]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/char/ipmi/ipmi_si_intf.c
char: constify of_device_id array
[karo-tx-linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC    10000
85 #define SI_USEC_PER_JIFFY       (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88                                       short timeout */
89
90 enum si_intf_state {
91         SI_NORMAL,
92         SI_GETTING_FLAGS,
93         SI_GETTING_EVENTS,
94         SI_CLEARING_FLAGS,
95         SI_GETTING_MESSAGES,
96         SI_CHECKING_ENABLES,
97         SI_SETTING_ENABLES
98         /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG             2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
105
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110
111 #define DEVICE_NAME "ipmi_si"
112
113 static struct platform_driver ipmi_driver;
114
115 /*
116  * Indexes into stats[] in smi_info below.
117  */
118 enum si_stat_indexes {
119         /*
120          * Number of times the driver requested a timer while an operation
121          * was in progress.
122          */
123         SI_STAT_short_timeouts = 0,
124
125         /*
126          * Number of times the driver requested a timer while nothing was in
127          * progress.
128          */
129         SI_STAT_long_timeouts,
130
131         /* Number of times the interface was idle while being polled. */
132         SI_STAT_idles,
133
134         /* Number of interrupts the driver handled. */
135         SI_STAT_interrupts,
136
137         /* Number of time the driver got an ATTN from the hardware. */
138         SI_STAT_attentions,
139
140         /* Number of times the driver requested flags from the hardware. */
141         SI_STAT_flag_fetches,
142
143         /* Number of times the hardware didn't follow the state machine. */
144         SI_STAT_hosed_count,
145
146         /* Number of completed messages. */
147         SI_STAT_complete_transactions,
148
149         /* Number of IPMI events received from the hardware. */
150         SI_STAT_events,
151
152         /* Number of watchdog pretimeouts. */
153         SI_STAT_watchdog_pretimeouts,
154
155         /* Number of asynchronous messages received. */
156         SI_STAT_incoming_messages,
157
158
159         /* This *must* remain last, add new values above this. */
160         SI_NUM_STATS
161 };
162
163 struct smi_info {
164         int                    intf_num;
165         ipmi_smi_t             intf;
166         struct si_sm_data      *si_sm;
167         struct si_sm_handlers  *handlers;
168         enum si_type           si_type;
169         spinlock_t             si_lock;
170         struct ipmi_smi_msg    *waiting_msg;
171         struct ipmi_smi_msg    *curr_msg;
172         enum si_intf_state     si_state;
173
174         /*
175          * Used to handle the various types of I/O that can occur with
176          * IPMI
177          */
178         struct si_sm_io io;
179         int (*io_setup)(struct smi_info *info);
180         void (*io_cleanup)(struct smi_info *info);
181         int (*irq_setup)(struct smi_info *info);
182         void (*irq_cleanup)(struct smi_info *info);
183         unsigned int io_size;
184         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185         void (*addr_source_cleanup)(struct smi_info *info);
186         void *addr_source_data;
187
188         /*
189          * Per-OEM handler, called from handle_flags().  Returns 1
190          * when handle_flags() needs to be re-run or 0 indicating it
191          * set si_state itself.
192          */
193         int (*oem_data_avail_handler)(struct smi_info *smi_info);
194
195         /*
196          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197          * is set to hold the flags until we are done handling everything
198          * from the flags.
199          */
200 #define RECEIVE_MSG_AVAIL       0x01
201 #define EVENT_MSG_BUFFER_FULL   0x02
202 #define WDT_PRE_TIMEOUT_INT     0x08
203 #define OEM0_DATA_AVAIL     0x20
204 #define OEM1_DATA_AVAIL     0x40
205 #define OEM2_DATA_AVAIL     0x80
206 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
207                              OEM1_DATA_AVAIL | \
208                              OEM2_DATA_AVAIL)
209         unsigned char       msg_flags;
210
211         /* Does the BMC have an event buffer? */
212         bool                has_event_buffer;
213
214         /*
215          * If set to true, this will request events the next time the
216          * state machine is idle.
217          */
218         atomic_t            req_events;
219
220         /*
221          * If true, run the state machine to completion on every send
222          * call.  Generally used after a panic to make sure stuff goes
223          * out.
224          */
225         bool                run_to_completion;
226
227         /* The I/O port of an SI interface. */
228         int                 port;
229
230         /*
231          * The space between start addresses of the two ports.  For
232          * instance, if the first port is 0xca2 and the spacing is 4, then
233          * the second port is 0xca6.
234          */
235         unsigned int        spacing;
236
237         /* zero if no irq; */
238         int                 irq;
239
240         /* The timer for this si. */
241         struct timer_list   si_timer;
242
243         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
244         bool                timer_running;
245
246         /* The time (in jiffies) the last timeout occurred at. */
247         unsigned long       last_timeout_jiffies;
248
249         /* Are we waiting for the events, pretimeouts, received msgs? */
250         atomic_t            need_watch;
251
252         /*
253          * The driver will disable interrupts when it gets into a
254          * situation where it cannot handle messages due to lack of
255          * memory.  Once that situation clears up, it will re-enable
256          * interrupts.
257          */
258         bool interrupt_disabled;
259
260         /*
261          * Does the BMC support events?
262          */
263         bool supports_event_msg_buff;
264
265         /*
266          * Did we get an attention that we did not handle?
267          */
268         bool got_attn;
269
270         /* From the get device id response... */
271         struct ipmi_device_id device_id;
272
273         /* Driver model stuff. */
274         struct device *dev;
275         struct platform_device *pdev;
276
277         /*
278          * True if we allocated the device, false if it came from
279          * someplace else (like PCI).
280          */
281         bool dev_registered;
282
283         /* Slave address, could be reported from DMI. */
284         unsigned char slave_addr;
285
286         /* Counters and things for the proc filesystem. */
287         atomic_t stats[SI_NUM_STATS];
288
289         struct task_struct *thread;
290
291         struct list_head link;
292         union ipmi_smi_info_union addr_info;
293 };
294
295 #define smi_inc_stat(smi, stat) \
296         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
297 #define smi_get_stat(smi, stat) \
298         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
299
300 #define SI_MAX_PARMS 4
301
302 static int force_kipmid[SI_MAX_PARMS];
303 static int num_force_kipmid;
304 #ifdef CONFIG_PCI
305 static bool pci_registered;
306 #endif
307 #ifdef CONFIG_ACPI
308 static bool pnp_registered;
309 #endif
310 #ifdef CONFIG_PARISC
311 static bool parisc_registered;
312 #endif
313
314 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
315 static int num_max_busy_us;
316
317 static bool unload_when_empty = true;
318
319 static int add_smi(struct smi_info *smi);
320 static int try_smi_init(struct smi_info *smi);
321 static void cleanup_one_si(struct smi_info *to_clean);
322 static void cleanup_ipmi_si(void);
323
324 #ifdef DEBUG_TIMING
325 void debug_timestamp(char *msg)
326 {
327         struct timespec64 t;
328
329         getnstimeofday64(&t);
330         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
331 }
332 #else
333 #define debug_timestamp(x)
334 #endif
335
336 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
337 static int register_xaction_notifier(struct notifier_block *nb)
338 {
339         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
340 }
341
342 static void deliver_recv_msg(struct smi_info *smi_info,
343                              struct ipmi_smi_msg *msg)
344 {
345         /* Deliver the message to the upper layer. */
346         if (smi_info->intf)
347                 ipmi_smi_msg_received(smi_info->intf, msg);
348         else
349                 ipmi_free_smi_msg(msg);
350 }
351
352 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
353 {
354         struct ipmi_smi_msg *msg = smi_info->curr_msg;
355
356         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
357                 cCode = IPMI_ERR_UNSPECIFIED;
358         /* else use it as is */
359
360         /* Make it a response */
361         msg->rsp[0] = msg->data[0] | 4;
362         msg->rsp[1] = msg->data[1];
363         msg->rsp[2] = cCode;
364         msg->rsp_size = 3;
365
366         smi_info->curr_msg = NULL;
367         deliver_recv_msg(smi_info, msg);
368 }
369
370 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
371 {
372         int              rv;
373
374         if (!smi_info->waiting_msg) {
375                 smi_info->curr_msg = NULL;
376                 rv = SI_SM_IDLE;
377         } else {
378                 int err;
379
380                 smi_info->curr_msg = smi_info->waiting_msg;
381                 smi_info->waiting_msg = NULL;
382                 debug_timestamp("Start2");
383                 err = atomic_notifier_call_chain(&xaction_notifier_list,
384                                 0, smi_info);
385                 if (err & NOTIFY_STOP_MASK) {
386                         rv = SI_SM_CALL_WITHOUT_DELAY;
387                         goto out;
388                 }
389                 err = smi_info->handlers->start_transaction(
390                         smi_info->si_sm,
391                         smi_info->curr_msg->data,
392                         smi_info->curr_msg->data_size);
393                 if (err)
394                         return_hosed_msg(smi_info, err);
395
396                 rv = SI_SM_CALL_WITHOUT_DELAY;
397         }
398  out:
399         return rv;
400 }
401
402 static void start_check_enables(struct smi_info *smi_info)
403 {
404         unsigned char msg[2];
405
406         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
407         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
408
409         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
410         smi_info->si_state = SI_CHECKING_ENABLES;
411 }
412
413 static void start_clear_flags(struct smi_info *smi_info)
414 {
415         unsigned char msg[3];
416
417         /* Make sure the watchdog pre-timeout flag is not set at startup. */
418         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
419         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
420         msg[2] = WDT_PRE_TIMEOUT_INT;
421
422         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
423         smi_info->si_state = SI_CLEARING_FLAGS;
424 }
425
426 static void start_getting_msg_queue(struct smi_info *smi_info)
427 {
428         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
429         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
430         smi_info->curr_msg->data_size = 2;
431
432         smi_info->handlers->start_transaction(
433                 smi_info->si_sm,
434                 smi_info->curr_msg->data,
435                 smi_info->curr_msg->data_size);
436         smi_info->si_state = SI_GETTING_MESSAGES;
437 }
438
439 static void start_getting_events(struct smi_info *smi_info)
440 {
441         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
442         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
443         smi_info->curr_msg->data_size = 2;
444
445         smi_info->handlers->start_transaction(
446                 smi_info->si_sm,
447                 smi_info->curr_msg->data,
448                 smi_info->curr_msg->data_size);
449         smi_info->si_state = SI_GETTING_EVENTS;
450 }
451
452 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
453 {
454         smi_info->last_timeout_jiffies = jiffies;
455         mod_timer(&smi_info->si_timer, new_val);
456         smi_info->timer_running = true;
457 }
458
459 /*
460  * When we have a situtaion where we run out of memory and cannot
461  * allocate messages, we just leave them in the BMC and run the system
462  * polled until we can allocate some memory.  Once we have some
463  * memory, we will re-enable the interrupt.
464  */
465 static inline bool disable_si_irq(struct smi_info *smi_info)
466 {
467         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
468                 smi_info->interrupt_disabled = true;
469                 start_check_enables(smi_info);
470                 return true;
471         }
472         return false;
473 }
474
475 static inline bool enable_si_irq(struct smi_info *smi_info)
476 {
477         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
478                 smi_info->interrupt_disabled = false;
479                 start_check_enables(smi_info);
480                 return true;
481         }
482         return false;
483 }
484
485 /*
486  * Allocate a message.  If unable to allocate, start the interrupt
487  * disable process and return NULL.  If able to allocate but
488  * interrupts are disabled, free the message and return NULL after
489  * starting the interrupt enable process.
490  */
491 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
492 {
493         struct ipmi_smi_msg *msg;
494
495         msg = ipmi_alloc_smi_msg();
496         if (!msg) {
497                 if (!disable_si_irq(smi_info))
498                         smi_info->si_state = SI_NORMAL;
499         } else if (enable_si_irq(smi_info)) {
500                 ipmi_free_smi_msg(msg);
501                 msg = NULL;
502         }
503         return msg;
504 }
505
506 static void handle_flags(struct smi_info *smi_info)
507 {
508  retry:
509         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
510                 /* Watchdog pre-timeout */
511                 smi_inc_stat(smi_info, watchdog_pretimeouts);
512
513                 start_clear_flags(smi_info);
514                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
515                 if (smi_info->intf)
516                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
517         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
518                 /* Messages available. */
519                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
520                 if (!smi_info->curr_msg)
521                         return;
522
523                 start_getting_msg_queue(smi_info);
524         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
525                 /* Events available. */
526                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
527                 if (!smi_info->curr_msg)
528                         return;
529
530                 start_getting_events(smi_info);
531         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
532                    smi_info->oem_data_avail_handler) {
533                 if (smi_info->oem_data_avail_handler(smi_info))
534                         goto retry;
535         } else
536                 smi_info->si_state = SI_NORMAL;
537 }
538
539 /*
540  * Global enables we care about.
541  */
542 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
543                              IPMI_BMC_EVT_MSG_INTR)
544
545 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
546                                  bool *irq_on)
547 {
548         u8 enables = 0;
549
550         if (smi_info->supports_event_msg_buff)
551                 enables |= IPMI_BMC_EVT_MSG_BUFF;
552         else
553                 enables &= ~IPMI_BMC_EVT_MSG_BUFF;
554
555         if (smi_info->irq && !smi_info->interrupt_disabled)
556                 enables |= IPMI_BMC_RCV_MSG_INTR;
557         else
558                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
559
560         if (smi_info->supports_event_msg_buff &&
561             smi_info->irq && !smi_info->interrupt_disabled)
562
563                 enables |= IPMI_BMC_EVT_MSG_INTR;
564         else
565                 enables &= ~IPMI_BMC_EVT_MSG_INTR;
566
567         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
568
569         return enables;
570 }
571
572 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
573 {
574         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
575
576         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
577
578         if ((bool)irqstate == irq_on)
579                 return;
580
581         if (irq_on)
582                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
583                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
584         else
585                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
586 }
587
588 static void handle_transaction_done(struct smi_info *smi_info)
589 {
590         struct ipmi_smi_msg *msg;
591
592         debug_timestamp("Done");
593         switch (smi_info->si_state) {
594         case SI_NORMAL:
595                 if (!smi_info->curr_msg)
596                         break;
597
598                 smi_info->curr_msg->rsp_size
599                         = smi_info->handlers->get_result(
600                                 smi_info->si_sm,
601                                 smi_info->curr_msg->rsp,
602                                 IPMI_MAX_MSG_LENGTH);
603
604                 /*
605                  * Do this here becase deliver_recv_msg() releases the
606                  * lock, and a new message can be put in during the
607                  * time the lock is released.
608                  */
609                 msg = smi_info->curr_msg;
610                 smi_info->curr_msg = NULL;
611                 deliver_recv_msg(smi_info, msg);
612                 break;
613
614         case SI_GETTING_FLAGS:
615         {
616                 unsigned char msg[4];
617                 unsigned int  len;
618
619                 /* We got the flags from the SMI, now handle them. */
620                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
621                 if (msg[2] != 0) {
622                         /* Error fetching flags, just give up for now. */
623                         smi_info->si_state = SI_NORMAL;
624                 } else if (len < 4) {
625                         /*
626                          * Hmm, no flags.  That's technically illegal, but
627                          * don't use uninitialized data.
628                          */
629                         smi_info->si_state = SI_NORMAL;
630                 } else {
631                         smi_info->msg_flags = msg[3];
632                         handle_flags(smi_info);
633                 }
634                 break;
635         }
636
637         case SI_CLEARING_FLAGS:
638         {
639                 unsigned char msg[3];
640
641                 /* We cleared the flags. */
642                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
643                 if (msg[2] != 0) {
644                         /* Error clearing flags */
645                         dev_warn(smi_info->dev,
646                                  "Error clearing flags: %2.2x\n", msg[2]);
647                 }
648                 smi_info->si_state = SI_NORMAL;
649                 break;
650         }
651
652         case SI_GETTING_EVENTS:
653         {
654                 smi_info->curr_msg->rsp_size
655                         = smi_info->handlers->get_result(
656                                 smi_info->si_sm,
657                                 smi_info->curr_msg->rsp,
658                                 IPMI_MAX_MSG_LENGTH);
659
660                 /*
661                  * Do this here becase deliver_recv_msg() releases the
662                  * lock, and a new message can be put in during the
663                  * time the lock is released.
664                  */
665                 msg = smi_info->curr_msg;
666                 smi_info->curr_msg = NULL;
667                 if (msg->rsp[2] != 0) {
668                         /* Error getting event, probably done. */
669                         msg->done(msg);
670
671                         /* Take off the event flag. */
672                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
673                         handle_flags(smi_info);
674                 } else {
675                         smi_inc_stat(smi_info, events);
676
677                         /*
678                          * Do this before we deliver the message
679                          * because delivering the message releases the
680                          * lock and something else can mess with the
681                          * state.
682                          */
683                         handle_flags(smi_info);
684
685                         deliver_recv_msg(smi_info, msg);
686                 }
687                 break;
688         }
689
690         case SI_GETTING_MESSAGES:
691         {
692                 smi_info->curr_msg->rsp_size
693                         = smi_info->handlers->get_result(
694                                 smi_info->si_sm,
695                                 smi_info->curr_msg->rsp,
696                                 IPMI_MAX_MSG_LENGTH);
697
698                 /*
699                  * Do this here becase deliver_recv_msg() releases the
700                  * lock, and a new message can be put in during the
701                  * time the lock is released.
702                  */
703                 msg = smi_info->curr_msg;
704                 smi_info->curr_msg = NULL;
705                 if (msg->rsp[2] != 0) {
706                         /* Error getting event, probably done. */
707                         msg->done(msg);
708
709                         /* Take off the msg flag. */
710                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
711                         handle_flags(smi_info);
712                 } else {
713                         smi_inc_stat(smi_info, incoming_messages);
714
715                         /*
716                          * Do this before we deliver the message
717                          * because delivering the message releases the
718                          * lock and something else can mess with the
719                          * state.
720                          */
721                         handle_flags(smi_info);
722
723                         deliver_recv_msg(smi_info, msg);
724                 }
725                 break;
726         }
727
728         case SI_CHECKING_ENABLES:
729         {
730                 unsigned char msg[4];
731                 u8 enables;
732                 bool irq_on;
733
734                 /* We got the flags from the SMI, now handle them. */
735                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
736                 if (msg[2] != 0) {
737                         dev_warn(smi_info->dev,
738                                  "Couldn't get irq info: %x.\n", msg[2]);
739                         dev_warn(smi_info->dev,
740                                  "Maybe ok, but ipmi might run very slowly.\n");
741                         smi_info->si_state = SI_NORMAL;
742                         break;
743                 }
744                 enables = current_global_enables(smi_info, 0, &irq_on);
745                 if (smi_info->si_type == SI_BT)
746                         /* BT has its own interrupt enable bit. */
747                         check_bt_irq(smi_info, irq_on);
748                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
749                         /* Enables are not correct, fix them. */
750                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
751                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
752                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
753                         smi_info->handlers->start_transaction(
754                                 smi_info->si_sm, msg, 3);
755                         smi_info->si_state = SI_SETTING_ENABLES;
756                 } else if (smi_info->supports_event_msg_buff) {
757                         smi_info->curr_msg = ipmi_alloc_smi_msg();
758                         if (!smi_info->curr_msg) {
759                                 smi_info->si_state = SI_NORMAL;
760                                 break;
761                         }
762                         start_getting_msg_queue(smi_info);
763                 } else {
764                         smi_info->si_state = SI_NORMAL;
765                 }
766                 break;
767         }
768
769         case SI_SETTING_ENABLES:
770         {
771                 unsigned char msg[4];
772
773                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
774                 if (msg[2] != 0)
775                         dev_warn(smi_info->dev,
776                                  "Could not set the global enables: 0x%x.\n",
777                                  msg[2]);
778
779                 if (smi_info->supports_event_msg_buff) {
780                         smi_info->curr_msg = ipmi_alloc_smi_msg();
781                         if (!smi_info->curr_msg) {
782                                 smi_info->si_state = SI_NORMAL;
783                                 break;
784                         }
785                         start_getting_msg_queue(smi_info);
786                 } else {
787                         smi_info->si_state = SI_NORMAL;
788                 }
789                 break;
790         }
791         }
792 }
793
794 /*
795  * Called on timeouts and events.  Timeouts should pass the elapsed
796  * time, interrupts should pass in zero.  Must be called with
797  * si_lock held and interrupts disabled.
798  */
799 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
800                                            int time)
801 {
802         enum si_sm_result si_sm_result;
803
804  restart:
805         /*
806          * There used to be a loop here that waited a little while
807          * (around 25us) before giving up.  That turned out to be
808          * pointless, the minimum delays I was seeing were in the 300us
809          * range, which is far too long to wait in an interrupt.  So
810          * we just run until the state machine tells us something
811          * happened or it needs a delay.
812          */
813         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
814         time = 0;
815         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
816                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
817
818         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
819                 smi_inc_stat(smi_info, complete_transactions);
820
821                 handle_transaction_done(smi_info);
822                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
823         } else if (si_sm_result == SI_SM_HOSED) {
824                 smi_inc_stat(smi_info, hosed_count);
825
826                 /*
827                  * Do the before return_hosed_msg, because that
828                  * releases the lock.
829                  */
830                 smi_info->si_state = SI_NORMAL;
831                 if (smi_info->curr_msg != NULL) {
832                         /*
833                          * If we were handling a user message, format
834                          * a response to send to the upper layer to
835                          * tell it about the error.
836                          */
837                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
838                 }
839                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
840         }
841
842         /*
843          * We prefer handling attn over new messages.  But don't do
844          * this if there is not yet an upper layer to handle anything.
845          */
846         if (likely(smi_info->intf) &&
847             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
848                 unsigned char msg[2];
849
850                 if (smi_info->si_state != SI_NORMAL) {
851                         /*
852                          * We got an ATTN, but we are doing something else.
853                          * Handle the ATTN later.
854                          */
855                         smi_info->got_attn = true;
856                 } else {
857                         smi_info->got_attn = false;
858                         smi_inc_stat(smi_info, attentions);
859
860                         /*
861                          * Got a attn, send down a get message flags to see
862                          * what's causing it.  It would be better to handle
863                          * this in the upper layer, but due to the way
864                          * interrupts work with the SMI, that's not really
865                          * possible.
866                          */
867                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
868                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
869
870                         smi_info->handlers->start_transaction(
871                                 smi_info->si_sm, msg, 2);
872                         smi_info->si_state = SI_GETTING_FLAGS;
873                         goto restart;
874                 }
875         }
876
877         /* If we are currently idle, try to start the next message. */
878         if (si_sm_result == SI_SM_IDLE) {
879                 smi_inc_stat(smi_info, idles);
880
881                 si_sm_result = start_next_msg(smi_info);
882                 if (si_sm_result != SI_SM_IDLE)
883                         goto restart;
884         }
885
886         if ((si_sm_result == SI_SM_IDLE)
887             && (atomic_read(&smi_info->req_events))) {
888                 /*
889                  * We are idle and the upper layer requested that I fetch
890                  * events, so do so.
891                  */
892                 atomic_set(&smi_info->req_events, 0);
893
894                 /*
895                  * Take this opportunity to check the interrupt and
896                  * message enable state for the BMC.  The BMC can be
897                  * asynchronously reset, and may thus get interrupts
898                  * disable and messages disabled.
899                  */
900                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
901                         start_check_enables(smi_info);
902                 } else {
903                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
904                         if (!smi_info->curr_msg)
905                                 goto out;
906
907                         start_getting_events(smi_info);
908                 }
909                 goto restart;
910         }
911  out:
912         return si_sm_result;
913 }
914
915 static void check_start_timer_thread(struct smi_info *smi_info)
916 {
917         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
918                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
919
920                 if (smi_info->thread)
921                         wake_up_process(smi_info->thread);
922
923                 start_next_msg(smi_info);
924                 smi_event_handler(smi_info, 0);
925         }
926 }
927
928 static void sender(void                *send_info,
929                    struct ipmi_smi_msg *msg)
930 {
931         struct smi_info   *smi_info = send_info;
932         enum si_sm_result result;
933         unsigned long     flags;
934
935         debug_timestamp("Enqueue");
936
937         if (smi_info->run_to_completion) {
938                 /*
939                  * If we are running to completion, start it and run
940                  * transactions until everything is clear.
941                  */
942                 smi_info->curr_msg = msg;
943                 smi_info->waiting_msg = NULL;
944
945                 /*
946                  * Run to completion means we are single-threaded, no
947                  * need for locks.
948                  */
949
950                 result = smi_event_handler(smi_info, 0);
951                 while (result != SI_SM_IDLE) {
952                         udelay(SI_SHORT_TIMEOUT_USEC);
953                         result = smi_event_handler(smi_info,
954                                                    SI_SHORT_TIMEOUT_USEC);
955                 }
956                 return;
957         }
958
959         spin_lock_irqsave(&smi_info->si_lock, flags);
960         /*
961          * The following two lines don't need to be under the lock for
962          * the lock's sake, but they do need SMP memory barriers to
963          * avoid getting things out of order.  We are already claiming
964          * the lock, anyway, so just do it under the lock to avoid the
965          * ordering problem.
966          */
967         BUG_ON(smi_info->waiting_msg);
968         smi_info->waiting_msg = msg;
969         check_start_timer_thread(smi_info);
970         spin_unlock_irqrestore(&smi_info->si_lock, flags);
971 }
972
973 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
974 {
975         struct smi_info   *smi_info = send_info;
976         enum si_sm_result result;
977
978         smi_info->run_to_completion = i_run_to_completion;
979         if (i_run_to_completion) {
980                 result = smi_event_handler(smi_info, 0);
981                 while (result != SI_SM_IDLE) {
982                         udelay(SI_SHORT_TIMEOUT_USEC);
983                         result = smi_event_handler(smi_info,
984                                                    SI_SHORT_TIMEOUT_USEC);
985                 }
986         }
987 }
988
989 /*
990  * Use -1 in the nsec value of the busy waiting timespec to tell that
991  * we are spinning in kipmid looking for something and not delaying
992  * between checks
993  */
994 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
995 {
996         ts->tv_nsec = -1;
997 }
998 static inline int ipmi_si_is_busy(struct timespec64 *ts)
999 {
1000         return ts->tv_nsec != -1;
1001 }
1002
1003 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1004                                         const struct smi_info *smi_info,
1005                                         struct timespec64 *busy_until)
1006 {
1007         unsigned int max_busy_us = 0;
1008
1009         if (smi_info->intf_num < num_max_busy_us)
1010                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1011         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1012                 ipmi_si_set_not_busy(busy_until);
1013         else if (!ipmi_si_is_busy(busy_until)) {
1014                 getnstimeofday64(busy_until);
1015                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1016         } else {
1017                 struct timespec64 now;
1018
1019                 getnstimeofday64(&now);
1020                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1021                         ipmi_si_set_not_busy(busy_until);
1022                         return 0;
1023                 }
1024         }
1025         return 1;
1026 }
1027
1028
1029 /*
1030  * A busy-waiting loop for speeding up IPMI operation.
1031  *
1032  * Lousy hardware makes this hard.  This is only enabled for systems
1033  * that are not BT and do not have interrupts.  It starts spinning
1034  * when an operation is complete or until max_busy tells it to stop
1035  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1036  * Documentation/IPMI.txt for details.
1037  */
1038 static int ipmi_thread(void *data)
1039 {
1040         struct smi_info *smi_info = data;
1041         unsigned long flags;
1042         enum si_sm_result smi_result;
1043         struct timespec64 busy_until;
1044
1045         ipmi_si_set_not_busy(&busy_until);
1046         set_user_nice(current, MAX_NICE);
1047         while (!kthread_should_stop()) {
1048                 int busy_wait;
1049
1050                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1051                 smi_result = smi_event_handler(smi_info, 0);
1052
1053                 /*
1054                  * If the driver is doing something, there is a possible
1055                  * race with the timer.  If the timer handler see idle,
1056                  * and the thread here sees something else, the timer
1057                  * handler won't restart the timer even though it is
1058                  * required.  So start it here if necessary.
1059                  */
1060                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1061                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1062
1063                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1064                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1065                                                   &busy_until);
1066                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1067                         ; /* do nothing */
1068                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1069                         schedule();
1070                 else if (smi_result == SI_SM_IDLE) {
1071                         if (atomic_read(&smi_info->need_watch)) {
1072                                 schedule_timeout_interruptible(100);
1073                         } else {
1074                                 /* Wait to be woken up when we are needed. */
1075                                 __set_current_state(TASK_INTERRUPTIBLE);
1076                                 schedule();
1077                         }
1078                 } else
1079                         schedule_timeout_interruptible(1);
1080         }
1081         return 0;
1082 }
1083
1084
1085 static void poll(void *send_info)
1086 {
1087         struct smi_info *smi_info = send_info;
1088         unsigned long flags = 0;
1089         bool run_to_completion = smi_info->run_to_completion;
1090
1091         /*
1092          * Make sure there is some delay in the poll loop so we can
1093          * drive time forward and timeout things.
1094          */
1095         udelay(10);
1096         if (!run_to_completion)
1097                 spin_lock_irqsave(&smi_info->si_lock, flags);
1098         smi_event_handler(smi_info, 10);
1099         if (!run_to_completion)
1100                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1101 }
1102
1103 static void request_events(void *send_info)
1104 {
1105         struct smi_info *smi_info = send_info;
1106
1107         if (!smi_info->has_event_buffer)
1108                 return;
1109
1110         atomic_set(&smi_info->req_events, 1);
1111 }
1112
1113 static void set_need_watch(void *send_info, bool enable)
1114 {
1115         struct smi_info *smi_info = send_info;
1116         unsigned long flags;
1117
1118         atomic_set(&smi_info->need_watch, enable);
1119         spin_lock_irqsave(&smi_info->si_lock, flags);
1120         check_start_timer_thread(smi_info);
1121         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1122 }
1123
1124 static int initialized;
1125
1126 static void smi_timeout(unsigned long data)
1127 {
1128         struct smi_info   *smi_info = (struct smi_info *) data;
1129         enum si_sm_result smi_result;
1130         unsigned long     flags;
1131         unsigned long     jiffies_now;
1132         long              time_diff;
1133         long              timeout;
1134
1135         spin_lock_irqsave(&(smi_info->si_lock), flags);
1136         debug_timestamp("Timer");
1137
1138         jiffies_now = jiffies;
1139         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1140                      * SI_USEC_PER_JIFFY);
1141         smi_result = smi_event_handler(smi_info, time_diff);
1142
1143         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1144                 /* Running with interrupts, only do long timeouts. */
1145                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1146                 smi_inc_stat(smi_info, long_timeouts);
1147                 goto do_mod_timer;
1148         }
1149
1150         /*
1151          * If the state machine asks for a short delay, then shorten
1152          * the timer timeout.
1153          */
1154         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1155                 smi_inc_stat(smi_info, short_timeouts);
1156                 timeout = jiffies + 1;
1157         } else {
1158                 smi_inc_stat(smi_info, long_timeouts);
1159                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1160         }
1161
1162  do_mod_timer:
1163         if (smi_result != SI_SM_IDLE)
1164                 smi_mod_timer(smi_info, timeout);
1165         else
1166                 smi_info->timer_running = false;
1167         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1168 }
1169
1170 static irqreturn_t si_irq_handler(int irq, void *data)
1171 {
1172         struct smi_info *smi_info = data;
1173         unsigned long   flags;
1174
1175         spin_lock_irqsave(&(smi_info->si_lock), flags);
1176
1177         smi_inc_stat(smi_info, interrupts);
1178
1179         debug_timestamp("Interrupt");
1180
1181         smi_event_handler(smi_info, 0);
1182         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1183         return IRQ_HANDLED;
1184 }
1185
1186 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1187 {
1188         struct smi_info *smi_info = data;
1189         /* We need to clear the IRQ flag for the BT interface. */
1190         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1191                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1192                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1193         return si_irq_handler(irq, data);
1194 }
1195
1196 static int smi_start_processing(void       *send_info,
1197                                 ipmi_smi_t intf)
1198 {
1199         struct smi_info *new_smi = send_info;
1200         int             enable = 0;
1201
1202         new_smi->intf = intf;
1203
1204         /* Try to claim any interrupts. */
1205         if (new_smi->irq_setup)
1206                 new_smi->irq_setup(new_smi);
1207
1208         /* Set up the timer that drives the interface. */
1209         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1210         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1211
1212         /*
1213          * Check if the user forcefully enabled the daemon.
1214          */
1215         if (new_smi->intf_num < num_force_kipmid)
1216                 enable = force_kipmid[new_smi->intf_num];
1217         /*
1218          * The BT interface is efficient enough to not need a thread,
1219          * and there is no need for a thread if we have interrupts.
1220          */
1221         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1222                 enable = 1;
1223
1224         if (enable) {
1225                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1226                                               "kipmi%d", new_smi->intf_num);
1227                 if (IS_ERR(new_smi->thread)) {
1228                         dev_notice(new_smi->dev, "Could not start"
1229                                    " kernel thread due to error %ld, only using"
1230                                    " timers to drive the interface\n",
1231                                    PTR_ERR(new_smi->thread));
1232                         new_smi->thread = NULL;
1233                 }
1234         }
1235
1236         return 0;
1237 }
1238
1239 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1240 {
1241         struct smi_info *smi = send_info;
1242
1243         data->addr_src = smi->addr_source;
1244         data->dev = smi->dev;
1245         data->addr_info = smi->addr_info;
1246         get_device(smi->dev);
1247
1248         return 0;
1249 }
1250
1251 static void set_maintenance_mode(void *send_info, bool enable)
1252 {
1253         struct smi_info   *smi_info = send_info;
1254
1255         if (!enable)
1256                 atomic_set(&smi_info->req_events, 0);
1257 }
1258
1259 static struct ipmi_smi_handlers handlers = {
1260         .owner                  = THIS_MODULE,
1261         .start_processing       = smi_start_processing,
1262         .get_smi_info           = get_smi_info,
1263         .sender                 = sender,
1264         .request_events         = request_events,
1265         .set_need_watch         = set_need_watch,
1266         .set_maintenance_mode   = set_maintenance_mode,
1267         .set_run_to_completion  = set_run_to_completion,
1268         .poll                   = poll,
1269 };
1270
1271 /*
1272  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1273  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1274  */
1275
1276 static LIST_HEAD(smi_infos);
1277 static DEFINE_MUTEX(smi_infos_lock);
1278 static int smi_num; /* Used to sequence the SMIs */
1279
1280 #define DEFAULT_REGSPACING      1
1281 #define DEFAULT_REGSIZE         1
1282
1283 #ifdef CONFIG_ACPI
1284 static bool          si_tryacpi = 1;
1285 #endif
1286 #ifdef CONFIG_DMI
1287 static bool          si_trydmi = 1;
1288 #endif
1289 static bool          si_tryplatform = 1;
1290 #ifdef CONFIG_PCI
1291 static bool          si_trypci = 1;
1292 #endif
1293 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1294 static char          *si_type[SI_MAX_PARMS];
1295 #define MAX_SI_TYPE_STR 30
1296 static char          si_type_str[MAX_SI_TYPE_STR];
1297 static unsigned long addrs[SI_MAX_PARMS];
1298 static unsigned int num_addrs;
1299 static unsigned int  ports[SI_MAX_PARMS];
1300 static unsigned int num_ports;
1301 static int           irqs[SI_MAX_PARMS];
1302 static unsigned int num_irqs;
1303 static int           regspacings[SI_MAX_PARMS];
1304 static unsigned int num_regspacings;
1305 static int           regsizes[SI_MAX_PARMS];
1306 static unsigned int num_regsizes;
1307 static int           regshifts[SI_MAX_PARMS];
1308 static unsigned int num_regshifts;
1309 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1310 static unsigned int num_slave_addrs;
1311
1312 #define IPMI_IO_ADDR_SPACE  0
1313 #define IPMI_MEM_ADDR_SPACE 1
1314 static char *addr_space_to_str[] = { "i/o", "mem" };
1315
1316 static int hotmod_handler(const char *val, struct kernel_param *kp);
1317
1318 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1319 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1320                  " Documentation/IPMI.txt in the kernel sources for the"
1321                  " gory details.");
1322
1323 #ifdef CONFIG_ACPI
1324 module_param_named(tryacpi, si_tryacpi, bool, 0);
1325 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1326                  " default scan of the interfaces identified via ACPI");
1327 #endif
1328 #ifdef CONFIG_DMI
1329 module_param_named(trydmi, si_trydmi, bool, 0);
1330 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1331                  " default scan of the interfaces identified via DMI");
1332 #endif
1333 module_param_named(tryplatform, si_tryplatform, bool, 0);
1334 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1335                  " default scan of the interfaces identified via platform"
1336                  " interfaces like openfirmware");
1337 #ifdef CONFIG_PCI
1338 module_param_named(trypci, si_trypci, bool, 0);
1339 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1340                  " default scan of the interfaces identified via pci");
1341 #endif
1342 module_param_named(trydefaults, si_trydefaults, bool, 0);
1343 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1344                  " default scan of the KCS and SMIC interface at the standard"
1345                  " address");
1346 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1347 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1348                  " interface separated by commas.  The types are 'kcs',"
1349                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1350                  " the first interface to kcs and the second to bt");
1351 module_param_array(addrs, ulong, &num_addrs, 0);
1352 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1353                  " addresses separated by commas.  Only use if an interface"
1354                  " is in memory.  Otherwise, set it to zero or leave"
1355                  " it blank.");
1356 module_param_array(ports, uint, &num_ports, 0);
1357 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1358                  " addresses separated by commas.  Only use if an interface"
1359                  " is a port.  Otherwise, set it to zero or leave"
1360                  " it blank.");
1361 module_param_array(irqs, int, &num_irqs, 0);
1362 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1363                  " addresses separated by commas.  Only use if an interface"
1364                  " has an interrupt.  Otherwise, set it to zero or leave"
1365                  " it blank.");
1366 module_param_array(regspacings, int, &num_regspacings, 0);
1367 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1368                  " and each successive register used by the interface.  For"
1369                  " instance, if the start address is 0xca2 and the spacing"
1370                  " is 2, then the second address is at 0xca4.  Defaults"
1371                  " to 1.");
1372 module_param_array(regsizes, int, &num_regsizes, 0);
1373 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1374                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1375                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1376                  " the 8-bit IPMI register has to be read from a larger"
1377                  " register.");
1378 module_param_array(regshifts, int, &num_regshifts, 0);
1379 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1380                  " IPMI register, in bits.  For instance, if the data"
1381                  " is read from a 32-bit word and the IPMI data is in"
1382                  " bit 8-15, then the shift would be 8");
1383 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1384 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1385                  " the controller.  Normally this is 0x20, but can be"
1386                  " overridden by this parm.  This is an array indexed"
1387                  " by interface number.");
1388 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1389 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1390                  " disabled(0).  Normally the IPMI driver auto-detects"
1391                  " this, but the value may be overridden by this parm.");
1392 module_param(unload_when_empty, bool, 0);
1393 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1394                  " specified or found, default is 1.  Setting to 0"
1395                  " is useful for hot add of devices using hotmod.");
1396 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1397 MODULE_PARM_DESC(kipmid_max_busy_us,
1398                  "Max time (in microseconds) to busy-wait for IPMI data before"
1399                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1400                  " if kipmid is using up a lot of CPU time.");
1401
1402
1403 static void std_irq_cleanup(struct smi_info *info)
1404 {
1405         if (info->si_type == SI_BT)
1406                 /* Disable the interrupt in the BT interface. */
1407                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1408         free_irq(info->irq, info);
1409 }
1410
1411 static int std_irq_setup(struct smi_info *info)
1412 {
1413         int rv;
1414
1415         if (!info->irq)
1416                 return 0;
1417
1418         if (info->si_type == SI_BT) {
1419                 rv = request_irq(info->irq,
1420                                  si_bt_irq_handler,
1421                                  IRQF_SHARED,
1422                                  DEVICE_NAME,
1423                                  info);
1424                 if (!rv)
1425                         /* Enable the interrupt in the BT interface. */
1426                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1427                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1428         } else
1429                 rv = request_irq(info->irq,
1430                                  si_irq_handler,
1431                                  IRQF_SHARED,
1432                                  DEVICE_NAME,
1433                                  info);
1434         if (rv) {
1435                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1436                          " running polled\n",
1437                          DEVICE_NAME, info->irq);
1438                 info->irq = 0;
1439         } else {
1440                 info->irq_cleanup = std_irq_cleanup;
1441                 dev_info(info->dev, "Using irq %d\n", info->irq);
1442         }
1443
1444         return rv;
1445 }
1446
1447 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1448 {
1449         unsigned int addr = io->addr_data;
1450
1451         return inb(addr + (offset * io->regspacing));
1452 }
1453
1454 static void port_outb(struct si_sm_io *io, unsigned int offset,
1455                       unsigned char b)
1456 {
1457         unsigned int addr = io->addr_data;
1458
1459         outb(b, addr + (offset * io->regspacing));
1460 }
1461
1462 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1463 {
1464         unsigned int addr = io->addr_data;
1465
1466         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1467 }
1468
1469 static void port_outw(struct si_sm_io *io, unsigned int offset,
1470                       unsigned char b)
1471 {
1472         unsigned int addr = io->addr_data;
1473
1474         outw(b << io->regshift, addr + (offset * io->regspacing));
1475 }
1476
1477 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1478 {
1479         unsigned int addr = io->addr_data;
1480
1481         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1482 }
1483
1484 static void port_outl(struct si_sm_io *io, unsigned int offset,
1485                       unsigned char b)
1486 {
1487         unsigned int addr = io->addr_data;
1488
1489         outl(b << io->regshift, addr+(offset * io->regspacing));
1490 }
1491
1492 static void port_cleanup(struct smi_info *info)
1493 {
1494         unsigned int addr = info->io.addr_data;
1495         int          idx;
1496
1497         if (addr) {
1498                 for (idx = 0; idx < info->io_size; idx++)
1499                         release_region(addr + idx * info->io.regspacing,
1500                                        info->io.regsize);
1501         }
1502 }
1503
1504 static int port_setup(struct smi_info *info)
1505 {
1506         unsigned int addr = info->io.addr_data;
1507         int          idx;
1508
1509         if (!addr)
1510                 return -ENODEV;
1511
1512         info->io_cleanup = port_cleanup;
1513
1514         /*
1515          * Figure out the actual inb/inw/inl/etc routine to use based
1516          * upon the register size.
1517          */
1518         switch (info->io.regsize) {
1519         case 1:
1520                 info->io.inputb = port_inb;
1521                 info->io.outputb = port_outb;
1522                 break;
1523         case 2:
1524                 info->io.inputb = port_inw;
1525                 info->io.outputb = port_outw;
1526                 break;
1527         case 4:
1528                 info->io.inputb = port_inl;
1529                 info->io.outputb = port_outl;
1530                 break;
1531         default:
1532                 dev_warn(info->dev, "Invalid register size: %d\n",
1533                          info->io.regsize);
1534                 return -EINVAL;
1535         }
1536
1537         /*
1538          * Some BIOSes reserve disjoint I/O regions in their ACPI
1539          * tables.  This causes problems when trying to register the
1540          * entire I/O region.  Therefore we must register each I/O
1541          * port separately.
1542          */
1543         for (idx = 0; idx < info->io_size; idx++) {
1544                 if (request_region(addr + idx * info->io.regspacing,
1545                                    info->io.regsize, DEVICE_NAME) == NULL) {
1546                         /* Undo allocations */
1547                         while (idx--) {
1548                                 release_region(addr + idx * info->io.regspacing,
1549                                                info->io.regsize);
1550                         }
1551                         return -EIO;
1552                 }
1553         }
1554         return 0;
1555 }
1556
1557 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1558 {
1559         return readb((io->addr)+(offset * io->regspacing));
1560 }
1561
1562 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1563                      unsigned char b)
1564 {
1565         writeb(b, (io->addr)+(offset * io->regspacing));
1566 }
1567
1568 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1569 {
1570         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1571                 & 0xff;
1572 }
1573
1574 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1575                      unsigned char b)
1576 {
1577         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1578 }
1579
1580 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1581 {
1582         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1583                 & 0xff;
1584 }
1585
1586 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1587                      unsigned char b)
1588 {
1589         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1590 }
1591
1592 #ifdef readq
1593 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1594 {
1595         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1596                 & 0xff;
1597 }
1598
1599 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1600                      unsigned char b)
1601 {
1602         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1603 }
1604 #endif
1605
1606 static void mem_cleanup(struct smi_info *info)
1607 {
1608         unsigned long addr = info->io.addr_data;
1609         int           mapsize;
1610
1611         if (info->io.addr) {
1612                 iounmap(info->io.addr);
1613
1614                 mapsize = ((info->io_size * info->io.regspacing)
1615                            - (info->io.regspacing - info->io.regsize));
1616
1617                 release_mem_region(addr, mapsize);
1618         }
1619 }
1620
1621 static int mem_setup(struct smi_info *info)
1622 {
1623         unsigned long addr = info->io.addr_data;
1624         int           mapsize;
1625
1626         if (!addr)
1627                 return -ENODEV;
1628
1629         info->io_cleanup = mem_cleanup;
1630
1631         /*
1632          * Figure out the actual readb/readw/readl/etc routine to use based
1633          * upon the register size.
1634          */
1635         switch (info->io.regsize) {
1636         case 1:
1637                 info->io.inputb = intf_mem_inb;
1638                 info->io.outputb = intf_mem_outb;
1639                 break;
1640         case 2:
1641                 info->io.inputb = intf_mem_inw;
1642                 info->io.outputb = intf_mem_outw;
1643                 break;
1644         case 4:
1645                 info->io.inputb = intf_mem_inl;
1646                 info->io.outputb = intf_mem_outl;
1647                 break;
1648 #ifdef readq
1649         case 8:
1650                 info->io.inputb = mem_inq;
1651                 info->io.outputb = mem_outq;
1652                 break;
1653 #endif
1654         default:
1655                 dev_warn(info->dev, "Invalid register size: %d\n",
1656                          info->io.regsize);
1657                 return -EINVAL;
1658         }
1659
1660         /*
1661          * Calculate the total amount of memory to claim.  This is an
1662          * unusual looking calculation, but it avoids claiming any
1663          * more memory than it has to.  It will claim everything
1664          * between the first address to the end of the last full
1665          * register.
1666          */
1667         mapsize = ((info->io_size * info->io.regspacing)
1668                    - (info->io.regspacing - info->io.regsize));
1669
1670         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1671                 return -EIO;
1672
1673         info->io.addr = ioremap(addr, mapsize);
1674         if (info->io.addr == NULL) {
1675                 release_mem_region(addr, mapsize);
1676                 return -EIO;
1677         }
1678         return 0;
1679 }
1680
1681 /*
1682  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1683  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1684  * Options are:
1685  *   rsp=<regspacing>
1686  *   rsi=<regsize>
1687  *   rsh=<regshift>
1688  *   irq=<irq>
1689  *   ipmb=<ipmb addr>
1690  */
1691 enum hotmod_op { HM_ADD, HM_REMOVE };
1692 struct hotmod_vals {
1693         char *name;
1694         int  val;
1695 };
1696 static struct hotmod_vals hotmod_ops[] = {
1697         { "add",        HM_ADD },
1698         { "remove",     HM_REMOVE },
1699         { NULL }
1700 };
1701 static struct hotmod_vals hotmod_si[] = {
1702         { "kcs",        SI_KCS },
1703         { "smic",       SI_SMIC },
1704         { "bt",         SI_BT },
1705         { NULL }
1706 };
1707 static struct hotmod_vals hotmod_as[] = {
1708         { "mem",        IPMI_MEM_ADDR_SPACE },
1709         { "i/o",        IPMI_IO_ADDR_SPACE },
1710         { NULL }
1711 };
1712
1713 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1714 {
1715         char *s;
1716         int  i;
1717
1718         s = strchr(*curr, ',');
1719         if (!s) {
1720                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1721                 return -EINVAL;
1722         }
1723         *s = '\0';
1724         s++;
1725         for (i = 0; v[i].name; i++) {
1726                 if (strcmp(*curr, v[i].name) == 0) {
1727                         *val = v[i].val;
1728                         *curr = s;
1729                         return 0;
1730                 }
1731         }
1732
1733         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1734         return -EINVAL;
1735 }
1736
1737 static int check_hotmod_int_op(const char *curr, const char *option,
1738                                const char *name, int *val)
1739 {
1740         char *n;
1741
1742         if (strcmp(curr, name) == 0) {
1743                 if (!option) {
1744                         printk(KERN_WARNING PFX
1745                                "No option given for '%s'\n",
1746                                curr);
1747                         return -EINVAL;
1748                 }
1749                 *val = simple_strtoul(option, &n, 0);
1750                 if ((*n != '\0') || (*option == '\0')) {
1751                         printk(KERN_WARNING PFX
1752                                "Bad option given for '%s'\n",
1753                                curr);
1754                         return -EINVAL;
1755                 }
1756                 return 1;
1757         }
1758         return 0;
1759 }
1760
1761 static struct smi_info *smi_info_alloc(void)
1762 {
1763         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1764
1765         if (info)
1766                 spin_lock_init(&info->si_lock);
1767         return info;
1768 }
1769
1770 static int hotmod_handler(const char *val, struct kernel_param *kp)
1771 {
1772         char *str = kstrdup(val, GFP_KERNEL);
1773         int  rv;
1774         char *next, *curr, *s, *n, *o;
1775         enum hotmod_op op;
1776         enum si_type si_type;
1777         int  addr_space;
1778         unsigned long addr;
1779         int regspacing;
1780         int regsize;
1781         int regshift;
1782         int irq;
1783         int ipmb;
1784         int ival;
1785         int len;
1786         struct smi_info *info;
1787
1788         if (!str)
1789                 return -ENOMEM;
1790
1791         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1792         len = strlen(str);
1793         ival = len - 1;
1794         while ((ival >= 0) && isspace(str[ival])) {
1795                 str[ival] = '\0';
1796                 ival--;
1797         }
1798
1799         for (curr = str; curr; curr = next) {
1800                 regspacing = 1;
1801                 regsize = 1;
1802                 regshift = 0;
1803                 irq = 0;
1804                 ipmb = 0; /* Choose the default if not specified */
1805
1806                 next = strchr(curr, ':');
1807                 if (next) {
1808                         *next = '\0';
1809                         next++;
1810                 }
1811
1812                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1813                 if (rv)
1814                         break;
1815                 op = ival;
1816
1817                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1818                 if (rv)
1819                         break;
1820                 si_type = ival;
1821
1822                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1823                 if (rv)
1824                         break;
1825
1826                 s = strchr(curr, ',');
1827                 if (s) {
1828                         *s = '\0';
1829                         s++;
1830                 }
1831                 addr = simple_strtoul(curr, &n, 0);
1832                 if ((*n != '\0') || (*curr == '\0')) {
1833                         printk(KERN_WARNING PFX "Invalid hotmod address"
1834                                " '%s'\n", curr);
1835                         break;
1836                 }
1837
1838                 while (s) {
1839                         curr = s;
1840                         s = strchr(curr, ',');
1841                         if (s) {
1842                                 *s = '\0';
1843                                 s++;
1844                         }
1845                         o = strchr(curr, '=');
1846                         if (o) {
1847                                 *o = '\0';
1848                                 o++;
1849                         }
1850                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1851                         if (rv < 0)
1852                                 goto out;
1853                         else if (rv)
1854                                 continue;
1855                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1856                         if (rv < 0)
1857                                 goto out;
1858                         else if (rv)
1859                                 continue;
1860                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1861                         if (rv < 0)
1862                                 goto out;
1863                         else if (rv)
1864                                 continue;
1865                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1866                         if (rv < 0)
1867                                 goto out;
1868                         else if (rv)
1869                                 continue;
1870                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1871                         if (rv < 0)
1872                                 goto out;
1873                         else if (rv)
1874                                 continue;
1875
1876                         rv = -EINVAL;
1877                         printk(KERN_WARNING PFX
1878                                "Invalid hotmod option '%s'\n",
1879                                curr);
1880                         goto out;
1881                 }
1882
1883                 if (op == HM_ADD) {
1884                         info = smi_info_alloc();
1885                         if (!info) {
1886                                 rv = -ENOMEM;
1887                                 goto out;
1888                         }
1889
1890                         info->addr_source = SI_HOTMOD;
1891                         info->si_type = si_type;
1892                         info->io.addr_data = addr;
1893                         info->io.addr_type = addr_space;
1894                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1895                                 info->io_setup = mem_setup;
1896                         else
1897                                 info->io_setup = port_setup;
1898
1899                         info->io.addr = NULL;
1900                         info->io.regspacing = regspacing;
1901                         if (!info->io.regspacing)
1902                                 info->io.regspacing = DEFAULT_REGSPACING;
1903                         info->io.regsize = regsize;
1904                         if (!info->io.regsize)
1905                                 info->io.regsize = DEFAULT_REGSPACING;
1906                         info->io.regshift = regshift;
1907                         info->irq = irq;
1908                         if (info->irq)
1909                                 info->irq_setup = std_irq_setup;
1910                         info->slave_addr = ipmb;
1911
1912                         rv = add_smi(info);
1913                         if (rv) {
1914                                 kfree(info);
1915                                 goto out;
1916                         }
1917                         rv = try_smi_init(info);
1918                         if (rv) {
1919                                 cleanup_one_si(info);
1920                                 goto out;
1921                         }
1922                 } else {
1923                         /* remove */
1924                         struct smi_info *e, *tmp_e;
1925
1926                         mutex_lock(&smi_infos_lock);
1927                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1928                                 if (e->io.addr_type != addr_space)
1929                                         continue;
1930                                 if (e->si_type != si_type)
1931                                         continue;
1932                                 if (e->io.addr_data == addr)
1933                                         cleanup_one_si(e);
1934                         }
1935                         mutex_unlock(&smi_infos_lock);
1936                 }
1937         }
1938         rv = len;
1939  out:
1940         kfree(str);
1941         return rv;
1942 }
1943
1944 static int hardcode_find_bmc(void)
1945 {
1946         int ret = -ENODEV;
1947         int             i;
1948         struct smi_info *info;
1949
1950         for (i = 0; i < SI_MAX_PARMS; i++) {
1951                 if (!ports[i] && !addrs[i])
1952                         continue;
1953
1954                 info = smi_info_alloc();
1955                 if (!info)
1956                         return -ENOMEM;
1957
1958                 info->addr_source = SI_HARDCODED;
1959                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1960
1961                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1962                         info->si_type = SI_KCS;
1963                 } else if (strcmp(si_type[i], "smic") == 0) {
1964                         info->si_type = SI_SMIC;
1965                 } else if (strcmp(si_type[i], "bt") == 0) {
1966                         info->si_type = SI_BT;
1967                 } else {
1968                         printk(KERN_WARNING PFX "Interface type specified "
1969                                "for interface %d, was invalid: %s\n",
1970                                i, si_type[i]);
1971                         kfree(info);
1972                         continue;
1973                 }
1974
1975                 if (ports[i]) {
1976                         /* An I/O port */
1977                         info->io_setup = port_setup;
1978                         info->io.addr_data = ports[i];
1979                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1980                 } else if (addrs[i]) {
1981                         /* A memory port */
1982                         info->io_setup = mem_setup;
1983                         info->io.addr_data = addrs[i];
1984                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1985                 } else {
1986                         printk(KERN_WARNING PFX "Interface type specified "
1987                                "for interface %d, but port and address were "
1988                                "not set or set to zero.\n", i);
1989                         kfree(info);
1990                         continue;
1991                 }
1992
1993                 info->io.addr = NULL;
1994                 info->io.regspacing = regspacings[i];
1995                 if (!info->io.regspacing)
1996                         info->io.regspacing = DEFAULT_REGSPACING;
1997                 info->io.regsize = regsizes[i];
1998                 if (!info->io.regsize)
1999                         info->io.regsize = DEFAULT_REGSPACING;
2000                 info->io.regshift = regshifts[i];
2001                 info->irq = irqs[i];
2002                 if (info->irq)
2003                         info->irq_setup = std_irq_setup;
2004                 info->slave_addr = slave_addrs[i];
2005
2006                 if (!add_smi(info)) {
2007                         if (try_smi_init(info))
2008                                 cleanup_one_si(info);
2009                         ret = 0;
2010                 } else {
2011                         kfree(info);
2012                 }
2013         }
2014         return ret;
2015 }
2016
2017 #ifdef CONFIG_ACPI
2018
2019 #include <linux/acpi.h>
2020
2021 /*
2022  * Once we get an ACPI failure, we don't try any more, because we go
2023  * through the tables sequentially.  Once we don't find a table, there
2024  * are no more.
2025  */
2026 static int acpi_failure;
2027
2028 /* For GPE-type interrupts. */
2029 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2030         u32 gpe_number, void *context)
2031 {
2032         struct smi_info *smi_info = context;
2033         unsigned long   flags;
2034
2035         spin_lock_irqsave(&(smi_info->si_lock), flags);
2036
2037         smi_inc_stat(smi_info, interrupts);
2038
2039         debug_timestamp("ACPI_GPE");
2040
2041         smi_event_handler(smi_info, 0);
2042         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2043
2044         return ACPI_INTERRUPT_HANDLED;
2045 }
2046
2047 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2048 {
2049         if (!info->irq)
2050                 return;
2051
2052         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2053 }
2054
2055 static int acpi_gpe_irq_setup(struct smi_info *info)
2056 {
2057         acpi_status status;
2058
2059         if (!info->irq)
2060                 return 0;
2061
2062         status = acpi_install_gpe_handler(NULL,
2063                                           info->irq,
2064                                           ACPI_GPE_LEVEL_TRIGGERED,
2065                                           &ipmi_acpi_gpe,
2066                                           info);
2067         if (status != AE_OK) {
2068                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2069                          " running polled\n", DEVICE_NAME, info->irq);
2070                 info->irq = 0;
2071                 return -EINVAL;
2072         } else {
2073                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2074                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2075                 return 0;
2076         }
2077 }
2078
2079 /*
2080  * Defined at
2081  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2082  */
2083 struct SPMITable {
2084         s8      Signature[4];
2085         u32     Length;
2086         u8      Revision;
2087         u8      Checksum;
2088         s8      OEMID[6];
2089         s8      OEMTableID[8];
2090         s8      OEMRevision[4];
2091         s8      CreatorID[4];
2092         s8      CreatorRevision[4];
2093         u8      InterfaceType;
2094         u8      IPMIlegacy;
2095         s16     SpecificationRevision;
2096
2097         /*
2098          * Bit 0 - SCI interrupt supported
2099          * Bit 1 - I/O APIC/SAPIC
2100          */
2101         u8      InterruptType;
2102
2103         /*
2104          * If bit 0 of InterruptType is set, then this is the SCI
2105          * interrupt in the GPEx_STS register.
2106          */
2107         u8      GPE;
2108
2109         s16     Reserved;
2110
2111         /*
2112          * If bit 1 of InterruptType is set, then this is the I/O
2113          * APIC/SAPIC interrupt.
2114          */
2115         u32     GlobalSystemInterrupt;
2116
2117         /* The actual register address. */
2118         struct acpi_generic_address addr;
2119
2120         u8      UID[4];
2121
2122         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2123 };
2124
2125 static int try_init_spmi(struct SPMITable *spmi)
2126 {
2127         struct smi_info  *info;
2128         int rv;
2129
2130         if (spmi->IPMIlegacy != 1) {
2131                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2132                 return -ENODEV;
2133         }
2134
2135         info = smi_info_alloc();
2136         if (!info) {
2137                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2138                 return -ENOMEM;
2139         }
2140
2141         info->addr_source = SI_SPMI;
2142         printk(KERN_INFO PFX "probing via SPMI\n");
2143
2144         /* Figure out the interface type. */
2145         switch (spmi->InterfaceType) {
2146         case 1: /* KCS */
2147                 info->si_type = SI_KCS;
2148                 break;
2149         case 2: /* SMIC */
2150                 info->si_type = SI_SMIC;
2151                 break;
2152         case 3: /* BT */
2153                 info->si_type = SI_BT;
2154                 break;
2155         case 4: /* SSIF, just ignore */
2156                 kfree(info);
2157                 return -EIO;
2158         default:
2159                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2160                        spmi->InterfaceType);
2161                 kfree(info);
2162                 return -EIO;
2163         }
2164
2165         if (spmi->InterruptType & 1) {
2166                 /* We've got a GPE interrupt. */
2167                 info->irq = spmi->GPE;
2168                 info->irq_setup = acpi_gpe_irq_setup;
2169         } else if (spmi->InterruptType & 2) {
2170                 /* We've got an APIC/SAPIC interrupt. */
2171                 info->irq = spmi->GlobalSystemInterrupt;
2172                 info->irq_setup = std_irq_setup;
2173         } else {
2174                 /* Use the default interrupt setting. */
2175                 info->irq = 0;
2176                 info->irq_setup = NULL;
2177         }
2178
2179         if (spmi->addr.bit_width) {
2180                 /* A (hopefully) properly formed register bit width. */
2181                 info->io.regspacing = spmi->addr.bit_width / 8;
2182         } else {
2183                 info->io.regspacing = DEFAULT_REGSPACING;
2184         }
2185         info->io.regsize = info->io.regspacing;
2186         info->io.regshift = spmi->addr.bit_offset;
2187
2188         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2189                 info->io_setup = mem_setup;
2190                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2191         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2192                 info->io_setup = port_setup;
2193                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2194         } else {
2195                 kfree(info);
2196                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2197                 return -EIO;
2198         }
2199         info->io.addr_data = spmi->addr.address;
2200
2201         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2202                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2203                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2204                  info->irq);
2205
2206         rv = add_smi(info);
2207         if (rv)
2208                 kfree(info);
2209
2210         return rv;
2211 }
2212
2213 static void spmi_find_bmc(void)
2214 {
2215         acpi_status      status;
2216         struct SPMITable *spmi;
2217         int              i;
2218
2219         if (acpi_disabled)
2220                 return;
2221
2222         if (acpi_failure)
2223                 return;
2224
2225         for (i = 0; ; i++) {
2226                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2227                                         (struct acpi_table_header **)&spmi);
2228                 if (status != AE_OK)
2229                         return;
2230
2231                 try_init_spmi(spmi);
2232         }
2233 }
2234
2235 static int ipmi_pnp_probe(struct pnp_dev *dev,
2236                                     const struct pnp_device_id *dev_id)
2237 {
2238         struct acpi_device *acpi_dev;
2239         struct smi_info *info;
2240         struct resource *res, *res_second;
2241         acpi_handle handle;
2242         acpi_status status;
2243         unsigned long long tmp;
2244         int rv;
2245
2246         acpi_dev = pnp_acpi_device(dev);
2247         if (!acpi_dev)
2248                 return -ENODEV;
2249
2250         info = smi_info_alloc();
2251         if (!info)
2252                 return -ENOMEM;
2253
2254         info->addr_source = SI_ACPI;
2255         printk(KERN_INFO PFX "probing via ACPI\n");
2256
2257         handle = acpi_dev->handle;
2258         info->addr_info.acpi_info.acpi_handle = handle;
2259
2260         /* _IFT tells us the interface type: KCS, BT, etc */
2261         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2262         if (ACPI_FAILURE(status))
2263                 goto err_free;
2264
2265         switch (tmp) {
2266         case 1:
2267                 info->si_type = SI_KCS;
2268                 break;
2269         case 2:
2270                 info->si_type = SI_SMIC;
2271                 break;
2272         case 3:
2273                 info->si_type = SI_BT;
2274                 break;
2275         case 4: /* SSIF, just ignore */
2276                 goto err_free;
2277         default:
2278                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2279                 goto err_free;
2280         }
2281
2282         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2283         if (res) {
2284                 info->io_setup = port_setup;
2285                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2286         } else {
2287                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2288                 if (res) {
2289                         info->io_setup = mem_setup;
2290                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2291                 }
2292         }
2293         if (!res) {
2294                 dev_err(&dev->dev, "no I/O or memory address\n");
2295                 goto err_free;
2296         }
2297         info->io.addr_data = res->start;
2298
2299         info->io.regspacing = DEFAULT_REGSPACING;
2300         res_second = pnp_get_resource(dev,
2301                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2302                                         IORESOURCE_IO : IORESOURCE_MEM,
2303                                1);
2304         if (res_second) {
2305                 if (res_second->start > info->io.addr_data)
2306                         info->io.regspacing = res_second->start - info->io.addr_data;
2307         }
2308         info->io.regsize = DEFAULT_REGSPACING;
2309         info->io.regshift = 0;
2310
2311         /* If _GPE exists, use it; otherwise use standard interrupts */
2312         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2313         if (ACPI_SUCCESS(status)) {
2314                 info->irq = tmp;
2315                 info->irq_setup = acpi_gpe_irq_setup;
2316         } else if (pnp_irq_valid(dev, 0)) {
2317                 info->irq = pnp_irq(dev, 0);
2318                 info->irq_setup = std_irq_setup;
2319         }
2320
2321         info->dev = &dev->dev;
2322         pnp_set_drvdata(dev, info);
2323
2324         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2325                  res, info->io.regsize, info->io.regspacing,
2326                  info->irq);
2327
2328         rv = add_smi(info);
2329         if (rv)
2330                 kfree(info);
2331
2332         return rv;
2333
2334 err_free:
2335         kfree(info);
2336         return -EINVAL;
2337 }
2338
2339 static void ipmi_pnp_remove(struct pnp_dev *dev)
2340 {
2341         struct smi_info *info = pnp_get_drvdata(dev);
2342
2343         cleanup_one_si(info);
2344 }
2345
2346 static const struct pnp_device_id pnp_dev_table[] = {
2347         {"IPI0001", 0},
2348         {"", 0},
2349 };
2350
2351 static struct pnp_driver ipmi_pnp_driver = {
2352         .name           = DEVICE_NAME,
2353         .probe          = ipmi_pnp_probe,
2354         .remove         = ipmi_pnp_remove,
2355         .id_table       = pnp_dev_table,
2356 };
2357
2358 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2359 #endif
2360
2361 #ifdef CONFIG_DMI
2362 struct dmi_ipmi_data {
2363         u8              type;
2364         u8              addr_space;
2365         unsigned long   base_addr;
2366         u8              irq;
2367         u8              offset;
2368         u8              slave_addr;
2369 };
2370
2371 static int decode_dmi(const struct dmi_header *dm,
2372                                 struct dmi_ipmi_data *dmi)
2373 {
2374         const u8        *data = (const u8 *)dm;
2375         unsigned long   base_addr;
2376         u8              reg_spacing;
2377         u8              len = dm->length;
2378
2379         dmi->type = data[4];
2380
2381         memcpy(&base_addr, data+8, sizeof(unsigned long));
2382         if (len >= 0x11) {
2383                 if (base_addr & 1) {
2384                         /* I/O */
2385                         base_addr &= 0xFFFE;
2386                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2387                 } else
2388                         /* Memory */
2389                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2390
2391                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2392                    is odd. */
2393                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2394
2395                 dmi->irq = data[0x11];
2396
2397                 /* The top two bits of byte 0x10 hold the register spacing. */
2398                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2399                 switch (reg_spacing) {
2400                 case 0x00: /* Byte boundaries */
2401                     dmi->offset = 1;
2402                     break;
2403                 case 0x01: /* 32-bit boundaries */
2404                     dmi->offset = 4;
2405                     break;
2406                 case 0x02: /* 16-byte boundaries */
2407                     dmi->offset = 16;
2408                     break;
2409                 default:
2410                     /* Some other interface, just ignore it. */
2411                     return -EIO;
2412                 }
2413         } else {
2414                 /* Old DMI spec. */
2415                 /*
2416                  * Note that technically, the lower bit of the base
2417                  * address should be 1 if the address is I/O and 0 if
2418                  * the address is in memory.  So many systems get that
2419                  * wrong (and all that I have seen are I/O) so we just
2420                  * ignore that bit and assume I/O.  Systems that use
2421                  * memory should use the newer spec, anyway.
2422                  */
2423                 dmi->base_addr = base_addr & 0xfffe;
2424                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2425                 dmi->offset = 1;
2426         }
2427
2428         dmi->slave_addr = data[6];
2429
2430         return 0;
2431 }
2432
2433 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2434 {
2435         struct smi_info *info;
2436
2437         info = smi_info_alloc();
2438         if (!info) {
2439                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2440                 return;
2441         }
2442
2443         info->addr_source = SI_SMBIOS;
2444         printk(KERN_INFO PFX "probing via SMBIOS\n");
2445
2446         switch (ipmi_data->type) {
2447         case 0x01: /* KCS */
2448                 info->si_type = SI_KCS;
2449                 break;
2450         case 0x02: /* SMIC */
2451                 info->si_type = SI_SMIC;
2452                 break;
2453         case 0x03: /* BT */
2454                 info->si_type = SI_BT;
2455                 break;
2456         default:
2457                 kfree(info);
2458                 return;
2459         }
2460
2461         switch (ipmi_data->addr_space) {
2462         case IPMI_MEM_ADDR_SPACE:
2463                 info->io_setup = mem_setup;
2464                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2465                 break;
2466
2467         case IPMI_IO_ADDR_SPACE:
2468                 info->io_setup = port_setup;
2469                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2470                 break;
2471
2472         default:
2473                 kfree(info);
2474                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2475                        ipmi_data->addr_space);
2476                 return;
2477         }
2478         info->io.addr_data = ipmi_data->base_addr;
2479
2480         info->io.regspacing = ipmi_data->offset;
2481         if (!info->io.regspacing)
2482                 info->io.regspacing = DEFAULT_REGSPACING;
2483         info->io.regsize = DEFAULT_REGSPACING;
2484         info->io.regshift = 0;
2485
2486         info->slave_addr = ipmi_data->slave_addr;
2487
2488         info->irq = ipmi_data->irq;
2489         if (info->irq)
2490                 info->irq_setup = std_irq_setup;
2491
2492         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2493                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2494                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2495                  info->irq);
2496
2497         if (add_smi(info))
2498                 kfree(info);
2499 }
2500
2501 static void dmi_find_bmc(void)
2502 {
2503         const struct dmi_device *dev = NULL;
2504         struct dmi_ipmi_data data;
2505         int                  rv;
2506
2507         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2508                 memset(&data, 0, sizeof(data));
2509                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2510                                 &data);
2511                 if (!rv)
2512                         try_init_dmi(&data);
2513         }
2514 }
2515 #endif /* CONFIG_DMI */
2516
2517 #ifdef CONFIG_PCI
2518
2519 #define PCI_ERMC_CLASSCODE              0x0C0700
2520 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2521 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2522 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2523 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2524 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2525
2526 #define PCI_HP_VENDOR_ID    0x103C
2527 #define PCI_MMC_DEVICE_ID   0x121A
2528 #define PCI_MMC_ADDR_CW     0x10
2529
2530 static void ipmi_pci_cleanup(struct smi_info *info)
2531 {
2532         struct pci_dev *pdev = info->addr_source_data;
2533
2534         pci_disable_device(pdev);
2535 }
2536
2537 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2538 {
2539         if (info->si_type == SI_KCS) {
2540                 unsigned char   status;
2541                 int             regspacing;
2542
2543                 info->io.regsize = DEFAULT_REGSIZE;
2544                 info->io.regshift = 0;
2545                 info->io_size = 2;
2546                 info->handlers = &kcs_smi_handlers;
2547
2548                 /* detect 1, 4, 16byte spacing */
2549                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2550                         info->io.regspacing = regspacing;
2551                         if (info->io_setup(info)) {
2552                                 dev_err(info->dev,
2553                                         "Could not setup I/O space\n");
2554                                 return DEFAULT_REGSPACING;
2555                         }
2556                         /* write invalid cmd */
2557                         info->io.outputb(&info->io, 1, 0x10);
2558                         /* read status back */
2559                         status = info->io.inputb(&info->io, 1);
2560                         info->io_cleanup(info);
2561                         if (status)
2562                                 return regspacing;
2563                         regspacing *= 4;
2564                 }
2565         }
2566         return DEFAULT_REGSPACING;
2567 }
2568
2569 static int ipmi_pci_probe(struct pci_dev *pdev,
2570                                     const struct pci_device_id *ent)
2571 {
2572         int rv;
2573         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2574         struct smi_info *info;
2575
2576         info = smi_info_alloc();
2577         if (!info)
2578                 return -ENOMEM;
2579
2580         info->addr_source = SI_PCI;
2581         dev_info(&pdev->dev, "probing via PCI");
2582
2583         switch (class_type) {
2584         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2585                 info->si_type = SI_SMIC;
2586                 break;
2587
2588         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2589                 info->si_type = SI_KCS;
2590                 break;
2591
2592         case PCI_ERMC_CLASSCODE_TYPE_BT:
2593                 info->si_type = SI_BT;
2594                 break;
2595
2596         default:
2597                 kfree(info);
2598                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2599                 return -ENOMEM;
2600         }
2601
2602         rv = pci_enable_device(pdev);
2603         if (rv) {
2604                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2605                 kfree(info);
2606                 return rv;
2607         }
2608
2609         info->addr_source_cleanup = ipmi_pci_cleanup;
2610         info->addr_source_data = pdev;
2611
2612         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2613                 info->io_setup = port_setup;
2614                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2615         } else {
2616                 info->io_setup = mem_setup;
2617                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2618         }
2619         info->io.addr_data = pci_resource_start(pdev, 0);
2620
2621         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2622         info->io.regsize = DEFAULT_REGSIZE;
2623         info->io.regshift = 0;
2624
2625         info->irq = pdev->irq;
2626         if (info->irq)
2627                 info->irq_setup = std_irq_setup;
2628
2629         info->dev = &pdev->dev;
2630         pci_set_drvdata(pdev, info);
2631
2632         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2633                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2634                 info->irq);
2635
2636         rv = add_smi(info);
2637         if (rv) {
2638                 kfree(info);
2639                 pci_disable_device(pdev);
2640         }
2641
2642         return rv;
2643 }
2644
2645 static void ipmi_pci_remove(struct pci_dev *pdev)
2646 {
2647         struct smi_info *info = pci_get_drvdata(pdev);
2648         cleanup_one_si(info);
2649         pci_disable_device(pdev);
2650 }
2651
2652 static struct pci_device_id ipmi_pci_devices[] = {
2653         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2654         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2655         { 0, }
2656 };
2657 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2658
2659 static struct pci_driver ipmi_pci_driver = {
2660         .name =         DEVICE_NAME,
2661         .id_table =     ipmi_pci_devices,
2662         .probe =        ipmi_pci_probe,
2663         .remove =       ipmi_pci_remove,
2664 };
2665 #endif /* CONFIG_PCI */
2666
2667 static const struct of_device_id ipmi_match[];
2668 static int ipmi_probe(struct platform_device *dev)
2669 {
2670 #ifdef CONFIG_OF
2671         const struct of_device_id *match;
2672         struct smi_info *info;
2673         struct resource resource;
2674         const __be32 *regsize, *regspacing, *regshift;
2675         struct device_node *np = dev->dev.of_node;
2676         int ret;
2677         int proplen;
2678
2679         dev_info(&dev->dev, "probing via device tree\n");
2680
2681         match = of_match_device(ipmi_match, &dev->dev);
2682         if (!match)
2683                 return -EINVAL;
2684
2685         if (!of_device_is_available(np))
2686                 return -EINVAL;
2687
2688         ret = of_address_to_resource(np, 0, &resource);
2689         if (ret) {
2690                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2691                 return ret;
2692         }
2693
2694         regsize = of_get_property(np, "reg-size", &proplen);
2695         if (regsize && proplen != 4) {
2696                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2697                 return -EINVAL;
2698         }
2699
2700         regspacing = of_get_property(np, "reg-spacing", &proplen);
2701         if (regspacing && proplen != 4) {
2702                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2703                 return -EINVAL;
2704         }
2705
2706         regshift = of_get_property(np, "reg-shift", &proplen);
2707         if (regshift && proplen != 4) {
2708                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2709                 return -EINVAL;
2710         }
2711
2712         info = smi_info_alloc();
2713
2714         if (!info) {
2715                 dev_err(&dev->dev,
2716                         "could not allocate memory for OF probe\n");
2717                 return -ENOMEM;
2718         }
2719
2720         info->si_type           = (enum si_type) match->data;
2721         info->addr_source       = SI_DEVICETREE;
2722         info->irq_setup         = std_irq_setup;
2723
2724         if (resource.flags & IORESOURCE_IO) {
2725                 info->io_setup          = port_setup;
2726                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2727         } else {
2728                 info->io_setup          = mem_setup;
2729                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2730         }
2731
2732         info->io.addr_data      = resource.start;
2733
2734         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2735         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2736         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2737
2738         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2739         info->dev               = &dev->dev;
2740
2741         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2742                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2743                 info->irq);
2744
2745         dev_set_drvdata(&dev->dev, info);
2746
2747         ret = add_smi(info);
2748         if (ret) {
2749                 kfree(info);
2750                 return ret;
2751         }
2752 #endif
2753         return 0;
2754 }
2755
2756 static int ipmi_remove(struct platform_device *dev)
2757 {
2758 #ifdef CONFIG_OF
2759         cleanup_one_si(dev_get_drvdata(&dev->dev));
2760 #endif
2761         return 0;
2762 }
2763
2764 static const struct of_device_id ipmi_match[] =
2765 {
2766         { .type = "ipmi", .compatible = "ipmi-kcs",
2767           .data = (void *)(unsigned long) SI_KCS },
2768         { .type = "ipmi", .compatible = "ipmi-smic",
2769           .data = (void *)(unsigned long) SI_SMIC },
2770         { .type = "ipmi", .compatible = "ipmi-bt",
2771           .data = (void *)(unsigned long) SI_BT },
2772         {},
2773 };
2774
2775 static struct platform_driver ipmi_driver = {
2776         .driver = {
2777                 .name = DEVICE_NAME,
2778                 .of_match_table = ipmi_match,
2779         },
2780         .probe          = ipmi_probe,
2781         .remove         = ipmi_remove,
2782 };
2783
2784 #ifdef CONFIG_PARISC
2785 static int ipmi_parisc_probe(struct parisc_device *dev)
2786 {
2787         struct smi_info *info;
2788         int rv;
2789
2790         info = smi_info_alloc();
2791
2792         if (!info) {
2793                 dev_err(&dev->dev,
2794                         "could not allocate memory for PARISC probe\n");
2795                 return -ENOMEM;
2796         }
2797
2798         info->si_type           = SI_KCS;
2799         info->addr_source       = SI_DEVICETREE;
2800         info->io_setup          = mem_setup;
2801         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2802         info->io.addr_data      = dev->hpa.start;
2803         info->io.regsize        = 1;
2804         info->io.regspacing     = 1;
2805         info->io.regshift       = 0;
2806         info->irq               = 0; /* no interrupt */
2807         info->irq_setup         = NULL;
2808         info->dev               = &dev->dev;
2809
2810         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2811
2812         dev_set_drvdata(&dev->dev, info);
2813
2814         rv = add_smi(info);
2815         if (rv) {
2816                 kfree(info);
2817                 return rv;
2818         }
2819
2820         return 0;
2821 }
2822
2823 static int ipmi_parisc_remove(struct parisc_device *dev)
2824 {
2825         cleanup_one_si(dev_get_drvdata(&dev->dev));
2826         return 0;
2827 }
2828
2829 static struct parisc_device_id ipmi_parisc_tbl[] = {
2830         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2831         { 0, }
2832 };
2833
2834 static struct parisc_driver ipmi_parisc_driver = {
2835         .name =         "ipmi",
2836         .id_table =     ipmi_parisc_tbl,
2837         .probe =        ipmi_parisc_probe,
2838         .remove =       ipmi_parisc_remove,
2839 };
2840 #endif /* CONFIG_PARISC */
2841
2842 static int wait_for_msg_done(struct smi_info *smi_info)
2843 {
2844         enum si_sm_result     smi_result;
2845
2846         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2847         for (;;) {
2848                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2849                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2850                         schedule_timeout_uninterruptible(1);
2851                         smi_result = smi_info->handlers->event(
2852                                 smi_info->si_sm, jiffies_to_usecs(1));
2853                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2854                         smi_result = smi_info->handlers->event(
2855                                 smi_info->si_sm, 0);
2856                 } else
2857                         break;
2858         }
2859         if (smi_result == SI_SM_HOSED)
2860                 /*
2861                  * We couldn't get the state machine to run, so whatever's at
2862                  * the port is probably not an IPMI SMI interface.
2863                  */
2864                 return -ENODEV;
2865
2866         return 0;
2867 }
2868
2869 static int try_get_dev_id(struct smi_info *smi_info)
2870 {
2871         unsigned char         msg[2];
2872         unsigned char         *resp;
2873         unsigned long         resp_len;
2874         int                   rv = 0;
2875
2876         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2877         if (!resp)
2878                 return -ENOMEM;
2879
2880         /*
2881          * Do a Get Device ID command, since it comes back with some
2882          * useful info.
2883          */
2884         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2885         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2886         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2887
2888         rv = wait_for_msg_done(smi_info);
2889         if (rv)
2890                 goto out;
2891
2892         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2893                                                   resp, IPMI_MAX_MSG_LENGTH);
2894
2895         /* Check and record info from the get device id, in case we need it. */
2896         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2897
2898  out:
2899         kfree(resp);
2900         return rv;
2901 }
2902
2903 static int try_enable_event_buffer(struct smi_info *smi_info)
2904 {
2905         unsigned char         msg[3];
2906         unsigned char         *resp;
2907         unsigned long         resp_len;
2908         int                   rv = 0;
2909
2910         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2911         if (!resp)
2912                 return -ENOMEM;
2913
2914         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2915         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2916         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2917
2918         rv = wait_for_msg_done(smi_info);
2919         if (rv) {
2920                 printk(KERN_WARNING PFX "Error getting response from get"
2921                        " global enables command, the event buffer is not"
2922                        " enabled.\n");
2923                 goto out;
2924         }
2925
2926         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2927                                                   resp, IPMI_MAX_MSG_LENGTH);
2928
2929         if (resp_len < 4 ||
2930                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2931                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2932                         resp[2] != 0) {
2933                 printk(KERN_WARNING PFX "Invalid return from get global"
2934                        " enables command, cannot enable the event buffer.\n");
2935                 rv = -EINVAL;
2936                 goto out;
2937         }
2938
2939         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
2940                 /* buffer is already enabled, nothing to do. */
2941                 smi_info->supports_event_msg_buff = true;
2942                 goto out;
2943         }
2944
2945         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2946         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2947         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2948         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2949
2950         rv = wait_for_msg_done(smi_info);
2951         if (rv) {
2952                 printk(KERN_WARNING PFX "Error getting response from set"
2953                        " global, enables command, the event buffer is not"
2954                        " enabled.\n");
2955                 goto out;
2956         }
2957
2958         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2959                                                   resp, IPMI_MAX_MSG_LENGTH);
2960
2961         if (resp_len < 3 ||
2962                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2963                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2964                 printk(KERN_WARNING PFX "Invalid return from get global,"
2965                        "enables command, not enable the event buffer.\n");
2966                 rv = -EINVAL;
2967                 goto out;
2968         }
2969
2970         if (resp[2] != 0)
2971                 /*
2972                  * An error when setting the event buffer bit means
2973                  * that the event buffer is not supported.
2974                  */
2975                 rv = -ENOENT;
2976         else
2977                 smi_info->supports_event_msg_buff = true;
2978
2979  out:
2980         kfree(resp);
2981         return rv;
2982 }
2983
2984 static int smi_type_proc_show(struct seq_file *m, void *v)
2985 {
2986         struct smi_info *smi = m->private;
2987
2988         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2989
2990         return seq_has_overflowed(m);
2991 }
2992
2993 static int smi_type_proc_open(struct inode *inode, struct file *file)
2994 {
2995         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2996 }
2997
2998 static const struct file_operations smi_type_proc_ops = {
2999         .open           = smi_type_proc_open,
3000         .read           = seq_read,
3001         .llseek         = seq_lseek,
3002         .release        = single_release,
3003 };
3004
3005 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3006 {
3007         struct smi_info *smi = m->private;
3008
3009         seq_printf(m, "interrupts_enabled:    %d\n",
3010                        smi->irq && !smi->interrupt_disabled);
3011         seq_printf(m, "short_timeouts:        %u\n",
3012                        smi_get_stat(smi, short_timeouts));
3013         seq_printf(m, "long_timeouts:         %u\n",
3014                        smi_get_stat(smi, long_timeouts));
3015         seq_printf(m, "idles:                 %u\n",
3016                        smi_get_stat(smi, idles));
3017         seq_printf(m, "interrupts:            %u\n",
3018                        smi_get_stat(smi, interrupts));
3019         seq_printf(m, "attentions:            %u\n",
3020                        smi_get_stat(smi, attentions));
3021         seq_printf(m, "flag_fetches:          %u\n",
3022                        smi_get_stat(smi, flag_fetches));
3023         seq_printf(m, "hosed_count:           %u\n",
3024                        smi_get_stat(smi, hosed_count));
3025         seq_printf(m, "complete_transactions: %u\n",
3026                        smi_get_stat(smi, complete_transactions));
3027         seq_printf(m, "events:                %u\n",
3028                        smi_get_stat(smi, events));
3029         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3030                        smi_get_stat(smi, watchdog_pretimeouts));
3031         seq_printf(m, "incoming_messages:     %u\n",
3032                        smi_get_stat(smi, incoming_messages));
3033         return 0;
3034 }
3035
3036 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3037 {
3038         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3039 }
3040
3041 static const struct file_operations smi_si_stats_proc_ops = {
3042         .open           = smi_si_stats_proc_open,
3043         .read           = seq_read,
3044         .llseek         = seq_lseek,
3045         .release        = single_release,
3046 };
3047
3048 static int smi_params_proc_show(struct seq_file *m, void *v)
3049 {
3050         struct smi_info *smi = m->private;
3051
3052         seq_printf(m,
3053                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3054                    si_to_str[smi->si_type],
3055                    addr_space_to_str[smi->io.addr_type],
3056                    smi->io.addr_data,
3057                    smi->io.regspacing,
3058                    smi->io.regsize,
3059                    smi->io.regshift,
3060                    smi->irq,
3061                    smi->slave_addr);
3062
3063         return seq_has_overflowed(m);
3064 }
3065
3066 static int smi_params_proc_open(struct inode *inode, struct file *file)
3067 {
3068         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3069 }
3070
3071 static const struct file_operations smi_params_proc_ops = {
3072         .open           = smi_params_proc_open,
3073         .read           = seq_read,
3074         .llseek         = seq_lseek,
3075         .release        = single_release,
3076 };
3077
3078 /*
3079  * oem_data_avail_to_receive_msg_avail
3080  * @info - smi_info structure with msg_flags set
3081  *
3082  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3083  * Returns 1 indicating need to re-run handle_flags().
3084  */
3085 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3086 {
3087         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3088                                RECEIVE_MSG_AVAIL);
3089         return 1;
3090 }
3091
3092 /*
3093  * setup_dell_poweredge_oem_data_handler
3094  * @info - smi_info.device_id must be populated
3095  *
3096  * Systems that match, but have firmware version < 1.40 may assert
3097  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3098  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3099  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3100  * as RECEIVE_MSG_AVAIL instead.
3101  *
3102  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3103  * assert the OEM[012] bits, and if it did, the driver would have to
3104  * change to handle that properly, we don't actually check for the
3105  * firmware version.
3106  * Device ID = 0x20                BMC on PowerEdge 8G servers
3107  * Device Revision = 0x80
3108  * Firmware Revision1 = 0x01       BMC version 1.40
3109  * Firmware Revision2 = 0x40       BCD encoded
3110  * IPMI Version = 0x51             IPMI 1.5
3111  * Manufacturer ID = A2 02 00      Dell IANA
3112  *
3113  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3114  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3115  *
3116  */
3117 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3118 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3119 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3120 #define DELL_IANA_MFR_ID 0x0002a2
3121 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3122 {
3123         struct ipmi_device_id *id = &smi_info->device_id;
3124         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3125                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3126                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3127                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3128                         smi_info->oem_data_avail_handler =
3129                                 oem_data_avail_to_receive_msg_avail;
3130                 } else if (ipmi_version_major(id) < 1 ||
3131                            (ipmi_version_major(id) == 1 &&
3132                             ipmi_version_minor(id) < 5)) {
3133                         smi_info->oem_data_avail_handler =
3134                                 oem_data_avail_to_receive_msg_avail;
3135                 }
3136         }
3137 }
3138
3139 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3140 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3141 {
3142         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3143
3144         /* Make it a response */
3145         msg->rsp[0] = msg->data[0] | 4;
3146         msg->rsp[1] = msg->data[1];
3147         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3148         msg->rsp_size = 3;
3149         smi_info->curr_msg = NULL;
3150         deliver_recv_msg(smi_info, msg);
3151 }
3152
3153 /*
3154  * dell_poweredge_bt_xaction_handler
3155  * @info - smi_info.device_id must be populated
3156  *
3157  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3158  * not respond to a Get SDR command if the length of the data
3159  * requested is exactly 0x3A, which leads to command timeouts and no
3160  * data returned.  This intercepts such commands, and causes userspace
3161  * callers to try again with a different-sized buffer, which succeeds.
3162  */
3163
3164 #define STORAGE_NETFN 0x0A
3165 #define STORAGE_CMD_GET_SDR 0x23
3166 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3167                                              unsigned long unused,
3168                                              void *in)
3169 {
3170         struct smi_info *smi_info = in;
3171         unsigned char *data = smi_info->curr_msg->data;
3172         unsigned int size   = smi_info->curr_msg->data_size;
3173         if (size >= 8 &&
3174             (data[0]>>2) == STORAGE_NETFN &&
3175             data[1] == STORAGE_CMD_GET_SDR &&
3176             data[7] == 0x3A) {
3177                 return_hosed_msg_badsize(smi_info);
3178                 return NOTIFY_STOP;
3179         }
3180         return NOTIFY_DONE;
3181 }
3182
3183 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3184         .notifier_call  = dell_poweredge_bt_xaction_handler,
3185 };
3186
3187 /*
3188  * setup_dell_poweredge_bt_xaction_handler
3189  * @info - smi_info.device_id must be filled in already
3190  *
3191  * Fills in smi_info.device_id.start_transaction_pre_hook
3192  * when we know what function to use there.
3193  */
3194 static void
3195 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3196 {
3197         struct ipmi_device_id *id = &smi_info->device_id;
3198         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3199             smi_info->si_type == SI_BT)
3200                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3201 }
3202
3203 /*
3204  * setup_oem_data_handler
3205  * @info - smi_info.device_id must be filled in already
3206  *
3207  * Fills in smi_info.device_id.oem_data_available_handler
3208  * when we know what function to use there.
3209  */
3210
3211 static void setup_oem_data_handler(struct smi_info *smi_info)
3212 {
3213         setup_dell_poweredge_oem_data_handler(smi_info);
3214 }
3215
3216 static void setup_xaction_handlers(struct smi_info *smi_info)
3217 {
3218         setup_dell_poweredge_bt_xaction_handler(smi_info);
3219 }
3220
3221 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3222 {
3223         if (smi_info->thread != NULL)
3224                 kthread_stop(smi_info->thread);
3225         if (smi_info->timer_running)
3226                 del_timer_sync(&smi_info->si_timer);
3227 }
3228
3229 static struct ipmi_default_vals
3230 {
3231         int type;
3232         int port;
3233 } ipmi_defaults[] =
3234 {
3235         { .type = SI_KCS, .port = 0xca2 },
3236         { .type = SI_SMIC, .port = 0xca9 },
3237         { .type = SI_BT, .port = 0xe4 },
3238         { .port = 0 }
3239 };
3240
3241 static void default_find_bmc(void)
3242 {
3243         struct smi_info *info;
3244         int             i;
3245
3246         for (i = 0; ; i++) {
3247                 if (!ipmi_defaults[i].port)
3248                         break;
3249 #ifdef CONFIG_PPC
3250                 if (check_legacy_ioport(ipmi_defaults[i].port))
3251                         continue;
3252 #endif
3253                 info = smi_info_alloc();
3254                 if (!info)
3255                         return;
3256
3257                 info->addr_source = SI_DEFAULT;
3258
3259                 info->si_type = ipmi_defaults[i].type;
3260                 info->io_setup = port_setup;
3261                 info->io.addr_data = ipmi_defaults[i].port;
3262                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3263
3264                 info->io.addr = NULL;
3265                 info->io.regspacing = DEFAULT_REGSPACING;
3266                 info->io.regsize = DEFAULT_REGSPACING;
3267                 info->io.regshift = 0;
3268
3269                 if (add_smi(info) == 0) {
3270                         if ((try_smi_init(info)) == 0) {
3271                                 /* Found one... */
3272                                 printk(KERN_INFO PFX "Found default %s"
3273                                 " state machine at %s address 0x%lx\n",
3274                                 si_to_str[info->si_type],
3275                                 addr_space_to_str[info->io.addr_type],
3276                                 info->io.addr_data);
3277                         } else
3278                                 cleanup_one_si(info);
3279                 } else {
3280                         kfree(info);
3281                 }
3282         }
3283 }
3284
3285 static int is_new_interface(struct smi_info *info)
3286 {
3287         struct smi_info *e;
3288
3289         list_for_each_entry(e, &smi_infos, link) {
3290                 if (e->io.addr_type != info->io.addr_type)
3291                         continue;
3292                 if (e->io.addr_data == info->io.addr_data)
3293                         return 0;
3294         }
3295
3296         return 1;
3297 }
3298
3299 static int add_smi(struct smi_info *new_smi)
3300 {
3301         int rv = 0;
3302
3303         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3304                ipmi_addr_src_to_str(new_smi->addr_source),
3305                si_to_str[new_smi->si_type]);
3306         mutex_lock(&smi_infos_lock);
3307         if (!is_new_interface(new_smi)) {
3308                 printk(KERN_CONT " duplicate interface\n");
3309                 rv = -EBUSY;
3310                 goto out_err;
3311         }
3312
3313         printk(KERN_CONT "\n");
3314
3315         /* So we know not to free it unless we have allocated one. */
3316         new_smi->intf = NULL;
3317         new_smi->si_sm = NULL;
3318         new_smi->handlers = NULL;
3319
3320         list_add_tail(&new_smi->link, &smi_infos);
3321
3322 out_err:
3323         mutex_unlock(&smi_infos_lock);
3324         return rv;
3325 }
3326
3327 static int try_smi_init(struct smi_info *new_smi)
3328 {
3329         int rv = 0;
3330         int i;
3331
3332         printk(KERN_INFO PFX "Trying %s-specified %s state"
3333                " machine at %s address 0x%lx, slave address 0x%x,"
3334                " irq %d\n",
3335                ipmi_addr_src_to_str(new_smi->addr_source),
3336                si_to_str[new_smi->si_type],
3337                addr_space_to_str[new_smi->io.addr_type],
3338                new_smi->io.addr_data,
3339                new_smi->slave_addr, new_smi->irq);
3340
3341         switch (new_smi->si_type) {
3342         case SI_KCS:
3343                 new_smi->handlers = &kcs_smi_handlers;
3344                 break;
3345
3346         case SI_SMIC:
3347                 new_smi->handlers = &smic_smi_handlers;
3348                 break;
3349
3350         case SI_BT:
3351                 new_smi->handlers = &bt_smi_handlers;
3352                 break;
3353
3354         default:
3355                 /* No support for anything else yet. */
3356                 rv = -EIO;
3357                 goto out_err;
3358         }
3359
3360         /* Allocate the state machine's data and initialize it. */
3361         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3362         if (!new_smi->si_sm) {
3363                 printk(KERN_ERR PFX
3364                        "Could not allocate state machine memory\n");
3365                 rv = -ENOMEM;
3366                 goto out_err;
3367         }
3368         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3369                                                         &new_smi->io);
3370
3371         /* Now that we know the I/O size, we can set up the I/O. */
3372         rv = new_smi->io_setup(new_smi);
3373         if (rv) {
3374                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3375                 goto out_err;
3376         }
3377
3378         /* Do low-level detection first. */
3379         if (new_smi->handlers->detect(new_smi->si_sm)) {
3380                 if (new_smi->addr_source)
3381                         printk(KERN_INFO PFX "Interface detection failed\n");
3382                 rv = -ENODEV;
3383                 goto out_err;
3384         }
3385
3386         /*
3387          * Attempt a get device id command.  If it fails, we probably
3388          * don't have a BMC here.
3389          */
3390         rv = try_get_dev_id(new_smi);
3391         if (rv) {
3392                 if (new_smi->addr_source)
3393                         printk(KERN_INFO PFX "There appears to be no BMC"
3394                                " at this location\n");
3395                 goto out_err;
3396         }
3397
3398         setup_oem_data_handler(new_smi);
3399         setup_xaction_handlers(new_smi);
3400
3401         new_smi->waiting_msg = NULL;
3402         new_smi->curr_msg = NULL;
3403         atomic_set(&new_smi->req_events, 0);
3404         new_smi->run_to_completion = false;
3405         for (i = 0; i < SI_NUM_STATS; i++)
3406                 atomic_set(&new_smi->stats[i], 0);
3407
3408         new_smi->interrupt_disabled = true;
3409         atomic_set(&new_smi->need_watch, 0);
3410         new_smi->intf_num = smi_num;
3411         smi_num++;
3412
3413         rv = try_enable_event_buffer(new_smi);
3414         if (rv == 0)
3415                 new_smi->has_event_buffer = true;
3416
3417         /*
3418          * Start clearing the flags before we enable interrupts or the
3419          * timer to avoid racing with the timer.
3420          */
3421         start_clear_flags(new_smi);
3422
3423         /*
3424          * IRQ is defined to be set when non-zero.  req_events will
3425          * cause a global flags check that will enable interrupts.
3426          */
3427         if (new_smi->irq) {
3428                 new_smi->interrupt_disabled = false;
3429                 atomic_set(&new_smi->req_events, 1);
3430         }
3431
3432         if (!new_smi->dev) {
3433                 /*
3434                  * If we don't already have a device from something
3435                  * else (like PCI), then register a new one.
3436                  */
3437                 new_smi->pdev = platform_device_alloc("ipmi_si",
3438                                                       new_smi->intf_num);
3439                 if (!new_smi->pdev) {
3440                         printk(KERN_ERR PFX
3441                                "Unable to allocate platform device\n");
3442                         goto out_err;
3443                 }
3444                 new_smi->dev = &new_smi->pdev->dev;
3445                 new_smi->dev->driver = &ipmi_driver.driver;
3446
3447                 rv = platform_device_add(new_smi->pdev);
3448                 if (rv) {
3449                         printk(KERN_ERR PFX
3450                                "Unable to register system interface device:"
3451                                " %d\n",
3452                                rv);
3453                         goto out_err;
3454                 }
3455                 new_smi->dev_registered = true;
3456         }
3457
3458         rv = ipmi_register_smi(&handlers,
3459                                new_smi,
3460                                &new_smi->device_id,
3461                                new_smi->dev,
3462                                new_smi->slave_addr);
3463         if (rv) {
3464                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3465                         rv);
3466                 goto out_err_stop_timer;
3467         }
3468
3469         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3470                                      &smi_type_proc_ops,
3471                                      new_smi);
3472         if (rv) {
3473                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3474                 goto out_err_stop_timer;
3475         }
3476
3477         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3478                                      &smi_si_stats_proc_ops,
3479                                      new_smi);
3480         if (rv) {
3481                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3482                 goto out_err_stop_timer;
3483         }
3484
3485         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3486                                      &smi_params_proc_ops,
3487                                      new_smi);
3488         if (rv) {
3489                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3490                 goto out_err_stop_timer;
3491         }
3492
3493         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3494                  si_to_str[new_smi->si_type]);
3495
3496         return 0;
3497
3498  out_err_stop_timer:
3499         wait_for_timer_and_thread(new_smi);
3500
3501  out_err:
3502         new_smi->interrupt_disabled = true;
3503
3504         if (new_smi->intf) {
3505                 ipmi_smi_t intf = new_smi->intf;
3506                 new_smi->intf = NULL;
3507                 ipmi_unregister_smi(intf);
3508         }
3509
3510         if (new_smi->irq_cleanup) {
3511                 new_smi->irq_cleanup(new_smi);
3512                 new_smi->irq_cleanup = NULL;
3513         }
3514
3515         /*
3516          * Wait until we know that we are out of any interrupt
3517          * handlers might have been running before we freed the
3518          * interrupt.
3519          */
3520         synchronize_sched();
3521
3522         if (new_smi->si_sm) {
3523                 if (new_smi->handlers)
3524                         new_smi->handlers->cleanup(new_smi->si_sm);
3525                 kfree(new_smi->si_sm);
3526                 new_smi->si_sm = NULL;
3527         }
3528         if (new_smi->addr_source_cleanup) {
3529                 new_smi->addr_source_cleanup(new_smi);
3530                 new_smi->addr_source_cleanup = NULL;
3531         }
3532         if (new_smi->io_cleanup) {
3533                 new_smi->io_cleanup(new_smi);
3534                 new_smi->io_cleanup = NULL;
3535         }
3536
3537         if (new_smi->dev_registered) {
3538                 platform_device_unregister(new_smi->pdev);
3539                 new_smi->dev_registered = false;
3540         }
3541
3542         return rv;
3543 }
3544
3545 static int init_ipmi_si(void)
3546 {
3547         int  i;
3548         char *str;
3549         int  rv;
3550         struct smi_info *e;
3551         enum ipmi_addr_src type = SI_INVALID;
3552
3553         if (initialized)
3554                 return 0;
3555         initialized = 1;
3556
3557         if (si_tryplatform) {
3558                 rv = platform_driver_register(&ipmi_driver);
3559                 if (rv) {
3560                         printk(KERN_ERR PFX "Unable to register "
3561                                "driver: %d\n", rv);
3562                         return rv;
3563                 }
3564         }
3565
3566         /* Parse out the si_type string into its components. */
3567         str = si_type_str;
3568         if (*str != '\0') {
3569                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3570                         si_type[i] = str;
3571                         str = strchr(str, ',');
3572                         if (str) {
3573                                 *str = '\0';
3574                                 str++;
3575                         } else {
3576                                 break;
3577                         }
3578                 }
3579         }
3580
3581         printk(KERN_INFO "IPMI System Interface driver.\n");
3582
3583         /* If the user gave us a device, they presumably want us to use it */
3584         if (!hardcode_find_bmc())
3585                 return 0;
3586
3587 #ifdef CONFIG_PCI
3588         if (si_trypci) {
3589                 rv = pci_register_driver(&ipmi_pci_driver);
3590                 if (rv)
3591                         printk(KERN_ERR PFX "Unable to register "
3592                                "PCI driver: %d\n", rv);
3593                 else
3594                         pci_registered = true;
3595         }
3596 #endif
3597
3598 #ifdef CONFIG_ACPI
3599         if (si_tryacpi) {
3600                 pnp_register_driver(&ipmi_pnp_driver);
3601                 pnp_registered = true;
3602         }
3603 #endif
3604
3605 #ifdef CONFIG_DMI
3606         if (si_trydmi)
3607                 dmi_find_bmc();
3608 #endif
3609
3610 #ifdef CONFIG_ACPI
3611         if (si_tryacpi)
3612                 spmi_find_bmc();
3613 #endif
3614
3615 #ifdef CONFIG_PARISC
3616         register_parisc_driver(&ipmi_parisc_driver);
3617         parisc_registered = true;
3618         /* poking PC IO addresses will crash machine, don't do it */
3619         si_trydefaults = 0;
3620 #endif
3621
3622         /* We prefer devices with interrupts, but in the case of a machine
3623            with multiple BMCs we assume that there will be several instances
3624            of a given type so if we succeed in registering a type then also
3625            try to register everything else of the same type */
3626
3627         mutex_lock(&smi_infos_lock);
3628         list_for_each_entry(e, &smi_infos, link) {
3629                 /* Try to register a device if it has an IRQ and we either
3630                    haven't successfully registered a device yet or this
3631                    device has the same type as one we successfully registered */
3632                 if (e->irq && (!type || e->addr_source == type)) {
3633                         if (!try_smi_init(e)) {
3634                                 type = e->addr_source;
3635                         }
3636                 }
3637         }
3638
3639         /* type will only have been set if we successfully registered an si */
3640         if (type) {
3641                 mutex_unlock(&smi_infos_lock);
3642                 return 0;
3643         }
3644
3645         /* Fall back to the preferred device */
3646
3647         list_for_each_entry(e, &smi_infos, link) {
3648                 if (!e->irq && (!type || e->addr_source == type)) {
3649                         if (!try_smi_init(e)) {
3650                                 type = e->addr_source;
3651                         }
3652                 }
3653         }
3654         mutex_unlock(&smi_infos_lock);
3655
3656         if (type)
3657                 return 0;
3658
3659         if (si_trydefaults) {
3660                 mutex_lock(&smi_infos_lock);
3661                 if (list_empty(&smi_infos)) {
3662                         /* No BMC was found, try defaults. */
3663                         mutex_unlock(&smi_infos_lock);
3664                         default_find_bmc();
3665                 } else
3666                         mutex_unlock(&smi_infos_lock);
3667         }
3668
3669         mutex_lock(&smi_infos_lock);
3670         if (unload_when_empty && list_empty(&smi_infos)) {
3671                 mutex_unlock(&smi_infos_lock);
3672                 cleanup_ipmi_si();
3673                 printk(KERN_WARNING PFX
3674                        "Unable to find any System Interface(s)\n");
3675                 return -ENODEV;
3676         } else {
3677                 mutex_unlock(&smi_infos_lock);
3678                 return 0;
3679         }
3680 }
3681 module_init(init_ipmi_si);
3682
3683 static void cleanup_one_si(struct smi_info *to_clean)
3684 {
3685         int           rv = 0;
3686
3687         if (!to_clean)
3688                 return;
3689
3690         if (to_clean->intf) {
3691                 ipmi_smi_t intf = to_clean->intf;
3692
3693                 to_clean->intf = NULL;
3694                 rv = ipmi_unregister_smi(intf);
3695                 if (rv) {
3696                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3697                                rv);
3698                 }
3699         }
3700
3701         if (to_clean->dev)
3702                 dev_set_drvdata(to_clean->dev, NULL);
3703
3704         list_del(&to_clean->link);
3705
3706         /*
3707          * Make sure that interrupts, the timer and the thread are
3708          * stopped and will not run again.
3709          */
3710         if (to_clean->irq_cleanup)
3711                 to_clean->irq_cleanup(to_clean);
3712         wait_for_timer_and_thread(to_clean);
3713
3714         /*
3715          * Timeouts are stopped, now make sure the interrupts are off
3716          * in the BMC.  Note that timers and CPU interrupts are off,
3717          * so no need for locks.
3718          */
3719         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3720                 poll(to_clean);
3721                 schedule_timeout_uninterruptible(1);
3722         }
3723         disable_si_irq(to_clean);
3724         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3725                 poll(to_clean);
3726                 schedule_timeout_uninterruptible(1);
3727         }
3728
3729         if (to_clean->handlers)
3730                 to_clean->handlers->cleanup(to_clean->si_sm);
3731
3732         kfree(to_clean->si_sm);
3733
3734         if (to_clean->addr_source_cleanup)
3735                 to_clean->addr_source_cleanup(to_clean);
3736         if (to_clean->io_cleanup)
3737                 to_clean->io_cleanup(to_clean);
3738
3739         if (to_clean->dev_registered)
3740                 platform_device_unregister(to_clean->pdev);
3741
3742         kfree(to_clean);
3743 }
3744
3745 static void cleanup_ipmi_si(void)
3746 {
3747         struct smi_info *e, *tmp_e;
3748
3749         if (!initialized)
3750                 return;
3751
3752 #ifdef CONFIG_PCI
3753         if (pci_registered)
3754                 pci_unregister_driver(&ipmi_pci_driver);
3755 #endif
3756 #ifdef CONFIG_ACPI
3757         if (pnp_registered)
3758                 pnp_unregister_driver(&ipmi_pnp_driver);
3759 #endif
3760 #ifdef CONFIG_PARISC
3761         if (parisc_registered)
3762                 unregister_parisc_driver(&ipmi_parisc_driver);
3763 #endif
3764
3765         platform_driver_unregister(&ipmi_driver);
3766
3767         mutex_lock(&smi_infos_lock);
3768         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3769                 cleanup_one_si(e);
3770         mutex_unlock(&smi_infos_lock);
3771 }
3772 module_exit(cleanup_ipmi_si);
3773
3774 MODULE_LICENSE("GPL");
3775 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3776 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3777                    " system interfaces.");