]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/rbd.c
rbd: use a single workqueue for all devices
[karo-tx-linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46
47 #include "rbd_types.h"
48
49 #define RBD_DEBUG       /* Activate rbd_assert() calls */
50
51 /*
52  * The basic unit of block I/O is a sector.  It is interpreted in a
53  * number of contexts in Linux (blk, bio, genhd), but the default is
54  * universally 512 bytes.  These symbols are just slightly more
55  * meaningful than the bare numbers they represent.
56  */
57 #define SECTOR_SHIFT    9
58 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
59
60 /*
61  * Increment the given counter and return its updated value.
62  * If the counter is already 0 it will not be incremented.
63  * If the counter is already at its maximum value returns
64  * -EINVAL without updating it.
65  */
66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68         unsigned int counter;
69
70         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71         if (counter <= (unsigned int)INT_MAX)
72                 return (int)counter;
73
74         atomic_dec(v);
75
76         return -EINVAL;
77 }
78
79 /* Decrement the counter.  Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82         int counter;
83
84         counter = atomic_dec_return(v);
85         if (counter >= 0)
86                 return counter;
87
88         atomic_inc(v);
89
90         return -EINVAL;
91 }
92
93 #define RBD_DRV_NAME "rbd"
94
95 #define RBD_MINORS_PER_MAJOR            256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
97
98 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
99 #define RBD_MAX_SNAP_NAME_LEN   \
100                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101
102 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
103
104 #define RBD_SNAP_HEAD_NAME      "-"
105
106 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
107
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX    64
111
112 #define RBD_OBJ_PREFIX_LEN_MAX  64
113
114 /* Feature bits */
115
116 #define RBD_FEATURE_LAYERING    (1<<0)
117 #define RBD_FEATURE_STRIPINGV2  (1<<1)
118 #define RBD_FEATURES_ALL \
119             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120
121 /* Features supported by this (client software) implementation. */
122
123 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
124
125 /*
126  * An RBD device name will be "rbd#", where the "rbd" comes from
127  * RBD_DRV_NAME above, and # is a unique integer identifier.
128  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129  * enough to hold all possible device names.
130  */
131 #define DEV_NAME_LEN            32
132 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
133
134 /*
135  * block device image metadata (in-memory version)
136  */
137 struct rbd_image_header {
138         /* These six fields never change for a given rbd image */
139         char *object_prefix;
140         __u8 obj_order;
141         __u8 crypt_type;
142         __u8 comp_type;
143         u64 stripe_unit;
144         u64 stripe_count;
145         u64 features;           /* Might be changeable someday? */
146
147         /* The remaining fields need to be updated occasionally */
148         u64 image_size;
149         struct ceph_snap_context *snapc;
150         char *snap_names;       /* format 1 only */
151         u64 *snap_sizes;        /* format 1 only */
152 };
153
154 /*
155  * An rbd image specification.
156  *
157  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158  * identify an image.  Each rbd_dev structure includes a pointer to
159  * an rbd_spec structure that encapsulates this identity.
160  *
161  * Each of the id's in an rbd_spec has an associated name.  For a
162  * user-mapped image, the names are supplied and the id's associated
163  * with them are looked up.  For a layered image, a parent image is
164  * defined by the tuple, and the names are looked up.
165  *
166  * An rbd_dev structure contains a parent_spec pointer which is
167  * non-null if the image it represents is a child in a layered
168  * image.  This pointer will refer to the rbd_spec structure used
169  * by the parent rbd_dev for its own identity (i.e., the structure
170  * is shared between the parent and child).
171  *
172  * Since these structures are populated once, during the discovery
173  * phase of image construction, they are effectively immutable so
174  * we make no effort to synchronize access to them.
175  *
176  * Note that code herein does not assume the image name is known (it
177  * could be a null pointer).
178  */
179 struct rbd_spec {
180         u64             pool_id;
181         const char      *pool_name;
182
183         const char      *image_id;
184         const char      *image_name;
185
186         u64             snap_id;
187         const char      *snap_name;
188
189         struct kref     kref;
190 };
191
192 /*
193  * an instance of the client.  multiple devices may share an rbd client.
194  */
195 struct rbd_client {
196         struct ceph_client      *client;
197         struct kref             kref;
198         struct list_head        node;
199 };
200
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203
204 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
205
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208
209 enum obj_request_type {
210         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212
213 enum obj_operation_type {
214         OBJ_OP_WRITE,
215         OBJ_OP_READ,
216         OBJ_OP_DISCARD,
217 };
218
219 enum obj_req_flags {
220         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
221         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
222         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
223         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
224 };
225
226 struct rbd_obj_request {
227         const char              *object_name;
228         u64                     offset;         /* object start byte */
229         u64                     length;         /* bytes from offset */
230         unsigned long           flags;
231
232         /*
233          * An object request associated with an image will have its
234          * img_data flag set; a standalone object request will not.
235          *
236          * A standalone object request will have which == BAD_WHICH
237          * and a null obj_request pointer.
238          *
239          * An object request initiated in support of a layered image
240          * object (to check for its existence before a write) will
241          * have which == BAD_WHICH and a non-null obj_request pointer.
242          *
243          * Finally, an object request for rbd image data will have
244          * which != BAD_WHICH, and will have a non-null img_request
245          * pointer.  The value of which will be in the range
246          * 0..(img_request->obj_request_count-1).
247          */
248         union {
249                 struct rbd_obj_request  *obj_request;   /* STAT op */
250                 struct {
251                         struct rbd_img_request  *img_request;
252                         u64                     img_offset;
253                         /* links for img_request->obj_requests list */
254                         struct list_head        links;
255                 };
256         };
257         u32                     which;          /* posn image request list */
258
259         enum obj_request_type   type;
260         union {
261                 struct bio      *bio_list;
262                 struct {
263                         struct page     **pages;
264                         u32             page_count;
265                 };
266         };
267         struct page             **copyup_pages;
268         u32                     copyup_page_count;
269
270         struct ceph_osd_request *osd_req;
271
272         u64                     xferred;        /* bytes transferred */
273         int                     result;
274
275         rbd_obj_callback_t      callback;
276         struct completion       completion;
277
278         struct kref             kref;
279 };
280
281 enum img_req_flags {
282         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
283         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
284         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
285         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
286 };
287
288 struct rbd_img_request {
289         struct rbd_device       *rbd_dev;
290         u64                     offset; /* starting image byte offset */
291         u64                     length; /* byte count from offset */
292         unsigned long           flags;
293         union {
294                 u64                     snap_id;        /* for reads */
295                 struct ceph_snap_context *snapc;        /* for writes */
296         };
297         union {
298                 struct request          *rq;            /* block request */
299                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
300         };
301         struct page             **copyup_pages;
302         u32                     copyup_page_count;
303         spinlock_t              completion_lock;/* protects next_completion */
304         u32                     next_completion;
305         rbd_img_callback_t      callback;
306         u64                     xferred;/* aggregate bytes transferred */
307         int                     result; /* first nonzero obj_request result */
308
309         u32                     obj_request_count;
310         struct list_head        obj_requests;   /* rbd_obj_request structs */
311
312         struct kref             kref;
313 };
314
315 #define for_each_obj_request(ireq, oreq) \
316         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
321
322 struct rbd_mapping {
323         u64                     size;
324         u64                     features;
325         bool                    read_only;
326 };
327
328 /*
329  * a single device
330  */
331 struct rbd_device {
332         int                     dev_id;         /* blkdev unique id */
333
334         int                     major;          /* blkdev assigned major */
335         int                     minor;
336         struct gendisk          *disk;          /* blkdev's gendisk and rq */
337
338         u32                     image_format;   /* Either 1 or 2 */
339         struct rbd_client       *rbd_client;
340
341         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342
343         struct list_head        rq_queue;       /* incoming rq queue */
344         spinlock_t              lock;           /* queue, flags, open_count */
345         struct work_struct      rq_work;
346
347         struct rbd_image_header header;
348         unsigned long           flags;          /* possibly lock protected */
349         struct rbd_spec         *spec;
350
351         char                    *header_name;
352
353         struct ceph_file_layout layout;
354
355         struct ceph_osd_event   *watch_event;
356         struct rbd_obj_request  *watch_request;
357
358         struct rbd_spec         *parent_spec;
359         u64                     parent_overlap;
360         atomic_t                parent_ref;
361         struct rbd_device       *parent;
362
363         /* protects updating the header */
364         struct rw_semaphore     header_rwsem;
365
366         struct rbd_mapping      mapping;
367
368         struct list_head        node;
369
370         /* sysfs related */
371         struct device           dev;
372         unsigned long           open_count;     /* protected by lock */
373 };
374
375 /*
376  * Flag bits for rbd_dev->flags.  If atomicity is required,
377  * rbd_dev->lock is used to protect access.
378  *
379  * Currently, only the "removing" flag (which is coupled with the
380  * "open_count" field) requires atomic access.
381  */
382 enum rbd_dev_flags {
383         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
384         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
385 };
386
387 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
388
389 static LIST_HEAD(rbd_dev_list);    /* devices */
390 static DEFINE_SPINLOCK(rbd_dev_list_lock);
391
392 static LIST_HEAD(rbd_client_list);              /* clients */
393 static DEFINE_SPINLOCK(rbd_client_list_lock);
394
395 /* Slab caches for frequently-allocated structures */
396
397 static struct kmem_cache        *rbd_img_request_cache;
398 static struct kmem_cache        *rbd_obj_request_cache;
399 static struct kmem_cache        *rbd_segment_name_cache;
400
401 static int rbd_major;
402 static DEFINE_IDA(rbd_dev_id_ida);
403
404 static struct workqueue_struct *rbd_wq;
405
406 /*
407  * Default to false for now, as single-major requires >= 0.75 version of
408  * userspace rbd utility.
409  */
410 static bool single_major = false;
411 module_param(single_major, bool, S_IRUGO);
412 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
413
414 static int rbd_img_request_submit(struct rbd_img_request *img_request);
415
416 static void rbd_dev_device_release(struct device *dev);
417
418 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
419                        size_t count);
420 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
421                           size_t count);
422 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
423                                     size_t count);
424 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
425                                        size_t count);
426 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
427 static void rbd_spec_put(struct rbd_spec *spec);
428
429 static int rbd_dev_id_to_minor(int dev_id)
430 {
431         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
432 }
433
434 static int minor_to_rbd_dev_id(int minor)
435 {
436         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
437 }
438
439 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
440 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
441 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
442 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
443
444 static struct attribute *rbd_bus_attrs[] = {
445         &bus_attr_add.attr,
446         &bus_attr_remove.attr,
447         &bus_attr_add_single_major.attr,
448         &bus_attr_remove_single_major.attr,
449         NULL,
450 };
451
452 static umode_t rbd_bus_is_visible(struct kobject *kobj,
453                                   struct attribute *attr, int index)
454 {
455         if (!single_major &&
456             (attr == &bus_attr_add_single_major.attr ||
457              attr == &bus_attr_remove_single_major.attr))
458                 return 0;
459
460         return attr->mode;
461 }
462
463 static const struct attribute_group rbd_bus_group = {
464         .attrs = rbd_bus_attrs,
465         .is_visible = rbd_bus_is_visible,
466 };
467 __ATTRIBUTE_GROUPS(rbd_bus);
468
469 static struct bus_type rbd_bus_type = {
470         .name           = "rbd",
471         .bus_groups     = rbd_bus_groups,
472 };
473
474 static void rbd_root_dev_release(struct device *dev)
475 {
476 }
477
478 static struct device rbd_root_dev = {
479         .init_name =    "rbd",
480         .release =      rbd_root_dev_release,
481 };
482
483 static __printf(2, 3)
484 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
485 {
486         struct va_format vaf;
487         va_list args;
488
489         va_start(args, fmt);
490         vaf.fmt = fmt;
491         vaf.va = &args;
492
493         if (!rbd_dev)
494                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
495         else if (rbd_dev->disk)
496                 printk(KERN_WARNING "%s: %s: %pV\n",
497                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
498         else if (rbd_dev->spec && rbd_dev->spec->image_name)
499                 printk(KERN_WARNING "%s: image %s: %pV\n",
500                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
501         else if (rbd_dev->spec && rbd_dev->spec->image_id)
502                 printk(KERN_WARNING "%s: id %s: %pV\n",
503                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
504         else    /* punt */
505                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
506                         RBD_DRV_NAME, rbd_dev, &vaf);
507         va_end(args);
508 }
509
510 #ifdef RBD_DEBUG
511 #define rbd_assert(expr)                                                \
512                 if (unlikely(!(expr))) {                                \
513                         printk(KERN_ERR "\nAssertion failure in %s() "  \
514                                                 "at line %d:\n\n"       \
515                                         "\trbd_assert(%s);\n\n",        \
516                                         __func__, __LINE__, #expr);     \
517                         BUG();                                          \
518                 }
519 #else /* !RBD_DEBUG */
520 #  define rbd_assert(expr)      ((void) 0)
521 #endif /* !RBD_DEBUG */
522
523 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
524 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
525 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
526
527 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
528 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
529 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
531 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
532                                         u64 snap_id);
533 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
534                                 u8 *order, u64 *snap_size);
535 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
536                 u64 *snap_features);
537 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
538
539 static int rbd_open(struct block_device *bdev, fmode_t mode)
540 {
541         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
542         bool removing = false;
543
544         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
545                 return -EROFS;
546
547         spin_lock_irq(&rbd_dev->lock);
548         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
549                 removing = true;
550         else
551                 rbd_dev->open_count++;
552         spin_unlock_irq(&rbd_dev->lock);
553         if (removing)
554                 return -ENOENT;
555
556         (void) get_device(&rbd_dev->dev);
557
558         return 0;
559 }
560
561 static void rbd_release(struct gendisk *disk, fmode_t mode)
562 {
563         struct rbd_device *rbd_dev = disk->private_data;
564         unsigned long open_count_before;
565
566         spin_lock_irq(&rbd_dev->lock);
567         open_count_before = rbd_dev->open_count--;
568         spin_unlock_irq(&rbd_dev->lock);
569         rbd_assert(open_count_before > 0);
570
571         put_device(&rbd_dev->dev);
572 }
573
574 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
575 {
576         int ret = 0;
577         int val;
578         bool ro;
579         bool ro_changed = false;
580
581         /* get_user() may sleep, so call it before taking rbd_dev->lock */
582         if (get_user(val, (int __user *)(arg)))
583                 return -EFAULT;
584
585         ro = val ? true : false;
586         /* Snapshot doesn't allow to write*/
587         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
588                 return -EROFS;
589
590         spin_lock_irq(&rbd_dev->lock);
591         /* prevent others open this device */
592         if (rbd_dev->open_count > 1) {
593                 ret = -EBUSY;
594                 goto out;
595         }
596
597         if (rbd_dev->mapping.read_only != ro) {
598                 rbd_dev->mapping.read_only = ro;
599                 ro_changed = true;
600         }
601
602 out:
603         spin_unlock_irq(&rbd_dev->lock);
604         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
605         if (ret == 0 && ro_changed)
606                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
607
608         return ret;
609 }
610
611 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
612                         unsigned int cmd, unsigned long arg)
613 {
614         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
615         int ret = 0;
616
617         switch (cmd) {
618         case BLKROSET:
619                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
620                 break;
621         default:
622                 ret = -ENOTTY;
623         }
624
625         return ret;
626 }
627
628 #ifdef CONFIG_COMPAT
629 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
630                                 unsigned int cmd, unsigned long arg)
631 {
632         return rbd_ioctl(bdev, mode, cmd, arg);
633 }
634 #endif /* CONFIG_COMPAT */
635
636 static const struct block_device_operations rbd_bd_ops = {
637         .owner                  = THIS_MODULE,
638         .open                   = rbd_open,
639         .release                = rbd_release,
640         .ioctl                  = rbd_ioctl,
641 #ifdef CONFIG_COMPAT
642         .compat_ioctl           = rbd_compat_ioctl,
643 #endif
644 };
645
646 /*
647  * Initialize an rbd client instance.  Success or not, this function
648  * consumes ceph_opts.  Caller holds client_mutex.
649  */
650 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
651 {
652         struct rbd_client *rbdc;
653         int ret = -ENOMEM;
654
655         dout("%s:\n", __func__);
656         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
657         if (!rbdc)
658                 goto out_opt;
659
660         kref_init(&rbdc->kref);
661         INIT_LIST_HEAD(&rbdc->node);
662
663         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
664         if (IS_ERR(rbdc->client))
665                 goto out_rbdc;
666         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
667
668         ret = ceph_open_session(rbdc->client);
669         if (ret < 0)
670                 goto out_client;
671
672         spin_lock(&rbd_client_list_lock);
673         list_add_tail(&rbdc->node, &rbd_client_list);
674         spin_unlock(&rbd_client_list_lock);
675
676         dout("%s: rbdc %p\n", __func__, rbdc);
677
678         return rbdc;
679 out_client:
680         ceph_destroy_client(rbdc->client);
681 out_rbdc:
682         kfree(rbdc);
683 out_opt:
684         if (ceph_opts)
685                 ceph_destroy_options(ceph_opts);
686         dout("%s: error %d\n", __func__, ret);
687
688         return ERR_PTR(ret);
689 }
690
691 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
692 {
693         kref_get(&rbdc->kref);
694
695         return rbdc;
696 }
697
698 /*
699  * Find a ceph client with specific addr and configuration.  If
700  * found, bump its reference count.
701  */
702 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
703 {
704         struct rbd_client *client_node;
705         bool found = false;
706
707         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
708                 return NULL;
709
710         spin_lock(&rbd_client_list_lock);
711         list_for_each_entry(client_node, &rbd_client_list, node) {
712                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
713                         __rbd_get_client(client_node);
714
715                         found = true;
716                         break;
717                 }
718         }
719         spin_unlock(&rbd_client_list_lock);
720
721         return found ? client_node : NULL;
722 }
723
724 /*
725  * mount options
726  */
727 enum {
728         Opt_last_int,
729         /* int args above */
730         Opt_last_string,
731         /* string args above */
732         Opt_read_only,
733         Opt_read_write,
734         /* Boolean args above */
735         Opt_last_bool,
736 };
737
738 static match_table_t rbd_opts_tokens = {
739         /* int args above */
740         /* string args above */
741         {Opt_read_only, "read_only"},
742         {Opt_read_only, "ro"},          /* Alternate spelling */
743         {Opt_read_write, "read_write"},
744         {Opt_read_write, "rw"},         /* Alternate spelling */
745         /* Boolean args above */
746         {-1, NULL}
747 };
748
749 struct rbd_options {
750         bool    read_only;
751 };
752
753 #define RBD_READ_ONLY_DEFAULT   false
754
755 static int parse_rbd_opts_token(char *c, void *private)
756 {
757         struct rbd_options *rbd_opts = private;
758         substring_t argstr[MAX_OPT_ARGS];
759         int token, intval, ret;
760
761         token = match_token(c, rbd_opts_tokens, argstr);
762         if (token < 0)
763                 return -EINVAL;
764
765         if (token < Opt_last_int) {
766                 ret = match_int(&argstr[0], &intval);
767                 if (ret < 0) {
768                         pr_err("bad mount option arg (not int) "
769                                "at '%s'\n", c);
770                         return ret;
771                 }
772                 dout("got int token %d val %d\n", token, intval);
773         } else if (token > Opt_last_int && token < Opt_last_string) {
774                 dout("got string token %d val %s\n", token,
775                      argstr[0].from);
776         } else if (token > Opt_last_string && token < Opt_last_bool) {
777                 dout("got Boolean token %d\n", token);
778         } else {
779                 dout("got token %d\n", token);
780         }
781
782         switch (token) {
783         case Opt_read_only:
784                 rbd_opts->read_only = true;
785                 break;
786         case Opt_read_write:
787                 rbd_opts->read_only = false;
788                 break;
789         default:
790                 rbd_assert(false);
791                 break;
792         }
793         return 0;
794 }
795
796 static char* obj_op_name(enum obj_operation_type op_type)
797 {
798         switch (op_type) {
799         case OBJ_OP_READ:
800                 return "read";
801         case OBJ_OP_WRITE:
802                 return "write";
803         case OBJ_OP_DISCARD:
804                 return "discard";
805         default:
806                 return "???";
807         }
808 }
809
810 /*
811  * Get a ceph client with specific addr and configuration, if one does
812  * not exist create it.  Either way, ceph_opts is consumed by this
813  * function.
814  */
815 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
816 {
817         struct rbd_client *rbdc;
818
819         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
820         rbdc = rbd_client_find(ceph_opts);
821         if (rbdc)       /* using an existing client */
822                 ceph_destroy_options(ceph_opts);
823         else
824                 rbdc = rbd_client_create(ceph_opts);
825         mutex_unlock(&client_mutex);
826
827         return rbdc;
828 }
829
830 /*
831  * Destroy ceph client
832  *
833  * Caller must hold rbd_client_list_lock.
834  */
835 static void rbd_client_release(struct kref *kref)
836 {
837         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
838
839         dout("%s: rbdc %p\n", __func__, rbdc);
840         spin_lock(&rbd_client_list_lock);
841         list_del(&rbdc->node);
842         spin_unlock(&rbd_client_list_lock);
843
844         ceph_destroy_client(rbdc->client);
845         kfree(rbdc);
846 }
847
848 /*
849  * Drop reference to ceph client node. If it's not referenced anymore, release
850  * it.
851  */
852 static void rbd_put_client(struct rbd_client *rbdc)
853 {
854         if (rbdc)
855                 kref_put(&rbdc->kref, rbd_client_release);
856 }
857
858 static bool rbd_image_format_valid(u32 image_format)
859 {
860         return image_format == 1 || image_format == 2;
861 }
862
863 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
864 {
865         size_t size;
866         u32 snap_count;
867
868         /* The header has to start with the magic rbd header text */
869         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
870                 return false;
871
872         /* The bio layer requires at least sector-sized I/O */
873
874         if (ondisk->options.order < SECTOR_SHIFT)
875                 return false;
876
877         /* If we use u64 in a few spots we may be able to loosen this */
878
879         if (ondisk->options.order > 8 * sizeof (int) - 1)
880                 return false;
881
882         /*
883          * The size of a snapshot header has to fit in a size_t, and
884          * that limits the number of snapshots.
885          */
886         snap_count = le32_to_cpu(ondisk->snap_count);
887         size = SIZE_MAX - sizeof (struct ceph_snap_context);
888         if (snap_count > size / sizeof (__le64))
889                 return false;
890
891         /*
892          * Not only that, but the size of the entire the snapshot
893          * header must also be representable in a size_t.
894          */
895         size -= snap_count * sizeof (__le64);
896         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
897                 return false;
898
899         return true;
900 }
901
902 /*
903  * Fill an rbd image header with information from the given format 1
904  * on-disk header.
905  */
906 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
907                                  struct rbd_image_header_ondisk *ondisk)
908 {
909         struct rbd_image_header *header = &rbd_dev->header;
910         bool first_time = header->object_prefix == NULL;
911         struct ceph_snap_context *snapc;
912         char *object_prefix = NULL;
913         char *snap_names = NULL;
914         u64 *snap_sizes = NULL;
915         u32 snap_count;
916         size_t size;
917         int ret = -ENOMEM;
918         u32 i;
919
920         /* Allocate this now to avoid having to handle failure below */
921
922         if (first_time) {
923                 size_t len;
924
925                 len = strnlen(ondisk->object_prefix,
926                                 sizeof (ondisk->object_prefix));
927                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
928                 if (!object_prefix)
929                         return -ENOMEM;
930                 memcpy(object_prefix, ondisk->object_prefix, len);
931                 object_prefix[len] = '\0';
932         }
933
934         /* Allocate the snapshot context and fill it in */
935
936         snap_count = le32_to_cpu(ondisk->snap_count);
937         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
938         if (!snapc)
939                 goto out_err;
940         snapc->seq = le64_to_cpu(ondisk->snap_seq);
941         if (snap_count) {
942                 struct rbd_image_snap_ondisk *snaps;
943                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
944
945                 /* We'll keep a copy of the snapshot names... */
946
947                 if (snap_names_len > (u64)SIZE_MAX)
948                         goto out_2big;
949                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
950                 if (!snap_names)
951                         goto out_err;
952
953                 /* ...as well as the array of their sizes. */
954
955                 size = snap_count * sizeof (*header->snap_sizes);
956                 snap_sizes = kmalloc(size, GFP_KERNEL);
957                 if (!snap_sizes)
958                         goto out_err;
959
960                 /*
961                  * Copy the names, and fill in each snapshot's id
962                  * and size.
963                  *
964                  * Note that rbd_dev_v1_header_info() guarantees the
965                  * ondisk buffer we're working with has
966                  * snap_names_len bytes beyond the end of the
967                  * snapshot id array, this memcpy() is safe.
968                  */
969                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
970                 snaps = ondisk->snaps;
971                 for (i = 0; i < snap_count; i++) {
972                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
973                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
974                 }
975         }
976
977         /* We won't fail any more, fill in the header */
978
979         if (first_time) {
980                 header->object_prefix = object_prefix;
981                 header->obj_order = ondisk->options.order;
982                 header->crypt_type = ondisk->options.crypt_type;
983                 header->comp_type = ondisk->options.comp_type;
984                 /* The rest aren't used for format 1 images */
985                 header->stripe_unit = 0;
986                 header->stripe_count = 0;
987                 header->features = 0;
988         } else {
989                 ceph_put_snap_context(header->snapc);
990                 kfree(header->snap_names);
991                 kfree(header->snap_sizes);
992         }
993
994         /* The remaining fields always get updated (when we refresh) */
995
996         header->image_size = le64_to_cpu(ondisk->image_size);
997         header->snapc = snapc;
998         header->snap_names = snap_names;
999         header->snap_sizes = snap_sizes;
1000
1001         return 0;
1002 out_2big:
1003         ret = -EIO;
1004 out_err:
1005         kfree(snap_sizes);
1006         kfree(snap_names);
1007         ceph_put_snap_context(snapc);
1008         kfree(object_prefix);
1009
1010         return ret;
1011 }
1012
1013 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1014 {
1015         const char *snap_name;
1016
1017         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1018
1019         /* Skip over names until we find the one we are looking for */
1020
1021         snap_name = rbd_dev->header.snap_names;
1022         while (which--)
1023                 snap_name += strlen(snap_name) + 1;
1024
1025         return kstrdup(snap_name, GFP_KERNEL);
1026 }
1027
1028 /*
1029  * Snapshot id comparison function for use with qsort()/bsearch().
1030  * Note that result is for snapshots in *descending* order.
1031  */
1032 static int snapid_compare_reverse(const void *s1, const void *s2)
1033 {
1034         u64 snap_id1 = *(u64 *)s1;
1035         u64 snap_id2 = *(u64 *)s2;
1036
1037         if (snap_id1 < snap_id2)
1038                 return 1;
1039         return snap_id1 == snap_id2 ? 0 : -1;
1040 }
1041
1042 /*
1043  * Search a snapshot context to see if the given snapshot id is
1044  * present.
1045  *
1046  * Returns the position of the snapshot id in the array if it's found,
1047  * or BAD_SNAP_INDEX otherwise.
1048  *
1049  * Note: The snapshot array is in kept sorted (by the osd) in
1050  * reverse order, highest snapshot id first.
1051  */
1052 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1053 {
1054         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1055         u64 *found;
1056
1057         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1058                                 sizeof (snap_id), snapid_compare_reverse);
1059
1060         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1061 }
1062
1063 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1064                                         u64 snap_id)
1065 {
1066         u32 which;
1067         const char *snap_name;
1068
1069         which = rbd_dev_snap_index(rbd_dev, snap_id);
1070         if (which == BAD_SNAP_INDEX)
1071                 return ERR_PTR(-ENOENT);
1072
1073         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1074         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1075 }
1076
1077 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1078 {
1079         if (snap_id == CEPH_NOSNAP)
1080                 return RBD_SNAP_HEAD_NAME;
1081
1082         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1083         if (rbd_dev->image_format == 1)
1084                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1085
1086         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1087 }
1088
1089 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1090                                 u64 *snap_size)
1091 {
1092         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1093         if (snap_id == CEPH_NOSNAP) {
1094                 *snap_size = rbd_dev->header.image_size;
1095         } else if (rbd_dev->image_format == 1) {
1096                 u32 which;
1097
1098                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1099                 if (which == BAD_SNAP_INDEX)
1100                         return -ENOENT;
1101
1102                 *snap_size = rbd_dev->header.snap_sizes[which];
1103         } else {
1104                 u64 size = 0;
1105                 int ret;
1106
1107                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1108                 if (ret)
1109                         return ret;
1110
1111                 *snap_size = size;
1112         }
1113         return 0;
1114 }
1115
1116 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1117                         u64 *snap_features)
1118 {
1119         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1120         if (snap_id == CEPH_NOSNAP) {
1121                 *snap_features = rbd_dev->header.features;
1122         } else if (rbd_dev->image_format == 1) {
1123                 *snap_features = 0;     /* No features for format 1 */
1124         } else {
1125                 u64 features = 0;
1126                 int ret;
1127
1128                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1129                 if (ret)
1130                         return ret;
1131
1132                 *snap_features = features;
1133         }
1134         return 0;
1135 }
1136
1137 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1138 {
1139         u64 snap_id = rbd_dev->spec->snap_id;
1140         u64 size = 0;
1141         u64 features = 0;
1142         int ret;
1143
1144         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1145         if (ret)
1146                 return ret;
1147         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1148         if (ret)
1149                 return ret;
1150
1151         rbd_dev->mapping.size = size;
1152         rbd_dev->mapping.features = features;
1153
1154         return 0;
1155 }
1156
1157 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1158 {
1159         rbd_dev->mapping.size = 0;
1160         rbd_dev->mapping.features = 0;
1161 }
1162
1163 static void rbd_segment_name_free(const char *name)
1164 {
1165         /* The explicit cast here is needed to drop the const qualifier */
1166
1167         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1168 }
1169
1170 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1171 {
1172         char *name;
1173         u64 segment;
1174         int ret;
1175         char *name_format;
1176
1177         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1178         if (!name)
1179                 return NULL;
1180         segment = offset >> rbd_dev->header.obj_order;
1181         name_format = "%s.%012llx";
1182         if (rbd_dev->image_format == 2)
1183                 name_format = "%s.%016llx";
1184         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1185                         rbd_dev->header.object_prefix, segment);
1186         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1187                 pr_err("error formatting segment name for #%llu (%d)\n",
1188                         segment, ret);
1189                 rbd_segment_name_free(name);
1190                 name = NULL;
1191         }
1192
1193         return name;
1194 }
1195
1196 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1197 {
1198         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1199
1200         return offset & (segment_size - 1);
1201 }
1202
1203 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1204                                 u64 offset, u64 length)
1205 {
1206         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1207
1208         offset &= segment_size - 1;
1209
1210         rbd_assert(length <= U64_MAX - offset);
1211         if (offset + length > segment_size)
1212                 length = segment_size - offset;
1213
1214         return length;
1215 }
1216
1217 /*
1218  * returns the size of an object in the image
1219  */
1220 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1221 {
1222         return 1 << header->obj_order;
1223 }
1224
1225 /*
1226  * bio helpers
1227  */
1228
1229 static void bio_chain_put(struct bio *chain)
1230 {
1231         struct bio *tmp;
1232
1233         while (chain) {
1234                 tmp = chain;
1235                 chain = chain->bi_next;
1236                 bio_put(tmp);
1237         }
1238 }
1239
1240 /*
1241  * zeros a bio chain, starting at specific offset
1242  */
1243 static void zero_bio_chain(struct bio *chain, int start_ofs)
1244 {
1245         struct bio_vec bv;
1246         struct bvec_iter iter;
1247         unsigned long flags;
1248         void *buf;
1249         int pos = 0;
1250
1251         while (chain) {
1252                 bio_for_each_segment(bv, chain, iter) {
1253                         if (pos + bv.bv_len > start_ofs) {
1254                                 int remainder = max(start_ofs - pos, 0);
1255                                 buf = bvec_kmap_irq(&bv, &flags);
1256                                 memset(buf + remainder, 0,
1257                                        bv.bv_len - remainder);
1258                                 flush_dcache_page(bv.bv_page);
1259                                 bvec_kunmap_irq(buf, &flags);
1260                         }
1261                         pos += bv.bv_len;
1262                 }
1263
1264                 chain = chain->bi_next;
1265         }
1266 }
1267
1268 /*
1269  * similar to zero_bio_chain(), zeros data defined by a page array,
1270  * starting at the given byte offset from the start of the array and
1271  * continuing up to the given end offset.  The pages array is
1272  * assumed to be big enough to hold all bytes up to the end.
1273  */
1274 static void zero_pages(struct page **pages, u64 offset, u64 end)
1275 {
1276         struct page **page = &pages[offset >> PAGE_SHIFT];
1277
1278         rbd_assert(end > offset);
1279         rbd_assert(end - offset <= (u64)SIZE_MAX);
1280         while (offset < end) {
1281                 size_t page_offset;
1282                 size_t length;
1283                 unsigned long flags;
1284                 void *kaddr;
1285
1286                 page_offset = offset & ~PAGE_MASK;
1287                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1288                 local_irq_save(flags);
1289                 kaddr = kmap_atomic(*page);
1290                 memset(kaddr + page_offset, 0, length);
1291                 flush_dcache_page(*page);
1292                 kunmap_atomic(kaddr);
1293                 local_irq_restore(flags);
1294
1295                 offset += length;
1296                 page++;
1297         }
1298 }
1299
1300 /*
1301  * Clone a portion of a bio, starting at the given byte offset
1302  * and continuing for the number of bytes indicated.
1303  */
1304 static struct bio *bio_clone_range(struct bio *bio_src,
1305                                         unsigned int offset,
1306                                         unsigned int len,
1307                                         gfp_t gfpmask)
1308 {
1309         struct bio *bio;
1310
1311         bio = bio_clone(bio_src, gfpmask);
1312         if (!bio)
1313                 return NULL;    /* ENOMEM */
1314
1315         bio_advance(bio, offset);
1316         bio->bi_iter.bi_size = len;
1317
1318         return bio;
1319 }
1320
1321 /*
1322  * Clone a portion of a bio chain, starting at the given byte offset
1323  * into the first bio in the source chain and continuing for the
1324  * number of bytes indicated.  The result is another bio chain of
1325  * exactly the given length, or a null pointer on error.
1326  *
1327  * The bio_src and offset parameters are both in-out.  On entry they
1328  * refer to the first source bio and the offset into that bio where
1329  * the start of data to be cloned is located.
1330  *
1331  * On return, bio_src is updated to refer to the bio in the source
1332  * chain that contains first un-cloned byte, and *offset will
1333  * contain the offset of that byte within that bio.
1334  */
1335 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1336                                         unsigned int *offset,
1337                                         unsigned int len,
1338                                         gfp_t gfpmask)
1339 {
1340         struct bio *bi = *bio_src;
1341         unsigned int off = *offset;
1342         struct bio *chain = NULL;
1343         struct bio **end;
1344
1345         /* Build up a chain of clone bios up to the limit */
1346
1347         if (!bi || off >= bi->bi_iter.bi_size || !len)
1348                 return NULL;            /* Nothing to clone */
1349
1350         end = &chain;
1351         while (len) {
1352                 unsigned int bi_size;
1353                 struct bio *bio;
1354
1355                 if (!bi) {
1356                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1357                         goto out_err;   /* EINVAL; ran out of bio's */
1358                 }
1359                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1360                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1361                 if (!bio)
1362                         goto out_err;   /* ENOMEM */
1363
1364                 *end = bio;
1365                 end = &bio->bi_next;
1366
1367                 off += bi_size;
1368                 if (off == bi->bi_iter.bi_size) {
1369                         bi = bi->bi_next;
1370                         off = 0;
1371                 }
1372                 len -= bi_size;
1373         }
1374         *bio_src = bi;
1375         *offset = off;
1376
1377         return chain;
1378 out_err:
1379         bio_chain_put(chain);
1380
1381         return NULL;
1382 }
1383
1384 /*
1385  * The default/initial value for all object request flags is 0.  For
1386  * each flag, once its value is set to 1 it is never reset to 0
1387  * again.
1388  */
1389 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1390 {
1391         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1392                 struct rbd_device *rbd_dev;
1393
1394                 rbd_dev = obj_request->img_request->rbd_dev;
1395                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1396                         obj_request);
1397         }
1398 }
1399
1400 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1401 {
1402         smp_mb();
1403         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1404 }
1405
1406 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1407 {
1408         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1409                 struct rbd_device *rbd_dev = NULL;
1410
1411                 if (obj_request_img_data_test(obj_request))
1412                         rbd_dev = obj_request->img_request->rbd_dev;
1413                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1414                         obj_request);
1415         }
1416 }
1417
1418 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1419 {
1420         smp_mb();
1421         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1422 }
1423
1424 /*
1425  * This sets the KNOWN flag after (possibly) setting the EXISTS
1426  * flag.  The latter is set based on the "exists" value provided.
1427  *
1428  * Note that for our purposes once an object exists it never goes
1429  * away again.  It's possible that the response from two existence
1430  * checks are separated by the creation of the target object, and
1431  * the first ("doesn't exist") response arrives *after* the second
1432  * ("does exist").  In that case we ignore the second one.
1433  */
1434 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1435                                 bool exists)
1436 {
1437         if (exists)
1438                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1439         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1440         smp_mb();
1441 }
1442
1443 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1444 {
1445         smp_mb();
1446         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1447 }
1448
1449 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1450 {
1451         smp_mb();
1452         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1453 }
1454
1455 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1456 {
1457         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1458
1459         return obj_request->img_offset <
1460             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1461 }
1462
1463 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1464 {
1465         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1466                 atomic_read(&obj_request->kref.refcount));
1467         kref_get(&obj_request->kref);
1468 }
1469
1470 static void rbd_obj_request_destroy(struct kref *kref);
1471 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1472 {
1473         rbd_assert(obj_request != NULL);
1474         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1475                 atomic_read(&obj_request->kref.refcount));
1476         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1477 }
1478
1479 static void rbd_img_request_get(struct rbd_img_request *img_request)
1480 {
1481         dout("%s: img %p (was %d)\n", __func__, img_request,
1482              atomic_read(&img_request->kref.refcount));
1483         kref_get(&img_request->kref);
1484 }
1485
1486 static bool img_request_child_test(struct rbd_img_request *img_request);
1487 static void rbd_parent_request_destroy(struct kref *kref);
1488 static void rbd_img_request_destroy(struct kref *kref);
1489 static void rbd_img_request_put(struct rbd_img_request *img_request)
1490 {
1491         rbd_assert(img_request != NULL);
1492         dout("%s: img %p (was %d)\n", __func__, img_request,
1493                 atomic_read(&img_request->kref.refcount));
1494         if (img_request_child_test(img_request))
1495                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1496         else
1497                 kref_put(&img_request->kref, rbd_img_request_destroy);
1498 }
1499
1500 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1501                                         struct rbd_obj_request *obj_request)
1502 {
1503         rbd_assert(obj_request->img_request == NULL);
1504
1505         /* Image request now owns object's original reference */
1506         obj_request->img_request = img_request;
1507         obj_request->which = img_request->obj_request_count;
1508         rbd_assert(!obj_request_img_data_test(obj_request));
1509         obj_request_img_data_set(obj_request);
1510         rbd_assert(obj_request->which != BAD_WHICH);
1511         img_request->obj_request_count++;
1512         list_add_tail(&obj_request->links, &img_request->obj_requests);
1513         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1514                 obj_request->which);
1515 }
1516
1517 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1518                                         struct rbd_obj_request *obj_request)
1519 {
1520         rbd_assert(obj_request->which != BAD_WHICH);
1521
1522         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1523                 obj_request->which);
1524         list_del(&obj_request->links);
1525         rbd_assert(img_request->obj_request_count > 0);
1526         img_request->obj_request_count--;
1527         rbd_assert(obj_request->which == img_request->obj_request_count);
1528         obj_request->which = BAD_WHICH;
1529         rbd_assert(obj_request_img_data_test(obj_request));
1530         rbd_assert(obj_request->img_request == img_request);
1531         obj_request->img_request = NULL;
1532         obj_request->callback = NULL;
1533         rbd_obj_request_put(obj_request);
1534 }
1535
1536 static bool obj_request_type_valid(enum obj_request_type type)
1537 {
1538         switch (type) {
1539         case OBJ_REQUEST_NODATA:
1540         case OBJ_REQUEST_BIO:
1541         case OBJ_REQUEST_PAGES:
1542                 return true;
1543         default:
1544                 return false;
1545         }
1546 }
1547
1548 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1549                                 struct rbd_obj_request *obj_request)
1550 {
1551         dout("%s %p\n", __func__, obj_request);
1552         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1553 }
1554
1555 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1556 {
1557         dout("%s %p\n", __func__, obj_request);
1558         ceph_osdc_cancel_request(obj_request->osd_req);
1559 }
1560
1561 /*
1562  * Wait for an object request to complete.  If interrupted, cancel the
1563  * underlying osd request.
1564  */
1565 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1566 {
1567         int ret;
1568
1569         dout("%s %p\n", __func__, obj_request);
1570
1571         ret = wait_for_completion_interruptible(&obj_request->completion);
1572         if (ret < 0) {
1573                 dout("%s %p interrupted\n", __func__, obj_request);
1574                 rbd_obj_request_end(obj_request);
1575                 return ret;
1576         }
1577
1578         dout("%s %p done\n", __func__, obj_request);
1579         return 0;
1580 }
1581
1582 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1583 {
1584
1585         dout("%s: img %p\n", __func__, img_request);
1586
1587         /*
1588          * If no error occurred, compute the aggregate transfer
1589          * count for the image request.  We could instead use
1590          * atomic64_cmpxchg() to update it as each object request
1591          * completes; not clear which way is better off hand.
1592          */
1593         if (!img_request->result) {
1594                 struct rbd_obj_request *obj_request;
1595                 u64 xferred = 0;
1596
1597                 for_each_obj_request(img_request, obj_request)
1598                         xferred += obj_request->xferred;
1599                 img_request->xferred = xferred;
1600         }
1601
1602         if (img_request->callback)
1603                 img_request->callback(img_request);
1604         else
1605                 rbd_img_request_put(img_request);
1606 }
1607
1608 /*
1609  * The default/initial value for all image request flags is 0.  Each
1610  * is conditionally set to 1 at image request initialization time
1611  * and currently never change thereafter.
1612  */
1613 static void img_request_write_set(struct rbd_img_request *img_request)
1614 {
1615         set_bit(IMG_REQ_WRITE, &img_request->flags);
1616         smp_mb();
1617 }
1618
1619 static bool img_request_write_test(struct rbd_img_request *img_request)
1620 {
1621         smp_mb();
1622         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1623 }
1624
1625 /*
1626  * Set the discard flag when the img_request is an discard request
1627  */
1628 static void img_request_discard_set(struct rbd_img_request *img_request)
1629 {
1630         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1631         smp_mb();
1632 }
1633
1634 static bool img_request_discard_test(struct rbd_img_request *img_request)
1635 {
1636         smp_mb();
1637         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1638 }
1639
1640 static void img_request_child_set(struct rbd_img_request *img_request)
1641 {
1642         set_bit(IMG_REQ_CHILD, &img_request->flags);
1643         smp_mb();
1644 }
1645
1646 static void img_request_child_clear(struct rbd_img_request *img_request)
1647 {
1648         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1649         smp_mb();
1650 }
1651
1652 static bool img_request_child_test(struct rbd_img_request *img_request)
1653 {
1654         smp_mb();
1655         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1656 }
1657
1658 static void img_request_layered_set(struct rbd_img_request *img_request)
1659 {
1660         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1661         smp_mb();
1662 }
1663
1664 static void img_request_layered_clear(struct rbd_img_request *img_request)
1665 {
1666         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1667         smp_mb();
1668 }
1669
1670 static bool img_request_layered_test(struct rbd_img_request *img_request)
1671 {
1672         smp_mb();
1673         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1674 }
1675
1676 static enum obj_operation_type
1677 rbd_img_request_op_type(struct rbd_img_request *img_request)
1678 {
1679         if (img_request_write_test(img_request))
1680                 return OBJ_OP_WRITE;
1681         else if (img_request_discard_test(img_request))
1682                 return OBJ_OP_DISCARD;
1683         else
1684                 return OBJ_OP_READ;
1685 }
1686
1687 static void
1688 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1689 {
1690         u64 xferred = obj_request->xferred;
1691         u64 length = obj_request->length;
1692
1693         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1694                 obj_request, obj_request->img_request, obj_request->result,
1695                 xferred, length);
1696         /*
1697          * ENOENT means a hole in the image.  We zero-fill the entire
1698          * length of the request.  A short read also implies zero-fill
1699          * to the end of the request.  An error requires the whole
1700          * length of the request to be reported finished with an error
1701          * to the block layer.  In each case we update the xferred
1702          * count to indicate the whole request was satisfied.
1703          */
1704         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1705         if (obj_request->result == -ENOENT) {
1706                 if (obj_request->type == OBJ_REQUEST_BIO)
1707                         zero_bio_chain(obj_request->bio_list, 0);
1708                 else
1709                         zero_pages(obj_request->pages, 0, length);
1710                 obj_request->result = 0;
1711         } else if (xferred < length && !obj_request->result) {
1712                 if (obj_request->type == OBJ_REQUEST_BIO)
1713                         zero_bio_chain(obj_request->bio_list, xferred);
1714                 else
1715                         zero_pages(obj_request->pages, xferred, length);
1716         }
1717         obj_request->xferred = length;
1718         obj_request_done_set(obj_request);
1719 }
1720
1721 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1722 {
1723         dout("%s: obj %p cb %p\n", __func__, obj_request,
1724                 obj_request->callback);
1725         if (obj_request->callback)
1726                 obj_request->callback(obj_request);
1727         else
1728                 complete_all(&obj_request->completion);
1729 }
1730
1731 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1732 {
1733         dout("%s: obj %p\n", __func__, obj_request);
1734         obj_request_done_set(obj_request);
1735 }
1736
1737 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1738 {
1739         struct rbd_img_request *img_request = NULL;
1740         struct rbd_device *rbd_dev = NULL;
1741         bool layered = false;
1742
1743         if (obj_request_img_data_test(obj_request)) {
1744                 img_request = obj_request->img_request;
1745                 layered = img_request && img_request_layered_test(img_request);
1746                 rbd_dev = img_request->rbd_dev;
1747         }
1748
1749         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1750                 obj_request, img_request, obj_request->result,
1751                 obj_request->xferred, obj_request->length);
1752         if (layered && obj_request->result == -ENOENT &&
1753                         obj_request->img_offset < rbd_dev->parent_overlap)
1754                 rbd_img_parent_read(obj_request);
1755         else if (img_request)
1756                 rbd_img_obj_request_read_callback(obj_request);
1757         else
1758                 obj_request_done_set(obj_request);
1759 }
1760
1761 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1762 {
1763         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1764                 obj_request->result, obj_request->length);
1765         /*
1766          * There is no such thing as a successful short write.  Set
1767          * it to our originally-requested length.
1768          */
1769         obj_request->xferred = obj_request->length;
1770         obj_request_done_set(obj_request);
1771 }
1772
1773 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1774 {
1775         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1776                 obj_request->result, obj_request->length);
1777         /*
1778          * There is no such thing as a successful short discard.  Set
1779          * it to our originally-requested length.
1780          */
1781         obj_request->xferred = obj_request->length;
1782         /* discarding a non-existent object is not a problem */
1783         if (obj_request->result == -ENOENT)
1784                 obj_request->result = 0;
1785         obj_request_done_set(obj_request);
1786 }
1787
1788 /*
1789  * For a simple stat call there's nothing to do.  We'll do more if
1790  * this is part of a write sequence for a layered image.
1791  */
1792 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1793 {
1794         dout("%s: obj %p\n", __func__, obj_request);
1795         obj_request_done_set(obj_request);
1796 }
1797
1798 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1799                                 struct ceph_msg *msg)
1800 {
1801         struct rbd_obj_request *obj_request = osd_req->r_priv;
1802         u16 opcode;
1803
1804         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1805         rbd_assert(osd_req == obj_request->osd_req);
1806         if (obj_request_img_data_test(obj_request)) {
1807                 rbd_assert(obj_request->img_request);
1808                 rbd_assert(obj_request->which != BAD_WHICH);
1809         } else {
1810                 rbd_assert(obj_request->which == BAD_WHICH);
1811         }
1812
1813         if (osd_req->r_result < 0)
1814                 obj_request->result = osd_req->r_result;
1815
1816         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1817
1818         /*
1819          * We support a 64-bit length, but ultimately it has to be
1820          * passed to blk_end_request(), which takes an unsigned int.
1821          */
1822         obj_request->xferred = osd_req->r_reply_op_len[0];
1823         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1824
1825         opcode = osd_req->r_ops[0].op;
1826         switch (opcode) {
1827         case CEPH_OSD_OP_READ:
1828                 rbd_osd_read_callback(obj_request);
1829                 break;
1830         case CEPH_OSD_OP_SETALLOCHINT:
1831                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1832                 /* fall through */
1833         case CEPH_OSD_OP_WRITE:
1834                 rbd_osd_write_callback(obj_request);
1835                 break;
1836         case CEPH_OSD_OP_STAT:
1837                 rbd_osd_stat_callback(obj_request);
1838                 break;
1839         case CEPH_OSD_OP_DELETE:
1840         case CEPH_OSD_OP_TRUNCATE:
1841         case CEPH_OSD_OP_ZERO:
1842                 rbd_osd_discard_callback(obj_request);
1843                 break;
1844         case CEPH_OSD_OP_CALL:
1845         case CEPH_OSD_OP_NOTIFY_ACK:
1846         case CEPH_OSD_OP_WATCH:
1847                 rbd_osd_trivial_callback(obj_request);
1848                 break;
1849         default:
1850                 rbd_warn(NULL, "%s: unsupported op %hu",
1851                         obj_request->object_name, (unsigned short) opcode);
1852                 break;
1853         }
1854
1855         if (obj_request_done_test(obj_request))
1856                 rbd_obj_request_complete(obj_request);
1857 }
1858
1859 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1860 {
1861         struct rbd_img_request *img_request = obj_request->img_request;
1862         struct ceph_osd_request *osd_req = obj_request->osd_req;
1863         u64 snap_id;
1864
1865         rbd_assert(osd_req != NULL);
1866
1867         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1868         ceph_osdc_build_request(osd_req, obj_request->offset,
1869                         NULL, snap_id, NULL);
1870 }
1871
1872 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1873 {
1874         struct rbd_img_request *img_request = obj_request->img_request;
1875         struct ceph_osd_request *osd_req = obj_request->osd_req;
1876         struct ceph_snap_context *snapc;
1877         struct timespec mtime = CURRENT_TIME;
1878
1879         rbd_assert(osd_req != NULL);
1880
1881         snapc = img_request ? img_request->snapc : NULL;
1882         ceph_osdc_build_request(osd_req, obj_request->offset,
1883                         snapc, CEPH_NOSNAP, &mtime);
1884 }
1885
1886 /*
1887  * Create an osd request.  A read request has one osd op (read).
1888  * A write request has either one (watch) or two (hint+write) osd ops.
1889  * (All rbd data writes are prefixed with an allocation hint op, but
1890  * technically osd watch is a write request, hence this distinction.)
1891  */
1892 static struct ceph_osd_request *rbd_osd_req_create(
1893                                         struct rbd_device *rbd_dev,
1894                                         enum obj_operation_type op_type,
1895                                         unsigned int num_ops,
1896                                         struct rbd_obj_request *obj_request)
1897 {
1898         struct ceph_snap_context *snapc = NULL;
1899         struct ceph_osd_client *osdc;
1900         struct ceph_osd_request *osd_req;
1901
1902         if (obj_request_img_data_test(obj_request) &&
1903                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1904                 struct rbd_img_request *img_request = obj_request->img_request;
1905                 if (op_type == OBJ_OP_WRITE) {
1906                         rbd_assert(img_request_write_test(img_request));
1907                 } else {
1908                         rbd_assert(img_request_discard_test(img_request));
1909                 }
1910                 snapc = img_request->snapc;
1911         }
1912
1913         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1914
1915         /* Allocate and initialize the request, for the num_ops ops */
1916
1917         osdc = &rbd_dev->rbd_client->client->osdc;
1918         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1919                                           GFP_ATOMIC);
1920         if (!osd_req)
1921                 return NULL;    /* ENOMEM */
1922
1923         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1924                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1925         else
1926                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1927
1928         osd_req->r_callback = rbd_osd_req_callback;
1929         osd_req->r_priv = obj_request;
1930
1931         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1932         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1933
1934         return osd_req;
1935 }
1936
1937 /*
1938  * Create a copyup osd request based on the information in the object
1939  * request supplied.  A copyup request has two or three osd ops, a
1940  * copyup method call, potentially a hint op, and a write or truncate
1941  * or zero op.
1942  */
1943 static struct ceph_osd_request *
1944 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1945 {
1946         struct rbd_img_request *img_request;
1947         struct ceph_snap_context *snapc;
1948         struct rbd_device *rbd_dev;
1949         struct ceph_osd_client *osdc;
1950         struct ceph_osd_request *osd_req;
1951         int num_osd_ops = 3;
1952
1953         rbd_assert(obj_request_img_data_test(obj_request));
1954         img_request = obj_request->img_request;
1955         rbd_assert(img_request);
1956         rbd_assert(img_request_write_test(img_request) ||
1957                         img_request_discard_test(img_request));
1958
1959         if (img_request_discard_test(img_request))
1960                 num_osd_ops = 2;
1961
1962         /* Allocate and initialize the request, for all the ops */
1963
1964         snapc = img_request->snapc;
1965         rbd_dev = img_request->rbd_dev;
1966         osdc = &rbd_dev->rbd_client->client->osdc;
1967         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1968                                                 false, GFP_ATOMIC);
1969         if (!osd_req)
1970                 return NULL;    /* ENOMEM */
1971
1972         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1973         osd_req->r_callback = rbd_osd_req_callback;
1974         osd_req->r_priv = obj_request;
1975
1976         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1977         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1978
1979         return osd_req;
1980 }
1981
1982
1983 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1984 {
1985         ceph_osdc_put_request(osd_req);
1986 }
1987
1988 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1989
1990 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1991                                                 u64 offset, u64 length,
1992                                                 enum obj_request_type type)
1993 {
1994         struct rbd_obj_request *obj_request;
1995         size_t size;
1996         char *name;
1997
1998         rbd_assert(obj_request_type_valid(type));
1999
2000         size = strlen(object_name) + 1;
2001         name = kmalloc(size, GFP_KERNEL);
2002         if (!name)
2003                 return NULL;
2004
2005         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2006         if (!obj_request) {
2007                 kfree(name);
2008                 return NULL;
2009         }
2010
2011         obj_request->object_name = memcpy(name, object_name, size);
2012         obj_request->offset = offset;
2013         obj_request->length = length;
2014         obj_request->flags = 0;
2015         obj_request->which = BAD_WHICH;
2016         obj_request->type = type;
2017         INIT_LIST_HEAD(&obj_request->links);
2018         init_completion(&obj_request->completion);
2019         kref_init(&obj_request->kref);
2020
2021         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2022                 offset, length, (int)type, obj_request);
2023
2024         return obj_request;
2025 }
2026
2027 static void rbd_obj_request_destroy(struct kref *kref)
2028 {
2029         struct rbd_obj_request *obj_request;
2030
2031         obj_request = container_of(kref, struct rbd_obj_request, kref);
2032
2033         dout("%s: obj %p\n", __func__, obj_request);
2034
2035         rbd_assert(obj_request->img_request == NULL);
2036         rbd_assert(obj_request->which == BAD_WHICH);
2037
2038         if (obj_request->osd_req)
2039                 rbd_osd_req_destroy(obj_request->osd_req);
2040
2041         rbd_assert(obj_request_type_valid(obj_request->type));
2042         switch (obj_request->type) {
2043         case OBJ_REQUEST_NODATA:
2044                 break;          /* Nothing to do */
2045         case OBJ_REQUEST_BIO:
2046                 if (obj_request->bio_list)
2047                         bio_chain_put(obj_request->bio_list);
2048                 break;
2049         case OBJ_REQUEST_PAGES:
2050                 if (obj_request->pages)
2051                         ceph_release_page_vector(obj_request->pages,
2052                                                 obj_request->page_count);
2053                 break;
2054         }
2055
2056         kfree(obj_request->object_name);
2057         obj_request->object_name = NULL;
2058         kmem_cache_free(rbd_obj_request_cache, obj_request);
2059 }
2060
2061 /* It's OK to call this for a device with no parent */
2062
2063 static void rbd_spec_put(struct rbd_spec *spec);
2064 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2065 {
2066         rbd_dev_remove_parent(rbd_dev);
2067         rbd_spec_put(rbd_dev->parent_spec);
2068         rbd_dev->parent_spec = NULL;
2069         rbd_dev->parent_overlap = 0;
2070 }
2071
2072 /*
2073  * Parent image reference counting is used to determine when an
2074  * image's parent fields can be safely torn down--after there are no
2075  * more in-flight requests to the parent image.  When the last
2076  * reference is dropped, cleaning them up is safe.
2077  */
2078 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2079 {
2080         int counter;
2081
2082         if (!rbd_dev->parent_spec)
2083                 return;
2084
2085         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2086         if (counter > 0)
2087                 return;
2088
2089         /* Last reference; clean up parent data structures */
2090
2091         if (!counter)
2092                 rbd_dev_unparent(rbd_dev);
2093         else
2094                 rbd_warn(rbd_dev, "parent reference underflow");
2095 }
2096
2097 /*
2098  * If an image has a non-zero parent overlap, get a reference to its
2099  * parent.
2100  *
2101  * We must get the reference before checking for the overlap to
2102  * coordinate properly with zeroing the parent overlap in
2103  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2104  * drop it again if there is no overlap.
2105  *
2106  * Returns true if the rbd device has a parent with a non-zero
2107  * overlap and a reference for it was successfully taken, or
2108  * false otherwise.
2109  */
2110 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2111 {
2112         int counter;
2113
2114         if (!rbd_dev->parent_spec)
2115                 return false;
2116
2117         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2118         if (counter > 0 && rbd_dev->parent_overlap)
2119                 return true;
2120
2121         /* Image was flattened, but parent is not yet torn down */
2122
2123         if (counter < 0)
2124                 rbd_warn(rbd_dev, "parent reference overflow");
2125
2126         return false;
2127 }
2128
2129 /*
2130  * Caller is responsible for filling in the list of object requests
2131  * that comprises the image request, and the Linux request pointer
2132  * (if there is one).
2133  */
2134 static struct rbd_img_request *rbd_img_request_create(
2135                                         struct rbd_device *rbd_dev,
2136                                         u64 offset, u64 length,
2137                                         enum obj_operation_type op_type,
2138                                         struct ceph_snap_context *snapc)
2139 {
2140         struct rbd_img_request *img_request;
2141
2142         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2143         if (!img_request)
2144                 return NULL;
2145
2146         img_request->rq = NULL;
2147         img_request->rbd_dev = rbd_dev;
2148         img_request->offset = offset;
2149         img_request->length = length;
2150         img_request->flags = 0;
2151         if (op_type == OBJ_OP_DISCARD) {
2152                 img_request_discard_set(img_request);
2153                 img_request->snapc = snapc;
2154         } else if (op_type == OBJ_OP_WRITE) {
2155                 img_request_write_set(img_request);
2156                 img_request->snapc = snapc;
2157         } else {
2158                 img_request->snap_id = rbd_dev->spec->snap_id;
2159         }
2160         if (rbd_dev_parent_get(rbd_dev))
2161                 img_request_layered_set(img_request);
2162         spin_lock_init(&img_request->completion_lock);
2163         img_request->next_completion = 0;
2164         img_request->callback = NULL;
2165         img_request->result = 0;
2166         img_request->obj_request_count = 0;
2167         INIT_LIST_HEAD(&img_request->obj_requests);
2168         kref_init(&img_request->kref);
2169
2170         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2171                 obj_op_name(op_type), offset, length, img_request);
2172
2173         return img_request;
2174 }
2175
2176 static void rbd_img_request_destroy(struct kref *kref)
2177 {
2178         struct rbd_img_request *img_request;
2179         struct rbd_obj_request *obj_request;
2180         struct rbd_obj_request *next_obj_request;
2181
2182         img_request = container_of(kref, struct rbd_img_request, kref);
2183
2184         dout("%s: img %p\n", __func__, img_request);
2185
2186         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2187                 rbd_img_obj_request_del(img_request, obj_request);
2188         rbd_assert(img_request->obj_request_count == 0);
2189
2190         if (img_request_layered_test(img_request)) {
2191                 img_request_layered_clear(img_request);
2192                 rbd_dev_parent_put(img_request->rbd_dev);
2193         }
2194
2195         if (img_request_write_test(img_request) ||
2196                 img_request_discard_test(img_request))
2197                 ceph_put_snap_context(img_request->snapc);
2198
2199         kmem_cache_free(rbd_img_request_cache, img_request);
2200 }
2201
2202 static struct rbd_img_request *rbd_parent_request_create(
2203                                         struct rbd_obj_request *obj_request,
2204                                         u64 img_offset, u64 length)
2205 {
2206         struct rbd_img_request *parent_request;
2207         struct rbd_device *rbd_dev;
2208
2209         rbd_assert(obj_request->img_request);
2210         rbd_dev = obj_request->img_request->rbd_dev;
2211
2212         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2213                                                 length, OBJ_OP_READ, NULL);
2214         if (!parent_request)
2215                 return NULL;
2216
2217         img_request_child_set(parent_request);
2218         rbd_obj_request_get(obj_request);
2219         parent_request->obj_request = obj_request;
2220
2221         return parent_request;
2222 }
2223
2224 static void rbd_parent_request_destroy(struct kref *kref)
2225 {
2226         struct rbd_img_request *parent_request;
2227         struct rbd_obj_request *orig_request;
2228
2229         parent_request = container_of(kref, struct rbd_img_request, kref);
2230         orig_request = parent_request->obj_request;
2231
2232         parent_request->obj_request = NULL;
2233         rbd_obj_request_put(orig_request);
2234         img_request_child_clear(parent_request);
2235
2236         rbd_img_request_destroy(kref);
2237 }
2238
2239 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2240 {
2241         struct rbd_img_request *img_request;
2242         unsigned int xferred;
2243         int result;
2244         bool more;
2245
2246         rbd_assert(obj_request_img_data_test(obj_request));
2247         img_request = obj_request->img_request;
2248
2249         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2250         xferred = (unsigned int)obj_request->xferred;
2251         result = obj_request->result;
2252         if (result) {
2253                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2254                 enum obj_operation_type op_type;
2255
2256                 if (img_request_discard_test(img_request))
2257                         op_type = OBJ_OP_DISCARD;
2258                 else if (img_request_write_test(img_request))
2259                         op_type = OBJ_OP_WRITE;
2260                 else
2261                         op_type = OBJ_OP_READ;
2262
2263                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2264                         obj_op_name(op_type), obj_request->length,
2265                         obj_request->img_offset, obj_request->offset);
2266                 rbd_warn(rbd_dev, "  result %d xferred %x",
2267                         result, xferred);
2268                 if (!img_request->result)
2269                         img_request->result = result;
2270         }
2271
2272         /* Image object requests don't own their page array */
2273
2274         if (obj_request->type == OBJ_REQUEST_PAGES) {
2275                 obj_request->pages = NULL;
2276                 obj_request->page_count = 0;
2277         }
2278
2279         if (img_request_child_test(img_request)) {
2280                 rbd_assert(img_request->obj_request != NULL);
2281                 more = obj_request->which < img_request->obj_request_count - 1;
2282         } else {
2283                 rbd_assert(img_request->rq != NULL);
2284                 more = blk_end_request(img_request->rq, result, xferred);
2285         }
2286
2287         return more;
2288 }
2289
2290 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2291 {
2292         struct rbd_img_request *img_request;
2293         u32 which = obj_request->which;
2294         bool more = true;
2295
2296         rbd_assert(obj_request_img_data_test(obj_request));
2297         img_request = obj_request->img_request;
2298
2299         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2300         rbd_assert(img_request != NULL);
2301         rbd_assert(img_request->obj_request_count > 0);
2302         rbd_assert(which != BAD_WHICH);
2303         rbd_assert(which < img_request->obj_request_count);
2304
2305         spin_lock_irq(&img_request->completion_lock);
2306         if (which != img_request->next_completion)
2307                 goto out;
2308
2309         for_each_obj_request_from(img_request, obj_request) {
2310                 rbd_assert(more);
2311                 rbd_assert(which < img_request->obj_request_count);
2312
2313                 if (!obj_request_done_test(obj_request))
2314                         break;
2315                 more = rbd_img_obj_end_request(obj_request);
2316                 which++;
2317         }
2318
2319         rbd_assert(more ^ (which == img_request->obj_request_count));
2320         img_request->next_completion = which;
2321 out:
2322         spin_unlock_irq(&img_request->completion_lock);
2323         rbd_img_request_put(img_request);
2324
2325         if (!more)
2326                 rbd_img_request_complete(img_request);
2327 }
2328
2329 /*
2330  * Add individual osd ops to the given ceph_osd_request and prepare
2331  * them for submission. num_ops is the current number of
2332  * osd operations already to the object request.
2333  */
2334 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2335                                 struct ceph_osd_request *osd_request,
2336                                 enum obj_operation_type op_type,
2337                                 unsigned int num_ops)
2338 {
2339         struct rbd_img_request *img_request = obj_request->img_request;
2340         struct rbd_device *rbd_dev = img_request->rbd_dev;
2341         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2342         u64 offset = obj_request->offset;
2343         u64 length = obj_request->length;
2344         u64 img_end;
2345         u16 opcode;
2346
2347         if (op_type == OBJ_OP_DISCARD) {
2348                 if (!offset && length == object_size &&
2349                     (!img_request_layered_test(img_request) ||
2350                      !obj_request_overlaps_parent(obj_request))) {
2351                         opcode = CEPH_OSD_OP_DELETE;
2352                 } else if ((offset + length == object_size)) {
2353                         opcode = CEPH_OSD_OP_TRUNCATE;
2354                 } else {
2355                         down_read(&rbd_dev->header_rwsem);
2356                         img_end = rbd_dev->header.image_size;
2357                         up_read(&rbd_dev->header_rwsem);
2358
2359                         if (obj_request->img_offset + length == img_end)
2360                                 opcode = CEPH_OSD_OP_TRUNCATE;
2361                         else
2362                                 opcode = CEPH_OSD_OP_ZERO;
2363                 }
2364         } else if (op_type == OBJ_OP_WRITE) {
2365                 opcode = CEPH_OSD_OP_WRITE;
2366                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2367                                         object_size, object_size);
2368                 num_ops++;
2369         } else {
2370                 opcode = CEPH_OSD_OP_READ;
2371         }
2372
2373         osd_req_op_extent_init(osd_request, num_ops, opcode, offset, length,
2374                                 0, 0);
2375         if (obj_request->type == OBJ_REQUEST_BIO)
2376                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2377                                         obj_request->bio_list, length);
2378         else if (obj_request->type == OBJ_REQUEST_PAGES)
2379                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2380                                         obj_request->pages, length,
2381                                         offset & ~PAGE_MASK, false, false);
2382
2383         /* Discards are also writes */
2384         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2385                 rbd_osd_req_format_write(obj_request);
2386         else
2387                 rbd_osd_req_format_read(obj_request);
2388 }
2389
2390 /*
2391  * Split up an image request into one or more object requests, each
2392  * to a different object.  The "type" parameter indicates whether
2393  * "data_desc" is the pointer to the head of a list of bio
2394  * structures, or the base of a page array.  In either case this
2395  * function assumes data_desc describes memory sufficient to hold
2396  * all data described by the image request.
2397  */
2398 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2399                                         enum obj_request_type type,
2400                                         void *data_desc)
2401 {
2402         struct rbd_device *rbd_dev = img_request->rbd_dev;
2403         struct rbd_obj_request *obj_request = NULL;
2404         struct rbd_obj_request *next_obj_request;
2405         struct bio *bio_list = NULL;
2406         unsigned int bio_offset = 0;
2407         struct page **pages = NULL;
2408         enum obj_operation_type op_type;
2409         u64 img_offset;
2410         u64 resid;
2411
2412         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2413                 (int)type, data_desc);
2414
2415         img_offset = img_request->offset;
2416         resid = img_request->length;
2417         rbd_assert(resid > 0);
2418         op_type = rbd_img_request_op_type(img_request);
2419
2420         if (type == OBJ_REQUEST_BIO) {
2421                 bio_list = data_desc;
2422                 rbd_assert(img_offset ==
2423                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2424         } else if (type == OBJ_REQUEST_PAGES) {
2425                 pages = data_desc;
2426         }
2427
2428         while (resid) {
2429                 struct ceph_osd_request *osd_req;
2430                 const char *object_name;
2431                 u64 offset;
2432                 u64 length;
2433
2434                 object_name = rbd_segment_name(rbd_dev, img_offset);
2435                 if (!object_name)
2436                         goto out_unwind;
2437                 offset = rbd_segment_offset(rbd_dev, img_offset);
2438                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2439                 obj_request = rbd_obj_request_create(object_name,
2440                                                 offset, length, type);
2441                 /* object request has its own copy of the object name */
2442                 rbd_segment_name_free(object_name);
2443                 if (!obj_request)
2444                         goto out_unwind;
2445
2446                 /*
2447                  * set obj_request->img_request before creating the
2448                  * osd_request so that it gets the right snapc
2449                  */
2450                 rbd_img_obj_request_add(img_request, obj_request);
2451
2452                 if (type == OBJ_REQUEST_BIO) {
2453                         unsigned int clone_size;
2454
2455                         rbd_assert(length <= (u64)UINT_MAX);
2456                         clone_size = (unsigned int)length;
2457                         obj_request->bio_list =
2458                                         bio_chain_clone_range(&bio_list,
2459                                                                 &bio_offset,
2460                                                                 clone_size,
2461                                                                 GFP_ATOMIC);
2462                         if (!obj_request->bio_list)
2463                                 goto out_unwind;
2464                 } else if (type == OBJ_REQUEST_PAGES) {
2465                         unsigned int page_count;
2466
2467                         obj_request->pages = pages;
2468                         page_count = (u32)calc_pages_for(offset, length);
2469                         obj_request->page_count = page_count;
2470                         if ((offset + length) & ~PAGE_MASK)
2471                                 page_count--;   /* more on last page */
2472                         pages += page_count;
2473                 }
2474
2475                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2476                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2477                                         obj_request);
2478                 if (!osd_req)
2479                         goto out_unwind;
2480
2481                 obj_request->osd_req = osd_req;
2482                 obj_request->callback = rbd_img_obj_callback;
2483                 obj_request->img_offset = img_offset;
2484
2485                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2486
2487                 rbd_img_request_get(img_request);
2488
2489                 img_offset += length;
2490                 resid -= length;
2491         }
2492
2493         return 0;
2494
2495 out_unwind:
2496         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2497                 rbd_img_obj_request_del(img_request, obj_request);
2498
2499         return -ENOMEM;
2500 }
2501
2502 static void
2503 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2504 {
2505         struct rbd_img_request *img_request;
2506         struct rbd_device *rbd_dev;
2507         struct page **pages;
2508         u32 page_count;
2509
2510         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2511                 obj_request->type == OBJ_REQUEST_NODATA);
2512         rbd_assert(obj_request_img_data_test(obj_request));
2513         img_request = obj_request->img_request;
2514         rbd_assert(img_request);
2515
2516         rbd_dev = img_request->rbd_dev;
2517         rbd_assert(rbd_dev);
2518
2519         pages = obj_request->copyup_pages;
2520         rbd_assert(pages != NULL);
2521         obj_request->copyup_pages = NULL;
2522         page_count = obj_request->copyup_page_count;
2523         rbd_assert(page_count);
2524         obj_request->copyup_page_count = 0;
2525         ceph_release_page_vector(pages, page_count);
2526
2527         /*
2528          * We want the transfer count to reflect the size of the
2529          * original write request.  There is no such thing as a
2530          * successful short write, so if the request was successful
2531          * we can just set it to the originally-requested length.
2532          */
2533         if (!obj_request->result)
2534                 obj_request->xferred = obj_request->length;
2535
2536         /* Finish up with the normal image object callback */
2537
2538         rbd_img_obj_callback(obj_request);
2539 }
2540
2541 static void
2542 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2543 {
2544         struct rbd_obj_request *orig_request;
2545         struct ceph_osd_request *osd_req;
2546         struct ceph_osd_client *osdc;
2547         struct rbd_device *rbd_dev;
2548         struct page **pages;
2549         enum obj_operation_type op_type;
2550         u32 page_count;
2551         int img_result;
2552         u64 parent_length;
2553
2554         rbd_assert(img_request_child_test(img_request));
2555
2556         /* First get what we need from the image request */
2557
2558         pages = img_request->copyup_pages;
2559         rbd_assert(pages != NULL);
2560         img_request->copyup_pages = NULL;
2561         page_count = img_request->copyup_page_count;
2562         rbd_assert(page_count);
2563         img_request->copyup_page_count = 0;
2564
2565         orig_request = img_request->obj_request;
2566         rbd_assert(orig_request != NULL);
2567         rbd_assert(obj_request_type_valid(orig_request->type));
2568         img_result = img_request->result;
2569         parent_length = img_request->length;
2570         rbd_assert(parent_length == img_request->xferred);
2571         rbd_img_request_put(img_request);
2572
2573         rbd_assert(orig_request->img_request);
2574         rbd_dev = orig_request->img_request->rbd_dev;
2575         rbd_assert(rbd_dev);
2576
2577         /*
2578          * If the overlap has become 0 (most likely because the
2579          * image has been flattened) we need to free the pages
2580          * and re-submit the original write request.
2581          */
2582         if (!rbd_dev->parent_overlap) {
2583                 struct ceph_osd_client *osdc;
2584
2585                 ceph_release_page_vector(pages, page_count);
2586                 osdc = &rbd_dev->rbd_client->client->osdc;
2587                 img_result = rbd_obj_request_submit(osdc, orig_request);
2588                 if (!img_result)
2589                         return;
2590         }
2591
2592         if (img_result)
2593                 goto out_err;
2594
2595         /*
2596          * The original osd request is of no use to use any more.
2597          * We need a new one that can hold the three ops in a copyup
2598          * request.  Allocate the new copyup osd request for the
2599          * original request, and release the old one.
2600          */
2601         img_result = -ENOMEM;
2602         osd_req = rbd_osd_req_create_copyup(orig_request);
2603         if (!osd_req)
2604                 goto out_err;
2605         rbd_osd_req_destroy(orig_request->osd_req);
2606         orig_request->osd_req = osd_req;
2607         orig_request->copyup_pages = pages;
2608         orig_request->copyup_page_count = page_count;
2609
2610         /* Initialize the copyup op */
2611
2612         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2613         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2614                                                 false, false);
2615
2616         /* Add the other op(s) */
2617
2618         op_type = rbd_img_request_op_type(orig_request->img_request);
2619         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2620
2621         /* All set, send it off. */
2622
2623         orig_request->callback = rbd_img_obj_copyup_callback;
2624         osdc = &rbd_dev->rbd_client->client->osdc;
2625         img_result = rbd_obj_request_submit(osdc, orig_request);
2626         if (!img_result)
2627                 return;
2628 out_err:
2629         /* Record the error code and complete the request */
2630
2631         orig_request->result = img_result;
2632         orig_request->xferred = 0;
2633         obj_request_done_set(orig_request);
2634         rbd_obj_request_complete(orig_request);
2635 }
2636
2637 /*
2638  * Read from the parent image the range of data that covers the
2639  * entire target of the given object request.  This is used for
2640  * satisfying a layered image write request when the target of an
2641  * object request from the image request does not exist.
2642  *
2643  * A page array big enough to hold the returned data is allocated
2644  * and supplied to rbd_img_request_fill() as the "data descriptor."
2645  * When the read completes, this page array will be transferred to
2646  * the original object request for the copyup operation.
2647  *
2648  * If an error occurs, record it as the result of the original
2649  * object request and mark it done so it gets completed.
2650  */
2651 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2652 {
2653         struct rbd_img_request *img_request = NULL;
2654         struct rbd_img_request *parent_request = NULL;
2655         struct rbd_device *rbd_dev;
2656         u64 img_offset;
2657         u64 length;
2658         struct page **pages = NULL;
2659         u32 page_count;
2660         int result;
2661
2662         rbd_assert(obj_request_img_data_test(obj_request));
2663         rbd_assert(obj_request_type_valid(obj_request->type));
2664
2665         img_request = obj_request->img_request;
2666         rbd_assert(img_request != NULL);
2667         rbd_dev = img_request->rbd_dev;
2668         rbd_assert(rbd_dev->parent != NULL);
2669
2670         /*
2671          * Determine the byte range covered by the object in the
2672          * child image to which the original request was to be sent.
2673          */
2674         img_offset = obj_request->img_offset - obj_request->offset;
2675         length = (u64)1 << rbd_dev->header.obj_order;
2676
2677         /*
2678          * There is no defined parent data beyond the parent
2679          * overlap, so limit what we read at that boundary if
2680          * necessary.
2681          */
2682         if (img_offset + length > rbd_dev->parent_overlap) {
2683                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2684                 length = rbd_dev->parent_overlap - img_offset;
2685         }
2686
2687         /*
2688          * Allocate a page array big enough to receive the data read
2689          * from the parent.
2690          */
2691         page_count = (u32)calc_pages_for(0, length);
2692         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2693         if (IS_ERR(pages)) {
2694                 result = PTR_ERR(pages);
2695                 pages = NULL;
2696                 goto out_err;
2697         }
2698
2699         result = -ENOMEM;
2700         parent_request = rbd_parent_request_create(obj_request,
2701                                                 img_offset, length);
2702         if (!parent_request)
2703                 goto out_err;
2704
2705         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2706         if (result)
2707                 goto out_err;
2708         parent_request->copyup_pages = pages;
2709         parent_request->copyup_page_count = page_count;
2710
2711         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2712         result = rbd_img_request_submit(parent_request);
2713         if (!result)
2714                 return 0;
2715
2716         parent_request->copyup_pages = NULL;
2717         parent_request->copyup_page_count = 0;
2718         parent_request->obj_request = NULL;
2719         rbd_obj_request_put(obj_request);
2720 out_err:
2721         if (pages)
2722                 ceph_release_page_vector(pages, page_count);
2723         if (parent_request)
2724                 rbd_img_request_put(parent_request);
2725         obj_request->result = result;
2726         obj_request->xferred = 0;
2727         obj_request_done_set(obj_request);
2728
2729         return result;
2730 }
2731
2732 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2733 {
2734         struct rbd_obj_request *orig_request;
2735         struct rbd_device *rbd_dev;
2736         int result;
2737
2738         rbd_assert(!obj_request_img_data_test(obj_request));
2739
2740         /*
2741          * All we need from the object request is the original
2742          * request and the result of the STAT op.  Grab those, then
2743          * we're done with the request.
2744          */
2745         orig_request = obj_request->obj_request;
2746         obj_request->obj_request = NULL;
2747         rbd_obj_request_put(orig_request);
2748         rbd_assert(orig_request);
2749         rbd_assert(orig_request->img_request);
2750
2751         result = obj_request->result;
2752         obj_request->result = 0;
2753
2754         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2755                 obj_request, orig_request, result,
2756                 obj_request->xferred, obj_request->length);
2757         rbd_obj_request_put(obj_request);
2758
2759         /*
2760          * If the overlap has become 0 (most likely because the
2761          * image has been flattened) we need to free the pages
2762          * and re-submit the original write request.
2763          */
2764         rbd_dev = orig_request->img_request->rbd_dev;
2765         if (!rbd_dev->parent_overlap) {
2766                 struct ceph_osd_client *osdc;
2767
2768                 osdc = &rbd_dev->rbd_client->client->osdc;
2769                 result = rbd_obj_request_submit(osdc, orig_request);
2770                 if (!result)
2771                         return;
2772         }
2773
2774         /*
2775          * Our only purpose here is to determine whether the object
2776          * exists, and we don't want to treat the non-existence as
2777          * an error.  If something else comes back, transfer the
2778          * error to the original request and complete it now.
2779          */
2780         if (!result) {
2781                 obj_request_existence_set(orig_request, true);
2782         } else if (result == -ENOENT) {
2783                 obj_request_existence_set(orig_request, false);
2784         } else if (result) {
2785                 orig_request->result = result;
2786                 goto out;
2787         }
2788
2789         /*
2790          * Resubmit the original request now that we have recorded
2791          * whether the target object exists.
2792          */
2793         orig_request->result = rbd_img_obj_request_submit(orig_request);
2794 out:
2795         if (orig_request->result)
2796                 rbd_obj_request_complete(orig_request);
2797 }
2798
2799 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2800 {
2801         struct rbd_obj_request *stat_request;
2802         struct rbd_device *rbd_dev;
2803         struct ceph_osd_client *osdc;
2804         struct page **pages = NULL;
2805         u32 page_count;
2806         size_t size;
2807         int ret;
2808
2809         /*
2810          * The response data for a STAT call consists of:
2811          *     le64 length;
2812          *     struct {
2813          *         le32 tv_sec;
2814          *         le32 tv_nsec;
2815          *     } mtime;
2816          */
2817         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2818         page_count = (u32)calc_pages_for(0, size);
2819         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2820         if (IS_ERR(pages))
2821                 return PTR_ERR(pages);
2822
2823         ret = -ENOMEM;
2824         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2825                                                         OBJ_REQUEST_PAGES);
2826         if (!stat_request)
2827                 goto out;
2828
2829         rbd_obj_request_get(obj_request);
2830         stat_request->obj_request = obj_request;
2831         stat_request->pages = pages;
2832         stat_request->page_count = page_count;
2833
2834         rbd_assert(obj_request->img_request);
2835         rbd_dev = obj_request->img_request->rbd_dev;
2836         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2837                                                    stat_request);
2838         if (!stat_request->osd_req)
2839                 goto out;
2840         stat_request->callback = rbd_img_obj_exists_callback;
2841
2842         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2843         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2844                                         false, false);
2845         rbd_osd_req_format_read(stat_request);
2846
2847         osdc = &rbd_dev->rbd_client->client->osdc;
2848         ret = rbd_obj_request_submit(osdc, stat_request);
2849 out:
2850         if (ret)
2851                 rbd_obj_request_put(obj_request);
2852
2853         return ret;
2854 }
2855
2856 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2857 {
2858         struct rbd_img_request *img_request;
2859         struct rbd_device *rbd_dev;
2860
2861         rbd_assert(obj_request_img_data_test(obj_request));
2862
2863         img_request = obj_request->img_request;
2864         rbd_assert(img_request);
2865         rbd_dev = img_request->rbd_dev;
2866
2867         /* Reads */
2868         if (!img_request_write_test(img_request) &&
2869             !img_request_discard_test(img_request))
2870                 return true;
2871
2872         /* Non-layered writes */
2873         if (!img_request_layered_test(img_request))
2874                 return true;
2875
2876         /*
2877          * Layered writes outside of the parent overlap range don't
2878          * share any data with the parent.
2879          */
2880         if (!obj_request_overlaps_parent(obj_request))
2881                 return true;
2882
2883         /*
2884          * Entire-object layered writes - we will overwrite whatever
2885          * parent data there is anyway.
2886          */
2887         if (!obj_request->offset &&
2888             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2889                 return true;
2890
2891         /*
2892          * If the object is known to already exist, its parent data has
2893          * already been copied.
2894          */
2895         if (obj_request_known_test(obj_request) &&
2896             obj_request_exists_test(obj_request))
2897                 return true;
2898
2899         return false;
2900 }
2901
2902 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2903 {
2904         if (img_obj_request_simple(obj_request)) {
2905                 struct rbd_device *rbd_dev;
2906                 struct ceph_osd_client *osdc;
2907
2908                 rbd_dev = obj_request->img_request->rbd_dev;
2909                 osdc = &rbd_dev->rbd_client->client->osdc;
2910
2911                 return rbd_obj_request_submit(osdc, obj_request);
2912         }
2913
2914         /*
2915          * It's a layered write.  The target object might exist but
2916          * we may not know that yet.  If we know it doesn't exist,
2917          * start by reading the data for the full target object from
2918          * the parent so we can use it for a copyup to the target.
2919          */
2920         if (obj_request_known_test(obj_request))
2921                 return rbd_img_obj_parent_read_full(obj_request);
2922
2923         /* We don't know whether the target exists.  Go find out. */
2924
2925         return rbd_img_obj_exists_submit(obj_request);
2926 }
2927
2928 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2929 {
2930         struct rbd_obj_request *obj_request;
2931         struct rbd_obj_request *next_obj_request;
2932
2933         dout("%s: img %p\n", __func__, img_request);
2934         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2935                 int ret;
2936
2937                 ret = rbd_img_obj_request_submit(obj_request);
2938                 if (ret)
2939                         return ret;
2940         }
2941
2942         return 0;
2943 }
2944
2945 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2946 {
2947         struct rbd_obj_request *obj_request;
2948         struct rbd_device *rbd_dev;
2949         u64 obj_end;
2950         u64 img_xferred;
2951         int img_result;
2952
2953         rbd_assert(img_request_child_test(img_request));
2954
2955         /* First get what we need from the image request and release it */
2956
2957         obj_request = img_request->obj_request;
2958         img_xferred = img_request->xferred;
2959         img_result = img_request->result;
2960         rbd_img_request_put(img_request);
2961
2962         /*
2963          * If the overlap has become 0 (most likely because the
2964          * image has been flattened) we need to re-submit the
2965          * original request.
2966          */
2967         rbd_assert(obj_request);
2968         rbd_assert(obj_request->img_request);
2969         rbd_dev = obj_request->img_request->rbd_dev;
2970         if (!rbd_dev->parent_overlap) {
2971                 struct ceph_osd_client *osdc;
2972
2973                 osdc = &rbd_dev->rbd_client->client->osdc;
2974                 img_result = rbd_obj_request_submit(osdc, obj_request);
2975                 if (!img_result)
2976                         return;
2977         }
2978
2979         obj_request->result = img_result;
2980         if (obj_request->result)
2981                 goto out;
2982
2983         /*
2984          * We need to zero anything beyond the parent overlap
2985          * boundary.  Since rbd_img_obj_request_read_callback()
2986          * will zero anything beyond the end of a short read, an
2987          * easy way to do this is to pretend the data from the
2988          * parent came up short--ending at the overlap boundary.
2989          */
2990         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2991         obj_end = obj_request->img_offset + obj_request->length;
2992         if (obj_end > rbd_dev->parent_overlap) {
2993                 u64 xferred = 0;
2994
2995                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2996                         xferred = rbd_dev->parent_overlap -
2997                                         obj_request->img_offset;
2998
2999                 obj_request->xferred = min(img_xferred, xferred);
3000         } else {
3001                 obj_request->xferred = img_xferred;
3002         }
3003 out:
3004         rbd_img_obj_request_read_callback(obj_request);
3005         rbd_obj_request_complete(obj_request);
3006 }
3007
3008 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3009 {
3010         struct rbd_img_request *img_request;
3011         int result;
3012
3013         rbd_assert(obj_request_img_data_test(obj_request));
3014         rbd_assert(obj_request->img_request != NULL);
3015         rbd_assert(obj_request->result == (s32) -ENOENT);
3016         rbd_assert(obj_request_type_valid(obj_request->type));
3017
3018         /* rbd_read_finish(obj_request, obj_request->length); */
3019         img_request = rbd_parent_request_create(obj_request,
3020                                                 obj_request->img_offset,
3021                                                 obj_request->length);
3022         result = -ENOMEM;
3023         if (!img_request)
3024                 goto out_err;
3025
3026         if (obj_request->type == OBJ_REQUEST_BIO)
3027                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3028                                                 obj_request->bio_list);
3029         else
3030                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3031                                                 obj_request->pages);
3032         if (result)
3033                 goto out_err;
3034
3035         img_request->callback = rbd_img_parent_read_callback;
3036         result = rbd_img_request_submit(img_request);
3037         if (result)
3038                 goto out_err;
3039
3040         return;
3041 out_err:
3042         if (img_request)
3043                 rbd_img_request_put(img_request);
3044         obj_request->result = result;
3045         obj_request->xferred = 0;
3046         obj_request_done_set(obj_request);
3047 }
3048
3049 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3050 {
3051         struct rbd_obj_request *obj_request;
3052         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3053         int ret;
3054
3055         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3056                                                         OBJ_REQUEST_NODATA);
3057         if (!obj_request)
3058                 return -ENOMEM;
3059
3060         ret = -ENOMEM;
3061         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3062                                                   obj_request);
3063         if (!obj_request->osd_req)
3064                 goto out;
3065
3066         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3067                                         notify_id, 0, 0);
3068         rbd_osd_req_format_read(obj_request);
3069
3070         ret = rbd_obj_request_submit(osdc, obj_request);
3071         if (ret)
3072                 goto out;
3073         ret = rbd_obj_request_wait(obj_request);
3074 out:
3075         rbd_obj_request_put(obj_request);
3076
3077         return ret;
3078 }
3079
3080 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3081 {
3082         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3083         int ret;
3084
3085         if (!rbd_dev)
3086                 return;
3087
3088         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3089                 rbd_dev->header_name, (unsigned long long)notify_id,
3090                 (unsigned int)opcode);
3091
3092         /*
3093          * Until adequate refresh error handling is in place, there is
3094          * not much we can do here, except warn.
3095          *
3096          * See http://tracker.ceph.com/issues/5040
3097          */
3098         ret = rbd_dev_refresh(rbd_dev);
3099         if (ret)
3100                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3101
3102         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3103         if (ret)
3104                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3105 }
3106
3107 /*
3108  * Send a (un)watch request and wait for the ack.  Return a request
3109  * with a ref held on success or error.
3110  */
3111 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3112                                                 struct rbd_device *rbd_dev,
3113                                                 bool watch)
3114 {
3115         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3116         struct rbd_obj_request *obj_request;
3117         int ret;
3118
3119         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3120                                              OBJ_REQUEST_NODATA);
3121         if (!obj_request)
3122                 return ERR_PTR(-ENOMEM);
3123
3124         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3125                                                   obj_request);
3126         if (!obj_request->osd_req) {
3127                 ret = -ENOMEM;
3128                 goto out;
3129         }
3130
3131         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3132                               rbd_dev->watch_event->cookie, 0, watch);
3133         rbd_osd_req_format_write(obj_request);
3134
3135         if (watch)
3136                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3137
3138         ret = rbd_obj_request_submit(osdc, obj_request);
3139         if (ret)
3140                 goto out;
3141
3142         ret = rbd_obj_request_wait(obj_request);
3143         if (ret)
3144                 goto out;
3145
3146         ret = obj_request->result;
3147         if (ret) {
3148                 if (watch)
3149                         rbd_obj_request_end(obj_request);
3150                 goto out;
3151         }
3152
3153         return obj_request;
3154
3155 out:
3156         rbd_obj_request_put(obj_request);
3157         return ERR_PTR(ret);
3158 }
3159
3160 /*
3161  * Initiate a watch request, synchronously.
3162  */
3163 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3164 {
3165         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3166         struct rbd_obj_request *obj_request;
3167         int ret;
3168
3169         rbd_assert(!rbd_dev->watch_event);
3170         rbd_assert(!rbd_dev->watch_request);
3171
3172         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3173                                      &rbd_dev->watch_event);
3174         if (ret < 0)
3175                 return ret;
3176
3177         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3178         if (IS_ERR(obj_request)) {
3179                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3180                 rbd_dev->watch_event = NULL;
3181                 return PTR_ERR(obj_request);
3182         }
3183
3184         /*
3185          * A watch request is set to linger, so the underlying osd
3186          * request won't go away until we unregister it.  We retain
3187          * a pointer to the object request during that time (in
3188          * rbd_dev->watch_request), so we'll keep a reference to it.
3189          * We'll drop that reference after we've unregistered it in
3190          * rbd_dev_header_unwatch_sync().
3191          */
3192         rbd_dev->watch_request = obj_request;
3193
3194         return 0;
3195 }
3196
3197 /*
3198  * Tear down a watch request, synchronously.
3199  */
3200 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3201 {
3202         struct rbd_obj_request *obj_request;
3203
3204         rbd_assert(rbd_dev->watch_event);
3205         rbd_assert(rbd_dev->watch_request);
3206
3207         rbd_obj_request_end(rbd_dev->watch_request);
3208         rbd_obj_request_put(rbd_dev->watch_request);
3209         rbd_dev->watch_request = NULL;
3210
3211         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3212         if (!IS_ERR(obj_request))
3213                 rbd_obj_request_put(obj_request);
3214         else
3215                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3216                          PTR_ERR(obj_request));
3217
3218         ceph_osdc_cancel_event(rbd_dev->watch_event);
3219         rbd_dev->watch_event = NULL;
3220 }
3221
3222 /*
3223  * Synchronous osd object method call.  Returns the number of bytes
3224  * returned in the outbound buffer, or a negative error code.
3225  */
3226 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3227                              const char *object_name,
3228                              const char *class_name,
3229                              const char *method_name,
3230                              const void *outbound,
3231                              size_t outbound_size,
3232                              void *inbound,
3233                              size_t inbound_size)
3234 {
3235         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3236         struct rbd_obj_request *obj_request;
3237         struct page **pages;
3238         u32 page_count;
3239         int ret;
3240
3241         /*
3242          * Method calls are ultimately read operations.  The result
3243          * should placed into the inbound buffer provided.  They
3244          * also supply outbound data--parameters for the object
3245          * method.  Currently if this is present it will be a
3246          * snapshot id.
3247          */
3248         page_count = (u32)calc_pages_for(0, inbound_size);
3249         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3250         if (IS_ERR(pages))
3251                 return PTR_ERR(pages);
3252
3253         ret = -ENOMEM;
3254         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3255                                                         OBJ_REQUEST_PAGES);
3256         if (!obj_request)
3257                 goto out;
3258
3259         obj_request->pages = pages;
3260         obj_request->page_count = page_count;
3261
3262         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3263                                                   obj_request);
3264         if (!obj_request->osd_req)
3265                 goto out;
3266
3267         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3268                                         class_name, method_name);
3269         if (outbound_size) {
3270                 struct ceph_pagelist *pagelist;
3271
3272                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3273                 if (!pagelist)
3274                         goto out;
3275
3276                 ceph_pagelist_init(pagelist);
3277                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3278                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3279                                                 pagelist);
3280         }
3281         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3282                                         obj_request->pages, inbound_size,
3283                                         0, false, false);
3284         rbd_osd_req_format_read(obj_request);
3285
3286         ret = rbd_obj_request_submit(osdc, obj_request);
3287         if (ret)
3288                 goto out;
3289         ret = rbd_obj_request_wait(obj_request);
3290         if (ret)
3291                 goto out;
3292
3293         ret = obj_request->result;
3294         if (ret < 0)
3295                 goto out;
3296
3297         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3298         ret = (int)obj_request->xferred;
3299         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3300 out:
3301         if (obj_request)
3302                 rbd_obj_request_put(obj_request);
3303         else
3304                 ceph_release_page_vector(pages, page_count);
3305
3306         return ret;
3307 }
3308
3309 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3310 {
3311         struct rbd_img_request *img_request;
3312         struct ceph_snap_context *snapc = NULL;
3313         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3314         u64 length = blk_rq_bytes(rq);
3315         enum obj_operation_type op_type;
3316         u64 mapping_size;
3317         int result;
3318
3319         if (rq->cmd_flags & REQ_DISCARD)
3320                 op_type = OBJ_OP_DISCARD;
3321         else if (rq->cmd_flags & REQ_WRITE)
3322                 op_type = OBJ_OP_WRITE;
3323         else
3324                 op_type = OBJ_OP_READ;
3325
3326         /* Ignore/skip any zero-length requests */
3327
3328         if (!length) {
3329                 dout("%s: zero-length request\n", __func__);
3330                 result = 0;
3331                 goto err_rq;
3332         }
3333
3334         /* Only reads are allowed to a read-only device */
3335
3336         if (op_type != OBJ_OP_READ) {
3337                 if (rbd_dev->mapping.read_only) {
3338                         result = -EROFS;
3339                         goto err_rq;
3340                 }
3341                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3342         }
3343
3344         /*
3345          * Quit early if the mapped snapshot no longer exists.  It's
3346          * still possible the snapshot will have disappeared by the
3347          * time our request arrives at the osd, but there's no sense in
3348          * sending it if we already know.
3349          */
3350         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3351                 dout("request for non-existent snapshot");
3352                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3353                 result = -ENXIO;
3354                 goto err_rq;
3355         }
3356
3357         if (offset && length > U64_MAX - offset + 1) {
3358                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3359                          length);
3360                 result = -EINVAL;
3361                 goto err_rq;    /* Shouldn't happen */
3362         }
3363
3364         down_read(&rbd_dev->header_rwsem);
3365         mapping_size = rbd_dev->mapping.size;
3366         if (op_type != OBJ_OP_READ) {
3367                 snapc = rbd_dev->header.snapc;
3368                 ceph_get_snap_context(snapc);
3369         }
3370         up_read(&rbd_dev->header_rwsem);
3371
3372         if (offset + length > mapping_size) {
3373                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3374                          length, mapping_size);
3375                 result = -EIO;
3376                 goto err_rq;
3377         }
3378
3379         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3380                                              snapc);
3381         if (!img_request) {
3382                 result = -ENOMEM;
3383                 goto err_rq;
3384         }
3385         img_request->rq = rq;
3386
3387         if (op_type == OBJ_OP_DISCARD)
3388                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3389                                               NULL);
3390         else
3391                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3392                                               rq->bio);
3393         if (result)
3394                 goto err_img_request;
3395
3396         result = rbd_img_request_submit(img_request);
3397         if (result)
3398                 goto err_img_request;
3399
3400         return;
3401
3402 err_img_request:
3403         rbd_img_request_put(img_request);
3404 err_rq:
3405         if (result)
3406                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3407                          obj_op_name(op_type), length, offset, result);
3408         if (snapc)
3409                 ceph_put_snap_context(snapc);
3410         blk_end_request_all(rq, result);
3411 }
3412
3413 static void rbd_request_workfn(struct work_struct *work)
3414 {
3415         struct rbd_device *rbd_dev =
3416             container_of(work, struct rbd_device, rq_work);
3417         struct request *rq, *next;
3418         LIST_HEAD(requests);
3419
3420         spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3421         list_splice_init(&rbd_dev->rq_queue, &requests);
3422         spin_unlock_irq(&rbd_dev->lock);
3423
3424         list_for_each_entry_safe(rq, next, &requests, queuelist) {
3425                 list_del_init(&rq->queuelist);
3426                 rbd_handle_request(rbd_dev, rq);
3427         }
3428 }
3429
3430 /*
3431  * Called with q->queue_lock held and interrupts disabled, possibly on
3432  * the way to schedule().  Do not sleep here!
3433  */
3434 static void rbd_request_fn(struct request_queue *q)
3435 {
3436         struct rbd_device *rbd_dev = q->queuedata;
3437         struct request *rq;
3438         int queued = 0;
3439
3440         rbd_assert(rbd_dev);
3441
3442         while ((rq = blk_fetch_request(q))) {
3443                 /* Ignore any non-FS requests that filter through. */
3444                 if (rq->cmd_type != REQ_TYPE_FS) {
3445                         dout("%s: non-fs request type %d\n", __func__,
3446                                 (int) rq->cmd_type);
3447                         __blk_end_request_all(rq, 0);
3448                         continue;
3449                 }
3450
3451                 list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3452                 queued++;
3453         }
3454
3455         if (queued)
3456                 queue_work(rbd_wq, &rbd_dev->rq_work);
3457 }
3458
3459 /*
3460  * a queue callback. Makes sure that we don't create a bio that spans across
3461  * multiple osd objects. One exception would be with a single page bios,
3462  * which we handle later at bio_chain_clone_range()
3463  */
3464 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3465                           struct bio_vec *bvec)
3466 {
3467         struct rbd_device *rbd_dev = q->queuedata;
3468         sector_t sector_offset;
3469         sector_t sectors_per_obj;
3470         sector_t obj_sector_offset;
3471         int ret;
3472
3473         /*
3474          * Find how far into its rbd object the partition-relative
3475          * bio start sector is to offset relative to the enclosing
3476          * device.
3477          */
3478         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3479         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3480         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3481
3482         /*
3483          * Compute the number of bytes from that offset to the end
3484          * of the object.  Account for what's already used by the bio.
3485          */
3486         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3487         if (ret > bmd->bi_size)
3488                 ret -= bmd->bi_size;
3489         else
3490                 ret = 0;
3491
3492         /*
3493          * Don't send back more than was asked for.  And if the bio
3494          * was empty, let the whole thing through because:  "Note
3495          * that a block device *must* allow a single page to be
3496          * added to an empty bio."
3497          */
3498         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3499         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3500                 ret = (int) bvec->bv_len;
3501
3502         return ret;
3503 }
3504
3505 static void rbd_free_disk(struct rbd_device *rbd_dev)
3506 {
3507         struct gendisk *disk = rbd_dev->disk;
3508
3509         if (!disk)
3510                 return;
3511
3512         rbd_dev->disk = NULL;
3513         if (disk->flags & GENHD_FL_UP) {
3514                 del_gendisk(disk);
3515                 if (disk->queue)
3516                         blk_cleanup_queue(disk->queue);
3517         }
3518         put_disk(disk);
3519 }
3520
3521 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3522                                 const char *object_name,
3523                                 u64 offset, u64 length, void *buf)
3524
3525 {
3526         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3527         struct rbd_obj_request *obj_request;
3528         struct page **pages = NULL;
3529         u32 page_count;
3530         size_t size;
3531         int ret;
3532
3533         page_count = (u32) calc_pages_for(offset, length);
3534         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3535         if (IS_ERR(pages))
3536                 ret = PTR_ERR(pages);
3537
3538         ret = -ENOMEM;
3539         obj_request = rbd_obj_request_create(object_name, offset, length,
3540                                                         OBJ_REQUEST_PAGES);
3541         if (!obj_request)
3542                 goto out;
3543
3544         obj_request->pages = pages;
3545         obj_request->page_count = page_count;
3546
3547         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3548                                                   obj_request);
3549         if (!obj_request->osd_req)
3550                 goto out;
3551
3552         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3553                                         offset, length, 0, 0);
3554         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3555                                         obj_request->pages,
3556                                         obj_request->length,
3557                                         obj_request->offset & ~PAGE_MASK,
3558                                         false, false);
3559         rbd_osd_req_format_read(obj_request);
3560
3561         ret = rbd_obj_request_submit(osdc, obj_request);
3562         if (ret)
3563                 goto out;
3564         ret = rbd_obj_request_wait(obj_request);
3565         if (ret)
3566                 goto out;
3567
3568         ret = obj_request->result;
3569         if (ret < 0)
3570                 goto out;
3571
3572         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3573         size = (size_t) obj_request->xferred;
3574         ceph_copy_from_page_vector(pages, buf, 0, size);
3575         rbd_assert(size <= (size_t)INT_MAX);
3576         ret = (int)size;
3577 out:
3578         if (obj_request)
3579                 rbd_obj_request_put(obj_request);
3580         else
3581                 ceph_release_page_vector(pages, page_count);
3582
3583         return ret;
3584 }
3585
3586 /*
3587  * Read the complete header for the given rbd device.  On successful
3588  * return, the rbd_dev->header field will contain up-to-date
3589  * information about the image.
3590  */
3591 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3592 {
3593         struct rbd_image_header_ondisk *ondisk = NULL;
3594         u32 snap_count = 0;
3595         u64 names_size = 0;
3596         u32 want_count;
3597         int ret;
3598
3599         /*
3600          * The complete header will include an array of its 64-bit
3601          * snapshot ids, followed by the names of those snapshots as
3602          * a contiguous block of NUL-terminated strings.  Note that
3603          * the number of snapshots could change by the time we read
3604          * it in, in which case we re-read it.
3605          */
3606         do {
3607                 size_t size;
3608
3609                 kfree(ondisk);
3610
3611                 size = sizeof (*ondisk);
3612                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3613                 size += names_size;
3614                 ondisk = kmalloc(size, GFP_KERNEL);
3615                 if (!ondisk)
3616                         return -ENOMEM;
3617
3618                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3619                                        0, size, ondisk);
3620                 if (ret < 0)
3621                         goto out;
3622                 if ((size_t)ret < size) {
3623                         ret = -ENXIO;
3624                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3625                                 size, ret);
3626                         goto out;
3627                 }
3628                 if (!rbd_dev_ondisk_valid(ondisk)) {
3629                         ret = -ENXIO;
3630                         rbd_warn(rbd_dev, "invalid header");
3631                         goto out;
3632                 }
3633
3634                 names_size = le64_to_cpu(ondisk->snap_names_len);
3635                 want_count = snap_count;
3636                 snap_count = le32_to_cpu(ondisk->snap_count);
3637         } while (snap_count != want_count);
3638
3639         ret = rbd_header_from_disk(rbd_dev, ondisk);
3640 out:
3641         kfree(ondisk);
3642
3643         return ret;
3644 }
3645
3646 /*
3647  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3648  * has disappeared from the (just updated) snapshot context.
3649  */
3650 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3651 {
3652         u64 snap_id;
3653
3654         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3655                 return;
3656
3657         snap_id = rbd_dev->spec->snap_id;
3658         if (snap_id == CEPH_NOSNAP)
3659                 return;
3660
3661         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3662                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3663 }
3664
3665 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3666 {
3667         sector_t size;
3668         bool removing;
3669
3670         /*
3671          * Don't hold the lock while doing disk operations,
3672          * or lock ordering will conflict with the bdev mutex via:
3673          * rbd_add() -> blkdev_get() -> rbd_open()
3674          */
3675         spin_lock_irq(&rbd_dev->lock);
3676         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3677         spin_unlock_irq(&rbd_dev->lock);
3678         /*
3679          * If the device is being removed, rbd_dev->disk has
3680          * been destroyed, so don't try to update its size
3681          */
3682         if (!removing) {
3683                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3684                 dout("setting size to %llu sectors", (unsigned long long)size);
3685                 set_capacity(rbd_dev->disk, size);
3686                 revalidate_disk(rbd_dev->disk);
3687         }
3688 }
3689
3690 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3691 {
3692         u64 mapping_size;
3693         int ret;
3694
3695         down_write(&rbd_dev->header_rwsem);
3696         mapping_size = rbd_dev->mapping.size;
3697
3698         ret = rbd_dev_header_info(rbd_dev);
3699         if (ret)
3700                 return ret;
3701
3702         /*
3703          * If there is a parent, see if it has disappeared due to the
3704          * mapped image getting flattened.
3705          */
3706         if (rbd_dev->parent) {
3707                 ret = rbd_dev_v2_parent_info(rbd_dev);
3708                 if (ret)
3709                         return ret;
3710         }
3711
3712         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3713                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3714                         rbd_dev->mapping.size = rbd_dev->header.image_size;
3715         } else {
3716                 /* validate mapped snapshot's EXISTS flag */
3717                 rbd_exists_validate(rbd_dev);
3718         }
3719
3720         up_write(&rbd_dev->header_rwsem);
3721
3722         if (mapping_size != rbd_dev->mapping.size)
3723                 rbd_dev_update_size(rbd_dev);
3724
3725         return 0;
3726 }
3727
3728 static int rbd_init_disk(struct rbd_device *rbd_dev)
3729 {
3730         struct gendisk *disk;
3731         struct request_queue *q;
3732         u64 segment_size;
3733
3734         /* create gendisk info */
3735         disk = alloc_disk(single_major ?
3736                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3737                           RBD_MINORS_PER_MAJOR);
3738         if (!disk)
3739                 return -ENOMEM;
3740
3741         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3742                  rbd_dev->dev_id);
3743         disk->major = rbd_dev->major;
3744         disk->first_minor = rbd_dev->minor;
3745         if (single_major)
3746                 disk->flags |= GENHD_FL_EXT_DEVT;
3747         disk->fops = &rbd_bd_ops;
3748         disk->private_data = rbd_dev;
3749
3750         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3751         if (!q)
3752                 goto out_disk;
3753
3754         /* We use the default size, but let's be explicit about it. */
3755         blk_queue_physical_block_size(q, SECTOR_SIZE);
3756
3757         /* set io sizes to object size */
3758         segment_size = rbd_obj_bytes(&rbd_dev->header);
3759         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3760         blk_queue_max_segment_size(q, segment_size);
3761         blk_queue_io_min(q, segment_size);
3762         blk_queue_io_opt(q, segment_size);
3763
3764         /* enable the discard support */
3765         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3766         q->limits.discard_granularity = segment_size;
3767         q->limits.discard_alignment = segment_size;
3768         q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3769         q->limits.discard_zeroes_data = 1;
3770
3771         blk_queue_merge_bvec(q, rbd_merge_bvec);
3772         disk->queue = q;
3773
3774         q->queuedata = rbd_dev;
3775
3776         rbd_dev->disk = disk;
3777
3778         return 0;
3779 out_disk:
3780         put_disk(disk);
3781
3782         return -ENOMEM;
3783 }
3784
3785 /*
3786   sysfs
3787 */
3788
3789 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3790 {
3791         return container_of(dev, struct rbd_device, dev);
3792 }
3793
3794 static ssize_t rbd_size_show(struct device *dev,
3795                              struct device_attribute *attr, char *buf)
3796 {
3797         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3798
3799         return sprintf(buf, "%llu\n",
3800                 (unsigned long long)rbd_dev->mapping.size);
3801 }
3802
3803 /*
3804  * Note this shows the features for whatever's mapped, which is not
3805  * necessarily the base image.
3806  */
3807 static ssize_t rbd_features_show(struct device *dev,
3808                              struct device_attribute *attr, char *buf)
3809 {
3810         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3811
3812         return sprintf(buf, "0x%016llx\n",
3813                         (unsigned long long)rbd_dev->mapping.features);
3814 }
3815
3816 static ssize_t rbd_major_show(struct device *dev,
3817                               struct device_attribute *attr, char *buf)
3818 {
3819         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3820
3821         if (rbd_dev->major)
3822                 return sprintf(buf, "%d\n", rbd_dev->major);
3823
3824         return sprintf(buf, "(none)\n");
3825 }
3826
3827 static ssize_t rbd_minor_show(struct device *dev,
3828                               struct device_attribute *attr, char *buf)
3829 {
3830         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3831
3832         return sprintf(buf, "%d\n", rbd_dev->minor);
3833 }
3834
3835 static ssize_t rbd_client_id_show(struct device *dev,
3836                                   struct device_attribute *attr, char *buf)
3837 {
3838         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3839
3840         return sprintf(buf, "client%lld\n",
3841                         ceph_client_id(rbd_dev->rbd_client->client));
3842 }
3843
3844 static ssize_t rbd_pool_show(struct device *dev,
3845                              struct device_attribute *attr, char *buf)
3846 {
3847         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3848
3849         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3850 }
3851
3852 static ssize_t rbd_pool_id_show(struct device *dev,
3853                              struct device_attribute *attr, char *buf)
3854 {
3855         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3856
3857         return sprintf(buf, "%llu\n",
3858                         (unsigned long long) rbd_dev->spec->pool_id);
3859 }
3860
3861 static ssize_t rbd_name_show(struct device *dev,
3862                              struct device_attribute *attr, char *buf)
3863 {
3864         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3865
3866         if (rbd_dev->spec->image_name)
3867                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3868
3869         return sprintf(buf, "(unknown)\n");
3870 }
3871
3872 static ssize_t rbd_image_id_show(struct device *dev,
3873                              struct device_attribute *attr, char *buf)
3874 {
3875         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3876
3877         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3878 }
3879
3880 /*
3881  * Shows the name of the currently-mapped snapshot (or
3882  * RBD_SNAP_HEAD_NAME for the base image).
3883  */
3884 static ssize_t rbd_snap_show(struct device *dev,
3885                              struct device_attribute *attr,
3886                              char *buf)
3887 {
3888         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3889
3890         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3891 }
3892
3893 /*
3894  * For a v2 image, shows the chain of parent images, separated by empty
3895  * lines.  For v1 images or if there is no parent, shows "(no parent
3896  * image)".
3897  */
3898 static ssize_t rbd_parent_show(struct device *dev,
3899                                struct device_attribute *attr,
3900                                char *buf)
3901 {
3902         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3903         ssize_t count = 0;
3904
3905         if (!rbd_dev->parent)
3906                 return sprintf(buf, "(no parent image)\n");
3907
3908         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3909                 struct rbd_spec *spec = rbd_dev->parent_spec;
3910
3911                 count += sprintf(&buf[count], "%s"
3912                             "pool_id %llu\npool_name %s\n"
3913                             "image_id %s\nimage_name %s\n"
3914                             "snap_id %llu\nsnap_name %s\n"
3915                             "overlap %llu\n",
3916                             !count ? "" : "\n", /* first? */
3917                             spec->pool_id, spec->pool_name,
3918                             spec->image_id, spec->image_name ?: "(unknown)",
3919                             spec->snap_id, spec->snap_name,
3920                             rbd_dev->parent_overlap);
3921         }
3922
3923         return count;
3924 }
3925
3926 static ssize_t rbd_image_refresh(struct device *dev,
3927                                  struct device_attribute *attr,
3928                                  const char *buf,
3929                                  size_t size)
3930 {
3931         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3932         int ret;
3933
3934         ret = rbd_dev_refresh(rbd_dev);
3935         if (ret)
3936                 return ret;
3937
3938         return size;
3939 }
3940
3941 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3942 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3943 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3944 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3945 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3946 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3947 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3948 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3949 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3950 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3951 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3952 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3953
3954 static struct attribute *rbd_attrs[] = {
3955         &dev_attr_size.attr,
3956         &dev_attr_features.attr,
3957         &dev_attr_major.attr,
3958         &dev_attr_minor.attr,
3959         &dev_attr_client_id.attr,
3960         &dev_attr_pool.attr,
3961         &dev_attr_pool_id.attr,
3962         &dev_attr_name.attr,
3963         &dev_attr_image_id.attr,
3964         &dev_attr_current_snap.attr,
3965         &dev_attr_parent.attr,
3966         &dev_attr_refresh.attr,
3967         NULL
3968 };
3969
3970 static struct attribute_group rbd_attr_group = {
3971         .attrs = rbd_attrs,
3972 };
3973
3974 static const struct attribute_group *rbd_attr_groups[] = {
3975         &rbd_attr_group,
3976         NULL
3977 };
3978
3979 static void rbd_sysfs_dev_release(struct device *dev)
3980 {
3981 }
3982
3983 static struct device_type rbd_device_type = {
3984         .name           = "rbd",
3985         .groups         = rbd_attr_groups,
3986         .release        = rbd_sysfs_dev_release,
3987 };
3988
3989 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3990 {
3991         kref_get(&spec->kref);
3992
3993         return spec;
3994 }
3995
3996 static void rbd_spec_free(struct kref *kref);
3997 static void rbd_spec_put(struct rbd_spec *spec)
3998 {
3999         if (spec)
4000                 kref_put(&spec->kref, rbd_spec_free);
4001 }
4002
4003 static struct rbd_spec *rbd_spec_alloc(void)
4004 {
4005         struct rbd_spec *spec;
4006
4007         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4008         if (!spec)
4009                 return NULL;
4010
4011         spec->pool_id = CEPH_NOPOOL;
4012         spec->snap_id = CEPH_NOSNAP;
4013         kref_init(&spec->kref);
4014
4015         return spec;
4016 }
4017
4018 static void rbd_spec_free(struct kref *kref)
4019 {
4020         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4021
4022         kfree(spec->pool_name);
4023         kfree(spec->image_id);
4024         kfree(spec->image_name);
4025         kfree(spec->snap_name);
4026         kfree(spec);
4027 }
4028
4029 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4030                                 struct rbd_spec *spec)
4031 {
4032         struct rbd_device *rbd_dev;
4033
4034         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4035         if (!rbd_dev)
4036                 return NULL;
4037
4038         spin_lock_init(&rbd_dev->lock);
4039         INIT_LIST_HEAD(&rbd_dev->rq_queue);
4040         INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
4041         rbd_dev->flags = 0;
4042         atomic_set(&rbd_dev->parent_ref, 0);
4043         INIT_LIST_HEAD(&rbd_dev->node);
4044         init_rwsem(&rbd_dev->header_rwsem);
4045
4046         rbd_dev->spec = spec;
4047         rbd_dev->rbd_client = rbdc;
4048
4049         /* Initialize the layout used for all rbd requests */
4050
4051         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4052         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4053         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4054         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4055
4056         return rbd_dev;
4057 }
4058
4059 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4060 {
4061         rbd_put_client(rbd_dev->rbd_client);
4062         rbd_spec_put(rbd_dev->spec);
4063         kfree(rbd_dev);
4064 }
4065
4066 /*
4067  * Get the size and object order for an image snapshot, or if
4068  * snap_id is CEPH_NOSNAP, gets this information for the base
4069  * image.
4070  */
4071 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4072                                 u8 *order, u64 *snap_size)
4073 {
4074         __le64 snapid = cpu_to_le64(snap_id);
4075         int ret;
4076         struct {
4077                 u8 order;
4078                 __le64 size;
4079         } __attribute__ ((packed)) size_buf = { 0 };
4080
4081         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4082                                 "rbd", "get_size",
4083                                 &snapid, sizeof (snapid),
4084                                 &size_buf, sizeof (size_buf));
4085         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4086         if (ret < 0)
4087                 return ret;
4088         if (ret < sizeof (size_buf))
4089                 return -ERANGE;
4090
4091         if (order) {
4092                 *order = size_buf.order;
4093                 dout("  order %u", (unsigned int)*order);
4094         }
4095         *snap_size = le64_to_cpu(size_buf.size);
4096
4097         dout("  snap_id 0x%016llx snap_size = %llu\n",
4098                 (unsigned long long)snap_id,
4099                 (unsigned long long)*snap_size);
4100
4101         return 0;
4102 }
4103
4104 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4105 {
4106         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4107                                         &rbd_dev->header.obj_order,
4108                                         &rbd_dev->header.image_size);
4109 }
4110
4111 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4112 {
4113         void *reply_buf;
4114         int ret;
4115         void *p;
4116
4117         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4118         if (!reply_buf)
4119                 return -ENOMEM;
4120
4121         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4122                                 "rbd", "get_object_prefix", NULL, 0,
4123                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4124         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4125         if (ret < 0)
4126                 goto out;
4127
4128         p = reply_buf;
4129         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4130                                                 p + ret, NULL, GFP_NOIO);
4131         ret = 0;
4132
4133         if (IS_ERR(rbd_dev->header.object_prefix)) {
4134                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4135                 rbd_dev->header.object_prefix = NULL;
4136         } else {
4137                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4138         }
4139 out:
4140         kfree(reply_buf);
4141
4142         return ret;
4143 }
4144
4145 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4146                 u64 *snap_features)
4147 {
4148         __le64 snapid = cpu_to_le64(snap_id);
4149         struct {
4150                 __le64 features;
4151                 __le64 incompat;
4152         } __attribute__ ((packed)) features_buf = { 0 };
4153         u64 incompat;
4154         int ret;
4155
4156         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4157                                 "rbd", "get_features",
4158                                 &snapid, sizeof (snapid),
4159                                 &features_buf, sizeof (features_buf));
4160         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4161         if (ret < 0)
4162                 return ret;
4163         if (ret < sizeof (features_buf))
4164                 return -ERANGE;
4165
4166         incompat = le64_to_cpu(features_buf.incompat);
4167         if (incompat & ~RBD_FEATURES_SUPPORTED)
4168                 return -ENXIO;
4169
4170         *snap_features = le64_to_cpu(features_buf.features);
4171
4172         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4173                 (unsigned long long)snap_id,
4174                 (unsigned long long)*snap_features,
4175                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4176
4177         return 0;
4178 }
4179
4180 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4181 {
4182         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4183                                                 &rbd_dev->header.features);
4184 }
4185
4186 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4187 {
4188         struct rbd_spec *parent_spec;
4189         size_t size;
4190         void *reply_buf = NULL;
4191         __le64 snapid;
4192         void *p;
4193         void *end;
4194         u64 pool_id;
4195         char *image_id;
4196         u64 snap_id;
4197         u64 overlap;
4198         int ret;
4199
4200         parent_spec = rbd_spec_alloc();
4201         if (!parent_spec)
4202                 return -ENOMEM;
4203
4204         size = sizeof (__le64) +                                /* pool_id */
4205                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4206                 sizeof (__le64) +                               /* snap_id */
4207                 sizeof (__le64);                                /* overlap */
4208         reply_buf = kmalloc(size, GFP_KERNEL);
4209         if (!reply_buf) {
4210                 ret = -ENOMEM;
4211                 goto out_err;
4212         }
4213
4214         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4215         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4216                                 "rbd", "get_parent",
4217                                 &snapid, sizeof (snapid),
4218                                 reply_buf, size);
4219         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4220         if (ret < 0)
4221                 goto out_err;
4222
4223         p = reply_buf;
4224         end = reply_buf + ret;
4225         ret = -ERANGE;
4226         ceph_decode_64_safe(&p, end, pool_id, out_err);
4227         if (pool_id == CEPH_NOPOOL) {
4228                 /*
4229                  * Either the parent never existed, or we have
4230                  * record of it but the image got flattened so it no
4231                  * longer has a parent.  When the parent of a
4232                  * layered image disappears we immediately set the
4233                  * overlap to 0.  The effect of this is that all new
4234                  * requests will be treated as if the image had no
4235                  * parent.
4236                  */
4237                 if (rbd_dev->parent_overlap) {
4238                         rbd_dev->parent_overlap = 0;
4239                         smp_mb();
4240                         rbd_dev_parent_put(rbd_dev);
4241                         pr_info("%s: clone image has been flattened\n",
4242                                 rbd_dev->disk->disk_name);
4243                 }
4244
4245                 goto out;       /* No parent?  No problem. */
4246         }
4247
4248         /* The ceph file layout needs to fit pool id in 32 bits */
4249
4250         ret = -EIO;
4251         if (pool_id > (u64)U32_MAX) {
4252                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4253                         (unsigned long long)pool_id, U32_MAX);
4254                 goto out_err;
4255         }
4256
4257         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4258         if (IS_ERR(image_id)) {
4259                 ret = PTR_ERR(image_id);
4260                 goto out_err;
4261         }
4262         ceph_decode_64_safe(&p, end, snap_id, out_err);
4263         ceph_decode_64_safe(&p, end, overlap, out_err);
4264
4265         /*
4266          * The parent won't change (except when the clone is
4267          * flattened, already handled that).  So we only need to
4268          * record the parent spec we have not already done so.
4269          */
4270         if (!rbd_dev->parent_spec) {
4271                 parent_spec->pool_id = pool_id;
4272                 parent_spec->image_id = image_id;
4273                 parent_spec->snap_id = snap_id;
4274                 rbd_dev->parent_spec = parent_spec;
4275                 parent_spec = NULL;     /* rbd_dev now owns this */
4276         } else {
4277                 kfree(image_id);
4278         }
4279
4280         /*
4281          * We always update the parent overlap.  If it's zero we
4282          * treat it specially.
4283          */
4284         rbd_dev->parent_overlap = overlap;
4285         smp_mb();
4286         if (!overlap) {
4287
4288                 /* A null parent_spec indicates it's the initial probe */
4289
4290                 if (parent_spec) {
4291                         /*
4292                          * The overlap has become zero, so the clone
4293                          * must have been resized down to 0 at some
4294                          * point.  Treat this the same as a flatten.
4295                          */
4296                         rbd_dev_parent_put(rbd_dev);
4297                         pr_info("%s: clone image now standalone\n",
4298                                 rbd_dev->disk->disk_name);
4299                 } else {
4300                         /*
4301                          * For the initial probe, if we find the
4302                          * overlap is zero we just pretend there was
4303                          * no parent image.
4304                          */
4305                         rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4306                 }
4307         }
4308 out:
4309         ret = 0;
4310 out_err:
4311         kfree(reply_buf);
4312         rbd_spec_put(parent_spec);
4313
4314         return ret;
4315 }
4316
4317 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4318 {
4319         struct {
4320                 __le64 stripe_unit;
4321                 __le64 stripe_count;
4322         } __attribute__ ((packed)) striping_info_buf = { 0 };
4323         size_t size = sizeof (striping_info_buf);
4324         void *p;
4325         u64 obj_size;
4326         u64 stripe_unit;
4327         u64 stripe_count;
4328         int ret;
4329
4330         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4331                                 "rbd", "get_stripe_unit_count", NULL, 0,
4332                                 (char *)&striping_info_buf, size);
4333         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4334         if (ret < 0)
4335                 return ret;
4336         if (ret < size)
4337                 return -ERANGE;
4338
4339         /*
4340          * We don't actually support the "fancy striping" feature
4341          * (STRIPINGV2) yet, but if the striping sizes are the
4342          * defaults the behavior is the same as before.  So find
4343          * out, and only fail if the image has non-default values.
4344          */
4345         ret = -EINVAL;
4346         obj_size = (u64)1 << rbd_dev->header.obj_order;
4347         p = &striping_info_buf;
4348         stripe_unit = ceph_decode_64(&p);
4349         if (stripe_unit != obj_size) {
4350                 rbd_warn(rbd_dev, "unsupported stripe unit "
4351                                 "(got %llu want %llu)",
4352                                 stripe_unit, obj_size);
4353                 return -EINVAL;
4354         }
4355         stripe_count = ceph_decode_64(&p);
4356         if (stripe_count != 1) {
4357                 rbd_warn(rbd_dev, "unsupported stripe count "
4358                                 "(got %llu want 1)", stripe_count);
4359                 return -EINVAL;
4360         }
4361         rbd_dev->header.stripe_unit = stripe_unit;
4362         rbd_dev->header.stripe_count = stripe_count;
4363
4364         return 0;
4365 }
4366
4367 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4368 {
4369         size_t image_id_size;
4370         char *image_id;
4371         void *p;
4372         void *end;
4373         size_t size;
4374         void *reply_buf = NULL;
4375         size_t len = 0;
4376         char *image_name = NULL;
4377         int ret;
4378
4379         rbd_assert(!rbd_dev->spec->image_name);
4380
4381         len = strlen(rbd_dev->spec->image_id);
4382         image_id_size = sizeof (__le32) + len;
4383         image_id = kmalloc(image_id_size, GFP_KERNEL);
4384         if (!image_id)
4385                 return NULL;
4386
4387         p = image_id;
4388         end = image_id + image_id_size;
4389         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4390
4391         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4392         reply_buf = kmalloc(size, GFP_KERNEL);
4393         if (!reply_buf)
4394                 goto out;
4395
4396         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4397                                 "rbd", "dir_get_name",
4398                                 image_id, image_id_size,
4399                                 reply_buf, size);
4400         if (ret < 0)
4401                 goto out;
4402         p = reply_buf;
4403         end = reply_buf + ret;
4404
4405         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4406         if (IS_ERR(image_name))
4407                 image_name = NULL;
4408         else
4409                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4410 out:
4411         kfree(reply_buf);
4412         kfree(image_id);
4413
4414         return image_name;
4415 }
4416
4417 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4418 {
4419         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4420         const char *snap_name;
4421         u32 which = 0;
4422
4423         /* Skip over names until we find the one we are looking for */
4424
4425         snap_name = rbd_dev->header.snap_names;
4426         while (which < snapc->num_snaps) {
4427                 if (!strcmp(name, snap_name))
4428                         return snapc->snaps[which];
4429                 snap_name += strlen(snap_name) + 1;
4430                 which++;
4431         }
4432         return CEPH_NOSNAP;
4433 }
4434
4435 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4436 {
4437         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4438         u32 which;
4439         bool found = false;
4440         u64 snap_id;
4441
4442         for (which = 0; !found && which < snapc->num_snaps; which++) {
4443                 const char *snap_name;
4444
4445                 snap_id = snapc->snaps[which];
4446                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4447                 if (IS_ERR(snap_name)) {
4448                         /* ignore no-longer existing snapshots */
4449                         if (PTR_ERR(snap_name) == -ENOENT)
4450                                 continue;
4451                         else
4452                                 break;
4453                 }
4454                 found = !strcmp(name, snap_name);
4455                 kfree(snap_name);
4456         }
4457         return found ? snap_id : CEPH_NOSNAP;
4458 }
4459
4460 /*
4461  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4462  * no snapshot by that name is found, or if an error occurs.
4463  */
4464 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4465 {
4466         if (rbd_dev->image_format == 1)
4467                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4468
4469         return rbd_v2_snap_id_by_name(rbd_dev, name);
4470 }
4471
4472 /*
4473  * An image being mapped will have everything but the snap id.
4474  */
4475 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4476 {
4477         struct rbd_spec *spec = rbd_dev->spec;
4478
4479         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4480         rbd_assert(spec->image_id && spec->image_name);
4481         rbd_assert(spec->snap_name);
4482
4483         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4484                 u64 snap_id;
4485
4486                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4487                 if (snap_id == CEPH_NOSNAP)
4488                         return -ENOENT;
4489
4490                 spec->snap_id = snap_id;
4491         } else {
4492                 spec->snap_id = CEPH_NOSNAP;
4493         }
4494
4495         return 0;
4496 }
4497
4498 /*
4499  * A parent image will have all ids but none of the names.
4500  *
4501  * All names in an rbd spec are dynamically allocated.  It's OK if we
4502  * can't figure out the name for an image id.
4503  */
4504 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4505 {
4506         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4507         struct rbd_spec *spec = rbd_dev->spec;
4508         const char *pool_name;
4509         const char *image_name;
4510         const char *snap_name;
4511         int ret;
4512
4513         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4514         rbd_assert(spec->image_id);
4515         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4516
4517         /* Get the pool name; we have to make our own copy of this */
4518
4519         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4520         if (!pool_name) {
4521                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4522                 return -EIO;
4523         }
4524         pool_name = kstrdup(pool_name, GFP_KERNEL);
4525         if (!pool_name)
4526                 return -ENOMEM;
4527
4528         /* Fetch the image name; tolerate failure here */
4529
4530         image_name = rbd_dev_image_name(rbd_dev);
4531         if (!image_name)
4532                 rbd_warn(rbd_dev, "unable to get image name");
4533
4534         /* Fetch the snapshot name */
4535
4536         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4537         if (IS_ERR(snap_name)) {
4538                 ret = PTR_ERR(snap_name);
4539                 goto out_err;
4540         }
4541
4542         spec->pool_name = pool_name;
4543         spec->image_name = image_name;
4544         spec->snap_name = snap_name;
4545
4546         return 0;
4547
4548 out_err:
4549         kfree(image_name);
4550         kfree(pool_name);
4551         return ret;
4552 }
4553
4554 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4555 {
4556         size_t size;
4557         int ret;
4558         void *reply_buf;
4559         void *p;
4560         void *end;
4561         u64 seq;
4562         u32 snap_count;
4563         struct ceph_snap_context *snapc;
4564         u32 i;
4565
4566         /*
4567          * We'll need room for the seq value (maximum snapshot id),
4568          * snapshot count, and array of that many snapshot ids.
4569          * For now we have a fixed upper limit on the number we're
4570          * prepared to receive.
4571          */
4572         size = sizeof (__le64) + sizeof (__le32) +
4573                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4574         reply_buf = kzalloc(size, GFP_KERNEL);
4575         if (!reply_buf)
4576                 return -ENOMEM;
4577
4578         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4579                                 "rbd", "get_snapcontext", NULL, 0,
4580                                 reply_buf, size);
4581         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4582         if (ret < 0)
4583                 goto out;
4584
4585         p = reply_buf;
4586         end = reply_buf + ret;
4587         ret = -ERANGE;
4588         ceph_decode_64_safe(&p, end, seq, out);
4589         ceph_decode_32_safe(&p, end, snap_count, out);
4590
4591         /*
4592          * Make sure the reported number of snapshot ids wouldn't go
4593          * beyond the end of our buffer.  But before checking that,
4594          * make sure the computed size of the snapshot context we
4595          * allocate is representable in a size_t.
4596          */
4597         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4598                                  / sizeof (u64)) {
4599                 ret = -EINVAL;
4600                 goto out;
4601         }
4602         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4603                 goto out;
4604         ret = 0;
4605
4606         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4607         if (!snapc) {
4608                 ret = -ENOMEM;
4609                 goto out;
4610         }
4611         snapc->seq = seq;
4612         for (i = 0; i < snap_count; i++)
4613                 snapc->snaps[i] = ceph_decode_64(&p);
4614
4615         ceph_put_snap_context(rbd_dev->header.snapc);
4616         rbd_dev->header.snapc = snapc;
4617
4618         dout("  snap context seq = %llu, snap_count = %u\n",
4619                 (unsigned long long)seq, (unsigned int)snap_count);
4620 out:
4621         kfree(reply_buf);
4622
4623         return ret;
4624 }
4625
4626 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4627                                         u64 snap_id)
4628 {
4629         size_t size;
4630         void *reply_buf;
4631         __le64 snapid;
4632         int ret;
4633         void *p;
4634         void *end;
4635         char *snap_name;
4636
4637         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4638         reply_buf = kmalloc(size, GFP_KERNEL);
4639         if (!reply_buf)
4640                 return ERR_PTR(-ENOMEM);
4641
4642         snapid = cpu_to_le64(snap_id);
4643         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4644                                 "rbd", "get_snapshot_name",
4645                                 &snapid, sizeof (snapid),
4646                                 reply_buf, size);
4647         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4648         if (ret < 0) {
4649                 snap_name = ERR_PTR(ret);
4650                 goto out;
4651         }
4652
4653         p = reply_buf;
4654         end = reply_buf + ret;
4655         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4656         if (IS_ERR(snap_name))
4657                 goto out;
4658
4659         dout("  snap_id 0x%016llx snap_name = %s\n",
4660                 (unsigned long long)snap_id, snap_name);
4661 out:
4662         kfree(reply_buf);
4663
4664         return snap_name;
4665 }
4666
4667 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4668 {
4669         bool first_time = rbd_dev->header.object_prefix == NULL;
4670         int ret;
4671
4672         ret = rbd_dev_v2_image_size(rbd_dev);
4673         if (ret)
4674                 return ret;
4675
4676         if (first_time) {
4677                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4678                 if (ret)
4679                         return ret;
4680         }
4681
4682         ret = rbd_dev_v2_snap_context(rbd_dev);
4683         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4684
4685         return ret;
4686 }
4687
4688 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4689 {
4690         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4691
4692         if (rbd_dev->image_format == 1)
4693                 return rbd_dev_v1_header_info(rbd_dev);
4694
4695         return rbd_dev_v2_header_info(rbd_dev);
4696 }
4697
4698 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4699 {
4700         struct device *dev;
4701         int ret;
4702
4703         dev = &rbd_dev->dev;
4704         dev->bus = &rbd_bus_type;
4705         dev->type = &rbd_device_type;
4706         dev->parent = &rbd_root_dev;
4707         dev->release = rbd_dev_device_release;
4708         dev_set_name(dev, "%d", rbd_dev->dev_id);
4709         ret = device_register(dev);
4710
4711         return ret;
4712 }
4713
4714 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4715 {
4716         device_unregister(&rbd_dev->dev);
4717 }
4718
4719 /*
4720  * Get a unique rbd identifier for the given new rbd_dev, and add
4721  * the rbd_dev to the global list.
4722  */
4723 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4724 {
4725         int new_dev_id;
4726
4727         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4728                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4729                                     GFP_KERNEL);
4730         if (new_dev_id < 0)
4731                 return new_dev_id;
4732
4733         rbd_dev->dev_id = new_dev_id;
4734
4735         spin_lock(&rbd_dev_list_lock);
4736         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4737         spin_unlock(&rbd_dev_list_lock);
4738
4739         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4740
4741         return 0;
4742 }
4743
4744 /*
4745  * Remove an rbd_dev from the global list, and record that its
4746  * identifier is no longer in use.
4747  */
4748 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4749 {
4750         spin_lock(&rbd_dev_list_lock);
4751         list_del_init(&rbd_dev->node);
4752         spin_unlock(&rbd_dev_list_lock);
4753
4754         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4755
4756         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4757 }
4758
4759 /*
4760  * Skips over white space at *buf, and updates *buf to point to the
4761  * first found non-space character (if any). Returns the length of
4762  * the token (string of non-white space characters) found.  Note
4763  * that *buf must be terminated with '\0'.
4764  */
4765 static inline size_t next_token(const char **buf)
4766 {
4767         /*
4768         * These are the characters that produce nonzero for
4769         * isspace() in the "C" and "POSIX" locales.
4770         */
4771         const char *spaces = " \f\n\r\t\v";
4772
4773         *buf += strspn(*buf, spaces);   /* Find start of token */
4774
4775         return strcspn(*buf, spaces);   /* Return token length */
4776 }
4777
4778 /*
4779  * Finds the next token in *buf, and if the provided token buffer is
4780  * big enough, copies the found token into it.  The result, if
4781  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4782  * must be terminated with '\0' on entry.
4783  *
4784  * Returns the length of the token found (not including the '\0').
4785  * Return value will be 0 if no token is found, and it will be >=
4786  * token_size if the token would not fit.
4787  *
4788  * The *buf pointer will be updated to point beyond the end of the
4789  * found token.  Note that this occurs even if the token buffer is
4790  * too small to hold it.
4791  */
4792 static inline size_t copy_token(const char **buf,
4793                                 char *token,
4794                                 size_t token_size)
4795 {
4796         size_t len;
4797
4798         len = next_token(buf);
4799         if (len < token_size) {
4800                 memcpy(token, *buf, len);
4801                 *(token + len) = '\0';
4802         }
4803         *buf += len;
4804
4805         return len;
4806 }
4807
4808 /*
4809  * Finds the next token in *buf, dynamically allocates a buffer big
4810  * enough to hold a copy of it, and copies the token into the new
4811  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4812  * that a duplicate buffer is created even for a zero-length token.
4813  *
4814  * Returns a pointer to the newly-allocated duplicate, or a null
4815  * pointer if memory for the duplicate was not available.  If
4816  * the lenp argument is a non-null pointer, the length of the token
4817  * (not including the '\0') is returned in *lenp.
4818  *
4819  * If successful, the *buf pointer will be updated to point beyond
4820  * the end of the found token.
4821  *
4822  * Note: uses GFP_KERNEL for allocation.
4823  */
4824 static inline char *dup_token(const char **buf, size_t *lenp)
4825 {
4826         char *dup;
4827         size_t len;
4828
4829         len = next_token(buf);
4830         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4831         if (!dup)
4832                 return NULL;
4833         *(dup + len) = '\0';
4834         *buf += len;
4835
4836         if (lenp)
4837                 *lenp = len;
4838
4839         return dup;
4840 }
4841
4842 /*
4843  * Parse the options provided for an "rbd add" (i.e., rbd image
4844  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4845  * and the data written is passed here via a NUL-terminated buffer.
4846  * Returns 0 if successful or an error code otherwise.
4847  *
4848  * The information extracted from these options is recorded in
4849  * the other parameters which return dynamically-allocated
4850  * structures:
4851  *  ceph_opts
4852  *      The address of a pointer that will refer to a ceph options
4853  *      structure.  Caller must release the returned pointer using
4854  *      ceph_destroy_options() when it is no longer needed.
4855  *  rbd_opts
4856  *      Address of an rbd options pointer.  Fully initialized by
4857  *      this function; caller must release with kfree().
4858  *  spec
4859  *      Address of an rbd image specification pointer.  Fully
4860  *      initialized by this function based on parsed options.
4861  *      Caller must release with rbd_spec_put().
4862  *
4863  * The options passed take this form:
4864  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4865  * where:
4866  *  <mon_addrs>
4867  *      A comma-separated list of one or more monitor addresses.
4868  *      A monitor address is an ip address, optionally followed
4869  *      by a port number (separated by a colon).
4870  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4871  *  <options>
4872  *      A comma-separated list of ceph and/or rbd options.
4873  *  <pool_name>
4874  *      The name of the rados pool containing the rbd image.
4875  *  <image_name>
4876  *      The name of the image in that pool to map.
4877  *  <snap_id>
4878  *      An optional snapshot id.  If provided, the mapping will
4879  *      present data from the image at the time that snapshot was
4880  *      created.  The image head is used if no snapshot id is
4881  *      provided.  Snapshot mappings are always read-only.
4882  */
4883 static int rbd_add_parse_args(const char *buf,
4884                                 struct ceph_options **ceph_opts,
4885                                 struct rbd_options **opts,
4886                                 struct rbd_spec **rbd_spec)
4887 {
4888         size_t len;
4889         char *options;
4890         const char *mon_addrs;
4891         char *snap_name;
4892         size_t mon_addrs_size;
4893         struct rbd_spec *spec = NULL;
4894         struct rbd_options *rbd_opts = NULL;
4895         struct ceph_options *copts;
4896         int ret;
4897
4898         /* The first four tokens are required */
4899
4900         len = next_token(&buf);
4901         if (!len) {
4902                 rbd_warn(NULL, "no monitor address(es) provided");
4903                 return -EINVAL;
4904         }
4905         mon_addrs = buf;
4906         mon_addrs_size = len + 1;
4907         buf += len;
4908
4909         ret = -EINVAL;
4910         options = dup_token(&buf, NULL);
4911         if (!options)
4912                 return -ENOMEM;
4913         if (!*options) {
4914                 rbd_warn(NULL, "no options provided");
4915                 goto out_err;
4916         }
4917
4918         spec = rbd_spec_alloc();
4919         if (!spec)
4920                 goto out_mem;
4921
4922         spec->pool_name = dup_token(&buf, NULL);
4923         if (!spec->pool_name)
4924                 goto out_mem;
4925         if (!*spec->pool_name) {
4926                 rbd_warn(NULL, "no pool name provided");
4927                 goto out_err;
4928         }
4929
4930         spec->image_name = dup_token(&buf, NULL);
4931         if (!spec->image_name)
4932                 goto out_mem;
4933         if (!*spec->image_name) {
4934                 rbd_warn(NULL, "no image name provided");
4935                 goto out_err;
4936         }
4937
4938         /*
4939          * Snapshot name is optional; default is to use "-"
4940          * (indicating the head/no snapshot).
4941          */
4942         len = next_token(&buf);
4943         if (!len) {
4944                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4945                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4946         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4947                 ret = -ENAMETOOLONG;
4948                 goto out_err;
4949         }
4950         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4951         if (!snap_name)
4952                 goto out_mem;
4953         *(snap_name + len) = '\0';
4954         spec->snap_name = snap_name;
4955
4956         /* Initialize all rbd options to the defaults */
4957
4958         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4959         if (!rbd_opts)
4960                 goto out_mem;
4961
4962         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4963
4964         copts = ceph_parse_options(options, mon_addrs,
4965                                         mon_addrs + mon_addrs_size - 1,
4966                                         parse_rbd_opts_token, rbd_opts);
4967         if (IS_ERR(copts)) {
4968                 ret = PTR_ERR(copts);
4969                 goto out_err;
4970         }
4971         kfree(options);
4972
4973         *ceph_opts = copts;
4974         *opts = rbd_opts;
4975         *rbd_spec = spec;
4976
4977         return 0;
4978 out_mem:
4979         ret = -ENOMEM;
4980 out_err:
4981         kfree(rbd_opts);
4982         rbd_spec_put(spec);
4983         kfree(options);
4984
4985         return ret;
4986 }
4987
4988 /*
4989  * Return pool id (>= 0) or a negative error code.
4990  */
4991 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4992 {
4993         u64 newest_epoch;
4994         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4995         int tries = 0;
4996         int ret;
4997
4998 again:
4999         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5000         if (ret == -ENOENT && tries++ < 1) {
5001                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
5002                                                &newest_epoch);
5003                 if (ret < 0)
5004                         return ret;
5005
5006                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5007                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
5008                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5009                                                      newest_epoch, timeout);
5010                         goto again;
5011                 } else {
5012                         /* the osdmap we have is new enough */
5013                         return -ENOENT;
5014                 }
5015         }
5016
5017         return ret;
5018 }
5019
5020 /*
5021  * An rbd format 2 image has a unique identifier, distinct from the
5022  * name given to it by the user.  Internally, that identifier is
5023  * what's used to specify the names of objects related to the image.
5024  *
5025  * A special "rbd id" object is used to map an rbd image name to its
5026  * id.  If that object doesn't exist, then there is no v2 rbd image
5027  * with the supplied name.
5028  *
5029  * This function will record the given rbd_dev's image_id field if
5030  * it can be determined, and in that case will return 0.  If any
5031  * errors occur a negative errno will be returned and the rbd_dev's
5032  * image_id field will be unchanged (and should be NULL).
5033  */
5034 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5035 {
5036         int ret;
5037         size_t size;
5038         char *object_name;
5039         void *response;
5040         char *image_id;
5041
5042         /*
5043          * When probing a parent image, the image id is already
5044          * known (and the image name likely is not).  There's no
5045          * need to fetch the image id again in this case.  We
5046          * do still need to set the image format though.
5047          */
5048         if (rbd_dev->spec->image_id) {
5049                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5050
5051                 return 0;
5052         }
5053
5054         /*
5055          * First, see if the format 2 image id file exists, and if
5056          * so, get the image's persistent id from it.
5057          */
5058         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5059         object_name = kmalloc(size, GFP_NOIO);
5060         if (!object_name)
5061                 return -ENOMEM;
5062         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5063         dout("rbd id object name is %s\n", object_name);
5064
5065         /* Response will be an encoded string, which includes a length */
5066
5067         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5068         response = kzalloc(size, GFP_NOIO);
5069         if (!response) {
5070                 ret = -ENOMEM;
5071                 goto out;
5072         }
5073
5074         /* If it doesn't exist we'll assume it's a format 1 image */
5075
5076         ret = rbd_obj_method_sync(rbd_dev, object_name,
5077                                 "rbd", "get_id", NULL, 0,
5078                                 response, RBD_IMAGE_ID_LEN_MAX);
5079         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5080         if (ret == -ENOENT) {
5081                 image_id = kstrdup("", GFP_KERNEL);
5082                 ret = image_id ? 0 : -ENOMEM;
5083                 if (!ret)
5084                         rbd_dev->image_format = 1;
5085         } else if (ret >= 0) {
5086                 void *p = response;
5087
5088                 image_id = ceph_extract_encoded_string(&p, p + ret,
5089                                                 NULL, GFP_NOIO);
5090                 ret = PTR_ERR_OR_ZERO(image_id);
5091                 if (!ret)
5092                         rbd_dev->image_format = 2;
5093         }
5094
5095         if (!ret) {
5096                 rbd_dev->spec->image_id = image_id;
5097                 dout("image_id is %s\n", image_id);
5098         }
5099 out:
5100         kfree(response);
5101         kfree(object_name);
5102
5103         return ret;
5104 }
5105
5106 /*
5107  * Undo whatever state changes are made by v1 or v2 header info
5108  * call.
5109  */
5110 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5111 {
5112         struct rbd_image_header *header;
5113
5114         /* Drop parent reference unless it's already been done (or none) */
5115
5116         if (rbd_dev->parent_overlap)
5117                 rbd_dev_parent_put(rbd_dev);
5118
5119         /* Free dynamic fields from the header, then zero it out */
5120
5121         header = &rbd_dev->header;
5122         ceph_put_snap_context(header->snapc);
5123         kfree(header->snap_sizes);
5124         kfree(header->snap_names);
5125         kfree(header->object_prefix);
5126         memset(header, 0, sizeof (*header));
5127 }
5128
5129 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5130 {
5131         int ret;
5132
5133         ret = rbd_dev_v2_object_prefix(rbd_dev);
5134         if (ret)
5135                 goto out_err;
5136
5137         /*
5138          * Get the and check features for the image.  Currently the
5139          * features are assumed to never change.
5140          */
5141         ret = rbd_dev_v2_features(rbd_dev);
5142         if (ret)
5143                 goto out_err;
5144
5145         /* If the image supports fancy striping, get its parameters */
5146
5147         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5148                 ret = rbd_dev_v2_striping_info(rbd_dev);
5149                 if (ret < 0)
5150                         goto out_err;
5151         }
5152         /* No support for crypto and compression type format 2 images */
5153
5154         return 0;
5155 out_err:
5156         rbd_dev->header.features = 0;
5157         kfree(rbd_dev->header.object_prefix);
5158         rbd_dev->header.object_prefix = NULL;
5159
5160         return ret;
5161 }
5162
5163 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5164 {
5165         struct rbd_device *parent = NULL;
5166         struct rbd_spec *parent_spec;
5167         struct rbd_client *rbdc;
5168         int ret;
5169
5170         if (!rbd_dev->parent_spec)
5171                 return 0;
5172         /*
5173          * We need to pass a reference to the client and the parent
5174          * spec when creating the parent rbd_dev.  Images related by
5175          * parent/child relationships always share both.
5176          */
5177         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5178         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5179
5180         ret = -ENOMEM;
5181         parent = rbd_dev_create(rbdc, parent_spec);
5182         if (!parent)
5183                 goto out_err;
5184
5185         ret = rbd_dev_image_probe(parent, false);
5186         if (ret < 0)
5187                 goto out_err;
5188         rbd_dev->parent = parent;
5189         atomic_set(&rbd_dev->parent_ref, 1);
5190
5191         return 0;
5192 out_err:
5193         if (parent) {
5194                 rbd_dev_unparent(rbd_dev);
5195                 kfree(rbd_dev->header_name);
5196                 rbd_dev_destroy(parent);
5197         } else {
5198                 rbd_put_client(rbdc);
5199                 rbd_spec_put(parent_spec);
5200         }
5201
5202         return ret;
5203 }
5204
5205 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5206 {
5207         int ret;
5208
5209         /* Get an id and fill in device name. */
5210
5211         ret = rbd_dev_id_get(rbd_dev);
5212         if (ret)
5213                 return ret;
5214
5215         BUILD_BUG_ON(DEV_NAME_LEN
5216                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5217         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5218
5219         /* Record our major and minor device numbers. */
5220
5221         if (!single_major) {
5222                 ret = register_blkdev(0, rbd_dev->name);
5223                 if (ret < 0)
5224                         goto err_out_id;
5225
5226                 rbd_dev->major = ret;
5227                 rbd_dev->minor = 0;
5228         } else {
5229                 rbd_dev->major = rbd_major;
5230                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5231         }
5232
5233         /* Set up the blkdev mapping. */
5234
5235         ret = rbd_init_disk(rbd_dev);
5236         if (ret)
5237                 goto err_out_blkdev;
5238
5239         ret = rbd_dev_mapping_set(rbd_dev);
5240         if (ret)
5241                 goto err_out_disk;
5242
5243         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5244         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5245
5246         ret = rbd_bus_add_dev(rbd_dev);
5247         if (ret)
5248                 goto err_out_mapping;
5249
5250         /* Everything's ready.  Announce the disk to the world. */
5251
5252         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5253         add_disk(rbd_dev->disk);
5254
5255         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5256                 (unsigned long long) rbd_dev->mapping.size);
5257
5258         return ret;
5259
5260 err_out_mapping:
5261         rbd_dev_mapping_clear(rbd_dev);
5262 err_out_disk:
5263         rbd_free_disk(rbd_dev);
5264 err_out_blkdev:
5265         if (!single_major)
5266                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5267 err_out_id:
5268         rbd_dev_id_put(rbd_dev);
5269         rbd_dev_mapping_clear(rbd_dev);
5270
5271         return ret;
5272 }
5273
5274 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5275 {
5276         struct rbd_spec *spec = rbd_dev->spec;
5277         size_t size;
5278
5279         /* Record the header object name for this rbd image. */
5280
5281         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5282
5283         if (rbd_dev->image_format == 1)
5284                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5285         else
5286                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5287
5288         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5289         if (!rbd_dev->header_name)
5290                 return -ENOMEM;
5291
5292         if (rbd_dev->image_format == 1)
5293                 sprintf(rbd_dev->header_name, "%s%s",
5294                         spec->image_name, RBD_SUFFIX);
5295         else
5296                 sprintf(rbd_dev->header_name, "%s%s",
5297                         RBD_HEADER_PREFIX, spec->image_id);
5298         return 0;
5299 }
5300
5301 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5302 {
5303         rbd_dev_unprobe(rbd_dev);
5304         kfree(rbd_dev->header_name);
5305         rbd_dev->header_name = NULL;
5306         rbd_dev->image_format = 0;
5307         kfree(rbd_dev->spec->image_id);
5308         rbd_dev->spec->image_id = NULL;
5309
5310         rbd_dev_destroy(rbd_dev);
5311 }
5312
5313 /*
5314  * Probe for the existence of the header object for the given rbd
5315  * device.  If this image is the one being mapped (i.e., not a
5316  * parent), initiate a watch on its header object before using that
5317  * object to get detailed information about the rbd image.
5318  */
5319 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5320 {
5321         int ret;
5322
5323         /*
5324          * Get the id from the image id object.  Unless there's an
5325          * error, rbd_dev->spec->image_id will be filled in with
5326          * a dynamically-allocated string, and rbd_dev->image_format
5327          * will be set to either 1 or 2.
5328          */
5329         ret = rbd_dev_image_id(rbd_dev);
5330         if (ret)
5331                 return ret;
5332
5333         ret = rbd_dev_header_name(rbd_dev);
5334         if (ret)
5335                 goto err_out_format;
5336
5337         if (mapping) {
5338                 ret = rbd_dev_header_watch_sync(rbd_dev);
5339                 if (ret)
5340                         goto out_header_name;
5341         }
5342
5343         ret = rbd_dev_header_info(rbd_dev);
5344         if (ret)
5345                 goto err_out_watch;
5346
5347         /*
5348          * If this image is the one being mapped, we have pool name and
5349          * id, image name and id, and snap name - need to fill snap id.
5350          * Otherwise this is a parent image, identified by pool, image
5351          * and snap ids - need to fill in names for those ids.
5352          */
5353         if (mapping)
5354                 ret = rbd_spec_fill_snap_id(rbd_dev);
5355         else
5356                 ret = rbd_spec_fill_names(rbd_dev);
5357         if (ret)
5358                 goto err_out_probe;
5359
5360         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5361                 ret = rbd_dev_v2_parent_info(rbd_dev);
5362                 if (ret)
5363                         goto err_out_probe;
5364
5365                 /*
5366                  * Need to warn users if this image is the one being
5367                  * mapped and has a parent.
5368                  */
5369                 if (mapping && rbd_dev->parent_spec)
5370                         rbd_warn(rbd_dev,
5371                                  "WARNING: kernel layering is EXPERIMENTAL!");
5372         }
5373
5374         ret = rbd_dev_probe_parent(rbd_dev);
5375         if (ret)
5376                 goto err_out_probe;
5377
5378         dout("discovered format %u image, header name is %s\n",
5379                 rbd_dev->image_format, rbd_dev->header_name);
5380         return 0;
5381
5382 err_out_probe:
5383         rbd_dev_unprobe(rbd_dev);
5384 err_out_watch:
5385         if (mapping)
5386                 rbd_dev_header_unwatch_sync(rbd_dev);
5387 out_header_name:
5388         kfree(rbd_dev->header_name);
5389         rbd_dev->header_name = NULL;
5390 err_out_format:
5391         rbd_dev->image_format = 0;
5392         kfree(rbd_dev->spec->image_id);
5393         rbd_dev->spec->image_id = NULL;
5394         return ret;
5395 }
5396
5397 static ssize_t do_rbd_add(struct bus_type *bus,
5398                           const char *buf,
5399                           size_t count)
5400 {
5401         struct rbd_device *rbd_dev = NULL;
5402         struct ceph_options *ceph_opts = NULL;
5403         struct rbd_options *rbd_opts = NULL;
5404         struct rbd_spec *spec = NULL;
5405         struct rbd_client *rbdc;
5406         bool read_only;
5407         int rc = -ENOMEM;
5408
5409         if (!try_module_get(THIS_MODULE))
5410                 return -ENODEV;
5411
5412         /* parse add command */
5413         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5414         if (rc < 0)
5415                 goto err_out_module;
5416         read_only = rbd_opts->read_only;
5417         kfree(rbd_opts);
5418         rbd_opts = NULL;        /* done with this */
5419
5420         rbdc = rbd_get_client(ceph_opts);
5421         if (IS_ERR(rbdc)) {
5422                 rc = PTR_ERR(rbdc);
5423                 goto err_out_args;
5424         }
5425
5426         /* pick the pool */
5427         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5428         if (rc < 0)
5429                 goto err_out_client;
5430         spec->pool_id = (u64)rc;
5431
5432         /* The ceph file layout needs to fit pool id in 32 bits */
5433
5434         if (spec->pool_id > (u64)U32_MAX) {
5435                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5436                                 (unsigned long long)spec->pool_id, U32_MAX);
5437                 rc = -EIO;
5438                 goto err_out_client;
5439         }
5440
5441         rbd_dev = rbd_dev_create(rbdc, spec);
5442         if (!rbd_dev)
5443                 goto err_out_client;
5444         rbdc = NULL;            /* rbd_dev now owns this */
5445         spec = NULL;            /* rbd_dev now owns this */
5446
5447         rc = rbd_dev_image_probe(rbd_dev, true);
5448         if (rc < 0)
5449                 goto err_out_rbd_dev;
5450
5451         /* If we are mapping a snapshot it must be marked read-only */
5452
5453         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5454                 read_only = true;
5455         rbd_dev->mapping.read_only = read_only;
5456
5457         rc = rbd_dev_device_setup(rbd_dev);
5458         if (rc) {
5459                 /*
5460                  * rbd_dev_header_unwatch_sync() can't be moved into
5461                  * rbd_dev_image_release() without refactoring, see
5462                  * commit 1f3ef78861ac.
5463                  */
5464                 rbd_dev_header_unwatch_sync(rbd_dev);
5465                 rbd_dev_image_release(rbd_dev);
5466                 goto err_out_module;
5467         }
5468
5469         return count;
5470
5471 err_out_rbd_dev:
5472         rbd_dev_destroy(rbd_dev);
5473 err_out_client:
5474         rbd_put_client(rbdc);
5475 err_out_args:
5476         rbd_spec_put(spec);
5477 err_out_module:
5478         module_put(THIS_MODULE);
5479
5480         dout("Error adding device %s\n", buf);
5481
5482         return (ssize_t)rc;
5483 }
5484
5485 static ssize_t rbd_add(struct bus_type *bus,
5486                        const char *buf,
5487                        size_t count)
5488 {
5489         if (single_major)
5490                 return -EINVAL;
5491
5492         return do_rbd_add(bus, buf, count);
5493 }
5494
5495 static ssize_t rbd_add_single_major(struct bus_type *bus,
5496                                     const char *buf,
5497                                     size_t count)
5498 {
5499         return do_rbd_add(bus, buf, count);
5500 }
5501
5502 static void rbd_dev_device_release(struct device *dev)
5503 {
5504         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5505
5506         rbd_free_disk(rbd_dev);
5507         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5508         rbd_dev_mapping_clear(rbd_dev);
5509         if (!single_major)
5510                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5511         rbd_dev_id_put(rbd_dev);
5512         rbd_dev_mapping_clear(rbd_dev);
5513 }
5514
5515 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5516 {
5517         while (rbd_dev->parent) {
5518                 struct rbd_device *first = rbd_dev;
5519                 struct rbd_device *second = first->parent;
5520                 struct rbd_device *third;
5521
5522                 /*
5523                  * Follow to the parent with no grandparent and
5524                  * remove it.
5525                  */
5526                 while (second && (third = second->parent)) {
5527                         first = second;
5528                         second = third;
5529                 }
5530                 rbd_assert(second);
5531                 rbd_dev_image_release(second);
5532                 first->parent = NULL;
5533                 first->parent_overlap = 0;
5534
5535                 rbd_assert(first->parent_spec);
5536                 rbd_spec_put(first->parent_spec);
5537                 first->parent_spec = NULL;
5538         }
5539 }
5540
5541 static ssize_t do_rbd_remove(struct bus_type *bus,
5542                              const char *buf,
5543                              size_t count)
5544 {
5545         struct rbd_device *rbd_dev = NULL;
5546         struct list_head *tmp;
5547         int dev_id;
5548         unsigned long ul;
5549         bool already = false;
5550         int ret;
5551
5552         ret = kstrtoul(buf, 10, &ul);
5553         if (ret)
5554                 return ret;
5555
5556         /* convert to int; abort if we lost anything in the conversion */
5557         dev_id = (int)ul;
5558         if (dev_id != ul)
5559                 return -EINVAL;
5560
5561         ret = -ENOENT;
5562         spin_lock(&rbd_dev_list_lock);
5563         list_for_each(tmp, &rbd_dev_list) {
5564                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5565                 if (rbd_dev->dev_id == dev_id) {
5566                         ret = 0;
5567                         break;
5568                 }
5569         }
5570         if (!ret) {
5571                 spin_lock_irq(&rbd_dev->lock);
5572                 if (rbd_dev->open_count)
5573                         ret = -EBUSY;
5574                 else
5575                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5576                                                         &rbd_dev->flags);
5577                 spin_unlock_irq(&rbd_dev->lock);
5578         }
5579         spin_unlock(&rbd_dev_list_lock);
5580         if (ret < 0 || already)
5581                 return ret;
5582
5583         rbd_dev_header_unwatch_sync(rbd_dev);
5584         /*
5585          * flush remaining watch callbacks - these must be complete
5586          * before the osd_client is shutdown
5587          */
5588         dout("%s: flushing notifies", __func__);
5589         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5590
5591         /*
5592          * Don't free anything from rbd_dev->disk until after all
5593          * notifies are completely processed. Otherwise
5594          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5595          * in a potential use after free of rbd_dev->disk or rbd_dev.
5596          */
5597         rbd_bus_del_dev(rbd_dev);
5598         rbd_dev_image_release(rbd_dev);
5599         module_put(THIS_MODULE);
5600
5601         return count;
5602 }
5603
5604 static ssize_t rbd_remove(struct bus_type *bus,
5605                           const char *buf,
5606                           size_t count)
5607 {
5608         if (single_major)
5609                 return -EINVAL;
5610
5611         return do_rbd_remove(bus, buf, count);
5612 }
5613
5614 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5615                                        const char *buf,
5616                                        size_t count)
5617 {
5618         return do_rbd_remove(bus, buf, count);
5619 }
5620
5621 /*
5622  * create control files in sysfs
5623  * /sys/bus/rbd/...
5624  */
5625 static int rbd_sysfs_init(void)
5626 {
5627         int ret;
5628
5629         ret = device_register(&rbd_root_dev);
5630         if (ret < 0)
5631                 return ret;
5632
5633         ret = bus_register(&rbd_bus_type);
5634         if (ret < 0)
5635                 device_unregister(&rbd_root_dev);
5636
5637         return ret;
5638 }
5639
5640 static void rbd_sysfs_cleanup(void)
5641 {
5642         bus_unregister(&rbd_bus_type);
5643         device_unregister(&rbd_root_dev);
5644 }
5645
5646 static int rbd_slab_init(void)
5647 {
5648         rbd_assert(!rbd_img_request_cache);
5649         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5650                                         sizeof (struct rbd_img_request),
5651                                         __alignof__(struct rbd_img_request),
5652                                         0, NULL);
5653         if (!rbd_img_request_cache)
5654                 return -ENOMEM;
5655
5656         rbd_assert(!rbd_obj_request_cache);
5657         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5658                                         sizeof (struct rbd_obj_request),
5659                                         __alignof__(struct rbd_obj_request),
5660                                         0, NULL);
5661         if (!rbd_obj_request_cache)
5662                 goto out_err;
5663
5664         rbd_assert(!rbd_segment_name_cache);
5665         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5666                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5667         if (rbd_segment_name_cache)
5668                 return 0;
5669 out_err:
5670         if (rbd_obj_request_cache) {
5671                 kmem_cache_destroy(rbd_obj_request_cache);
5672                 rbd_obj_request_cache = NULL;
5673         }
5674
5675         kmem_cache_destroy(rbd_img_request_cache);
5676         rbd_img_request_cache = NULL;
5677
5678         return -ENOMEM;
5679 }
5680
5681 static void rbd_slab_exit(void)
5682 {
5683         rbd_assert(rbd_segment_name_cache);
5684         kmem_cache_destroy(rbd_segment_name_cache);
5685         rbd_segment_name_cache = NULL;
5686
5687         rbd_assert(rbd_obj_request_cache);
5688         kmem_cache_destroy(rbd_obj_request_cache);
5689         rbd_obj_request_cache = NULL;
5690
5691         rbd_assert(rbd_img_request_cache);
5692         kmem_cache_destroy(rbd_img_request_cache);
5693         rbd_img_request_cache = NULL;
5694 }
5695
5696 static int __init rbd_init(void)
5697 {
5698         int rc;
5699
5700         if (!libceph_compatible(NULL)) {
5701                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5702                 return -EINVAL;
5703         }
5704
5705         rc = rbd_slab_init();
5706         if (rc)
5707                 return rc;
5708
5709         /*
5710          * The number of active work items is limited by the number of
5711          * rbd devices, so leave @max_active at default.
5712          */
5713         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5714         if (!rbd_wq) {
5715                 rc = -ENOMEM;
5716                 goto err_out_slab;
5717         }
5718
5719         if (single_major) {
5720                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5721                 if (rbd_major < 0) {
5722                         rc = rbd_major;
5723                         goto err_out_wq;
5724                 }
5725         }
5726
5727         rc = rbd_sysfs_init();
5728         if (rc)
5729                 goto err_out_blkdev;
5730
5731         if (single_major)
5732                 pr_info("loaded (major %d)\n", rbd_major);
5733         else
5734                 pr_info("loaded\n");
5735
5736         return 0;
5737
5738 err_out_blkdev:
5739         if (single_major)
5740                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5741 err_out_wq:
5742         destroy_workqueue(rbd_wq);
5743 err_out_slab:
5744         rbd_slab_exit();
5745         return rc;
5746 }
5747
5748 static void __exit rbd_exit(void)
5749 {
5750         ida_destroy(&rbd_dev_id_ida);
5751         rbd_sysfs_cleanup();
5752         if (single_major)
5753                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5754         destroy_workqueue(rbd_wq);
5755         rbd_slab_exit();
5756 }
5757
5758 module_init(rbd_init);
5759 module_exit(rbd_exit);
5760
5761 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5762 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5763 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5764 /* following authorship retained from original osdblk.c */
5765 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5766
5767 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5768 MODULE_LICENSE("GPL");