]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/char/hpet.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / drivers / char / hpet.c
1 /*
2  * Intel & MS High Precision Event Timer Implementation.
3  *
4  * Copyright (C) 2003 Intel Corporation
5  *      Venki Pallipadi
6  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7  *      Bob Picco <robert.picco@hp.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
24 #include <linux/mm.h>
25 #include <linux/proc_fs.h>
26 #include <linux/spinlock.h>
27 #include <linux/sysctl.h>
28 #include <linux/wait.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
36 #include <linux/io.h>
37
38 #include <asm/current.h>
39 #include <asm/irq.h>
40 #include <asm/div64.h>
41
42 #include <linux/acpi.h>
43 #include <acpi/acpi_bus.h>
44 #include <linux/hpet.h>
45
46 /*
47  * The High Precision Event Timer driver.
48  * This driver is closely modelled after the rtc.c driver.
49  * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
50  */
51 #define HPET_USER_FREQ  (64)
52 #define HPET_DRIFT      (500)
53
54 #define HPET_RANGE_SIZE         1024    /* from HPET spec */
55
56
57 /* WARNING -- don't get confused.  These macros are never used
58  * to write the (single) counter, and rarely to read it.
59  * They're badly named; to fix, someday.
60  */
61 #if BITS_PER_LONG == 64
62 #define write_counter(V, MC)    writeq(V, MC)
63 #define read_counter(MC)        readq(MC)
64 #else
65 #define write_counter(V, MC)    writel(V, MC)
66 #define read_counter(MC)        readl(MC)
67 #endif
68
69 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
70 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
71
72 /* This clocksource driver currently only works on ia64 */
73 #ifdef CONFIG_IA64
74 static void __iomem *hpet_mctr;
75
76 static cycle_t read_hpet(struct clocksource *cs)
77 {
78         return (cycle_t)read_counter((void __iomem *)hpet_mctr);
79 }
80
81 static struct clocksource clocksource_hpet = {
82         .name           = "hpet",
83         .rating         = 250,
84         .read           = read_hpet,
85         .mask           = CLOCKSOURCE_MASK(64),
86         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
87 };
88 static struct clocksource *hpet_clocksource;
89 #endif
90
91 /* A lock for concurrent access by app and isr hpet activity. */
92 static DEFINE_SPINLOCK(hpet_lock);
93
94 #define HPET_DEV_NAME   (7)
95
96 struct hpet_dev {
97         struct hpets *hd_hpets;
98         struct hpet __iomem *hd_hpet;
99         struct hpet_timer __iomem *hd_timer;
100         unsigned long hd_ireqfreq;
101         unsigned long hd_irqdata;
102         wait_queue_head_t hd_waitqueue;
103         struct fasync_struct *hd_async_queue;
104         unsigned int hd_flags;
105         unsigned int hd_irq;
106         unsigned int hd_hdwirq;
107         char hd_name[HPET_DEV_NAME];
108 };
109
110 struct hpets {
111         struct hpets *hp_next;
112         struct hpet __iomem *hp_hpet;
113         unsigned long hp_hpet_phys;
114         struct clocksource *hp_clocksource;
115         unsigned long long hp_tick_freq;
116         unsigned long hp_delta;
117         unsigned int hp_ntimer;
118         unsigned int hp_which;
119         struct hpet_dev hp_dev[1];
120 };
121
122 static struct hpets *hpets;
123
124 #define HPET_OPEN               0x0001
125 #define HPET_IE                 0x0002  /* interrupt enabled */
126 #define HPET_PERIODIC           0x0004
127 #define HPET_SHARED_IRQ         0x0008
128
129
130 #ifndef readq
131 static inline unsigned long long readq(void __iomem *addr)
132 {
133         return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
134 }
135 #endif
136
137 #ifndef writeq
138 static inline void writeq(unsigned long long v, void __iomem *addr)
139 {
140         writel(v & 0xffffffff, addr);
141         writel(v >> 32, addr + 4);
142 }
143 #endif
144
145 static irqreturn_t hpet_interrupt(int irq, void *data)
146 {
147         struct hpet_dev *devp;
148         unsigned long isr;
149
150         devp = data;
151         isr = 1 << (devp - devp->hd_hpets->hp_dev);
152
153         if ((devp->hd_flags & HPET_SHARED_IRQ) &&
154             !(isr & readl(&devp->hd_hpet->hpet_isr)))
155                 return IRQ_NONE;
156
157         spin_lock(&hpet_lock);
158         devp->hd_irqdata++;
159
160         /*
161          * For non-periodic timers, increment the accumulator.
162          * This has the effect of treating non-periodic like periodic.
163          */
164         if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
165                 unsigned long m, t, mc, base, k;
166                 struct hpet __iomem *hpet = devp->hd_hpet;
167                 struct hpets *hpetp = devp->hd_hpets;
168
169                 t = devp->hd_ireqfreq;
170                 m = read_counter(&devp->hd_timer->hpet_compare);
171                 mc = read_counter(&hpet->hpet_mc);
172                 /* The time for the next interrupt would logically be t + m,
173                  * however, if we are very unlucky and the interrupt is delayed
174                  * for longer than t then we will completely miss the next
175                  * interrupt if we set t + m and an application will hang.
176                  * Therefore we need to make a more complex computation assuming
177                  * that there exists a k for which the following is true:
178                  * k * t + base < mc + delta
179                  * (k + 1) * t + base > mc + delta
180                  * where t is the interval in hpet ticks for the given freq,
181                  * base is the theoretical start value 0 < base < t,
182                  * mc is the main counter value at the time of the interrupt,
183                  * delta is the time it takes to write the a value to the
184                  * comparator.
185                  * k may then be computed as (mc - base + delta) / t .
186                  */
187                 base = mc % t;
188                 k = (mc - base + hpetp->hp_delta) / t;
189                 write_counter(t * (k + 1) + base,
190                               &devp->hd_timer->hpet_compare);
191         }
192
193         if (devp->hd_flags & HPET_SHARED_IRQ)
194                 writel(isr, &devp->hd_hpet->hpet_isr);
195         spin_unlock(&hpet_lock);
196
197         wake_up_interruptible(&devp->hd_waitqueue);
198
199         kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
200
201         return IRQ_HANDLED;
202 }
203
204 static void hpet_timer_set_irq(struct hpet_dev *devp)
205 {
206         unsigned long v;
207         int irq, gsi;
208         struct hpet_timer __iomem *timer;
209
210         spin_lock_irq(&hpet_lock);
211         if (devp->hd_hdwirq) {
212                 spin_unlock_irq(&hpet_lock);
213                 return;
214         }
215
216         timer = devp->hd_timer;
217
218         /* we prefer level triggered mode */
219         v = readl(&timer->hpet_config);
220         if (!(v & Tn_INT_TYPE_CNF_MASK)) {
221                 v |= Tn_INT_TYPE_CNF_MASK;
222                 writel(v, &timer->hpet_config);
223         }
224         spin_unlock_irq(&hpet_lock);
225
226         v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
227                                  Tn_INT_ROUTE_CAP_SHIFT;
228
229         /*
230          * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
231          * legacy device. In IO APIC mode, we skip all the legacy IRQS.
232          */
233         if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
234                 v &= ~0xf3df;
235         else
236                 v &= ~0xffff;
237
238         for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
239                 if (irq >= nr_irqs) {
240                         irq = HPET_MAX_IRQ;
241                         break;
242                 }
243
244                 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
245                                         ACPI_ACTIVE_LOW);
246                 if (gsi > 0)
247                         break;
248
249                 /* FIXME: Setup interrupt source table */
250         }
251
252         if (irq < HPET_MAX_IRQ) {
253                 spin_lock_irq(&hpet_lock);
254                 v = readl(&timer->hpet_config);
255                 v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
256                 writel(v, &timer->hpet_config);
257                 devp->hd_hdwirq = gsi;
258                 spin_unlock_irq(&hpet_lock);
259         }
260         return;
261 }
262
263 static int hpet_open(struct inode *inode, struct file *file)
264 {
265         struct hpet_dev *devp;
266         struct hpets *hpetp;
267         int i;
268
269         if (file->f_mode & FMODE_WRITE)
270                 return -EINVAL;
271
272         mutex_lock(&hpet_mutex);
273         spin_lock_irq(&hpet_lock);
274
275         for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
276                 for (i = 0; i < hpetp->hp_ntimer; i++)
277                         if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
278                                 continue;
279                         else {
280                                 devp = &hpetp->hp_dev[i];
281                                 break;
282                         }
283
284         if (!devp) {
285                 spin_unlock_irq(&hpet_lock);
286                 mutex_unlock(&hpet_mutex);
287                 return -EBUSY;
288         }
289
290         file->private_data = devp;
291         devp->hd_irqdata = 0;
292         devp->hd_flags |= HPET_OPEN;
293         spin_unlock_irq(&hpet_lock);
294         mutex_unlock(&hpet_mutex);
295
296         hpet_timer_set_irq(devp);
297
298         return 0;
299 }
300
301 static ssize_t
302 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
303 {
304         DECLARE_WAITQUEUE(wait, current);
305         unsigned long data;
306         ssize_t retval;
307         struct hpet_dev *devp;
308
309         devp = file->private_data;
310         if (!devp->hd_ireqfreq)
311                 return -EIO;
312
313         if (count < sizeof(unsigned long))
314                 return -EINVAL;
315
316         add_wait_queue(&devp->hd_waitqueue, &wait);
317
318         for ( ; ; ) {
319                 set_current_state(TASK_INTERRUPTIBLE);
320
321                 spin_lock_irq(&hpet_lock);
322                 data = devp->hd_irqdata;
323                 devp->hd_irqdata = 0;
324                 spin_unlock_irq(&hpet_lock);
325
326                 if (data)
327                         break;
328                 else if (file->f_flags & O_NONBLOCK) {
329                         retval = -EAGAIN;
330                         goto out;
331                 } else if (signal_pending(current)) {
332                         retval = -ERESTARTSYS;
333                         goto out;
334                 }
335                 schedule();
336         }
337
338         retval = put_user(data, (unsigned long __user *)buf);
339         if (!retval)
340                 retval = sizeof(unsigned long);
341 out:
342         __set_current_state(TASK_RUNNING);
343         remove_wait_queue(&devp->hd_waitqueue, &wait);
344
345         return retval;
346 }
347
348 static unsigned int hpet_poll(struct file *file, poll_table * wait)
349 {
350         unsigned long v;
351         struct hpet_dev *devp;
352
353         devp = file->private_data;
354
355         if (!devp->hd_ireqfreq)
356                 return 0;
357
358         poll_wait(file, &devp->hd_waitqueue, wait);
359
360         spin_lock_irq(&hpet_lock);
361         v = devp->hd_irqdata;
362         spin_unlock_irq(&hpet_lock);
363
364         if (v != 0)
365                 return POLLIN | POLLRDNORM;
366
367         return 0;
368 }
369
370 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
371 {
372 #ifdef  CONFIG_HPET_MMAP
373         struct hpet_dev *devp;
374         unsigned long addr;
375
376         devp = file->private_data;
377         addr = devp->hd_hpets->hp_hpet_phys;
378
379         if (addr & (PAGE_SIZE - 1))
380                 return -ENOSYS;
381
382         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
383         return vm_iomap_memory(vma, addr, PAGE_SIZE);
384 #else
385         return -ENOSYS;
386 #endif
387 }
388
389 static int hpet_fasync(int fd, struct file *file, int on)
390 {
391         struct hpet_dev *devp;
392
393         devp = file->private_data;
394
395         if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
396                 return 0;
397         else
398                 return -EIO;
399 }
400
401 static int hpet_release(struct inode *inode, struct file *file)
402 {
403         struct hpet_dev *devp;
404         struct hpet_timer __iomem *timer;
405         int irq = 0;
406
407         devp = file->private_data;
408         timer = devp->hd_timer;
409
410         spin_lock_irq(&hpet_lock);
411
412         writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
413                &timer->hpet_config);
414
415         irq = devp->hd_irq;
416         devp->hd_irq = 0;
417
418         devp->hd_ireqfreq = 0;
419
420         if (devp->hd_flags & HPET_PERIODIC
421             && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
422                 unsigned long v;
423
424                 v = readq(&timer->hpet_config);
425                 v ^= Tn_TYPE_CNF_MASK;
426                 writeq(v, &timer->hpet_config);
427         }
428
429         devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
430         spin_unlock_irq(&hpet_lock);
431
432         if (irq)
433                 free_irq(irq, devp);
434
435         file->private_data = NULL;
436         return 0;
437 }
438
439 static int hpet_ioctl_ieon(struct hpet_dev *devp)
440 {
441         struct hpet_timer __iomem *timer;
442         struct hpet __iomem *hpet;
443         struct hpets *hpetp;
444         int irq;
445         unsigned long g, v, t, m;
446         unsigned long flags, isr;
447
448         timer = devp->hd_timer;
449         hpet = devp->hd_hpet;
450         hpetp = devp->hd_hpets;
451
452         if (!devp->hd_ireqfreq)
453                 return -EIO;
454
455         spin_lock_irq(&hpet_lock);
456
457         if (devp->hd_flags & HPET_IE) {
458                 spin_unlock_irq(&hpet_lock);
459                 return -EBUSY;
460         }
461
462         devp->hd_flags |= HPET_IE;
463
464         if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
465                 devp->hd_flags |= HPET_SHARED_IRQ;
466         spin_unlock_irq(&hpet_lock);
467
468         irq = devp->hd_hdwirq;
469
470         if (irq) {
471                 unsigned long irq_flags;
472
473                 if (devp->hd_flags & HPET_SHARED_IRQ) {
474                         /*
475                          * To prevent the interrupt handler from seeing an
476                          * unwanted interrupt status bit, program the timer
477                          * so that it will not fire in the near future ...
478                          */
479                         writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
480                                &timer->hpet_config);
481                         write_counter(read_counter(&hpet->hpet_mc),
482                                       &timer->hpet_compare);
483                         /* ... and clear any left-over status. */
484                         isr = 1 << (devp - devp->hd_hpets->hp_dev);
485                         writel(isr, &hpet->hpet_isr);
486                 }
487
488                 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
489                 irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
490                 if (request_irq(irq, hpet_interrupt, irq_flags,
491                                 devp->hd_name, (void *)devp)) {
492                         printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
493                         irq = 0;
494                 }
495         }
496
497         if (irq == 0) {
498                 spin_lock_irq(&hpet_lock);
499                 devp->hd_flags ^= HPET_IE;
500                 spin_unlock_irq(&hpet_lock);
501                 return -EIO;
502         }
503
504         devp->hd_irq = irq;
505         t = devp->hd_ireqfreq;
506         v = readq(&timer->hpet_config);
507
508         /* 64-bit comparators are not yet supported through the ioctls,
509          * so force this into 32-bit mode if it supports both modes
510          */
511         g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
512
513         if (devp->hd_flags & HPET_PERIODIC) {
514                 g |= Tn_TYPE_CNF_MASK;
515                 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
516                 writeq(v, &timer->hpet_config);
517                 local_irq_save(flags);
518
519                 /*
520                  * NOTE: First we modify the hidden accumulator
521                  * register supported by periodic-capable comparators.
522                  * We never want to modify the (single) counter; that
523                  * would affect all the comparators. The value written
524                  * is the counter value when the first interrupt is due.
525                  */
526                 m = read_counter(&hpet->hpet_mc);
527                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
528                 /*
529                  * Then we modify the comparator, indicating the period
530                  * for subsequent interrupt.
531                  */
532                 write_counter(t, &timer->hpet_compare);
533         } else {
534                 local_irq_save(flags);
535                 m = read_counter(&hpet->hpet_mc);
536                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
537         }
538
539         if (devp->hd_flags & HPET_SHARED_IRQ) {
540                 isr = 1 << (devp - devp->hd_hpets->hp_dev);
541                 writel(isr, &hpet->hpet_isr);
542         }
543         writeq(g, &timer->hpet_config);
544         local_irq_restore(flags);
545
546         return 0;
547 }
548
549 /* converts Hz to number of timer ticks */
550 static inline unsigned long hpet_time_div(struct hpets *hpets,
551                                           unsigned long dis)
552 {
553         unsigned long long m;
554
555         m = hpets->hp_tick_freq + (dis >> 1);
556         do_div(m, dis);
557         return (unsigned long)m;
558 }
559
560 static int
561 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
562                   struct hpet_info *info)
563 {
564         struct hpet_timer __iomem *timer;
565         struct hpet __iomem *hpet;
566         struct hpets *hpetp;
567         int err;
568         unsigned long v;
569
570         switch (cmd) {
571         case HPET_IE_OFF:
572         case HPET_INFO:
573         case HPET_EPI:
574         case HPET_DPI:
575         case HPET_IRQFREQ:
576                 timer = devp->hd_timer;
577                 hpet = devp->hd_hpet;
578                 hpetp = devp->hd_hpets;
579                 break;
580         case HPET_IE_ON:
581                 return hpet_ioctl_ieon(devp);
582         default:
583                 return -EINVAL;
584         }
585
586         err = 0;
587
588         switch (cmd) {
589         case HPET_IE_OFF:
590                 if ((devp->hd_flags & HPET_IE) == 0)
591                         break;
592                 v = readq(&timer->hpet_config);
593                 v &= ~Tn_INT_ENB_CNF_MASK;
594                 writeq(v, &timer->hpet_config);
595                 if (devp->hd_irq) {
596                         free_irq(devp->hd_irq, devp);
597                         devp->hd_irq = 0;
598                 }
599                 devp->hd_flags ^= HPET_IE;
600                 break;
601         case HPET_INFO:
602                 {
603                         memset(info, 0, sizeof(*info));
604                         if (devp->hd_ireqfreq)
605                                 info->hi_ireqfreq =
606                                         hpet_time_div(hpetp, devp->hd_ireqfreq);
607                         info->hi_flags =
608                             readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
609                         info->hi_hpet = hpetp->hp_which;
610                         info->hi_timer = devp - hpetp->hp_dev;
611                         break;
612                 }
613         case HPET_EPI:
614                 v = readq(&timer->hpet_config);
615                 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
616                         err = -ENXIO;
617                         break;
618                 }
619                 devp->hd_flags |= HPET_PERIODIC;
620                 break;
621         case HPET_DPI:
622                 v = readq(&timer->hpet_config);
623                 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
624                         err = -ENXIO;
625                         break;
626                 }
627                 if (devp->hd_flags & HPET_PERIODIC &&
628                     readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
629                         v = readq(&timer->hpet_config);
630                         v ^= Tn_TYPE_CNF_MASK;
631                         writeq(v, &timer->hpet_config);
632                 }
633                 devp->hd_flags &= ~HPET_PERIODIC;
634                 break;
635         case HPET_IRQFREQ:
636                 if ((arg > hpet_max_freq) &&
637                     !capable(CAP_SYS_RESOURCE)) {
638                         err = -EACCES;
639                         break;
640                 }
641
642                 if (!arg) {
643                         err = -EINVAL;
644                         break;
645                 }
646
647                 devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
648         }
649
650         return err;
651 }
652
653 static long
654 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
655 {
656         struct hpet_info info;
657         int err;
658
659         mutex_lock(&hpet_mutex);
660         err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
661         mutex_unlock(&hpet_mutex);
662
663         if ((cmd == HPET_INFO) && !err &&
664             (copy_to_user((void __user *)arg, &info, sizeof(info))))
665                 err = -EFAULT;
666
667         return err;
668 }
669
670 #ifdef CONFIG_COMPAT
671 struct compat_hpet_info {
672         compat_ulong_t hi_ireqfreq;     /* Hz */
673         compat_ulong_t hi_flags;        /* information */
674         unsigned short hi_hpet;
675         unsigned short hi_timer;
676 };
677
678 static long
679 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
680 {
681         struct hpet_info info;
682         int err;
683
684         mutex_lock(&hpet_mutex);
685         err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
686         mutex_unlock(&hpet_mutex);
687
688         if ((cmd == HPET_INFO) && !err) {
689                 struct compat_hpet_info __user *u = compat_ptr(arg);
690                 if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
691                     put_user(info.hi_flags, &u->hi_flags) ||
692                     put_user(info.hi_hpet, &u->hi_hpet) ||
693                     put_user(info.hi_timer, &u->hi_timer))
694                         err = -EFAULT;
695         }
696
697         return err;
698 }
699 #endif
700
701 static const struct file_operations hpet_fops = {
702         .owner = THIS_MODULE,
703         .llseek = no_llseek,
704         .read = hpet_read,
705         .poll = hpet_poll,
706         .unlocked_ioctl = hpet_ioctl,
707 #ifdef CONFIG_COMPAT
708         .compat_ioctl = hpet_compat_ioctl,
709 #endif
710         .open = hpet_open,
711         .release = hpet_release,
712         .fasync = hpet_fasync,
713         .mmap = hpet_mmap,
714 };
715
716 static int hpet_is_known(struct hpet_data *hdp)
717 {
718         struct hpets *hpetp;
719
720         for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
721                 if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
722                         return 1;
723
724         return 0;
725 }
726
727 static struct ctl_table hpet_table[] = {
728         {
729          .procname = "max-user-freq",
730          .data = &hpet_max_freq,
731          .maxlen = sizeof(int),
732          .mode = 0644,
733          .proc_handler = proc_dointvec,
734          },
735         {}
736 };
737
738 static struct ctl_table hpet_root[] = {
739         {
740          .procname = "hpet",
741          .maxlen = 0,
742          .mode = 0555,
743          .child = hpet_table,
744          },
745         {}
746 };
747
748 static struct ctl_table dev_root[] = {
749         {
750          .procname = "dev",
751          .maxlen = 0,
752          .mode = 0555,
753          .child = hpet_root,
754          },
755         {}
756 };
757
758 static struct ctl_table_header *sysctl_header;
759
760 /*
761  * Adjustment for when arming the timer with
762  * initial conditions.  That is, main counter
763  * ticks expired before interrupts are enabled.
764  */
765 #define TICK_CALIBRATE  (1000UL)
766
767 static unsigned long __hpet_calibrate(struct hpets *hpetp)
768 {
769         struct hpet_timer __iomem *timer = NULL;
770         unsigned long t, m, count, i, flags, start;
771         struct hpet_dev *devp;
772         int j;
773         struct hpet __iomem *hpet;
774
775         for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
776                 if ((devp->hd_flags & HPET_OPEN) == 0) {
777                         timer = devp->hd_timer;
778                         break;
779                 }
780
781         if (!timer)
782                 return 0;
783
784         hpet = hpetp->hp_hpet;
785         t = read_counter(&timer->hpet_compare);
786
787         i = 0;
788         count = hpet_time_div(hpetp, TICK_CALIBRATE);
789
790         local_irq_save(flags);
791
792         start = read_counter(&hpet->hpet_mc);
793
794         do {
795                 m = read_counter(&hpet->hpet_mc);
796                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
797         } while (i++, (m - start) < count);
798
799         local_irq_restore(flags);
800
801         return (m - start) / i;
802 }
803
804 static unsigned long hpet_calibrate(struct hpets *hpetp)
805 {
806         unsigned long ret = ~0UL;
807         unsigned long tmp;
808
809         /*
810          * Try to calibrate until return value becomes stable small value.
811          * If SMI interruption occurs in calibration loop, the return value
812          * will be big. This avoids its impact.
813          */
814         for ( ; ; ) {
815                 tmp = __hpet_calibrate(hpetp);
816                 if (ret <= tmp)
817                         break;
818                 ret = tmp;
819         }
820
821         return ret;
822 }
823
824 int hpet_alloc(struct hpet_data *hdp)
825 {
826         u64 cap, mcfg;
827         struct hpet_dev *devp;
828         u32 i, ntimer;
829         struct hpets *hpetp;
830         size_t siz;
831         struct hpet __iomem *hpet;
832         static struct hpets *last;
833         unsigned long period;
834         unsigned long long temp;
835         u32 remainder;
836
837         /*
838          * hpet_alloc can be called by platform dependent code.
839          * If platform dependent code has allocated the hpet that
840          * ACPI has also reported, then we catch it here.
841          */
842         if (hpet_is_known(hdp)) {
843                 printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
844                         __func__);
845                 return 0;
846         }
847
848         siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
849                                       sizeof(struct hpet_dev));
850
851         hpetp = kzalloc(siz, GFP_KERNEL);
852
853         if (!hpetp)
854                 return -ENOMEM;
855
856         hpetp->hp_which = hpet_nhpet++;
857         hpetp->hp_hpet = hdp->hd_address;
858         hpetp->hp_hpet_phys = hdp->hd_phys_address;
859
860         hpetp->hp_ntimer = hdp->hd_nirqs;
861
862         for (i = 0; i < hdp->hd_nirqs; i++)
863                 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
864
865         hpet = hpetp->hp_hpet;
866
867         cap = readq(&hpet->hpet_cap);
868
869         ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
870
871         if (hpetp->hp_ntimer != ntimer) {
872                 printk(KERN_WARNING "hpet: number irqs doesn't agree"
873                        " with number of timers\n");
874                 kfree(hpetp);
875                 return -ENODEV;
876         }
877
878         if (last)
879                 last->hp_next = hpetp;
880         else
881                 hpets = hpetp;
882
883         last = hpetp;
884
885         period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
886                 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
887         temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
888         temp += period >> 1; /* round */
889         do_div(temp, period);
890         hpetp->hp_tick_freq = temp; /* ticks per second */
891
892         printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
893                 hpetp->hp_which, hdp->hd_phys_address,
894                 hpetp->hp_ntimer > 1 ? "s" : "");
895         for (i = 0; i < hpetp->hp_ntimer; i++)
896                 printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
897         printk(KERN_CONT "\n");
898
899         temp = hpetp->hp_tick_freq;
900         remainder = do_div(temp, 1000000);
901         printk(KERN_INFO
902                 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
903                 hpetp->hp_which, hpetp->hp_ntimer,
904                 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
905                 (unsigned) temp, remainder);
906
907         mcfg = readq(&hpet->hpet_config);
908         if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
909                 write_counter(0L, &hpet->hpet_mc);
910                 mcfg |= HPET_ENABLE_CNF_MASK;
911                 writeq(mcfg, &hpet->hpet_config);
912         }
913
914         for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
915                 struct hpet_timer __iomem *timer;
916
917                 timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
918
919                 devp->hd_hpets = hpetp;
920                 devp->hd_hpet = hpet;
921                 devp->hd_timer = timer;
922
923                 /*
924                  * If the timer was reserved by platform code,
925                  * then make timer unavailable for opens.
926                  */
927                 if (hdp->hd_state & (1 << i)) {
928                         devp->hd_flags = HPET_OPEN;
929                         continue;
930                 }
931
932                 init_waitqueue_head(&devp->hd_waitqueue);
933         }
934
935         hpetp->hp_delta = hpet_calibrate(hpetp);
936
937 /* This clocksource driver currently only works on ia64 */
938 #ifdef CONFIG_IA64
939         if (!hpet_clocksource) {
940                 hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
941                 clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
942                 clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
943                 hpetp->hp_clocksource = &clocksource_hpet;
944                 hpet_clocksource = &clocksource_hpet;
945         }
946 #endif
947
948         return 0;
949 }
950
951 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
952 {
953         struct hpet_data *hdp;
954         acpi_status status;
955         struct acpi_resource_address64 addr;
956
957         hdp = data;
958
959         status = acpi_resource_to_address64(res, &addr);
960
961         if (ACPI_SUCCESS(status)) {
962                 hdp->hd_phys_address = addr.minimum;
963                 hdp->hd_address = ioremap(addr.minimum, addr.address_length);
964
965                 if (hpet_is_known(hdp)) {
966                         iounmap(hdp->hd_address);
967                         return AE_ALREADY_EXISTS;
968                 }
969         } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
970                 struct acpi_resource_fixed_memory32 *fixmem32;
971
972                 fixmem32 = &res->data.fixed_memory32;
973
974                 hdp->hd_phys_address = fixmem32->address;
975                 hdp->hd_address = ioremap(fixmem32->address,
976                                                 HPET_RANGE_SIZE);
977
978                 if (hpet_is_known(hdp)) {
979                         iounmap(hdp->hd_address);
980                         return AE_ALREADY_EXISTS;
981                 }
982         } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
983                 struct acpi_resource_extended_irq *irqp;
984                 int i, irq;
985
986                 irqp = &res->data.extended_irq;
987
988                 for (i = 0; i < irqp->interrupt_count; i++) {
989                         if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
990                                 break;
991
992                         irq = acpi_register_gsi(NULL, irqp->interrupts[i],
993                                       irqp->triggering, irqp->polarity);
994                         if (irq < 0)
995                                 return AE_ERROR;
996
997                         hdp->hd_irq[hdp->hd_nirqs] = irq;
998                         hdp->hd_nirqs++;
999                 }
1000         }
1001
1002         return AE_OK;
1003 }
1004
1005 static int hpet_acpi_add(struct acpi_device *device)
1006 {
1007         acpi_status result;
1008         struct hpet_data data;
1009
1010         memset(&data, 0, sizeof(data));
1011
1012         result =
1013             acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1014                                 hpet_resources, &data);
1015
1016         if (ACPI_FAILURE(result))
1017                 return -ENODEV;
1018
1019         if (!data.hd_address || !data.hd_nirqs) {
1020                 if (data.hd_address)
1021                         iounmap(data.hd_address);
1022                 printk("%s: no address or irqs in _CRS\n", __func__);
1023                 return -ENODEV;
1024         }
1025
1026         return hpet_alloc(&data);
1027 }
1028
1029 static int hpet_acpi_remove(struct acpi_device *device)
1030 {
1031         /* XXX need to unregister clocksource, dealloc mem, etc */
1032         return -EINVAL;
1033 }
1034
1035 static const struct acpi_device_id hpet_device_ids[] = {
1036         {"PNP0103", 0},
1037         {"", 0},
1038 };
1039 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1040
1041 static struct acpi_driver hpet_acpi_driver = {
1042         .name = "hpet",
1043         .ids = hpet_device_ids,
1044         .ops = {
1045                 .add = hpet_acpi_add,
1046                 .remove = hpet_acpi_remove,
1047                 },
1048 };
1049
1050 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1051
1052 static int __init hpet_init(void)
1053 {
1054         int result;
1055
1056         result = misc_register(&hpet_misc);
1057         if (result < 0)
1058                 return -ENODEV;
1059
1060         sysctl_header = register_sysctl_table(dev_root);
1061
1062         result = acpi_bus_register_driver(&hpet_acpi_driver);
1063         if (result < 0) {
1064                 if (sysctl_header)
1065                         unregister_sysctl_table(sysctl_header);
1066                 misc_deregister(&hpet_misc);
1067                 return result;
1068         }
1069
1070         return 0;
1071 }
1072
1073 static void __exit hpet_exit(void)
1074 {
1075         acpi_bus_unregister_driver(&hpet_acpi_driver);
1076
1077         if (sysctl_header)
1078                 unregister_sysctl_table(sysctl_header);
1079         misc_deregister(&hpet_misc);
1080
1081         return;
1082 }
1083
1084 module_init(hpet_init);
1085 module_exit(hpet_exit);
1086 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1087 MODULE_LICENSE("GPL");