false);
713                 break;
714         }
715         return 0;
716 }
717
718 /*
719  * Get a ceph client with specific addr and configuration, if one does
720  * not exist create it.  Either way, ceph_opts is consumed by this
721  * function.
722  */
723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
724 {
725         struct rbd_client *rbdc;
726
727         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
728         rbdc = rbd_client_find(ceph_opts);
729         if (rbdc)       /* using an existing client */
730                 ceph_destroy_options(ceph_opts);
731         else
732                 rbdc = rbd_client_create(ceph_opts);
733         mutex_unlock(&client_mutex);
734
735         return rbdc;
736 }
737
738 /*
739  * Destroy ceph client
740  *
741  * Caller must hold rbd_client_list_lock.
742  */
743 static void rbd_client_release(struct kref *kref)
744 {
745         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
746
747         dout("%s: rbdc %p\n", __func__, rbdc);
748         spin_lock(&rbd_client_list_lock);
749         list_del(&rbdc->node);
750         spin_unlock(&rbd_client_list_lock);
751
752         ceph_destroy_client(rbdc->client);
753         kfree(rbdc);
754 }
755
756 /*
757  * Drop reference to ceph client node. If it's not referenced anymore, release
758  * it.
759  */
760 static void rbd_put_client(struct rbd_client *rbdc)
761 {
762         if (rbdc)
763                 kref_put(&rbdc->kref, rbd_client_release);
764 }
765
766 static bool rbd_image_format_valid(u32 image_format)
767 {
768         return image_format == 1 || image_format == 2;
769 }
770
771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
772 {
773         size_t size;
774         u32 snap_count;
775
776         /* The header has to start with the magic rbd header text */
777         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
778                 return false;
779
780         /* The bio layer requires at least sector-sized I/O */
781
782         if (ondisk->options.order < SECTOR_SHIFT)
783                 return false;
784
785         /* If we use u64 in a few spots we may be able to loosen this */
786
787         if (ondisk->options.order > 8 * sizeof (int) - 1)
788                 return false;
789
790         /*
791          * The size of a snapshot header has to fit in a size_t, and
792          * that limits the number of snapshots.
793          */
794         snap_count = le32_to_cpu(ondisk->snap_count);
795         size = SIZE_MAX - sizeof (struct ceph_snap_context);
796         if (snap_count > size / sizeof (__le64))
797                 return false;
798
799         /*
800          * Not only that, but the size of the entire the snapshot
801          * header must also be representable in a size_t.
802          */
803         size -= snap_count * sizeof (__le64);
804         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
805                 return false;
806
807         return true;
808 }
809
810 /*
811  * Fill an rbd image header with information from the given format 1
812  * on-disk header.
813  */
814 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
815                                  struct rbd_image_header_ondisk *ondisk)
816 {
817         struct rbd_image_header *header = &rbd_dev->header;
818         bool first_time = header->object_prefix == NULL;
819         struct ceph_snap_context *snapc;
820         char *object_prefix = NULL;
821         char *snap_names = NULL;
822         u64 *snap_sizes = NULL;
823         u32 snap_count;
824         size_t size;
825         int ret = -ENOMEM;
826         u32 i;
827
828         /* Allocate this now to avoid having to handle failure below */
829
830         if (first_time) {
831                 size_t len;
832
833                 len = strnlen(ondisk->object_prefix,
834                                 sizeof (ondisk->object_prefix));
835                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
836                 if (!object_prefix)
837                         return -ENOMEM;
838                 memcpy(object_prefix, ondisk->object_prefix, len);
839                 object_prefix[len] = '\0';
840         }
841
842         /* Allocate the snapshot context and fill it in */
843
844         snap_count = le32_to_cpu(ondisk->snap_count);
845         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
846         if (!snapc)
847                 goto out_err;
848         snapc->seq = le64_to_cpu(ondisk->snap_seq);
849         if (snap_count) {
850                 struct rbd_image_snap_ondisk *snaps;
851                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
852
853                 /* We'll keep a copy of the snapshot names... */
854
855                 if (snap_names_len > (u64)SIZE_MAX)
856                         goto out_2big;
857                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
858                 if (!snap_names)
859                         goto out_err;
860
861                 /* ...as well as the array of their sizes. */
862
863                 size = snap_count * sizeof (*header->snap_sizes);
864                 snap_sizes = kmalloc(size, GFP_KERNEL);
865                 if (!snap_sizes)
866                         goto out_err;
867
868                 /*
869                  * Copy the names, and fill in each snapshot's id
870                  * and size.
871                  *
872                  * Note that rbd_dev_v1_header_info() guarantees the
873                  * ondisk buffer we're working with has
874                  * snap_names_len bytes beyond the end of the
875                  * snapshot id array, this memcpy() is safe.
876                  */
877                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
878                 snaps = ondisk->snaps;
879                 for (i = 0; i < snap_count; i++) {
880                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
881                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
882                 }
883         }
884
885         /* We won't fail any more, fill in the header */
886
887         if (first_time) {
888                 header->object_prefix = object_prefix;
889                 header->obj_order = ondisk->options.order;
890                 header->crypt_type = ondisk->options.crypt_type;
891                 header->comp_type = ondisk->options.comp_type;
892                 /* The rest aren't used for format 1 images */
893                 header->stripe_unit = 0;
894                 header->stripe_count = 0;
895                 header->features = 0;
896         } else {
897                 ceph_put_snap_context(header->snapc);
898                 kfree(header->snap_names);
899                 kfree(header->snap_sizes);
900         }
901
902         /* The remaining fields always get updated (when we refresh) */
903
904         header->image_size = le64_to_cpu(ondisk->image_size);
905         header->snapc = snapc;
906         header->snap_names = snap_names;
907         header->snap_sizes = snap_sizes;
908
909         /* Make sure mapping size is consistent with header info */
910
911         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
912                 if (rbd_dev->mapping.size != header->image_size)
913                         rbd_dev->mapping.size = header->image_size;
914
915         return 0;
916 out_2big:
917         ret = -EIO;
918 out_err:
919         kfree(snap_sizes);
920         kfree(snap_names);
921         ceph_put_snap_context(snapc);
922         kfree(object_prefix);
923
924         return ret;
925 }
926
927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
928 {
929         const char *snap_name;
930
931         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
932
933         /* Skip over names until we find the one we are looking for */
934
935         snap_name = rbd_dev->header.snap_names;
936         while (which--)
937                 snap_name += strlen(snap_name) + 1;
938
939         return kstrdup(snap_name, GFP_KERNEL);
940 }
941
942 /*
943  * Snapshot id comparison function for use with qsort()/bsearch().
944  * Note that result is for snapshots in *descending* order.
945  */
946 static int snapid_compare_reverse(const void *s1, const void *s2)
947 {
948         u64 snap_id1 = *(u64 *)s1;
949         u64 snap_id2 = *(u64 *)s2;
950
951         if (snap_id1 < snap_id2)
952                 return 1;
953         return snap_id1 == snap_id2 ? 0 : -1;
954 }
955
956 /*
957  * Search a snapshot context to see if the given snapshot id is
958  * present.
959  *
960  * Returns the position of the snapshot id in the array if it's found,
961  * or BAD_SNAP_INDEX otherwise.
962  *
963  * Note: The snapshot array is in kept sorted (by the osd) in
964  * reverse order, highest snapshot id first.
965  */
966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
967 {
968         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
969         u64 *found;
970
971         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
972                                 sizeof (snap_id), snapid_compare_reverse);
973
974         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
975 }
976
977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
978                                         u64 snap_id)
979 {
980         u32 which;
981         const char *snap_name;
982
983         which = rbd_dev_snap_index(rbd_dev, snap_id);
984         if (which == BAD_SNAP_INDEX)
985                 return ERR_PTR(-ENOENT);
986
987         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
988         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
989 }
990
991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
992 {
993         if (snap_id == CEPH_NOSNAP)
994                 return RBD_SNAP_HEAD_NAME;
995
996         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
997         if (rbd_dev->image_format == 1)
998                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
999
1000         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1001 }
1002
1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1004                                 u64 *snap_size)
1005 {
1006         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007         if (snap_id == CEPH_NOSNAP) {
1008                 *snap_size = rbd_dev->header.image_size;
1009         } else if (rbd_dev->image_format == 1) {
1010                 u32 which;
1011
1012                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1013                 if (which == BAD_SNAP_INDEX)
1014                         return -ENOENT;
1015
1016                 *snap_size = rbd_dev->header.snap_sizes[which];
1017         } else {
1018                 u64 size = 0;
1019                 int ret;
1020
1021                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1022                 if (ret)
1023                         return ret;
1024
1025                 *snap_size = size;
1026         }
1027         return 0;
1028 }
1029
1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1031                         u64 *snap_features)
1032 {
1033         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034         if (snap_id == CEPH_NOSNAP) {
1035                 *snap_features = rbd_dev->header.features;
1036         } else if (rbd_dev->image_format == 1) {
1037                 *snap_features = 0;     /* No features for format 1 */
1038         } else {
1039                 u64 features = 0;
1040                 int ret;
1041
1042                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1043                 if (ret)
1044                         return ret;
1045
1046                 *snap_features = features;
1047         }
1048         return 0;
1049 }
1050
1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1052 {
1053         u64 snap_id = rbd_dev->spec->snap_id;
1054         u64 size = 0;
1055         u64 features = 0;
1056         int ret;
1057
1058         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1059         if (ret)
1060                 return ret;
1061         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1062         if (ret)
1063                 return ret;
1064
1065         rbd_dev->mapping.size = size;
1066         rbd_dev->mapping.features = features;
1067
1068         return 0;
1069 }
1070
1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1072 {
1073         rbd_dev->mapping.size = 0;
1074         rbd_dev->mapping.features = 0;
1075 }
1076
1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1078 {
1079         char *name;
1080         u64 segment;
1081         int ret;
1082         char *name_format;
1083
1084         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1085         if (!name)
1086                 return NULL;
1087         segment = offset >> rbd_dev->header.obj_order;
1088         name_format = "%s.%012llx";
1089         if (rbd_dev->image_format == 2)
1090                 name_format = "%s.%016llx";
1091         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092                         rbd_dev->header.object_prefix, segment);
1093         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094                 pr_err("error formatting segment name for #%llu (%d)\n",
1095                         segment, ret);
1096                 kfree(name);
1097                 name = NULL;
1098         }
1099
1100         return name;
1101 }
1102
1103 static void rbd_segment_name_free(const char *name)
1104 {
1105         /* The explicit cast here is needed to drop the const qualifier */
1106
1107         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1108 }
1109
1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1111 {
1112         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1113
1114         return offset & (segment_size - 1);
1115 }
1116
1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118                                 u64 offset, u64 length)
1119 {
1120         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1121
1122         offset &= segment_size - 1;
1123
1124         rbd_assert(length <= U64_MAX - offset);
1125         if (offset + length > segment_size)
1126                 length = segment_size - offset;
1127
1128         return length;
1129 }
1130
1131 /*
1132  * returns the size of an object in the image
1133  */
1134 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1135 {
1136         return 1 << header->obj_order;
1137 }
1138
1139 /*
1140  * bio helpers
1141  */
1142
1143 static void bio_chain_put(struct bio *chain)
1144 {
1145         struct bio *tmp;
1146
1147         while (chain) {
1148                 tmp = chain;
1149                 chain = chain->bi_next;
1150                 bio_put(tmp);
1151         }
1152 }
1153
1154 /*
1155  * zeros a bio chain, starting at specific offset
1156  */
1157 static void zero_bio_chain(struct bio *chain, int start_ofs)
1158 {
1159         struct bio_vec bv;
1160         struct bvec_iter iter;
1161         unsigned long flags;
1162         void *buf;
1163         int pos = 0;
1164
1165         while (chain) {
1166                 bio_for_each_segment(bv, chain, iter) {
1167                         if (pos + bv.bv_len > start_ofs) {
1168                                 int remainder = max(start_ofs - pos, 0);
1169                                 buf = bvec_kmap_irq(&bv, &flags);
1170                                 memset(buf + remainder, 0,
1171                                        bv.bv_len - remainder);
1172                                 flush_dcache_page(bv.bv_page);
1173                                 bvec_kunmap_irq(buf, &flags);
1174                         }
1175                         pos += bv.bv_len;
1176                 }
1177
1178                 chain = chain->bi_next;
1179         }
1180 }
1181
1182 /*
1183  * similar to zero_bio_chain(), zeros data defined by a page array,
1184  * starting at the given byte offset from the start of the array and
1185  * continuing up to the given end offset.  The pages array is
1186  * assumed to be big enough to hold all bytes up to the end.
1187  */
1188 static void zero_pages(struct page **pages, u64 offset, u64 end)
1189 {
1190         struct page **page = &pages[offset >> PAGE_SHIFT];
1191
1192         rbd_assert(end > offset);
1193         rbd_assert(end - offset <= (u64)SIZE_MAX);
1194         while (offset < end) {
1195                 size_t page_offset;
1196                 size_t length;
1197                 unsigned long flags;
1198                 void *kaddr;
1199
1200                 page_offset = offset & ~PAGE_MASK;
1201                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202                 local_irq_save(flags);
1203                 kaddr = kmap_atomic(*page);
1204                 memset(kaddr + page_offset, 0, length);
1205                 flush_dcache_page(*page);
1206                 kunmap_atomic(kaddr);
1207                 local_irq_restore(flags);
1208
1209                 offset += length;
1210                 page++;
1211         }
1212 }
1213
1214 /*
1215  * Clone a portion of a bio, starting at the given byte offset
1216  * and continuing for the number of bytes indicated.
1217  */
1218 static struct bio *bio_clone_range(struct bio *bio_src,
1219                                         unsigned int offset,
1220                                         unsigned int len,
1221                                         gfp_t gfpmask)
1222 {
1223         struct bio *bio;
1224
1225         bio = bio_clone(bio_src, gfpmask);
1226         if (!bio)
1227                 return NULL;    /* ENOMEM */
1228
1229         bio_advance(bio, offset);
1230         bio->bi_iter.bi_size = len;
1231
1232         return bio;
1233 }
1234
1235 /*
1236  * Clone a portion of a bio chain, starting at the given byte offset
1237  * into the first bio in the source chain and continuing for the
1238  * number of bytes indicated.  The result is another bio chain of
1239  * exactly the given length, or a null pointer on error.
1240  *
1241  * The bio_src and offset parameters are both in-out.  On entry they
1242  * refer to the first source bio and the offset into that bio where
1243  * the start of data to be cloned is located.
1244  *
1245  * On return, bio_src is updated to refer to the bio in the source
1246  * chain that contains first un-cloned byte, and *offset will
1247  * contain the offset of that byte within that bio.
1248  */
1249 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1250                                         unsigned int *offset,
1251                                         unsigned int len,
1252                                         gfp_t gfpmask)
1253 {
1254         struct bio *bi = *bio_src;
1255         unsigned int off = *offset;
1256         struct bio *chain = NULL;
1257         struct bio **end;
1258
1259         /* Build up a chain of clone bios up to the limit */
1260
1261         if (!bi || off >= bi->bi_iter.bi_size || !len)
1262                 return NULL;            /* Nothing to clone */
1263
1264         end = &chain;
1265         while (len) {
1266                 unsigned int bi_size;
1267                 struct bio *bio;
1268
1269                 if (!bi) {
1270                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1271                         goto out_err;   /* EINVAL; ran out of bio's */
1272                 }
1273                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1274                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1275                 if (!bio)
1276                         goto out_err;   /* ENOMEM */
1277
1278                 *end = bio;
1279                 end = &bio->bi_next;
1280
1281                 off += bi_size;
1282                 if (off == bi->bi_iter.bi_size) {
1283                         bi = bi->bi_next;
1284                         off = 0;
1285                 }
1286                 len -= bi_size;
1287         }
1288         *bio_src = bi;
1289         *offset = off;
1290
1291         return chain;
1292 out_err:
1293         bio_chain_put(chain);
1294
1295         return NULL;
1296 }
1297
1298 /*
1299  * The default/initial value for all object request flags is 0.  For
1300  * each flag, once its value is set to 1 it is never reset to 0
1301  * again.
1302  */
1303 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1304 {
1305         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1306                 struct rbd_device *rbd_dev;
1307
1308                 rbd_dev = obj_request->img_request->rbd_dev;
1309                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1310                         obj_request);
1311         }
1312 }
1313
1314 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1315 {
1316         smp_mb();
1317         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1318 }
1319
1320 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1321 {
1322         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1323                 struct rbd_device *rbd_dev = NULL;
1324
1325                 if (obj_request_img_data_test(obj_request))
1326                         rbd_dev = obj_request->img_request->rbd_dev;
1327                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1328                         obj_request);
1329         }
1330 }
1331
1332 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1333 {
1334         smp_mb();
1335         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1336 }
1337
1338 /*
1339  * This sets the KNOWN flag after (possibly) setting the EXISTS
1340  * flag.  The latter is set based on the "exists" value provided.
1341  *
1342  * Note that for our purposes once an object exists it never goes
1343  * away again.  It's possible that the response from two existence
1344  * checks are separated by the creation of the target object, and
1345  * the first ("doesn't exist") response arrives *after* the second
1346  * ("does exist").  In that case we ignore the second one.
1347  */
1348 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1349                                 bool exists)
1350 {
1351         if (exists)
1352                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1353         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1354         smp_mb();
1355 }
1356
1357 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1358 {
1359         smp_mb();
1360         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1361 }
1362
1363 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1364 {
1365         smp_mb();
1366         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1367 }
1368
1369 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1370 {
1371         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1372                 atomic_read(&obj_request->kref.refcount));
1373         kref_get(&obj_request->kref);
1374 }
1375
1376 static void rbd_obj_request_destroy(struct kref *kref);
1377 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1378 {
1379         rbd_assert(obj_request != NULL);
1380         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1381                 atomic_read(&obj_request->kref.refcount));
1382         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1383 }
1384
1385 static bool img_request_child_test(struct rbd_img_request *img_request);
1386 static void rbd_parent_request_destroy(struct kref *kref);
1387 static void rbd_img_request_destroy(struct kref *kref);
1388 static void rbd_img_request_put(struct rbd_img_request *img_request)
1389 {
1390         rbd_assert(img_request != NULL);
1391         dout("%s: img %p (was %d)\n", __func__, img_request,
1392                 atomic_read(&img_request->kref.refcount));
1393         if (img_request_child_test(img_request))
1394                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1395         else
1396                 kref_put(&img_request->kref, rbd_img_request_destroy);
1397 }
1398
1399 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1400                                         struct rbd_obj_request *obj_request)
1401 {
1402         rbd_assert(obj_request->img_request == NULL);
1403
1404         /* Image request now owns object's original reference */
1405         obj_request->img_request = img_request;
1406         obj_request->which = img_request->obj_request_count;
1407         rbd_assert(!obj_request_img_data_test(obj_request));
1408         obj_request_img_data_set(obj_request);
1409         rbd_assert(obj_request->which != BAD_WHICH);
1410         img_request->obj_request_count++;
1411         list_add_tail(&obj_request->links, &img_request->obj_requests);
1412         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1413                 obj_request->which);
1414 }
1415
1416 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1417                                         struct rbd_obj_request *obj_request)
1418 {
1419         rbd_assert(obj_request->which != BAD_WHICH);
1420
1421         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1422                 obj_request->which);
1423         list_del(&obj_request->links);
1424         rbd_assert(img_request->obj_request_count > 0);
1425         img_request->obj_request_count--;
1426         rbd_assert(obj_request->which == img_request->obj_request_count);
1427         obj_request->which = BAD_WHICH;
1428         rbd_assert(obj_request_img_data_test(obj_request));
1429         rbd_assert(obj_request->img_request == img_request);
1430         obj_request->img_request = NULL;
1431         obj_request->callback = NULL;
1432         rbd_obj_request_put(obj_request);
1433 }
1434
1435 static bool obj_request_type_valid(enum obj_request_type type)
1436 {
1437         switch (type) {
1438         case OBJ_REQUEST_NODATA:
1439         case OBJ_REQUEST_BIO:
1440         case OBJ_REQUEST_PAGES:
1441                 return true;
1442         default:
1443                 return false;
1444         }
1445 }
1446
1447 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1448                                 struct rbd_obj_request *obj_request)
1449 {
1450         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1451
1452         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1453 }
1454
1455 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1456 {
1457
1458         dout("%s: img %p\n", __func__, img_request);
1459
1460         /*
1461          * If no error occurred, compute the aggregate transfer
1462          * count for the image request.  We could instead use
1463          * atomic64_cmpxchg() to update it as each object request
1464          * completes; not clear which way is better off hand.
1465          */
1466         if (!img_request->result) {
1467                 struct rbd_obj_request *obj_request;
1468                 u64 xferred = 0;
1469
1470                 for_each_obj_request(img_request, obj_request)
1471                         xferred += obj_request->xferred;
1472                 img_request->xferred = xferred;
1473         }
1474
1475         if (img_request->callback)
1476                 img_request->callback(img_request);
1477         else
1478                 rbd_img_request_put(img_request);
1479 }
1480
1481 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1482
1483 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1484 {
1485         dout("%s: obj %p\n", __func__, obj_request);
1486
1487         return wait_for_completion_interruptible(&obj_request->completion);
1488 }
1489
1490 /*
1491  * The default/initial value for all image request flags is 0.  Each
1492  * is conditionally set to 1 at image request initialization time
1493  * and currently never change thereafter.
1494  */
1495 static void img_request_write_set(struct rbd_img_request *img_request)
1496 {
1497         set_bit(IMG_REQ_WRITE, &img_request->flags);
1498         smp_mb();
1499 }
1500
1501 static bool img_request_write_test(struct rbd_img_request *img_request)
1502 {
1503         smp_mb();
1504         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1505 }
1506
1507 static void img_request_child_set(struct rbd_img_request *img_request)
1508 {
1509         set_bit(IMG_REQ_CHILD, &img_request->flags);
1510         smp_mb();
1511 }
1512
1513 static void img_request_child_clear(struct rbd_img_request *img_request)
1514 {
1515         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1516         smp_mb();
1517 }
1518
1519 static bool img_request_child_test(struct rbd_img_request *img_request)
1520 {
1521         smp_mb();
1522         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1523 }
1524
1525 static void img_request_layered_set(struct rbd_img_request *img_request)
1526 {
1527         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1528         smp_mb();
1529 }
1530
1531 static void img_request_layered_clear(struct rbd_img_request *img_request)
1532 {
1533         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1534         smp_mb();
1535 }
1536
1537 static bool img_request_layered_test(struct rbd_img_request *img_request)
1538 {
1539         smp_mb();
1540         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1541 }
1542
1543 static void
1544 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1545 {
1546         u64 xferred = obj_request->xferred;
1547         u64 length = obj_request->length;
1548
1549         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1550                 obj_request, obj_request->img_request, obj_request->result,
1551                 xferred, length);
1552         /*
1553          * ENOENT means a hole in the image.  We zero-fill the entire
1554          * length of the request.  A short read also implies zero-fill
1555          * to the end of the request.  An error requires the whole
1556          * length of the request to be reported finished with an error
1557          * to the block layer.  In each case we update the xferred
1558          * count to indicate the whole request was satisfied.
1559          */
1560         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1561         if (obj_request->result == -ENOENT) {
1562                 if (obj_request->type == OBJ_REQUEST_BIO)
1563                         zero_bio_chain(obj_request->bio_list, 0);
1564                 else
1565                         zero_pages(obj_request->pages, 0, length);
1566                 obj_request->result = 0;
1567         } else if (xferred < length && !obj_request->result) {
1568                 if (obj_request->type == OBJ_REQUEST_BIO)
1569                         zero_bio_chain(obj_request->bio_list, xferred);
1570                 else
1571                         zero_pages(obj_request->pages, xferred, length);
1572         }
1573         obj_request->xferred = length;
1574         obj_request_done_set(obj_request);
1575 }
1576
1577 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1578 {
1579         dout("%s: obj %p cb %p\n", __func__, obj_request,
1580                 obj_request->callback);
1581         if (obj_request->callback)
1582                 obj_request->callback(obj_request);
1583         else
1584                 complete_all(&obj_request->completion);
1585 }
1586
1587 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1588 {
1589         dout("%s: obj %p\n", __func__, obj_request);
1590         obj_request_done_set(obj_request);
1591 }
1592
1593 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1594 {
1595         struct rbd_img_request *img_request = NULL;
1596         struct rbd_device *rbd_dev = NULL;
1597         bool layered = false;
1598
1599         if (obj_request_img_data_test(obj_request)) {
1600                 img_request = obj_request->img_request;
1601                 layered = img_request && img_request_layered_test(img_request);
1602                 rbd_dev = img_request->rbd_dev;
1603         }
1604
1605         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1606                 obj_request, img_request, obj_request->result,
1607                 obj_request->xferred, obj_request->length);
1608         if (layered && obj_request->result == -ENOENT &&
1609                         obj_request->img_offset < rbd_dev->parent_overlap)
1610                 rbd_img_parent_read(obj_request);
1611         else if (img_request)
1612                 rbd_img_obj_request_read_callback(obj_request);
1613         else
1614                 obj_request_done_set(obj_request);
1615 }
1616
1617 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1618 {
1619         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1620                 obj_request->result, obj_request->length);
1621         /*
1622          * There is no such thing as a successful short write.  Set
1623          * it to our originally-requested length.
1624          */
1625         obj_request->xferred = obj_request->length;
1626         obj_request_done_set(obj_request);
1627 }
1628
1629 /*
1630  * For a simple stat call there's nothing to do.  We'll do more if
1631  * this is part of a write sequence for a layered image.
1632  */
1633 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1634 {
1635         dout("%s: obj %p\n", __func__, obj_request);
1636         obj_request_done_set(obj_request);
1637 }
1638
1639 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1640                                 struct ceph_msg *msg)
1641 {
1642         struct rbd_obj_request *obj_request = osd_req->r_priv;
1643         u16 opcode;
1644
1645         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1646         rbd_assert(osd_req == obj_request->osd_req);
1647         if (obj_request_img_data_test(obj_request)) {
1648                 rbd_assert(obj_request->img_request);
1649                 rbd_assert(obj_request->which != BAD_WHICH);
1650         } else {
1651                 rbd_assert(obj_request->which == BAD_WHICH);
1652         }
1653
1654         if (osd_req->r_result < 0)
1655                 obj_request->result = osd_req->r_result;
1656
1657         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1658
1659         /*
1660          * We support a 64-bit length, but ultimately it has to be
1661          * passed to blk_end_request(), which takes an unsigned int.
1662          */
1663         obj_request->xferred = osd_req->r_reply_op_len[0];
1664         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1665
1666         opcode = osd_req->r_ops[0].op;
1667         switch (opcode) {
1668         case CEPH_OSD_OP_READ:
1669                 rbd_osd_read_callback(obj_request);
1670                 break;
1671         case CEPH_OSD_OP_SETALLOCHINT:
1672                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1673                 /* fall through */
1674         case CEPH_OSD_OP_WRITE:
1675                 rbd_osd_write_callback(obj_request);
1676                 break;
1677         case CEPH_OSD_OP_STAT:
1678                 rbd_osd_stat_callback(obj_request);
1679                 break;
1680         case CEPH_OSD_OP_CALL:
1681         case CEPH_OSD_OP_NOTIFY_ACK:
1682         case CEPH_OSD_OP_WATCH:
1683                 rbd_osd_trivial_callback(obj_request);
1684                 break;
1685         default:
1686                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1687                         obj_request->object_name, (unsigned short) opcode);
1688                 break;
1689         }
1690
1691         if (obj_request_done_test(obj_request))
1692                 rbd_obj_request_complete(obj_request);
1693 }
1694
1695 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1696 {
1697         struct rbd_img_request *img_request = obj_request->img_request;
1698         struct ceph_osd_request *osd_req = obj_request->osd_req;
1699         u64 snap_id;
1700
1701         rbd_assert(osd_req != NULL);
1702
1703         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1704         ceph_osdc_build_request(osd_req, obj_request->offset,
1705                         NULL, snap_id, NULL);
1706 }
1707
1708 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1709 {
1710         struct rbd_img_request *img_request = obj_request->img_request;
1711         struct ceph_osd_request *osd_req = obj_request->osd_req;
1712         struct ceph_snap_context *snapc;
1713         struct timespec mtime = CURRENT_TIME;
1714
1715         rbd_assert(osd_req != NULL);
1716
1717         snapc = img_request ? img_request->snapc : NULL;
1718         ceph_osdc_build_request(osd_req, obj_request->offset,
1719                         snapc, CEPH_NOSNAP, &mtime);
1720 }
1721
1722 /*
1723  * Create an osd request.  A read request has one osd op (read).
1724  * A write request has either one (watch) or two (hint+write) osd ops.
1725  * (All rbd data writes are prefixed with an allocation hint op, but
1726  * technically osd watch is a write request, hence this distinction.)
1727  */
1728 static struct ceph_osd_request *rbd_osd_req_create(
1729                                         struct rbd_device *rbd_dev,
1730                                         bool write_request,
1731                                         unsigned int num_ops,
1732                                         struct rbd_obj_request *obj_request)
1733 {
1734         struct ceph_snap_context *snapc = NULL;
1735         struct ceph_osd_client *osdc;
1736         struct ceph_osd_request *osd_req;
1737
1738         if (obj_request_img_data_test(obj_request)) {
1739                 struct rbd_img_request *img_request = obj_request->img_request;
1740
1741                 rbd_assert(write_request ==
1742                                 img_request_write_test(img_request));
1743                 if (write_request)
1744                         snapc = img_request->snapc;
1745         }
1746
1747         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1748
1749         /* Allocate and initialize the request, for the num_ops ops */
1750
1751         osdc = &rbd_dev->rbd_client->client->osdc;
1752         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1753                                           GFP_ATOMIC);
1754         if (!osd_req)
1755                 return NULL;    /* ENOMEM */
1756
1757         if (write_request)
1758                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1759         else
1760                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1761
1762         osd_req->r_callback = rbd_osd_req_callback;
1763         osd_req->r_priv = obj_request;
1764
1765         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1766         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1767
1768         return osd_req;
1769 }
1770
1771 /*
1772  * Create a copyup osd request based on the information in the
1773  * object request supplied.  A copyup request has three osd ops,
1774  * a copyup method call, a hint op, and a write op.
1775  */
1776 static struct ceph_osd_request *
1777 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1778 {
1779         struct rbd_img_request *img_request;
1780         struct ceph_snap_context *snapc;
1781         struct rbd_device *rbd_dev;
1782         struct ceph_osd_client *osdc;
1783         struct ceph_osd_request *osd_req;
1784
1785         rbd_assert(obj_request_img_data_test(obj_request));
1786         img_request = obj_request->img_request;
1787         rbd_assert(img_request);
1788         rbd_assert(img_request_write_test(img_request));
1789
1790         /* Allocate and initialize the request, for the three ops */
1791
1792         snapc = img_request->snapc;
1793         rbd_dev = img_request->rbd_dev;
1794         osdc = &rbd_dev->rbd_client->client->osdc;
1795         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1796         if (!osd_req)
1797                 return NULL;    /* ENOMEM */
1798
1799         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1800         osd_req->r_callback = rbd_osd_req_callback;
1801         osd_req->r_priv = obj_request;
1802
1803         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1804         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1805
1806         return osd_req;
1807 }
1808
1809
1810 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1811 {
1812         ceph_osdc_put_request(osd_req);
1813 }
1814
1815 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1816
1817 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1818                                                 u64 offset, u64 length,
1819                                                 enum obj_request_type type)
1820 {
1821         struct rbd_obj_request *obj_request;
1822         size_t size;
1823         char *name;
1824
1825         rbd_assert(obj_request_type_valid(type));
1826
1827         size = strlen(object_name) + 1;
1828         name = kmalloc(size, GFP_KERNEL);
1829         if (!name)
1830                 return NULL;
1831
1832         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1833         if (!obj_request) {
1834                 kfree(name);
1835                 return NULL;
1836         }
1837
1838         obj_request->object_name = memcpy(name, object_name, size);
1839         obj_request->offset = offset;
1840         obj_request->length = length;
1841         obj_request->flags = 0;
1842         obj_request->which = BAD_WHICH;
1843         obj_request->type = type;
1844         INIT_LIST_HEAD(&obj_request->links);
1845         init_completion(&obj_request->completion);
1846         kref_init(&obj_request->kref);
1847
1848         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1849                 offset, length, (int)type, obj_request);
1850
1851         return obj_request;
1852 }
1853
1854 static void rbd_obj_request_destroy(struct kref *kref)
1855 {
1856         struct rbd_obj_request *obj_request;
1857
1858         obj_request = container_of(kref, struct rbd_obj_request, kref);
1859
1860         dout("%s: obj %p\n", __func__, obj_request);
1861
1862         rbd_assert(obj_request->img_request == NULL);
1863         rbd_assert(obj_request->which == BAD_WHICH);
1864
1865         if (obj_request->osd_req)
1866                 rbd_osd_req_destroy(obj_request->osd_req);
1867
1868         rbd_assert(obj_request_type_valid(obj_request->type));
1869         switch (obj_request->type) {
1870         case OBJ_REQUEST_NODATA:
1871                 break;          /* Nothing to do */
1872         case OBJ_REQUEST_BIO:
1873                 if (obj_request->bio_list)
1874                         bio_chain_put(obj_request->bio_list);
1875                 break;
1876         case OBJ_REQUEST_PAGES:
1877                 if (obj_request->pages)
1878                         ceph_release_page_vector(obj_request->pages,
1879                                                 obj_request->page_count);
1880                 break;
1881         }
1882
1883         kfree(obj_request->object_name);
1884         obj_request->object_name = NULL;
1885         kmem_cache_free(rbd_obj_request_cache, obj_request);
1886 }
1887
1888 /* It's OK to call this for a device with no parent */
1889
1890 static void rbd_spec_put(struct rbd_spec *spec);
1891 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1892 {
1893         rbd_dev_remove_parent(rbd_dev);
1894         rbd_spec_put(rbd_dev->parent_spec);
1895         rbd_dev->parent_spec = NULL;
1896         rbd_dev->parent_overlap = 0;
1897 }
1898
1899 /*
1900  * Parent image reference counting is used to determine when an
1901  * image's parent fields can be safely torn down--after there are no
1902  * more in-flight requests to the parent image.  When the last
1903  * reference is dropped, cleaning them up is safe.
1904  */
1905 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1906 {
1907         int counter;
1908
1909         if (!rbd_dev->parent_spec)
1910                 return;
1911
1912         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1913         if (counter > 0)
1914                 return;
1915
1916         /* Last reference; clean up parent data structures */
1917
1918         if (!counter)
1919                 rbd_dev_unparent(rbd_dev);
1920         else
1921                 rbd_warn(rbd_dev, "parent reference underflow\n");
1922 }
1923
1924 /*
1925  * If an image has a non-zero parent overlap, get a reference to its
1926  * parent.
1927  *
1928  * We must get the reference before checking for the overlap to
1929  * coordinate properly with zeroing the parent overlap in
1930  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1931  * drop it again if there is no overlap.
1932  *
1933  * Returns true if the rbd device has a parent with a non-zero
1934  * overlap and a reference for it was successfully taken, or
1935  * false otherwise.
1936  */
1937 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1938 {
1939         int counter;
1940
1941         if (!rbd_dev->parent_spec)
1942                 return false;
1943
1944         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1945         if (counter > 0 && rbd_dev->parent_overlap)
1946                 return true;
1947
1948         /* Image was flattened, but parent is not yet torn down */
1949
1950         if (counter < 0)
1951                 rbd_warn(rbd_dev, "parent reference overflow\n");
1952
1953         return false;
1954 }
1955
1956 /*
1957  * Caller is responsible for filling in the list of object requests
1958  * that comprises the image request, and the Linux request pointer
1959  * (if there is one).
1960  */
1961 static struct rbd_img_request *rbd_img_request_create(
1962                                         struct rbd_device *rbd_dev,
1963                                         u64 offset, u64 length,
1964                                         bool write_request)
1965 {
1966         struct rbd_img_request *img_request;
1967
1968         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1969         if (!img_request)
1970                 return NULL;
1971
1972         if (write_request) {
1973                 down_read(&rbd_dev->header_rwsem);
1974                 ceph_get_snap_context(rbd_dev->header.snapc);
1975                 up_read(&rbd_dev->header_rwsem);
1976         }
1977
1978         img_request->rq = NULL;
1979         img_request->rbd_dev = rbd_dev;
1980         img_request->offset = offset;
1981         img_request->length = length;
1982         img_request->flags = 0;
1983         if (write_request) {
1984                 img_request_write_set(img_request);
1985                 img_request->snapc = rbd_dev->header.snapc;
1986         } else {
1987                 img_request->snap_id = rbd_dev->spec->snap_id;
1988         }
1989         if (rbd_dev_parent_get(rbd_dev))
1990                 img_request_layered_set(img_request);
1991         spin_lock_init(&img_request->completion_lock);
1992         img_request->next_completion = 0;
1993         img_request->callback = NULL;
1994         img_request->result = 0;
1995         img_request->obj_request_count = 0;
1996         INIT_LIST_HEAD(&img_request->obj_requests);
1997         kref_init(&img_request->kref);
1998
1999         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2000                 write_request ? "write" : "read", offset, length,
2001                 img_request);
2002
2003         return img_request;
2004 }
2005
2006 static void rbd_img_request_destroy(struct kref *kref)
2007 {
2008         struct rbd_img_request *img_request;
2009         struct rbd_obj_request *obj_request;
2010         struct rbd_obj_request *next_obj_request;
2011
2012         img_request = container_of(kref, struct rbd_img_request, kref);
2013
2014         dout("%s: img %p\n", __func__, img_request);
2015
2016         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2017                 rbd_img_obj_request_del(img_request, obj_request);
2018         rbd_assert(img_request->obj_request_count == 0);
2019
2020         if (img_request_layered_test(img_request)) {
2021                 img_request_layered_clear(img_request);
2022                 rbd_dev_parent_put(img_request->rbd_dev);
2023         }
2024
2025         if (img_request_write_test(img_request))
2026                 ceph_put_snap_context(img_request->snapc);
2027
2028         kmem_cache_free(rbd_img_request_cache, img_request);
2029 }
2030
2031 static struct rbd_img_request *rbd_parent_request_create(
2032                                         struct rbd_obj_request *obj_request,
2033                                         u64 img_offset, u64 length)
2034 {
2035         struct rbd_img_request *parent_request;
2036         struct rbd_device *rbd_dev;
2037
2038         rbd_assert(obj_request->img_request);
2039         rbd_dev = obj_request->img_request->rbd_dev;
2040
2041         parent_request = rbd_img_request_create(rbd_dev->parent,
2042                                                 img_offset, length, false);
2043         if (!parent_request)
2044                 return NULL;
2045
2046         img_request_child_set(parent_request);
2047         rbd_obj_request_get(obj_request);
2048         parent_request->obj_request = obj_request;
2049
2050         return parent_request;
2051 }
2052
2053 static void rbd_parent_request_destroy(struct kref *kref)
2054 {
2055         struct rbd_img_request *parent_request;
2056         struct rbd_obj_request *orig_request;
2057
2058         parent_request = container_of(kref, struct rbd_img_request, kref);
2059         orig_request = parent_request->obj_request;
2060
2061         parent_request->obj_request = NULL;
2062         rbd_obj_request_put(orig_request);
2063         img_request_child_clear(parent_request);
2064
2065         rbd_img_request_destroy(kref);
2066 }
2067
2068 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2069 {
2070         struct rbd_img_request *img_request;
2071         unsigned int xferred;
2072         int result;
2073         bool more;
2074
2075         rbd_assert(obj_request_img_data_test(obj_request));
2076         img_request = obj_request->img_request;
2077
2078         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2079         xferred = (unsigned int)obj_request->xferred;
2080         result = obj_request->result;
2081         if (result) {
2082                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2083
2084                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2085                         img_request_write_test(img_request) ? "write" : "read",
2086                         obj_request->length, obj_request->img_offset,
2087                         obj_request->offset);
2088                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2089                         result, xferred);
2090                 if (!img_request->result)
2091                         img_request->result = result;
2092         }
2093
2094         /* Image object requests don't own their page array */
2095
2096         if (obj_request->type == OBJ_REQUEST_PAGES) {
2097                 obj_request->pages = NULL;
2098                 obj_request->page_count = 0;
2099         }
2100
2101         if (img_request_child_test(img_request)) {
2102                 rbd_assert(img_request->obj_request != NULL);
2103                 more = obj_request->which < img_request->obj_request_count - 1;
2104         } else {
2105                 rbd_assert(img_request->rq != NULL);
2106                 more = blk_end_request(img_request->rq, result, xferred);
2107         }
2108
2109         return more;
2110 }
2111
2112 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2113 {
2114         struct rbd_img_request *img_request;
2115         u32 which = obj_request->which;
2116         bool more = true;
2117
2118         rbd_assert(obj_request_img_data_test(obj_request));
2119         img_request = obj_request->img_request;
2120
2121         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2122         rbd_assert(img_request != NULL);
2123         rbd_assert(img_request->obj_request_count > 0);
2124         rbd_assert(which != BAD_WHICH);
2125         rbd_assert(which < img_request->obj_request_count);
2126
2127         spin_lock_irq(&img_request->completion_lock);
2128         if (which != img_request->next_completion)
2129                 goto out;
2130
2131         for_each_obj_request_from(img_request, obj_request) {
2132                 rbd_assert(more);
2133                 rbd_assert(which < img_request->obj_request_count);
2134
2135                 if (!obj_request_done_test(obj_request))
2136                         break;
2137                 more = rbd_img_obj_end_request(obj_request);
2138                 which++;
2139         }
2140
2141         rbd_assert(more ^ (which == img_request->obj_request_count));
2142         img_request->next_completion = which;
2143 out:
2144         spin_unlock_irq(&img_request->completion_lock);
2145
2146         if (!more)
2147                 rbd_img_request_complete(img_request);
2148 }
2149
2150 /*
2151  * Split up an image request into one or more object requests, each
2152  * to a different object.  The "type" parameter indicates whether
2153  * "data_desc" is the pointer to the head of a list of bio
2154  * structures, or the base of a page array.  In either case this
2155  * function assumes data_desc describes memory sufficient to hold
2156  * all data described by the image request.
2157  */
2158 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2159                                         enum obj_request_type type,
2160                                         void *data_desc)
2161 {
2162         struct rbd_device *rbd_dev = img_request->rbd_dev;
2163         struct rbd_obj_request *obj_request = NULL;
2164         struct rbd_obj_request *next_obj_request;
2165         bool write_request = img_request_write_test(img_request);
2166         struct bio *bio_list = NULL;
2167         unsigned int bio_offset = 0;
2168         struct page **pages = NULL;
2169         u64 img_offset;
2170         u64 resid;
2171         u16 opcode;
2172
2173         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2174                 (int)type, data_desc);
2175
2176         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2177         img_offset = img_request->offset;
2178         resid = img_request->length;
2179         rbd_assert(resid > 0);
2180
2181         if (type == OBJ_REQUEST_BIO) {
2182                 bio_list = data_desc;
2183                 rbd_assert(img_offset ==
2184                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2185         } else {
2186                 rbd_assert(type == OBJ_REQUEST_PAGES);
2187                 pages = data_desc;
2188         }
2189
2190         while (resid) {
2191                 struct ceph_osd_request *osd_req;
2192                 const char *object_name;
2193                 u64 offset;
2194                 u64 length;
2195                 unsigned int which = 0;
2196
2197                 object_name = rbd_segment_name(rbd_dev, img_offset);
2198                 if (!object_name)
2199                         goto out_unwind;
2200                 offset = rbd_segment_offset(rbd_dev, img_offset);
2201                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2202                 obj_request = rbd_obj_request_create(object_name,
2203                                                 offset, length, type);
2204                 /* object request has its own copy of the object name */
2205                 rbd_segment_name_free(object_name);
2206                 if (!obj_request)
2207                         goto out_unwind;
2208
2209                 /*
2210                  * set obj_request->img_request before creating the
2211                  * osd_request so that it gets the right snapc
2212                  */
2213                 rbd_img_obj_request_add(img_request, obj_request);
2214
2215                 if (type == OBJ_REQUEST_BIO) {
2216                         unsigned int clone_size;
2217
2218                         rbd_assert(length <= (u64)UINT_MAX);
2219                         clone_size = (unsigned int)length;
2220                         obj_request->bio_list =
2221                                         bio_chain_clone_range(&bio_list,
2222                                                                 &bio_offset,
2223                                                                 clone_size,
2224                                                                 GFP_ATOMIC);
2225                         if (!obj_request->bio_list)
2226                                 goto out_unwind;
2227                 } else {
2228                         unsigned int page_count;
2229
2230                         obj_request->pages = pages;
2231                         page_count = (u32)calc_pages_for(offset, length);
2232                         obj_request->page_count = page_count;
2233                         if ((offset + length) & ~PAGE_MASK)
2234                                 page_count--;   /* more on last page */
2235                         pages += page_count;
2236                 }
2237
2238                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2239                                              (write_request ? 2 : 1),
2240                                              obj_request);
2241                 if (!osd_req)
2242                         goto out_unwind;
2243                 obj_request->osd_req = osd_req;
2244                 obj_request->callback = rbd_img_obj_callback;
2245
2246                 if (write_request) {
2247                         osd_req_op_alloc_hint_init(osd_req, which,
2248                                              rbd_obj_bytes(&rbd_dev->header),
2249                                              rbd_obj_bytes(&rbd_dev->header));
2250                         which++;
2251                 }
2252
2253                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2254                                        0, 0);
2255                 if (type == OBJ_REQUEST_BIO)
2256                         osd_req_op_extent_osd_data_bio(osd_req, which,
2257                                         obj_request->bio_list, length);
2258                 else
2259                         osd_req_op_extent_osd_data_pages(osd_req, which,
2260                                         obj_request->pages, length,
2261                                         offset & ~PAGE_MASK, false, false);
2262
2263                 if (write_request)
2264                         rbd_osd_req_format_write(obj_request);
2265                 else
2266                         rbd_osd_req_format_read(obj_request);
2267
2268                 obj_request->img_offset = img_offset;
2269
2270                 img_offset += length;
2271                 resid -= length;
2272         }
2273
2274         return 0;
2275
2276 out_unwind:
2277         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2278                 rbd_img_obj_request_del(img_request, obj_request);
2279
2280         return -ENOMEM;
2281 }
2282
2283 static void
2284 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2285 {
2286         struct rbd_img_request *img_request;
2287         struct rbd_device *rbd_dev;
2288         struct page **pages;
2289         u32 page_count;
2290
2291         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2292         rbd_assert(obj_request_img_data_test(obj_request));
2293         img_request = obj_request->img_request;
2294         rbd_assert(img_request);
2295
2296         rbd_dev = img_request->rbd_dev;
2297         rbd_assert(rbd_dev);
2298
2299         pages = obj_request->copyup_pages;
2300         rbd_assert(pages != NULL);
2301         obj_request->copyup_pages = NULL;
2302         page_count = obj_request->copyup_page_count;
2303         rbd_assert(page_count);
2304         obj_request->copyup_page_count = 0;
2305         ceph_release_page_vector(pages, page_count);
2306
2307         /*
2308          * We want the transfer count to reflect the size of the
2309          * original write request.  There is no such thing as a
2310          * successful short write, so if the request was successful
2311          * we can just set it to the originally-requested length.
2312          */
2313         if (!obj_request->result)
2314                 obj_request->xferred = obj_request->length;
2315
2316         /* Finish up with the normal image object callback */
2317
2318         rbd_img_obj_callback(obj_request);
2319 }
2320
2321 static void
2322 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2323 {
2324         struct rbd_obj_request *orig_request;
2325         struct ceph_osd_request *osd_req;
2326         struct ceph_osd_client *osdc;
2327         struct rbd_device *rbd_dev;
2328         struct page **pages;
2329         u32 page_count;
2330         int img_result;
2331         u64 parent_length;
2332         u64 offset;
2333         u64 length;
2334
2335         rbd_assert(img_request_child_test(img_request));
2336
2337         /* First get what we need from the image request */
2338
2339         pages = img_request->copyup_pages;
2340         rbd_assert(pages != NULL);
2341         img_request->copyup_pages = NULL;
2342         page_count = img_request->copyup_page_count;
2343         rbd_assert(page_count);
2344         img_request->copyup_page_count = 0;
2345
2346         orig_request = img_request->obj_request;
2347         rbd_assert(orig_request != NULL);
2348         rbd_assert(obj_request_type_valid(orig_request->type));
2349         img_result = img_request->result;
2350         parent_length = img_request->length;
2351         rbd_assert(parent_length == img_request->xferred);
2352         rbd_img_request_put(img_request);
2353
2354         rbd_assert(orig_request->img_request);
2355         rbd_dev = orig_request->img_request->rbd_dev;
2356         rbd_assert(rbd_dev);
2357
2358         /*
2359          * If the overlap has become 0 (most likely because the
2360          * image has been flattened) we need to free the pages
2361          * and re-submit the original write request.
2362          */
2363         if (!rbd_dev->parent_overlap) {
2364                 struct ceph_osd_client *osdc;
2365
2366                 ceph_release_page_vector(pages, page_count);
2367                 osdc = &rbd_dev->rbd_client->client->osdc;
2368                 img_result = rbd_obj_request_submit(osdc, orig_request);
2369                 if (!img_result)
2370                         return;
2371         }
2372
2373         if (img_result)
2374                 goto out_err;
2375
2376         /*
2377          * The original osd request is of no use to use any more.
2378          * We need a new one that can hold the three ops in a copyup
2379          * request.  Allocate the new copyup osd request for the
2380          * original request, and release the old one.
2381          */
2382         img_result = -ENOMEM;
2383         osd_req = rbd_osd_req_create_copyup(orig_request);
2384         if (!osd_req)
2385                 goto out_err;
2386         rbd_osd_req_destroy(orig_request->osd_req);
2387         orig_request->osd_req = osd_req;
2388         orig_request->copyup_pages = pages;
2389         orig_request->copyup_page_count = page_count;
2390
2391         /* Initialize the copyup op */
2392
2393         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2394         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2395                                                 false, false);
2396
2397         /* Then the hint op */
2398
2399         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2400                                    rbd_obj_bytes(&rbd_dev->header));
2401
2402         /* And the original write request op */
2403
2404         offset = orig_request->offset;
2405         length = orig_request->length;
2406         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2407                                         offset, length, 0, 0);
2408         if (orig_request->type == OBJ_REQUEST_BIO)
2409                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2410                                         orig_request->bio_list, length);
2411         else
2412                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2413                                         orig_request->pages, length,
2414                                         offset & ~PAGE_MASK, false, false);
2415
2416         rbd_osd_req_format_write(orig_request);
2417
2418         /* All set, send it off. */
2419
2420         orig_request->callback = rbd_img_obj_copyup_callback;
2421         osdc = &rbd_dev->rbd_client->client->osdc;
2422         img_result = rbd_obj_request_submit(osdc, orig_request);
2423         if (!img_result)
2424                 return;
2425 out_err:
2426         /* Record the error code and complete the request */
2427
2428         orig_request->result = img_result;
2429         orig_request->xferred = 0;
2430         obj_request_done_set(orig_request);
2431         rbd_obj_request_complete(orig_request);
2432 }
2433
2434 /*
2435  * Read from the parent image the range of data that covers the
2436  * entire target of the given object request.  This is used for
2437  * satisfying a layered image write request when the target of an
2438  * object request from the image request does not exist.
2439  *
2440  * A page array big enough to hold the returned data is allocated
2441  * and supplied to rbd_img_request_fill() as the "data descriptor."
2442  * When the read completes, this page array will be transferred to
2443  * the original object request for the copyup operation.
2444  *
2445  * If an error occurs, record it as the result of the original
2446  * object request and mark it done so it gets completed.
2447  */
2448 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2449 {
2450         struct rbd_img_request *img_request = NULL;
2451         struct rbd_img_request *parent_request = NULL;
2452         struct rbd_device *rbd_dev;
2453         u64 img_offset;
2454         u64 length;
2455         struct page **pages = NULL;
2456         u32 page_count;
2457         int result;
2458
2459         rbd_assert(obj_request_img_data_test(obj_request));
2460         rbd_assert(obj_request_type_valid(obj_request->type));
2461
2462         img_request = obj_request->img_request;
2463         rbd_assert(img_request != NULL);
2464         rbd_dev = img_request->rbd_dev;
2465         rbd_assert(rbd_dev->parent != NULL);
2466
2467         /*
2468          * Determine the byte range covered by the object in the
2469          * child image to which the original request was to be sent.
2470          */
2471         img_offset = obj_request->img_offset - obj_request->offset;
2472         length = (u64)1 << rbd_dev->header.obj_order;
2473
2474         /*
2475          * There is no defined parent data beyond the parent
2476          * overlap, so limit what we read at that boundary if
2477          * necessary.
2478          */
2479         if (img_offset + length > rbd_dev->parent_overlap) {
2480                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2481                 length = rbd_dev->parent_overlap - img_offset;
2482         }
2483
2484         /*
2485          * Allocate a page array big enough to receive the data read
2486          * from the parent.
2487          */
2488         page_count = (u32)calc_pages_for(0, length);
2489         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2490         if (IS_ERR(pages)) {
2491                 result = PTR_ERR(pages);
2492                 pages = NULL;
2493                 goto out_err;
2494         }
2495
2496         result = -ENOMEM;
2497         parent_request = rbd_parent_request_create(obj_request,
2498                                                 img_offset, length);
2499         if (!parent_request)
2500                 goto out_err;
2501
2502         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2503         if (result)
2504                 goto out_err;
2505         parent_request->copyup_pages = pages;
2506         parent_request->copyup_page_count = page_count;
2507
2508         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2509         result = rbd_img_request_submit(parent_request);
2510         if (!result)
2511                 return 0;
2512
2513         parent_request->copyup_pages = NULL;
2514         parent_request->copyup_page_count = 0;
2515         parent_request->obj_request = NULL;
2516         rbd_obj_request_put(obj_request);
2517 out_err:
2518         if (pages)
2519                 ceph_release_page_vector(pages, page_count);
2520         if (parent_request)
2521                 rbd_img_request_put(parent_request);
2522         obj_request->result = result;
2523         obj_request->xferred = 0;
2524         obj_request_done_set(obj_request);
2525
2526         return result;
2527 }
2528
2529 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2530 {
2531         struct rbd_obj_request *orig_request;
2532         struct rbd_device *rbd_dev;
2533         int result;
2534
2535         rbd_assert(!obj_request_img_data_test(obj_request));
2536
2537         /*
2538          * All we need from the object request is the original
2539          * request and the result of the STAT op.  Grab those, then
2540          * we're done with the request.
2541          */
2542         orig_request = obj_request->obj_request;
2543         obj_request->obj_request = NULL;
2544         rbd_obj_request_put(orig_request);
2545         rbd_assert(orig_request);
2546         rbd_assert(orig_request->img_request);
2547
2548         result = obj_request->result;
2549         obj_request->result = 0;
2550
2551         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2552                 obj_request, orig_request, result,
2553                 obj_request->xferred, obj_request->length);
2554         rbd_obj_request_put(obj_request);
2555
2556         /*
2557          * If the overlap has become 0 (most likely because the
2558          * image has been flattened) we need to free the pages
2559          * and re-submit the original write request.
2560          */
2561         rbd_dev = orig_request->img_request->rbd_dev;
2562         if (!rbd_dev->parent_overlap) {
2563                 struct ceph_osd_client *osdc;
2564
2565                 osdc = &rbd_dev->rbd_client->client->osdc;
2566                 result = rbd_obj_request_submit(osdc, orig_request);
2567                 if (!result)
2568                         return;
2569         }
2570
2571         /*
2572          * Our only purpose here is to determine whether the object
2573          * exists, and we don't want to treat the non-existence as
2574          * an error.  If something else comes back, transfer the
2575          * error to the original request and complete it now.
2576          */
2577         if (!result) {
2578                 obj_request_existence_set(orig_request, true);
2579         } else if (result == -ENOENT) {
2580                 obj_request_existence_set(orig_request, false);
2581         } else if (result) {
2582                 orig_request->result = result;
2583                 goto out;
2584         }
2585
2586         /*
2587          * Resubmit the original request now that we have recorded
2588          * whether the target object exists.
2589          */
2590         orig_request->result = rbd_img_obj_request_submit(orig_request);
2591 out:
2592         if (orig_request->result)
2593                 rbd_obj_request_complete(orig_request);
2594 }
2595
2596 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2597 {
2598         struct rbd_obj_request *stat_request;
2599         struct rbd_device *rbd_dev;
2600         struct ceph_osd_client *osdc;
2601         struct page **pages = NULL;
2602         u32 page_count;
2603         size_t size;
2604         int ret;
2605
2606         /*
2607          * The response data for a STAT call consists of:
2608          *     le64 length;
2609          *     struct {
2610          *         le32 tv_sec;
2611          *         le32 tv_nsec;
2612          *     } mtime;
2613          */
2614         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2615         page_count = (u32)calc_pages_for(0, size);
2616         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2617         if (IS_ERR(pages))
2618                 return PTR_ERR(pages);
2619
2620         ret = -ENOMEM;
2621         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2622                                                         OBJ_REQUEST_PAGES);
2623         if (!stat_request)
2624                 goto out;
2625
2626         rbd_obj_request_get(obj_request);
2627         stat_request->obj_request = obj_request;
2628         stat_request->pages = pages;
2629         stat_request->page_count = page_count;
2630
2631         rbd_assert(obj_request->img_request);
2632         rbd_dev = obj_request->img_request->rbd_dev;
2633         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2634                                                    stat_request);
2635         if (!stat_request->osd_req)
2636                 goto out;
2637         stat_request->callback = rbd_img_obj_exists_callback;
2638
2639         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2640         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2641                                         false, false);
2642         rbd_osd_req_format_read(stat_request);
2643
2644         osdc = &rbd_dev->rbd_client->client->osdc;
2645         ret = rbd_obj_request_submit(osdc, stat_request);
2646 out:
2647         if (ret)
2648                 rbd_obj_request_put(obj_request);
2649
2650         return ret;
2651 }
2652
2653 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2654 {
2655         struct rbd_img_request *img_request;
2656         struct rbd_device *rbd_dev;
2657         bool known;
2658
2659         rbd_assert(obj_request_img_data_test(obj_request));
2660
2661         img_request = obj_request->img_request;
2662         rbd_assert(img_request);
2663         rbd_dev = img_request->rbd_dev;
2664
2665         /*
2666          * Only writes to layered images need special handling.
2667          * Reads and non-layered writes are simple object requests.
2668          * Layered writes that start beyond the end of the overlap
2669          * with the parent have no parent data, so they too are
2670          * simple object requests.  Finally, if the target object is
2671          * known to already exist, its parent data has already been
2672          * copied, so a write to the object can also be handled as a
2673          * simple object request.
2674          */
2675         if (!img_request_write_test(img_request) ||
2676                 !img_request_layered_test(img_request) ||
2677                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2678                 ((known = obj_request_known_test(obj_request)) &&
2679                         obj_request_exists_test(obj_request))) {
2680
2681                 struct rbd_device *rbd_dev;
2682                 struct ceph_osd_client *osdc;
2683
2684                 rbd_dev = obj_request->img_request->rbd_dev;
2685                 osdc = &rbd_dev->rbd_client->client->osdc;
2686
2687                 return rbd_obj_request_submit(osdc, obj_request);
2688         }
2689
2690         /*
2691          * It's a layered write.  The target object might exist but
2692          * we may not know that yet.  If we know it doesn't exist,
2693          * start by reading the data for the full target object from
2694          * the parent so we can use it for a copyup to the target.
2695          */
2696         if (known)
2697                 return rbd_img_obj_parent_read_full(obj_request);
2698
2699         /* We don't know whether the target exists.  Go find out. */
2700
2701         return rbd_img_obj_exists_submit(obj_request);
2702 }
2703
2704 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2705 {
2706         struct rbd_obj_request *obj_request;
2707         struct rbd_obj_request *next_obj_request;
2708
2709         dout("%s: img %p\n", __func__, img_request);
2710         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2711                 int ret;
2712
2713                 ret = rbd_img_obj_request_submit(obj_request);
2714                 if (ret)
2715                         return ret;
2716         }
2717
2718         return 0;
2719 }
2720
2721 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2722 {
2723         struct rbd_obj_request *obj_request;
2724         struct rbd_device *rbd_dev;
2725         u64 obj_end;
2726         u64 img_xferred;
2727         int img_result;
2728
2729         rbd_assert(img_request_child_test(img_request));
2730
2731         /* First get what we need from the image request and release it */
2732
2733         obj_request = img_request->obj_request;
2734         img_xferred = img_request->xferred;
2735         img_result = img_request->result;
2736         rbd_img_request_put(img_request);
2737
2738         /*
2739          * If the overlap has become 0 (most likely because the
2740          * image has been flattened) we need to re-submit the
2741          * original request.
2742          */
2743         rbd_assert(obj_request);
2744         rbd_assert(obj_request->img_request);
2745         rbd_dev = obj_request->img_request->rbd_dev;
2746         if (!rbd_dev->parent_overlap) {
2747                 struct ceph_osd_client *osdc;
2748
2749                 osdc = &rbd_dev->rbd_client->client->osdc;
2750                 img_result = rbd_obj_request_submit(osdc, obj_request);
2751                 if (!img_result)
2752                         return;
2753         }
2754
2755         obj_request->result = img_result;
2756         if (obj_request->result)
2757                 goto out;
2758
2759         /*
2760          * We need to zero anything beyond the parent overlap
2761          * boundary.  Since rbd_img_obj_request_read_callback()
2762          * will zero anything beyond the end of a short read, an
2763          * easy way to do this is to pretend the data from the
2764          * parent came up short--ending at the overlap boundary.
2765          */
2766         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2767         obj_end = obj_request->img_offset + obj_request->length;
2768         if (obj_end > rbd_dev->parent_overlap) {
2769                 u64 xferred = 0;
2770
2771                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2772                         xferred = rbd_dev->parent_overlap -
2773                                         obj_request->img_offset;
2774
2775                 obj_request->xferred = min(img_xferred, xferred);
2776         } else {
2777                 obj_request->xferred = img_xferred;
2778         }
2779 out:
2780         rbd_img_obj_request_read_callback(obj_request);
2781         rbd_obj_request_complete(obj_request);
2782 }
2783
2784 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2785 {
2786         struct rbd_img_request *img_request;
2787         int result;
2788
2789         rbd_assert(obj_request_img_data_test(obj_request));
2790         rbd_assert(obj_request->img_request != NULL);
2791         rbd_assert(obj_request->result == (s32) -ENOENT);
2792         rbd_assert(obj_request_type_valid(obj_request->type));
2793
2794         /* rbd_read_finish(obj_request, obj_request->length); */
2795         img_request = rbd_parent_request_create(obj_request,
2796                                                 obj_request->img_offset,
2797                                                 obj_request->length);
2798         result = -ENOMEM;
2799         if (!img_request)
2800                 goto out_err;
2801
2802         if (obj_request->type == OBJ_REQUEST_BIO)
2803                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2804                                                 obj_request->bio_list);
2805         else
2806                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2807                                                 obj_request->pages);
2808         if (result)
2809                 goto out_err;
2810
2811         img_request->callback = rbd_img_parent_read_callback;
2812         result = rbd_img_request_submit(img_request);
2813         if (result)
2814                 goto out_err;
2815
2816         return;
2817 out_err:
2818         if (img_request)
2819                 rbd_img_request_put(img_request);
2820         obj_request->result = result;
2821         obj_request->xferred = 0;
2822         obj_request_done_set(obj_request);
2823 }
2824
2825 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2826 {
2827         struct rbd_obj_request *obj_request;
2828         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2829         int ret;
2830
2831         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2832                                                         OBJ_REQUEST_NODATA);
2833         if (!obj_request)
2834                 return -ENOMEM;
2835
2836         ret = -ENOMEM;
2837         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2838                                                   obj_request);
2839         if (!obj_request->osd_req)
2840                 goto out;
2841
2842         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2843                                         notify_id, 0, 0);
2844         rbd_osd_req_format_read(obj_request);
2845
2846         ret = rbd_obj_request_submit(osdc, obj_request);
2847         if (ret)
2848                 goto out;
2849         ret = rbd_obj_request_wait(obj_request);
2850 out:
2851         rbd_obj_request_put(obj_request);
2852
2853         return ret;
2854 }
2855
2856 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2857 {
2858         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2859         int ret;
2860
2861         if (!rbd_dev)
2862                 return;
2863
2864         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2865                 rbd_dev->header_name, (unsigned long long)notify_id,
2866                 (unsigned int)opcode);
2867         ret = rbd_dev_refresh(rbd_dev);
2868         if (ret)
2869                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2870
2871         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2872 }
2873
2874 /*
2875  * Initiate a watch request, synchronously.
2876  */
2877 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2878 {
2879         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2880         struct rbd_obj_request *obj_request;
2881         int ret;
2882
2883         rbd_assert(!rbd_dev->watch_event);
2884         rbd_assert(!rbd_dev->watch_request);
2885
2886         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2887                                      &rbd_dev->watch_event);
2888         if (ret < 0)
2889                 return ret;
2890
2891         rbd_assert(rbd_dev->watch_event);
2892
2893         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2894                                              OBJ_REQUEST_NODATA);
2895         if (!obj_request) {
2896                 ret = -ENOMEM;
2897                 goto out_cancel;
2898         }
2899
2900         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2901                                                   obj_request);
2902         if (!obj_request->osd_req) {
2903                 ret = -ENOMEM;
2904                 goto out_put;
2905         }
2906
2907         ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2908
2909         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2910                               rbd_dev->watch_event->cookie, 0, 1);
2911         rbd_osd_req_format_write(obj_request);
2912
2913         ret = rbd_obj_request_submit(osdc, obj_request);
2914         if (ret)
2915                 goto out_linger;
2916
2917         ret = rbd_obj_request_wait(obj_request);
2918         if (ret)
2919                 goto out_linger;
2920
2921         ret = obj_request->result;
2922         if (ret)
2923                 goto out_linger;
2924
2925         /*
2926          * A watch request is set to linger, so the underlying osd
2927          * request won't go away until we unregister it.  We retain
2928          * a pointer to the object request during that time (in
2929          * rbd_dev->watch_request), so we'll keep a reference to
2930          * it.  We'll drop that reference (below) after we've
2931          * unregistered it.
2932          */
2933         rbd_dev->watch_request = obj_request;
2934
2935         return 0;
2936
2937 out_linger:
2938         ceph_osdc_unregister_linger_request(osdc, obj_request->osd_req);
2939 out_put:
2940         rbd_obj_request_put(obj_request);
2941 out_cancel:
2942         ceph_osdc_cancel_event(rbd_dev->watch_event);
2943         rbd_dev->watch_event = NULL;
2944
2945         return ret;
2946 }
2947
2948 /*
2949  * Tear down a watch request, synchronously.
2950  */
2951 static int __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2952 {
2953         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2954         struct rbd_obj_request *obj_request;
2955         int ret;
2956
2957         rbd_assert(rbd_dev->watch_event);
2958         rbd_assert(rbd_dev->watch_request);
2959
2960         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2961                                              OBJ_REQUEST_NODATA);
2962         if (!obj_request) {
2963                 ret = -ENOMEM;
2964                 goto out_cancel;
2965         }
2966
2967         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2968                                                   obj_request);
2969         if (!obj_request->osd_req) {
2970                 ret = -ENOMEM;
2971                 goto out_put;
2972         }
2973
2974         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2975                               rbd_dev->watch_event->cookie, 0, 0);
2976         rbd_osd_req_format_write(obj_request);
2977
2978         ret = rbd_obj_request_submit(osdc, obj_request);
2979         if (ret)
2980                 goto out_put;
2981
2982         ret = rbd_obj_request_wait(obj_request);
2983         if (ret)
2984                 goto out_put;
2985
2986         ret = obj_request->result;
2987         if (ret)
2988                 goto out_put;
2989
2990         /* We have successfully torn down the watch request */
2991
2992         ceph_osdc_unregister_linger_request(osdc,
2993                                             rbd_dev->watch_request->osd_req);
2994         rbd_obj_request_put(rbd_dev->watch_request);
2995         rbd_dev->watch_request = NULL;
2996
2997 out_put:
2998         rbd_obj_request_put(obj_request);
2999 out_cancel:
3000         ceph_osdc_cancel_event(rbd_dev->watch_event);
3001         rbd_dev->watch_event = NULL;
3002
3003         return ret;
3004 }
3005
3006 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3007 {
3008         int ret;
3009
3010         ret = __rbd_dev_header_unwatch_sync(rbd_dev);
3011         if (ret) {
3012                 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
3013                          ret);
3014         }
3015 }
3016
3017 /*
3018  * Synchronous osd object method call.  Returns the number of bytes
3019  * returned in the outbound buffer, or a negative error code.
3020  */
3021 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3022                              const char *object_name,
3023                              const char *class_name,
3024                              const char *method_name,
3025                              const void *outbound,
3026                              size_t outbound_size,
3027                              void *inbound,
3028                              size_t inbound_size)
3029 {
3030         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3031         struct rbd_obj_request *obj_request;
3032         struct page **pages;
3033         u32 page_count;
3034         int ret;
3035
3036         /*
3037          * Method calls are ultimately read operations.  The result
3038          * should placed into the inbound buffer provided.  They
3039          * also supply outbound data--parameters for the object
3040          * method.  Currently if this is present it will be a
3041          * snapshot id.
3042          */
3043         page_count = (u32)calc_pages_for(0, inbound_size);
3044         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3045         if (IS_ERR(pages))
3046                 return PTR_ERR(pages);
3047
3048         ret = -ENOMEM;
3049         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3050                                                         OBJ_REQUEST_PAGES);
3051         if (!obj_request)
3052                 goto out;
3053
3054         obj_request->pages = pages;
3055         obj_request->page_count = page_count;
3056
3057         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3058                                                   obj_request);
3059         if (!obj_request->osd_req)
3060                 goto out;
3061
3062         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3063                                         class_name, method_name);
3064         if (outbound_size) {
3065                 struct ceph_pagelist *pagelist;
3066
3067                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3068                 if (!pagelist)
3069                         goto out;
3070
3071                 ceph_pagelist_init(pagelist);
3072                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3073                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3074                                                 pagelist);
3075         }
3076         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3077                                         obj_request->pages, inbound_size,
3078                                         0, false, false);
3079         rbd_osd_req_format_read(obj_request);
3080
3081         ret = rbd_obj_request_submit(osdc, obj_request);
3082         if (ret)
3083                 goto out;
3084         ret = rbd_obj_request_wait(obj_request);
3085         if (ret)
3086                 goto out;
3087
3088         ret = obj_request->result;
3089         if (ret < 0)
3090                 goto out;
3091
3092         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3093         ret = (int)obj_request->xferred;
3094         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3095 out:
3096         if (obj_request)
3097                 rbd_obj_request_put(obj_request);
3098         else
3099                 ceph_release_page_vector(pages, page_count);
3100
3101         return ret;
3102 }
3103
3104 static void rbd_request_fn(struct request_queue *q)
3105                 __releases(q->queue_lock) __acquires(q->queue_lock)
3106 {
3107         struct rbd_device *rbd_dev = q->queuedata;
3108         bool read_only = rbd_dev->mapping.read_only;
3109         struct request *rq;
3110         int result;
3111
3112         while ((rq = blk_fetch_request(q))) {
3113                 bool write_request = rq_data_dir(rq) == WRITE;
3114                 struct rbd_img_request *img_request;
3115                 u64 offset;
3116                 u64 length;
3117
3118                 /* Ignore any non-FS requests that filter through. */
3119
3120                 if (rq->cmd_type != REQ_TYPE_FS) {
3121                         dout("%s: non-fs request type %d\n", __func__,
3122                                 (int) rq->cmd_type);
3123                         __blk_end_request_all(rq, 0);
3124                         continue;
3125                 }
3126
3127                 /* Ignore/skip any zero-length requests */
3128
3129                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3130                 length = (u64) blk_rq_bytes(rq);
3131
3132                 if (!length) {
3133                         dout("%s: zero-length request\n", __func__);
3134                         __blk_end_request_all(rq, 0);
3135                         continue;
3136                 }
3137
3138                 spin_unlock_irq(q->queue_lock);
3139
3140                 /* Disallow writes to a read-only device */
3141
3142                 if (write_request) {
3143                         result = -EROFS;
3144                         if (read_only)
3145                                 goto end_request;
3146                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3147                 }
3148
3149                 /*
3150                  * Quit early if the mapped snapshot no longer
3151                  * exists.  It's still possible the snapshot will
3152                  * have disappeared by the time our request arrives
3153                  * at the osd, but there's no sense in sending it if
3154                  * we already know.
3155                  */
3156                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3157                         dout("request for non-existent snapshot");
3158                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3159                         result = -ENXIO;
3160                         goto end_request;
3161                 }
3162
3163                 result = -EINVAL;
3164                 if (offset && length > U64_MAX - offset + 1) {
3165                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3166                                 offset, length);
3167                         goto end_request;       /* Shouldn't happen */
3168                 }
3169
3170                 result = -EIO;
3171                 if (offset + length > rbd_dev->mapping.size) {
3172                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3173                                 offset, length, rbd_dev->mapping.size);
3174                         goto end_request;
3175                 }
3176
3177                 result = -ENOMEM;
3178                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3179                                                         write_request);
3180                 if (!img_request)
3181                         goto end_request;
3182
3183                 img_request->rq = rq;
3184
3185                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3186                                                 rq->bio);
3187                 if (!result)
3188                         result = rbd_img_request_submit(img_request);
3189                 if (result)
3190                         rbd_img_request_put(img_request);
3191 end_request:
3192                 spin_lock_irq(q->queue_lock);
3193                 if (result < 0) {
3194                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3195                                 write_request ? "write" : "read",
3196                                 length, offset, result);
3197
3198                         __blk_end_request_all(rq, result);
3199                 }
3200         }
3201 }
3202
3203 /*
3204  * a queue callback. Makes sure that we don't create a bio that spans across
3205  * multiple osd objects. One exception would be with a single page bios,
3206  * which we handle later at bio_chain_clone_range()
3207  */
3208 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3209                           struct bio_vec *bvec)
3210 {
3211         struct rbd_device *rbd_dev = q->queuedata;
3212         sector_t sector_offset;
3213         sector_t sectors_per_obj;
3214         sector_t obj_sector_offset;
3215         int ret;
3216
3217         /*
3218          * Find how far into its rbd object the partition-relative
3219          * bio start sector is to offset relative to the enclosing
3220          * device.
3221          */
3222         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3223         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3224         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3225
3226         /*
3227          * Compute the number of bytes from that offset to the end
3228          * of the object.  Account for what's already used by the bio.
3229          */
3230         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3231         if (ret > bmd->bi_size)
3232                 ret -= bmd->bi_size;
3233         else
3234                 ret = 0;
3235
3236         /*
3237          * Don't send back more than was asked for.  And if the bio
3238          * was empty, let the whole thing through because:  "Note
3239          * that a block device *must* allow a single page to be
3240          * added to an empty bio."
3241          */
3242         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3243         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3244                 ret = (int) bvec->bv_len;
3245
3246         return ret;
3247 }
3248
3249 static void rbd_free_disk(struct rbd_device *rbd_dev)
3250 {
3251         struct gendisk *disk = rbd_dev->disk;
3252
3253         if (!disk)
3254                 return;
3255
3256         rbd_dev->disk = NULL;
3257         if (disk->flags & GENHD_FL_UP) {
3258                 del_gendisk(disk);
3259                 if (disk->queue)
3260                         blk_cleanup_queue(disk->queue);
3261         }
3262         put_disk(disk);
3263 }
3264
3265 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3266                                 const char *object_name,
3267                                 u64 offset, u64 length, void *buf)
3268
3269 {
3270         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3271         struct rbd_obj_request *obj_request;
3272         struct page **pages = NULL;
3273         u32 page_count;
3274         size_t size;
3275         int ret;
3276
3277         page_count = (u32) calc_pages_for(offset, length);
3278         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3279         if (IS_ERR(pages))
3280                 ret = PTR_ERR(pages);
3281
3282         ret = -ENOMEM;
3283         obj_request = rbd_obj_request_create(object_name, offset, length,
3284                                                         OBJ_REQUEST_PAGES);
3285         if (!obj_request)
3286                 goto out;
3287
3288         obj_request->pages = pages;
3289         obj_request->page_count = page_count;
3290
3291         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3292                                                   obj_request);
3293         if (!obj_request->osd_req)
3294                 goto out;
3295
3296         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3297                                         offset, length, 0, 0);
3298         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3299                                         obj_request->pages,
3300                                         obj_request->length,
3301                                         obj_request->offset & ~PAGE_MASK,
3302                                         false, false);
3303         rbd_osd_req_format_read(obj_request);
3304
3305         ret = rbd_obj_request_submit(osdc, obj_request);
3306         if (ret)
3307                 goto out;
3308         ret = rbd_obj_request_wait(obj_request);
3309         if (ret)
3310                 goto out;
3311
3312         ret = obj_request->result;
3313         if (ret < 0)
3314                 goto out;
3315
3316         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3317         size = (size_t) obj_request->xferred;
3318         ceph_copy_from_page_vector(pages, buf, 0, size);
3319         rbd_assert(size <= (size_t)INT_MAX);
3320         ret = (int)size;
3321 out:
3322         if (obj_request)
3323                 rbd_obj_request_put(obj_request);
3324         else
3325                 ceph_release_page_vector(pages, page_count);
3326
3327         return ret;
3328 }
3329
3330 /*
3331  * Read the complete header for the given rbd device.  On successful
3332  * return, the rbd_dev->header field will contain up-to-date
3333  * information about the image.
3334  */
3335 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3336 {
3337         struct rbd_image_header_ondisk *ondisk = NULL;
3338         u32 snap_count = 0;
3339         u64 names_size = 0;
3340         u32 want_count;
3341         int ret;
3342
3343         /*
3344          * The complete header will include an array of its 64-bit
3345          * snapshot ids, followed by the names of those snapshots as
3346          * a contiguous block of NUL-terminated strings.  Note that
3347          * the number of snapshots could change by the time we read
3348          * it in, in which case we re-read it.
3349          */
3350         do {
3351                 size_t size;
3352
3353                 kfree(ondisk);
3354
3355                 size = sizeof (*ondisk);
3356                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3357                 size += names_size;
3358                 ondisk = kmalloc(size, GFP_KERNEL);
3359                 if (!ondisk)
3360                         return -ENOMEM;
3361
3362                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3363                                        0, size, ondisk);
3364                 if (ret < 0)
3365                         goto out;
3366                 if ((size_t)ret < size) {
3367                         ret = -ENXIO;
3368                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3369                                 size, ret);
3370                         goto out;
3371                 }
3372                 if (!rbd_dev_ondisk_valid(ondisk)) {
3373                         ret = -ENXIO;
3374                         rbd_warn(rbd_dev, "invalid header");
3375                         goto out;
3376                 }
3377
3378                 names_size = le64_to_cpu(ondisk->snap_names_len);
3379                 want_count = snap_count;
3380                 snap_count = le32_to_cpu(ondisk->snap_count);
3381         } while (snap_count != want_count);
3382
3383         ret = rbd_header_from_disk(rbd_dev, ondisk);
3384 out:
3385         kfree(ondisk);
3386
3387         return ret;
3388 }
3389
3390 /*
3391  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3392  * has disappeared from the (just updated) snapshot context.
3393  */
3394 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3395 {
3396         u64 snap_id;
3397
3398         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3399                 return;
3400
3401         snap_id = rbd_dev->spec->snap_id;
3402         if (snap_id == CEPH_NOSNAP)
3403                 return;
3404
3405         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3406                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3407 }
3408
3409 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3410 {
3411         sector_t size;
3412         bool removing;
3413
3414         /*
3415          * Don't hold the lock while doing disk operations,
3416          * or lock ordering will conflict with the bdev mutex via:
3417          * rbd_add() -> blkdev_get() -> rbd_open()
3418          */
3419         spin_lock_irq(&rbd_dev->lock);
3420         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3421         spin_unlock_irq(&rbd_dev->lock);
3422         /*
3423          * If the device is being removed, rbd_dev->disk has
3424          * been destroyed, so don't try to update its size
3425          */
3426         if (!removing) {
3427                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3428                 dout("setting size to %llu sectors", (unsigned long long)size);
3429                 set_capacity(rbd_dev->disk, size);
3430                 revalidate_disk(rbd_dev->disk);
3431         }
3432 }
3433
3434 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3435 {
3436         u64 mapping_size;
3437         int ret;
3438
3439         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3440         down_write(&rbd_dev->header_rwsem);
3441         mapping_size = rbd_dev->mapping.size;
3442         if (rbd_dev->image_format == 1)
3443                 ret = rbd_dev_v1_header_info(rbd_dev);
3444         else
3445                 ret = rbd_dev_v2_header_info(rbd_dev);
3446
3447         /* If it's a mapped snapshot, validate its EXISTS flag */
3448
3449         rbd_exists_validate(rbd_dev);
3450         up_write(&rbd_dev->header_rwsem);
3451
3452         if (mapping_size != rbd_dev->mapping.size) {
3453                 rbd_dev_update_size(rbd_dev);
3454         }
3455
3456         return ret;
3457 }
3458
3459 static int rbd_init_disk(struct rbd_device *rbd_dev)
3460 {
3461         struct gendisk *disk;
3462         struct request_queue *q;
3463         u64 segment_size;
3464
3465         /* create gendisk info */
3466         disk = alloc_disk(single_major ?
3467                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3468                           RBD_MINORS_PER_MAJOR);
3469         if (!disk)
3470                 return -ENOMEM;
3471
3472         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3473                  rbd_dev->dev_id);
3474         disk->major = rbd_dev->major;
3475         disk->first_minor = rbd_dev->minor;
3476         if (single_major)
3477                 disk->flags |= GENHD_FL_EXT_DEVT;
3478         disk->fops = &rbd_bd_ops;
3479         disk->private_data = rbd_dev;
3480
3481         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3482         if (!q)
3483                 goto out_disk;
3484
3485         /* We use the default size, but let's be explicit about it. */
3486         blk_queue_physical_block_size(q, SECTOR_SIZE);
3487
3488         /* set io sizes to object size */
3489         segment_size = rbd_obj_bytes(&rbd_dev->header);
3490         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3491         blk_queue_max_segment_size(q, segment_size);
3492         blk_queue_io_min(q, segment_size);
3493         blk_queue_io_opt(q, segment_size);
3494
3495         blk_queue_merge_bvec(q, rbd_merge_bvec);
3496         disk->queue = q;
3497
3498         q->queuedata = rbd_dev;
3499
3500         rbd_dev->disk = disk;
3501
3502         return 0;
3503 out_disk:
3504         put_disk(disk);
3505
3506         return -ENOMEM;
3507 }
3508
3509 /*
3510   sysfs
3511 */
3512
3513 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3514 {
3515         return container_of(dev, struct rbd_device, dev);
3516 }
3517
3518 static ssize_t rbd_size_show(struct device *dev,
3519                              struct device_attribute *attr, char *buf)
3520 {
3521         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3522
3523         return sprintf(buf, "%llu\n",
3524                 (unsigned long long)rbd_dev->mapping.size);
3525 }
3526
3527 /*
3528  * Note this shows the features for whatever's mapped, which is not
3529  * necessarily the base image.
3530  */
3531 static ssize_t rbd_features_show(struct device *dev,
3532                              struct device_attribute *attr, char *buf)
3533 {
3534         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3535
3536         return sprintf(buf, "0x%016llx\n",
3537                         (unsigned long long)rbd_dev->mapping.features);
3538 }
3539
3540 static ssize_t rbd_major_show(struct device *dev,
3541                               struct device_attribute *attr, char *buf)
3542 {
3543         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3544
3545         if (rbd_dev->major)
3546                 return sprintf(buf, "%d\n", rbd_dev->major);
3547
3548         return sprintf(buf, "(none)\n");
3549 }
3550
3551 static ssize_t rbd_minor_show(struct device *dev,
3552                               struct device_attribute *attr, char *buf)
3553 {
3554         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3555
3556         return sprintf(buf, "%d\n", rbd_dev->minor);
3557 }
3558
3559 static ssize_t rbd_client_id_show(struct device *dev,
3560                                   struct device_attribute *attr, char *buf)
3561 {
3562         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3563
3564         return sprintf(buf, "client%lld\n",
3565                         ceph_client_id(rbd_dev->rbd_client->client));
3566 }
3567
3568 static ssize_t rbd_pool_show(struct device *dev,
3569                              struct device_attribute *attr, char *buf)
3570 {
3571         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3572
3573         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3574 }
3575
3576 static ssize_t rbd_pool_id_show(struct device *dev,
3577                              struct device_attribute *attr, char *buf)
3578 {
3579         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3580
3581         return sprintf(buf, "%llu\n",
3582                         (unsigned long long) rbd_dev->spec->pool_id);
3583 }
3584
3585 static ssize_t rbd_name_show(struct device *dev,
3586                              struct device_attribute *attr, char *buf)
3587 {
3588         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3589
3590         if (rbd_dev->spec->image_name)
3591                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3592
3593         return sprintf(buf, "(unknown)\n");
3594 }
3595
3596 static ssize_t rbd_image_id_show(struct device *dev,
3597                              struct device_attribute *attr, char *buf)
3598 {
3599         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3600
3601         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3602 }
3603
3604 /*
3605  * Shows the name of the currently-mapped snapshot (or
3606  * RBD_SNAP_HEAD_NAME for the base image).
3607  */
3608 static ssize_t rbd_snap_show(struct device *dev,
3609                              struct device_attribute *attr,
3610                              char *buf)
3611 {
3612         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3613
3614         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3615 }
3616
3617 /*
3618  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3619  * for the parent image.  If there is no parent, simply shows
3620  * "(no parent image)".
3621  */
3622 static ssize_t rbd_parent_show(struct device *dev,
3623                              struct device_attribute *attr,
3624                              char *buf)
3625 {
3626         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3627         struct rbd_spec *spec = rbd_dev->parent_spec;
3628         int count;
3629         char *bufp = buf;
3630
3631         if (!spec)
3632                 return sprintf(buf, "(no parent image)\n");
3633
3634         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3635                         (unsigned long long) spec->pool_id, spec->pool_name);
3636         if (count < 0)
3637                 return count;
3638         bufp += count;
3639
3640         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3641                         spec->image_name ? spec->image_name : "(unknown)");
3642         if (count < 0)
3643                 return count;
3644         bufp += count;
3645
3646         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3647                         (unsigned long long) spec->snap_id, spec->snap_name);
3648         if (count < 0)
3649                 return count;
3650         bufp += count;
3651
3652         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3653         if (count < 0)
3654                 return count;
3655         bufp += count;
3656
3657         return (ssize_t) (bufp - buf);
3658 }
3659
3660 static ssize_t rbd_image_refresh(struct device *dev,
3661                                  struct device_attribute *attr,
3662                                  const char *buf,
3663                                  size_t size)
3664 {
3665         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3666         int ret;
3667
3668         ret = rbd_dev_refresh(rbd_dev);
3669         if (ret)
3670                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3671
3672         return ret < 0 ? ret : size;
3673 }
3674
3675 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3676 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3677 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3678 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3679 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3680 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3681 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3682 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3683 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3684 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3685 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3686 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3687
3688 static struct attribute *rbd_attrs[] = {
3689         &dev_attr_size.attr,
3690         &dev_attr_features.attr,
3691         &dev_attr_major.attr,
3692         &dev_attr_minor.attr,
3693         &dev_attr_client_id.attr,
3694         &dev_attr_pool.attr,
3695         &dev_attr_pool_id.attr,
3696         &dev_attr_name.attr,
3697         &dev_attr_image_id.attr,
3698         &dev_attr_current_snap.attr,
3699         &dev_attr_parent.attr,
3700         &dev_attr_refresh.attr,
3701         NULL
3702 };
3703
3704 static struct attribute_group rbd_attr_group = {
3705         .attrs = rbd_attrs,
3706 };
3707
3708 static const struct attribute_group *rbd_attr_groups[] = {
3709         &rbd_attr_group,
3710         NULL
3711 };
3712
3713 static void rbd_sysfs_dev_release(struct device *dev)
3714 {
3715 }
3716
3717 static struct device_type rbd_device_type = {
3718         .name           = "rbd",
3719         .groups         = rbd_attr_groups,
3720         .release        = rbd_sysfs_dev_release,
3721 };
3722
3723 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3724 {
3725         kref_get(&spec->kref);
3726
3727         return spec;
3728 }
3729
3730 static void rbd_spec_free(struct kref *kref);
3731 static void rbd_spec_put(struct rbd_spec *spec)
3732 {
3733         if (spec)
3734                 kref_put(&spec->kref, rbd_spec_free);
3735 }
3736
3737 static struct rbd_spec *rbd_spec_alloc(void)
3738 {
3739         struct rbd_spec *spec;
3740
3741         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3742         if (!spec)
3743                 return NULL;
3744         kref_init(&spec->kref);
3745
3746         return spec;
3747 }
3748
3749 static void rbd_spec_free(struct kref *kref)
3750 {
3751         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3752
3753         kfree(spec->pool_name);
3754         kfree(spec->image_id);
3755         kfree(spec->image_name);
3756         kfree(spec->snap_name);
3757         kfree(spec);
3758 }
3759
3760 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3761                                 struct rbd_spec *spec)
3762 {
3763         struct rbd_device *rbd_dev;
3764
3765         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3766         if (!rbd_dev)
3767                 return NULL;
3768
3769         spin_lock_init(&rbd_dev->lock);
3770         rbd_dev->flags = 0;
3771         atomic_set(&rbd_dev->parent_ref, 0);
3772         INIT_LIST_HEAD(&rbd_dev->node);
3773         init_rwsem(&rbd_dev->header_rwsem);
3774
3775         rbd_dev->spec = spec;
3776         rbd_dev->rbd_client = rbdc;
3777
3778         /* Initialize the layout used for all rbd requests */
3779
3780         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3781         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3782         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3783         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3784
3785         return rbd_dev;
3786 }
3787
3788 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3789 {
3790         rbd_put_client(rbd_dev->rbd_client);
3791         rbd_spec_put(rbd_dev->spec);
3792         kfree(rbd_dev);
3793 }
3794
3795 /*
3796  * Get the size and object order for an image snapshot, or if
3797  * snap_id is CEPH_NOSNAP, gets this information for the base
3798  * image.
3799  */
3800 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3801                                 u8 *order, u64 *snap_size)
3802 {
3803         __le64 snapid = cpu_to_le64(snap_id);
3804         int ret;
3805         struct {
3806                 u8 order;
3807                 __le64 size;
3808         } __attribute__ ((packed)) size_buf = { 0 };
3809
3810         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3811                                 "rbd", "get_size",
3812                                 &snapid, sizeof (snapid),
3813                                 &size_buf, sizeof (size_buf));
3814         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3815         if (ret < 0)
3816                 return ret;
3817         if (ret < sizeof (size_buf))
3818                 return -ERANGE;
3819
3820         if (order) {
3821                 *order = size_buf.order;
3822                 dout("  order %u", (unsigned int)*order);
3823         }
3824         *snap_size = le64_to_cpu(size_buf.size);
3825
3826         dout("  snap_id 0x%016llx snap_size = %llu\n",
3827                 (unsigned long long)snap_id,
3828                 (unsigned long long)*snap_size);
3829
3830         return 0;
3831 }
3832
3833 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3834 {
3835         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3836                                         &rbd_dev->header.obj_order,
3837                                         &rbd_dev->header.image_size);
3838 }
3839
3840 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3841 {
3842         void *reply_buf;
3843         int ret;
3844         void *p;
3845
3846         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3847         if (!reply_buf)
3848                 return -ENOMEM;
3849
3850         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3851                                 "rbd", "get_object_prefix", NULL, 0,
3852                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3853         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3854         if (ret < 0)
3855                 goto out;
3856
3857         p = reply_buf;
3858         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3859                                                 p + ret, NULL, GFP_NOIO);
3860         ret = 0;
3861
3862         if (IS_ERR(rbd_dev->header.object_prefix)) {
3863                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3864                 rbd_dev->header.object_prefix = NULL;
3865         } else {
3866                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3867         }
3868 out:
3869         kfree(reply_buf);
3870
3871         return ret;
3872 }
3873
3874 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3875                 u64 *snap_features)
3876 {
3877         __le64 snapid = cpu_to_le64(snap_id);
3878         struct {
3879                 __le64 features;
3880                 __le64 incompat;
3881         } __attribute__ ((packed)) features_buf = { 0 };
3882         u64 incompat;
3883         int ret;
3884
3885         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3886                                 "rbd", "get_features",
3887                                 &snapid, sizeof (snapid),
3888                                 &features_buf, sizeof (features_buf));
3889         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3890         if (ret < 0)
3891                 return ret;
3892         if (ret < sizeof (features_buf))
3893                 return -ERANGE;
3894
3895         incompat = le64_to_cpu(features_buf.incompat);
3896         if (incompat & ~RBD_FEATURES_SUPPORTED)
3897                 return -ENXIO;
3898
3899         *snap_features = le64_to_cpu(features_buf.features);
3900
3901         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3902                 (unsigned long long)snap_id,
3903                 (unsigned long long)*snap_features,
3904                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3905
3906         return 0;
3907 }
3908
3909 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3910 {
3911         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3912                                                 &rbd_dev->header.features);
3913 }
3914
3915 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3916 {
3917         struct rbd_spec *parent_spec;
3918         size_t size;
3919         void *reply_buf = NULL;
3920         __le64 snapid;
3921         void *p;
3922         void *end;
3923         u64 pool_id;
3924         char *image_id;
3925         u64 snap_id;
3926         u64 overlap;
3927         int ret;
3928
3929         parent_spec = rbd_spec_alloc();
3930         if (!parent_spec)
3931                 return -ENOMEM;
3932
3933         size = sizeof (__le64) +                                /* pool_id */
3934                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3935                 sizeof (__le64) +                               /* snap_id */
3936                 sizeof (__le64);                                /* overlap */
3937         reply_buf = kmalloc(size, GFP_KERNEL);
3938         if (!reply_buf) {
3939                 ret = -ENOMEM;
3940                 goto out_err;
3941         }
3942
3943         snapid = cpu_to_le64(CEPH_NOSNAP);
3944         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3945                                 "rbd", "get_parent",
3946                                 &snapid, sizeof (snapid),
3947                                 reply_buf, size);
3948         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3949         if (ret < 0)
3950                 goto out_err;
3951
3952         p = reply_buf;
3953         end = reply_buf + ret;
3954         ret = -ERANGE;
3955         ceph_decode_64_safe(&p, end, pool_id, out_err);
3956         if (pool_id == CEPH_NOPOOL) {
3957                 /*
3958                  * Either the parent never existed, or we have
3959                  * record of it but the image got flattened so it no
3960                  * longer has a parent.  When the parent of a
3961                  * layered image disappears we immediately set the
3962                  * overlap to 0.  The effect of this is that all new
3963                  * requests will be treated as if the image had no
3964                  * parent.
3965                  */
3966                 if (rbd_dev->parent_overlap) {
3967                         rbd_dev->parent_overlap = 0;
3968                         smp_mb();
3969                         rbd_dev_parent_put(rbd_dev);
3970                         pr_info("%s: clone image has been flattened\n",
3971                                 rbd_dev->disk->disk_name);
3972                 }
3973
3974                 goto out;       /* No parent?  No problem. */
3975         }
3976
3977         /* The ceph file layout needs to fit pool id in 32 bits */
3978
3979         ret = -EIO;
3980         if (pool_id > (u64)U32_MAX) {
3981                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3982                         (unsigned long long)pool_id, U32_MAX);
3983                 goto out_err;
3984         }
3985
3986         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3987         if (IS_ERR(image_id)) {
3988                 ret = PTR_ERR(image_id);
3989                 goto out_err;
3990         }
3991         ceph_decode_64_safe(&p, end, snap_id, out_err);
3992         ceph_decode_64_safe(&p, end, overlap, out_err);
3993
3994         /*
3995          * The parent won't change (except when the clone is
3996          * flattened, already handled that).  So we only need to
3997          * record the parent spec we have not already done so.
3998          */
3999         if (!rbd_dev->parent_spec) {
4000                 parent_spec->pool_id = pool_id;
4001                 parent_spec->image_id = image_id;
4002                 parent_spec->snap_id = snap_id;
4003                 rbd_dev->parent_spec = parent_spec;
4004                 parent_spec = NULL;     /* rbd_dev now owns this */
4005         }
4006
4007         /*
4008          * We always update the parent overlap.  If it's zero we
4009          * treat it specially.
4010          */
4011         rbd_dev->parent_overlap = overlap;
4012         smp_mb();
4013         if (!overlap) {
4014
4015                 /* A null parent_spec indicates it's the initial probe */
4016
4017                 if (parent_spec) {
4018                         /*
4019                          * The overlap has become zero, so the clone
4020                          * must have been resized down to 0 at some
4021                          * point.  Treat this the same as a flatten.
4022                          */
4023                         rbd_dev_parent_put(rbd_dev);
4024                         pr_info("%s: clone image now standalone\n",
4025                                 rbd_dev->disk->disk_name);
4026                 } else {
4027                         /*
4028                          * For the initial probe, if we find the
4029                          * overlap is zero we just pretend there was
4030                          * no parent image.
4031                          */
4032                         rbd_warn(rbd_dev, "ignoring parent of "
4033                                                 "clone with overlap 0\n");
4034                 }
4035         }
4036 out:
4037         ret = 0;
4038 out_err:
4039         kfree(reply_buf);
4040         rbd_spec_put(parent_spec);
4041
4042         return ret;
4043 }
4044
4045 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4046 {
4047         struct {
4048                 __le64 stripe_unit;
4049                 __le64 stripe_count;
4050         } __attribute__ ((packed)) striping_info_buf = { 0 };
4051         size_t size = sizeof (striping_info_buf);
4052         void *p;
4053         u64 obj_size;
4054         u64 stripe_unit;
4055         u64 stripe_count;
4056         int ret;
4057
4058         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4059                                 "rbd", "get_stripe_unit_count", NULL, 0,
4060                                 (char *)&striping_info_buf, size);
4061         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4062         if (ret < 0)
4063                 return ret;
4064         if (ret < size)
4065                 return -ERANGE;
4066
4067         /*
4068          * We don't actually support the "fancy striping" feature
4069          * (STRIPINGV2) yet, but if the striping sizes are the
4070          * defaults the behavior is the same as before.  So find
4071          * out, and only fail if the image has non-default values.
4072          */
4073         ret = -EINVAL;
4074         obj_size = (u64)1 << rbd_dev->header.obj_order;
4075         p = &striping_info_buf;
4076         stripe_unit = ceph_decode_64(&p);
4077         if (stripe_unit != obj_size) {
4078                 rbd_warn(rbd_dev, "unsupported stripe unit "
4079                                 "(got %llu want %llu)",
4080                                 stripe_unit, obj_size);
4081                 return -EINVAL;
4082         }
4083         stripe_count = ceph_decode_64(&p);
4084         if (stripe_count != 1) {
4085                 rbd_warn(rbd_dev, "unsupported stripe count "
4086                                 "(got %llu want 1)", stripe_count);
4087                 return -EINVAL;
4088         }
4089         rbd_dev->header.stripe_unit = stripe_unit;
4090         rbd_dev->header.stripe_count = stripe_count;
4091
4092         return 0;
4093 }
4094
4095 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4096 {
4097         size_t image_id_size;
4098         char *image_id;
4099         void *p;
4100         void *end;
4101         size_t size;
4102         void *reply_buf = NULL;
4103         size_t len = 0;
4104         char *image_name = NULL;
4105         int ret;
4106
4107         rbd_assert(!rbd_dev->spec->image_name);
4108
4109         len = strlen(rbd_dev->spec->image_id);
4110         image_id_size = sizeof (__le32) + len;
4111         image_id = kmalloc(image_id_size, GFP_KERNEL);
4112         if (!image_id)
4113                 return NULL;
4114
4115         p = image_id;
4116         end = image_id + image_id_size;
4117         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4118
4119         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4120         reply_buf = kmalloc(size, GFP_KERNEL);
4121         if (!reply_buf)
4122                 goto out;
4123
4124         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4125                                 "rbd", "dir_get_name",
4126                                 image_id, image_id_size,
4127                                 reply_buf, size);
4128         if (ret < 0)
4129                 goto out;
4130         p = reply_buf;
4131         end = reply_buf + ret;
4132
4133         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4134         if (IS_ERR(image_name))
4135                 image_name = NULL;
4136         else
4137                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4138 out:
4139         kfree(reply_buf);
4140         kfree(image_id);
4141
4142         return image_name;
4143 }
4144
4145 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4146 {
4147         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4148         const char *snap_name;
4149         u32 which = 0;
4150
4151         /* Skip over names until we find the one we are looking for */
4152
4153         snap_name = rbd_dev->header.snap_names;
4154         while (which < snapc->num_snaps) {
4155                 if (!strcmp(name, snap_name))
4156                         return snapc->snaps[which];
4157                 snap_name += strlen(snap_name) + 1;
4158                 which++;
4159         }
4160         return CEPH_NOSNAP;
4161 }
4162
4163 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4164 {
4165         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4166         u32 which;
4167         bool found = false;
4168         u64 snap_id;
4169
4170         for (which = 0; !found && which < snapc->num_snaps; which++) {
4171                 const char *snap_name;
4172
4173                 snap_id = snapc->snaps[which];
4174                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4175                 if (IS_ERR(snap_name)) {
4176                         /* ignore no-longer existing snapshots */
4177                         if (PTR_ERR(snap_name) == -ENOENT)
4178                                 continue;
4179                         else
4180                                 break;
4181                 }
4182                 found = !strcmp(name, snap_name);
4183                 kfree(snap_name);
4184         }
4185         return found ? snap_id : CEPH_NOSNAP;
4186 }
4187
4188 /*
4189  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4190  * no snapshot by that name is found, or if an error occurs.
4191  */
4192 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4193 {
4194         if (rbd_dev->image_format == 1)
4195                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4196
4197         return rbd_v2_snap_id_by_name(rbd_dev, name);
4198 }
4199
4200 /*
4201  * When an rbd image has a parent image, it is identified by the
4202  * pool, image, and snapshot ids (not names).  This function fills
4203  * in the names for those ids.  (It's OK if we can't figure out the
4204  * name for an image id, but the pool and snapshot ids should always
4205  * exist and have names.)  All names in an rbd spec are dynamically
4206  * allocated.
4207  *
4208  * When an image being mapped (not a parent) is probed, we have the
4209  * pool name and pool id, image name and image id, and the snapshot
4210  * name.  The only thing we're missing is the snapshot id.
4211  */
4212 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4213 {
4214         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4215         struct rbd_spec *spec = rbd_dev->spec;
4216         const char *pool_name;
4217         const char *image_name;
4218         const char *snap_name;
4219         int ret;
4220
4221         /*
4222          * An image being mapped will have the pool name (etc.), but
4223          * we need to look up the snapshot id.
4224          */
4225         if (spec->pool_name) {
4226                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4227                         u64 snap_id;
4228
4229                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4230                         if (snap_id == CEPH_NOSNAP)
4231                                 return -ENOENT;
4232                         spec->snap_id = snap_id;
4233                 } else {
4234                         spec->snap_id = CEPH_NOSNAP;
4235                 }
4236
4237                 return 0;
4238         }
4239
4240         /* Get the pool name; we have to make our own copy of this */
4241
4242         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4243         if (!pool_name) {
4244                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4245                 return -EIO;
4246         }
4247         pool_name = kstrdup(pool_name, GFP_KERNEL);
4248         if (!pool_name)
4249                 return -ENOMEM;
4250
4251         /* Fetch the image name; tolerate failure here */
4252
4253         image_name = rbd_dev_image_name(rbd_dev);
4254         if (!image_name)
4255                 rbd_warn(rbd_dev, "unable to get image name");
4256
4257         /* Look up the snapshot name, and make a copy */
4258
4259         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4260         if (IS_ERR(snap_name)) {
4261                 ret = PTR_ERR(snap_name);
4262                 goto out_err;
4263         }
4264
4265         spec->pool_name = pool_name;
4266         spec->image_name = image_name;
4267         spec->snap_name = snap_name;
4268
4269         return 0;
4270 out_err:
4271         kfree(image_name);
4272         kfree(pool_name);
4273
4274         return ret;
4275 }
4276
4277 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4278 {
4279         size_t size;
4280         int ret;
4281         void *reply_buf;
4282         void *p;
4283         void *end;
4284         u64 seq;
4285         u32 snap_count;
4286         struct ceph_snap_context *snapc;
4287         u32 i;
4288
4289         /*
4290          * We'll need room for the seq value (maximum snapshot id),
4291          * snapshot count, and array of that many snapshot ids.
4292          * For now we have a fixed upper limit on the number we're
4293          * prepared to receive.
4294          */
4295         size = sizeof (__le64) + sizeof (__le32) +
4296                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4297         reply_buf = kzalloc(size, GFP_KERNEL);
4298         if (!reply_buf)
4299                 return -ENOMEM;
4300
4301         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4302                                 "rbd", "get_snapcontext", NULL, 0,
4303                                 reply_buf, size);
4304         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4305         if (ret < 0)
4306                 goto out;
4307
4308         p = reply_buf;
4309         end = reply_buf + ret;
4310         ret = -ERANGE;
4311         ceph_decode_64_safe(&p, end, seq, out);
4312         ceph_decode_32_safe(&p, end, snap_count, out);
4313
4314         /*
4315          * Make sure the reported number of snapshot ids wouldn't go
4316          * beyond the end of our buffer.  But before checking that,
4317          * make sure the computed size of the snapshot context we
4318          * allocate is representable in a size_t.
4319          */
4320         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4321                                  / sizeof (u64)) {
4322                 ret = -EINVAL;
4323                 goto out;
4324         }
4325         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4326                 goto out;
4327         ret = 0;
4328
4329         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4330         if (!snapc) {
4331                 ret = -ENOMEM;
4332                 goto out;
4333         }
4334         snapc->seq = seq;
4335         for (i = 0; i < snap_count; i++)
4336                 snapc->snaps[i] = ceph_decode_64(&p);
4337
4338         ceph_put_snap_context(rbd_dev->header.snapc);
4339         rbd_dev->header.snapc = snapc;
4340
4341         dout("  snap context seq = %llu, snap_count = %u\n",
4342                 (unsigned long long)seq, (unsigned int)snap_count);
4343 out:
4344         kfree(reply_buf);
4345
4346         return ret;
4347 }
4348
4349 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4350                                         u64 snap_id)
4351 {
4352         size_t size;
4353         void *reply_buf;
4354         __le64 snapid;
4355         int ret;
4356         void *p;
4357         void *end;
4358         char *snap_name;
4359
4360         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4361         reply_buf = kmalloc(size, GFP_KERNEL);
4362         if (!reply_buf)
4363                 return ERR_PTR(-ENOMEM);
4364
4365         snapid = cpu_to_le64(snap_id);
4366         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4367                                 "rbd", "get_snapshot_name",
4368                                 &snapid, sizeof (snapid),
4369                                 reply_buf, size);
4370         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4371         if (ret < 0) {
4372                 snap_name = ERR_PTR(ret);
4373                 goto out;
4374         }
4375
4376         p = reply_buf;
4377         end = reply_buf + ret;
4378         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4379         if (IS_ERR(snap_name))
4380                 goto out;
4381
4382         dout("  snap_id 0x%016llx snap_name = %s\n",
4383                 (unsigned long long)snap_id, snap_name);
4384 out:
4385         kfree(reply_buf);
4386
4387         return snap_name;
4388 }
4389
4390 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4391 {
4392         bool first_time = rbd_dev->header.object_prefix == NULL;
4393         int ret;
4394
4395         ret = rbd_dev_v2_image_size(rbd_dev);
4396         if (ret)
4397                 return ret;
4398
4399         if (first_time) {
4400                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4401                 if (ret)
4402                         return ret;
4403         }
4404
4405         /*
4406          * If the image supports layering, get the parent info.  We
4407          * need to probe the first time regardless.  Thereafter we
4408          * only need to if there's a parent, to see if it has
4409          * disappeared due to the mapped image getting flattened.
4410          */
4411         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4412                         (first_time || rbd_dev->parent_spec)) {
4413                 bool warn;
4414
4415                 ret = rbd_dev_v2_parent_info(rbd_dev);
4416                 if (ret)
4417                         return ret;
4418
4419                 /*
4420                  * Print a warning if this is the initial probe and
4421                  * the image has a parent.  Don't print it if the
4422                  * image now being probed is itself a parent.  We
4423                  * can tell at this point because we won't know its
4424                  * pool name yet (just its pool id).
4425                  */
4426                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4427                 if (first_time && warn)
4428                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4429                                         "is EXPERIMENTAL!");
4430         }
4431
4432         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4433                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4434                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4435
4436         ret = rbd_dev_v2_snap_context(rbd_dev);
4437         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4438
4439         return ret;
4440 }
4441
4442 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4443 {
4444         struct device *dev;
4445         int ret;
4446
4447         dev = &rbd_dev->dev;
4448         dev->bus = &rbd_bus_type;
4449         dev->type = &rbd_device_type;
4450         dev->parent = &rbd_root_dev;
4451         dev->release = rbd_dev_device_release;
4452         dev_set_name(dev, "%d", rbd_dev->dev_id);
4453         ret = device_register(dev);
4454
4455         return ret;
4456 }
4457
4458 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4459 {
4460         device_unregister(&rbd_dev->dev);
4461 }
4462
4463 /*
4464  * Get a unique rbd identifier for the given new rbd_dev, and add
4465  * the rbd_dev to the global list.
4466  */
4467 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4468 {
4469         int new_dev_id;
4470
4471         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4472                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4473                                     GFP_KERNEL);
4474         if (new_dev_id < 0)
4475                 return new_dev_id;
4476
4477         rbd_dev->dev_id = new_dev_id;
4478
4479         spin_lock(&rbd_dev_list_lock);
4480         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4481         spin_unlock(&rbd_dev_list_lock);
4482
4483         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4484
4485         return 0;
4486 }
4487
4488 /*
4489  * Remove an rbd_dev from the global list, and record that its
4490  * identifier is no longer in use.
4491  */
4492 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4493 {
4494         spin_lock(&rbd_dev_list_lock);
4495         list_del_init(&rbd_dev->node);
4496         spin_unlock(&rbd_dev_list_lock);
4497
4498         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4499
4500         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4501 }
4502
4503 /*
4504  * Skips over white space at *buf, and updates *buf to point to the
4505  * first found non-space character (if any). Returns the length of
4506  * the token (string of non-white space characters) found.  Note
4507  * that *buf must be terminated with '\0'.
4508  */
4509 static inline size_t next_token(const char **buf)
4510 {
4511         /*
4512         * These are the characters that produce nonzero for
4513         * isspace() in the "C" and "POSIX" locales.
4514         */
4515         const char *spaces = " \f\n\r\t\v";
4516
4517         *buf += strspn(*buf, spaces);   /* Find start of token */
4518
4519         return strcspn(*buf, spaces);   /* Return token length */
4520 }
4521
4522 /*
4523  * Finds the next token in *buf, and if the provided token buffer is
4524  * big enough, copies the found token into it.  The result, if
4525  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4526  * must be terminated with '\0' on entry.
4527  *
4528  * Returns the length of the token found (not including the '\0').
4529  * Return value will be 0 if no token is found, and it will be >=
4530  * token_size if the token would not fit.
4531  *
4532  * The *buf pointer will be updated to point beyond the end of the
4533  * found token.  Note that this occurs even if the token buffer is
4534  * too small to hold it.
4535  */
4536 static inline size_t copy_token(const char **buf,
4537                                 char *token,
4538                                 size_t token_size)
4539 {
4540         size_t len;
4541
4542         len = next_token(buf);
4543         if (len < token_size) {
4544                 memcpy(token, *buf, len);
4545                 *(token + len) = '\0';
4546         }
4547         *buf += len;
4548
4549         return len;
4550 }
4551
4552 /*
4553  * Finds the next token in *buf, dynamically allocates a buffer big
4554  * enough to hold a copy of it, and copies the token into the new
4555  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4556  * that a duplicate buffer is created even for a zero-length token.
4557  *
4558  * Returns a pointer to the newly-allocated duplicate, or a null
4559  * pointer if memory for the duplicate was not available.  If
4560  * the lenp argument is a non-null pointer, the length of the token
4561  * (not including the '\0') is returned in *lenp.
4562  *
4563  * If successful, the *buf pointer will be updated to point beyond
4564  * the end of the found token.
4565  *
4566  * Note: uses GFP_KERNEL for allocation.
4567  */
4568 static inline char *dup_token(const char **buf, size_t *lenp)
4569 {
4570         char *dup;
4571         size_t len;
4572
4573         len = next_token(buf);
4574         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4575         if (!dup)
4576                 return NULL;
4577         *(dup + len) = '\0';
4578         *buf += len;
4579
4580         if (lenp)
4581                 *lenp = len;
4582
4583         return dup;
4584 }
4585
4586 /*
4587  * Parse the options provided for an "rbd add" (i.e., rbd image
4588  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4589  * and the data written is passed here via a NUL-terminated buffer.
4590  * Returns 0 if successful or an error code otherwise.
4591  *
4592  * The information extracted from these options is recorded in
4593  * the other parameters which return dynamically-allocated
4594  * structures:
4595  *  ceph_opts
4596  *      The address of a pointer that will refer to a ceph options
4597  *      structure.  Caller must release the returned pointer using
4598  *      ceph_destroy_options() when it is no longer needed.
4599  *  rbd_opts
4600  *      Address of an rbd options pointer.  Fully initialized by
4601  *      this function; caller must release with kfree().
4602  *  spec
4603  *      Address of an rbd image specification pointer.  Fully
4604  *      initialized by this function based on parsed options.
4605  *      Caller must release with rbd_spec_put().
4606  *
4607  * The options passed take this form:
4608  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4609  * where:
4610  *  <mon_addrs>
4611  *      A comma-separated list of one or more monitor addresses.
4612  *      A monitor address is an ip address, optionally followed
4613  *      by a port number (separated by a colon).
4614  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4615  *  <options>
4616  *      A comma-separated list of ceph and/or rbd options.
4617  *  <pool_name>
4618  *      The name of the rados pool containing the rbd image.
4619  *  <image_name>
4620  *      The name of the image in that pool to map.
4621  *  <snap_id>
4622  *      An optional snapshot id.  If provided, the mapping will
4623  *      present data from the image at the time that snapshot was
4624  *      created.  The image head is used if no snapshot id is
4625  *      provided.  Snapshot mappings are always read-only.
4626  */
4627 static int rbd_add_parse_args(const char *buf,
4628                                 struct ceph_options **ceph_opts,
4629                                 struct rbd_options **opts,
4630                                 struct rbd_spec **rbd_spec)
4631 {
4632         size_t len;
4633         char *options;
4634         const char *mon_addrs;
4635         char *snap_name;
4636         size_t mon_addrs_size;
4637         struct rbd_spec *spec = NULL;
4638         struct rbd_options *rbd_opts = NULL;
4639         struct ceph_options *copts;
4640         int ret;
4641
4642         /* The first four tokens are required */
4643
4644         len = next_token(&buf);
4645         if (!len) {
4646                 rbd_warn(NULL, "no monitor address(es) provided");
4647                 return -EINVAL;
4648         }
4649         mon_addrs = buf;
4650         mon_addrs_size = len + 1;
4651         buf += len;
4652
4653         ret = -EINVAL;
4654         options = dup_token(&buf, NULL);
4655         if (!options)
4656                 return -ENOMEM;
4657         if (!*options) {
4658                 rbd_warn(NULL, "no options provided");
4659                 goto out_err;
4660         }
4661
4662         spec = rbd_spec_alloc();
4663         if (!spec)
4664                 goto out_mem;
4665
4666         spec->pool_name = dup_token(&buf, NULL);
4667         if (!spec->pool_name)
4668                 goto out_mem;
4669         if (!*spec->pool_name) {
4670                 rbd_warn(NULL, "no pool name provided");
4671                 goto out_err;
4672         }
4673
4674         spec->image_name = dup_token(&buf, NULL);
4675         if (!spec->image_name)
4676                 goto out_mem;
4677         if (!*spec->image_name) {
4678                 rbd_warn(NULL, "no image name provided");
4679                 goto out_err;
4680         }
4681
4682         /*
4683          * Snapshot name is optional; default is to use "-"
4684          * (indicating the head/no snapshot).
4685          */
4686         len = next_token(&buf);
4687         if (!len) {
4688                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4689                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4690         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4691                 ret = -ENAMETOOLONG;
4692                 goto out_err;
4693         }
4694         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4695         if (!snap_name)
4696                 goto out_mem;
4697         *(snap_name + len) = '\0';
4698         spec->snap_name = snap_name;
4699
4700         /* Initialize all rbd options to the defaults */
4701
4702         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4703         if (!rbd_opts)
4704                 goto out_mem;
4705
4706         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4707
4708         copts = ceph_parse_options(options, mon_addrs,
4709                                         mon_addrs + mon_addrs_size - 1,
4710                                         parse_rbd_opts_token, rbd_opts);
4711         if (IS_ERR(copts)) {
4712                 ret = PTR_ERR(copts);
4713                 goto out_err;
4714         }
4715         kfree(options);
4716
4717         *ceph_opts = copts;
4718         *opts = rbd_opts;
4719         *rbd_spec = spec;
4720
4721         return 0;
4722 out_mem:
4723         ret = -ENOMEM;
4724 out_err:
4725         kfree(rbd_opts);
4726         rbd_spec_put(spec);
4727         kfree(options);
4728
4729         return ret;
4730 }
4731
4732 /*
4733  * Return pool id (>= 0) or a negative error code.
4734  */
4735 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4736 {
4737         u64 newest_epoch;
4738         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4739         int tries = 0;
4740         int ret;
4741
4742 again:
4743         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4744         if (ret == -ENOENT && tries++ < 1) {
4745                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4746                                                &newest_epoch);
4747                 if (ret < 0)
4748                         return ret;
4749
4750                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4751                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4752                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4753                                                      newest_epoch, timeout);
4754                         goto again;
4755                 } else {
4756                         /* the osdmap we have is new enough */
4757                         return -ENOENT;
4758                 }
4759         }
4760
4761         return ret;
4762 }
4763
4764 /*
4765  * An rbd format 2 image has a unique identifier, distinct from the
4766  * name given to it by the user.  Internally, that identifier is
4767  * what's used to specify the names of objects related to the image.
4768  *
4769  * A special "rbd id" object is used to map an rbd image name to its
4770  * id.  If that object doesn't exist, then there is no v2 rbd image
4771  * with the supplied name.
4772  *
4773  * This function will record the given rbd_dev's image_id field if
4774  * it can be determined, and in that case will return 0.  If any
4775  * errors occur a negative errno will be returned and the rbd_dev's
4776  * image_id field will be unchanged (and should be NULL).
4777  */
4778 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4779 {
4780         int ret;
4781         size_t size;
4782         char *object_name;
4783         void *response;
4784         char *image_id;
4785
4786         /*
4787          * When probing a parent image, the image id is already
4788          * known (and the image name likely is not).  There's no
4789          * need to fetch the image id again in this case.  We
4790          * do still need to set the image format though.
4791          */
4792         if (rbd_dev->spec->image_id) {
4793                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4794
4795                 return 0;
4796         }
4797
4798         /*
4799          * First, see if the format 2 image id file exists, and if
4800          * so, get the image's persistent id from it.
4801          */
4802         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4803         object_name = kmalloc(size, GFP_NOIO);
4804         if (!object_name)
4805                 return -ENOMEM;
4806         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4807         dout("rbd id object name is %s\n", object_name);
4808
4809         /* Response will be an encoded string, which includes a length */
4810
4811         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4812         response = kzalloc(size, GFP_NOIO);
4813         if (!response) {
4814                 ret = -ENOMEM;
4815                 goto out;
4816         }
4817
4818         /* If it doesn't exist we'll assume it's a format 1 image */
4819
4820         ret = rbd_obj_method_sync(rbd_dev, object_name,
4821                                 "rbd", "get_id", NULL, 0,
4822                                 response, RBD_IMAGE_ID_LEN_MAX);
4823         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4824         if (ret == -ENOENT) {
4825                 image_id = kstrdup("", GFP_KERNEL);
4826                 ret = image_id ? 0 : -ENOMEM;
4827                 if (!ret)
4828                         rbd_dev->image_format = 1;
4829         } else if (ret > sizeof (__le32)) {
4830                 void *p = response;
4831
4832                 image_id = ceph_extract_encoded_string(&p, p + ret,
4833                                                 NULL, GFP_NOIO);
4834                 ret = PTR_ERR_OR_ZERO(image_id);
4835                 if (!ret)
4836                         rbd_dev->image_format = 2;
4837         } else {
4838                 ret = -EINVAL;
4839         }
4840
4841         if (!ret) {
4842                 rbd_dev->spec->image_id = image_id;
4843                 dout("image_id is %s\n", image_id);
4844         }
4845 out:
4846         kfree(response);
4847         kfree(object_name);
4848
4849         return ret;
4850 }
4851
4852 /*
4853  * Undo whatever state changes are made by v1 or v2 header info
4854  * call.
4855  */
4856 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4857 {
4858         struct rbd_image_header *header;
4859
4860         /* Drop parent reference unless it's already been done (or none) */
4861
4862         if (rbd_dev->parent_overlap)
4863                 rbd_dev_parent_put(rbd_dev);
4864
4865         /* Free dynamic fields from the header, then zero it out */
4866
4867         header = &rbd_dev->header;
4868         ceph_put_snap_context(header->snapc);
4869         kfree(header->snap_sizes);
4870         kfree(header->snap_names);
4871         kfree(header->object_prefix);
4872         memset(header, 0, sizeof (*header));
4873 }
4874
4875 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4876 {
4877         int ret;
4878
4879         ret = rbd_dev_v2_object_prefix(rbd_dev);
4880         if (ret)
4881                 goto out_err;
4882
4883         /*
4884          * Get the and check features for the image.  Currently the
4885          * features are assumed to never change.
4886          */
4887         ret = rbd_dev_v2_features(rbd_dev);
4888         if (ret)
4889                 goto out_err;
4890
4891         /* If the image supports fancy striping, get its parameters */
4892
4893         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4894                 ret = rbd_dev_v2_striping_info(rbd_dev);
4895                 if (ret < 0)
4896                         goto out_err;
4897         }
4898         /* No support for crypto and compression type format 2 images */
4899
4900         return 0;
4901 out_err:
4902         rbd_dev->header.features = 0;
4903         kfree(rbd_dev->header.object_prefix);
4904         rbd_dev->header.object_prefix = NULL;
4905
4906         return ret;
4907 }
4908
4909 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4910 {
4911         struct rbd_device *parent = NULL;
4912         struct rbd_spec *parent_spec;
4913         struct rbd_client *rbdc;
4914         int ret;
4915
4916         if (!rbd_dev->parent_spec)
4917                 return 0;
4918         /*
4919          * We need to pass a reference to the client and the parent
4920          * spec when creating the parent rbd_dev.  Images related by
4921          * parent/child relationships always share both.
4922          */
4923         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4924         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4925
4926         ret = -ENOMEM;
4927         parent = rbd_dev_create(rbdc, parent_spec);
4928         if (!parent)
4929                 goto out_err;
4930
4931         ret = rbd_dev_image_probe(parent, false);
4932         if (ret < 0)
4933                 goto out_err;
4934         rbd_dev->parent = parent;
4935         atomic_set(&rbd_dev->parent_ref, 1);
4936
4937         return 0;
4938 out_err:
4939         if (parent) {
4940                 rbd_dev_unparent(rbd_dev);
4941                 kfree(rbd_dev->header_name);
4942                 rbd_dev_destroy(parent);
4943         } else {
4944                 rbd_put_client(rbdc);
4945                 rbd_spec_put(parent_spec);
4946         }
4947
4948         return ret;
4949 }
4950
4951 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4952 {
4953         int ret;
4954
4955         /* Get an id and fill in device name. */
4956
4957         ret = rbd_dev_id_get(rbd_dev);
4958         if (ret)
4959                 return ret;
4960
4961         BUILD_BUG_ON(DEV_NAME_LEN
4962                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4963         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4964
4965         /* Record our major and minor device numbers. */
4966
4967         if (!single_major) {
4968                 ret = register_blkdev(0, rbd_dev->name);
4969                 if (ret < 0)
4970                         goto err_out_id;
4971
4972                 rbd_dev->major = ret;
4973                 rbd_dev->minor = 0;
4974         } else {
4975                 rbd_dev->major = rbd_major;
4976                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4977         }
4978
4979         /* Set up the blkdev mapping. */
4980
4981         ret = rbd_init_disk(rbd_dev);
4982         if (ret)
4983                 goto err_out_blkdev;
4984
4985         ret = rbd_dev_mapping_set(rbd_dev);
4986         if (ret)
4987                 goto err_out_disk;
4988         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4989
4990         ret = rbd_bus_add_dev(rbd_dev);
4991         if (ret)
4992                 goto err_out_mapping;
4993
4994         /* Everything's ready.  Announce the disk to the world. */
4995
4996         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4997         add_disk(rbd_dev->disk);
4998
4999         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5000                 (unsigned long long) rbd_dev->mapping.size);
5001
5002         return ret;
5003
5004 err_out_mapping:
5005         rbd_dev_mapping_clear(rbd_dev);
5006 err_out_disk:
5007         rbd_free_disk(rbd_dev);
5008 err_out_blkdev:
5009         if (!single_major)
5010                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5011 err_out_id:
5012         rbd_dev_id_put(rbd_dev);
5013         rbd_dev_mapping_clear(rbd_dev);
5014
5015         return ret;
5016 }
5017
5018 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5019 {
5020         struct rbd_spec *spec = rbd_dev->spec;
5021         size_t size;
5022
5023         /* Record the header object name for this rbd image. */
5024
5025         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5026
5027         if (rbd_dev->image_format == 1)
5028                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5029         else
5030                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5031
5032         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5033         if (!rbd_dev->header_name)
5034                 return -ENOMEM;
5035
5036         if (rbd_dev->image_format == 1)
5037                 sprintf(rbd_dev->header_name, "%s%s",
5038                         spec->image_name, RBD_SUFFIX);
5039         else
5040                 sprintf(rbd_dev->header_name, "%s%s",
5041                         RBD_HEADER_PREFIX, spec->image_id);
5042         return 0;
5043 }
5044
5045 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5046 {
5047         rbd_dev_unprobe(rbd_dev);
5048         kfree(rbd_dev->header_name);
5049         rbd_dev->header_name = NULL;
5050         rbd_dev->image_format = 0;
5051         kfree(rbd_dev->spec->image_id);
5052         rbd_dev->spec->image_id = NULL;
5053
5054         rbd_dev_destroy(rbd_dev);
5055 }
5056
5057 /*
5058  * Probe for the existence of the header object for the given rbd
5059  * device.  If this image is the one being mapped (i.e., not a
5060  * parent), initiate a watch on its header object before using that
5061  * object to get detailed information about the rbd image.
5062  */
5063 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5064 {
5065         int ret;
5066
5067         /*
5068          * Get the id from the image id object.  Unless there's an
5069          * error, rbd_dev->spec->image_id will be filled in with
5070          * a dynamically-allocated string, and rbd_dev->image_format
5071          * will be set to either 1 or 2.
5072          */
5073         ret = rbd_dev_image_id(rbd_dev);
5074         if (ret)
5075                 return ret;
5076         rbd_assert(rbd_dev->spec->image_id);
5077         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5078
5079         ret = rbd_dev_header_name(rbd_dev);
5080         if (ret)
5081                 goto err_out_format;
5082
5083         if (mapping) {
5084                 ret = rbd_dev_header_watch_sync(rbd_dev);
5085                 if (ret)
5086                         goto out_header_name;
5087         }
5088
5089         if (rbd_dev->image_format == 1)
5090                 ret = rbd_dev_v1_header_info(rbd_dev);
5091         else
5092                 ret = rbd_dev_v2_header_info(rbd_dev);
5093         if (ret)
5094                 goto err_out_watch;
5095
5096         ret = rbd_dev_spec_update(rbd_dev);
5097         if (ret)
5098                 goto err_out_probe;
5099
5100         ret = rbd_dev_probe_parent(rbd_dev);
5101         if (ret)
5102                 goto err_out_probe;
5103
5104         dout("discovered format %u image, header name is %s\n",
5105                 rbd_dev->image_format, rbd_dev->header_name);
5106
5107         return 0;
5108 err_out_probe:
5109         rbd_dev_unprobe(rbd_dev);
5110 err_out_watch:
5111         if (mapping)
5112                 rbd_dev_header_unwatch_sync(rbd_dev);
5113 out_header_name:
5114         kfree(rbd_dev->header_name);
5115         rbd_dev->header_name = NULL;
5116 err_out_format:
5117         rbd_dev->image_format = 0;
5118         kfree(rbd_dev->spec->image_id);
5119         rbd_dev->spec->image_id = NULL;
5120
5121         dout("probe failed, returning %d\n", ret);
5122
5123         return ret;
5124 }
5125
5126 static ssize_t do_rbd_add(struct bus_type *bus,
5127                           const char *buf,
5128                           size_t count)
5129 {
5130         struct rbd_device *rbd_dev = NULL;
5131         struct ceph_options *ceph_opts = NULL;
5132         struct rbd_options *rbd_opts = NULL;
5133         struct rbd_spec *spec = NULL;
5134         struct rbd_client *rbdc;
5135         bool read_only;
5136         int rc = -ENOMEM;
5137
5138         if (!try_module_get(THIS_MODULE))
5139                 return -ENODEV;
5140
5141         /* parse add command */
5142         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5143         if (rc < 0)
5144                 goto err_out_module;
5145         read_only = rbd_opts->read_only;
5146         kfree(rbd_opts);
5147         rbd_opts = NULL;        /* done with this */
5148
5149         rbdc = rbd_get_client(ceph_opts);
5150         if (IS_ERR(rbdc)) {
5151                 rc = PTR_ERR(rbdc);
5152                 goto err_out_args;
5153         }
5154
5155         /* pick the pool */
5156         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5157         if (rc < 0)
5158                 goto err_out_client;
5159         spec->pool_id = (u64)rc;
5160
5161         /* The ceph file layout needs to fit pool id in 32 bits */
5162
5163         if (spec->pool_id > (u64)U32_MAX) {
5164                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5165                                 (unsigned long long)spec->pool_id, U32_MAX);
5166                 rc = -EIO;
5167                 goto err_out_client;
5168         }
5169
5170         rbd_dev = rbd_dev_create(rbdc, spec);
5171         if (!rbd_dev)
5172                 goto err_out_client;
5173         rbdc = NULL;            /* rbd_dev now owns this */
5174         spec = NULL;            /* rbd_dev now owns this */
5175
5176         rc = rbd_dev_image_probe(rbd_dev, true);
5177         if (rc < 0)
5178                 goto err_out_rbd_dev;
5179
5180         /* If we are mapping a snapshot it must be marked read-only */
5181
5182         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5183                 read_only = true;
5184         rbd_dev->mapping.read_only = read_only;
5185
5186         rc = rbd_dev_device_setup(rbd_dev);
5187         if (rc) {
5188                 /*
5189                  * rbd_dev_header_unwatch_sync() can't be moved into
5190                  * rbd_dev_image_release() without refactoring, see
5191                  * commit 1f3ef78861ac.
5192                  */
5193                 rbd_dev_header_unwatch_sync(rbd_dev);
5194                 rbd_dev_image_release(rbd_dev);
5195                 goto err_out_module;
5196         }
5197
5198         return count;
5199
5200 err_out_rbd_dev:
5201         rbd_dev_destroy(rbd_dev);
5202 err_out_client:
5203         rbd_put_client(rbdc);
5204 err_out_args:
5205         rbd_spec_put(spec);
5206 err_out_module:
5207         module_put(THIS_MODULE);
5208
5209         dout("Error adding device %s\n", buf);
5210
5211         return (ssize_t)rc;
5212 }
5213
5214 static ssize_t rbd_add(struct bus_type *bus,
5215                        const char *buf,
5216                        size_t count)
5217 {
5218         if (single_major)
5219                 return -EINVAL;
5220
5221         return do_rbd_add(bus, buf, count);
5222 }
5223
5224 static ssize_t rbd_add_single_major(struct bus_type *bus,
5225                                     const char *buf,
5226                                     size_t count)
5227 {
5228         return do_rbd_add(bus, buf, count);
5229 }
5230
5231 static void rbd_dev_device_release(struct device *dev)
5232 {
5233         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5234
5235         rbd_free_disk(rbd_dev);
5236         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5237         rbd_dev_mapping_clear(rbd_dev);
5238         if (!single_major)
5239                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5240         rbd_dev_id_put(rbd_dev);
5241         rbd_dev_mapping_clear(rbd_dev);
5242 }
5243
5244 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5245 {
5246         while (rbd_dev->parent) {
5247                 struct rbd_device *first = rbd_dev;
5248                 struct rbd_device *second = first->parent;
5249                 struct rbd_device *third;
5250
5251                 /*
5252                  * Follow to the parent with no grandparent and
5253                  * remove it.
5254                  */
5255                 while (second && (third = second->parent)) {
5256                         first = second;
5257                         second = third;
5258                 }
5259                 rbd_assert(second);
5260                 rbd_dev_image_release(second);
5261                 first->parent = NULL;
5262                 first->parent_overlap = 0;
5263
5264                 rbd_assert(first->parent_spec);
5265                 rbd_spec_put(first->parent_spec);
5266                 first->parent_spec = NULL;
5267         }
5268 }
5269
5270 static ssize_t do_rbd_remove(struct bus_type *bus,
5271                              const char *buf,
5272                              size_t count)
5273 {
5274         struct rbd_device *rbd_dev = NULL;
5275         struct list_head *tmp;
5276         int dev_id;
5277         unsigned long ul;
5278         bool already = false;
5279         int ret;
5280
5281         ret = kstrtoul(buf, 10, &ul);
5282         if (ret)
5283                 return ret;
5284
5285         /* convert to int; abort if we lost anything in the conversion */
5286         dev_id = (int)ul;
5287         if (dev_id != ul)
5288                 return -EINVAL;
5289
5290         ret = -ENOENT;
5291         spin_lock(&rbd_dev_list_lock);
5292         list_for_each(tmp, &rbd_dev_list) {
5293                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5294                 if (rbd_dev->dev_id == dev_id) {
5295                         ret = 0;
5296                         break;
5297                 }
5298         }
5299         if (!ret) {
5300                 spin_lock_irq(&rbd_dev->lock);
5301                 if (rbd_dev->open_count)
5302                         ret = -EBUSY;
5303                 else
5304                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5305                                                         &rbd_dev->flags);
5306                 spin_unlock_irq(&rbd_dev->lock);
5307         }
5308         spin_unlock(&rbd_dev_list_lock);
5309         if (ret < 0 || already)
5310                 return ret;
5311
5312         rbd_dev_header_unwatch_sync(rbd_dev);
5313         /*
5314          * flush remaining watch callbacks - these must be complete
5315          * before the osd_client is shutdown
5316          */
5317         dout("%s: flushing notifies", __func__);
5318         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5319
5320         /*
5321          * Don't free anything from rbd_dev->disk until after all
5322          * notifies are completely processed. Otherwise
5323          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5324          * in a potential use after free of rbd_dev->disk or rbd_dev.
5325          */
5326         rbd_bus_del_dev(rbd_dev);
5327         rbd_dev_image_release(rbd_dev);
5328         module_put(THIS_MODULE);
5329
5330         return count;
5331 }
5332
5333 static ssize_t rbd_remove(struct bus_type *bus,
5334                           const char *buf,
5335                           size_t count)
5336 {
5337         if (single_major)
5338                 return -EINVAL;
5339
5340         return do_rbd_remove(bus, buf, count);
5341 }
5342
5343 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5344                                        const char *buf,
5345                                        size_t count)
5346 {
5347         return do_rbd_remove(bus, buf, count);
5348 }
5349
5350 /*
5351  * create control files in sysfs
5352  * /sys/bus/rbd/...
5353  */
5354 static int rbd_sysfs_init(void)
5355 {
5356         int ret;
5357
5358         ret = device_register(&rbd_root_dev);
5359         if (ret < 0)
5360                 return ret;
5361
5362         ret = bus_register(&rbd_bus_type);
5363         if (ret < 0)
5364                 device_unregister(&rbd_root_dev);
5365
5366         return ret;
5367 }
5368
5369 static void rbd_sysfs_cleanup(void)
5370 {
5371         bus_unregister(&rbd_bus_type);
5372         device_unregister(&rbd_root_dev);
5373 }
5374
5375 static int rbd_slab_init(void)
5376 {
5377         rbd_assert(!rbd_img_request_cache);
5378         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5379                                         sizeof (struct rbd_img_request),
5380                                         __alignof__(struct rbd_img_request),
5381                                         0, NULL);
5382         if (!rbd_img_request_cache)
5383                 return -ENOMEM;
5384
5385         rbd_assert(!rbd_obj_request_cache);
5386         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5387                                         sizeof (struct rbd_obj_request),
5388                                         __alignof__(struct rbd_obj_request),
5389                                         0, NULL);
5390         if (!rbd_obj_request_cache)
5391                 goto out_err;
5392
5393         rbd_assert(!rbd_segment_name_cache);
5394         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5395                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5396         if (rbd_segment_name_cache)
5397                 return 0;
5398 out_err:
5399         if (rbd_obj_request_cache) {
5400                 kmem_cache_destroy(rbd_obj_request_cache);
5401                 rbd_obj_request_cache = NULL;
5402         }
5403
5404         kmem_cache_destroy(rbd_img_request_cache);
5405         rbd_img_request_cache = NULL;
5406
5407         return -ENOMEM;
5408 }
5409
5410 static void rbd_slab_exit(void)
5411 {
5412         rbd_assert(rbd_segment_name_cache);
5413         kmem_cache_destroy(rbd_segment_name_cache);
5414         rbd_segment_name_cache = NULL;
5415
5416         rbd_assert(rbd_obj_request_cache);
5417         kmem_cache_destroy(rbd_obj_request_cache);
5418         rbd_obj_request_cache = NULL;
5419
5420         rbd_assert(rbd_img_request_cache);
5421         kmem_cache_destroy(rbd_img_request_cache);
5422         rbd_img_request_cache = NULL;
5423 }
5424
5425 static int __init rbd_init(void)
5426 {
5427         int rc;
5428
5429         if (!libceph_compatible(NULL)) {
5430                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5431                 return -EINVAL;
5432         }
5433
5434         rc = rbd_slab_init();
5435         if (rc)
5436                 return rc;
5437
5438         if (single_major) {
5439                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5440                 if (rbd_major < 0) {
5441                         rc = rbd_major;
5442                         goto err_out_slab;
5443                 }
5444         }
5445
5446         rc = rbd_sysfs_init();
5447         if (rc)
5448                 goto err_out_blkdev;
5449
5450         if (single_major)
5451                 pr_info("loaded (major %d)\n", rbd_major);
5452         else
5453                 pr_info("loaded\n");
5454
5455         return 0;
5456
5457 err_out_blkdev:
5458         if (single_major)
5459                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5460 err_out_slab:
5461         rbd_slab_exit();
5462         return rc;
5463 }
5464
5465 static void __exit rbd_exit(void)
5466 {
5467         rbd_sysfs_cleanup();
5468         if (single_major)
5469                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5470         rbd_slab_exit();
5471 }
5472
5473 module_init(rbd_init);
5474 module_exit(rbd_exit);
5475
5476 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5477 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5478 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5479 /* following authorship retained from original osdblk.c */
5480 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5481
5482 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5483 MODULE_LICENSE("GPL");