]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/clocksource/cadence_ttc_timer.c
Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / drivers / clocksource / cadence_ttc_timer.c
1 /*
2  * This file contains driver for the Cadence Triple Timer Counter Rev 06
3  *
4  *  Copyright (C) 2011-2013 Xilinx
5  *
6  * based on arch/mips/kernel/time.c timer driver
7  *
8  * This software is licensed under the terms of the GNU General Public
9  * License version 2, as published by the Free Software Foundation, and
10  * may be copied, distributed, and modified under those terms.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/clk.h>
19 #include <linux/interrupt.h>
20 #include <linux/clockchips.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25
26 /*
27  * This driver configures the 2 16/32-bit count-up timers as follows:
28  *
29  * T1: Timer 1, clocksource for generic timekeeping
30  * T2: Timer 2, clockevent source for hrtimers
31  * T3: Timer 3, <unused>
32  *
33  * The input frequency to the timer module for emulation is 2.5MHz which is
34  * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
35  * the timers are clocked at 78.125KHz (12.8 us resolution).
36
37  * The input frequency to the timer module in silicon is configurable and
38  * obtained from device tree. The pre-scaler of 32 is used.
39  */
40
41 /*
42  * Timer Register Offset Definitions of Timer 1, Increment base address by 4
43  * and use same offsets for Timer 2
44  */
45 #define TTC_CLK_CNTRL_OFFSET            0x00 /* Clock Control Reg, RW */
46 #define TTC_CNT_CNTRL_OFFSET            0x0C /* Counter Control Reg, RW */
47 #define TTC_COUNT_VAL_OFFSET            0x18 /* Counter Value Reg, RO */
48 #define TTC_INTR_VAL_OFFSET             0x24 /* Interval Count Reg, RW */
49 #define TTC_ISR_OFFSET          0x54 /* Interrupt Status Reg, RO */
50 #define TTC_IER_OFFSET          0x60 /* Interrupt Enable Reg, RW */
51
52 #define TTC_CNT_CNTRL_DISABLE_MASK      0x1
53
54 #define TTC_CLK_CNTRL_CSRC_MASK         (1 << 5)        /* clock source */
55 #define TTC_CLK_CNTRL_PSV_MASK          0x1e
56 #define TTC_CLK_CNTRL_PSV_SHIFT         1
57
58 /*
59  * Setup the timers to use pre-scaling, using a fixed value for now that will
60  * work across most input frequency, but it may need to be more dynamic
61  */
62 #define PRESCALE_EXPONENT       11      /* 2 ^ PRESCALE_EXPONENT = PRESCALE */
63 #define PRESCALE                2048    /* The exponent must match this */
64 #define CLK_CNTRL_PRESCALE      ((PRESCALE_EXPONENT - 1) << 1)
65 #define CLK_CNTRL_PRESCALE_EN   1
66 #define CNT_CNTRL_RESET         (1 << 4)
67
68 #define MAX_F_ERR 50
69
70 /**
71  * struct ttc_timer - This definition defines local timer structure
72  *
73  * @base_addr:  Base address of timer
74  * @freq:       Timer input clock frequency
75  * @clk:        Associated clock source
76  * @clk_rate_change_nb  Notifier block for clock rate changes
77  */
78 struct ttc_timer {
79         void __iomem *base_addr;
80         unsigned long freq;
81         struct clk *clk;
82         struct notifier_block clk_rate_change_nb;
83 };
84
85 #define to_ttc_timer(x) \
86                 container_of(x, struct ttc_timer, clk_rate_change_nb)
87
88 struct ttc_timer_clocksource {
89         u32                     scale_clk_ctrl_reg_old;
90         u32                     scale_clk_ctrl_reg_new;
91         struct ttc_timer        ttc;
92         struct clocksource      cs;
93 };
94
95 #define to_ttc_timer_clksrc(x) \
96                 container_of(x, struct ttc_timer_clocksource, cs)
97
98 struct ttc_timer_clockevent {
99         struct ttc_timer                ttc;
100         struct clock_event_device       ce;
101 };
102
103 #define to_ttc_timer_clkevent(x) \
104                 container_of(x, struct ttc_timer_clockevent, ce)
105
106 static void __iomem *ttc_sched_clock_val_reg;
107
108 /**
109  * ttc_set_interval - Set the timer interval value
110  *
111  * @timer:      Pointer to the timer instance
112  * @cycles:     Timer interval ticks
113  **/
114 static void ttc_set_interval(struct ttc_timer *timer,
115                                         unsigned long cycles)
116 {
117         u32 ctrl_reg;
118
119         /* Disable the counter, set the counter value  and re-enable counter */
120         ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
121         ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
122         writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
123
124         writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
125
126         /*
127          * Reset the counter (0x10) so that it starts from 0, one-shot
128          * mode makes this needed for timing to be right.
129          */
130         ctrl_reg |= CNT_CNTRL_RESET;
131         ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
132         writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
133 }
134
135 /**
136  * ttc_clock_event_interrupt - Clock event timer interrupt handler
137  *
138  * @irq:        IRQ number of the Timer
139  * @dev_id:     void pointer to the ttc_timer instance
140  *
141  * returns: Always IRQ_HANDLED - success
142  **/
143 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
144 {
145         struct ttc_timer_clockevent *ttce = dev_id;
146         struct ttc_timer *timer = &ttce->ttc;
147
148         /* Acknowledge the interrupt and call event handler */
149         readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
150
151         ttce->ce.event_handler(&ttce->ce);
152
153         return IRQ_HANDLED;
154 }
155
156 /**
157  * __ttc_clocksource_read - Reads the timer counter register
158  *
159  * returns: Current timer counter register value
160  **/
161 static cycle_t __ttc_clocksource_read(struct clocksource *cs)
162 {
163         struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
164
165         return (cycle_t)readl_relaxed(timer->base_addr +
166                                 TTC_COUNT_VAL_OFFSET);
167 }
168
169 static u64 notrace ttc_sched_clock_read(void)
170 {
171         return readl_relaxed(ttc_sched_clock_val_reg);
172 }
173
174 /**
175  * ttc_set_next_event - Sets the time interval for next event
176  *
177  * @cycles:     Timer interval ticks
178  * @evt:        Address of clock event instance
179  *
180  * returns: Always 0 - success
181  **/
182 static int ttc_set_next_event(unsigned long cycles,
183                                         struct clock_event_device *evt)
184 {
185         struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
186         struct ttc_timer *timer = &ttce->ttc;
187
188         ttc_set_interval(timer, cycles);
189         return 0;
190 }
191
192 /**
193  * ttc_set_mode - Sets the mode of timer
194  *
195  * @mode:       Mode to be set
196  * @evt:        Address of clock event instance
197  **/
198 static void ttc_set_mode(enum clock_event_mode mode,
199                                         struct clock_event_device *evt)
200 {
201         struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
202         struct ttc_timer *timer = &ttce->ttc;
203         u32 ctrl_reg;
204
205         switch (mode) {
206         case CLOCK_EVT_MODE_PERIODIC:
207                 ttc_set_interval(timer, DIV_ROUND_CLOSEST(ttce->ttc.freq,
208                                                 PRESCALE * HZ));
209                 break;
210         case CLOCK_EVT_MODE_ONESHOT:
211         case CLOCK_EVT_MODE_UNUSED:
212         case CLOCK_EVT_MODE_SHUTDOWN:
213                 ctrl_reg = readl_relaxed(timer->base_addr +
214                                         TTC_CNT_CNTRL_OFFSET);
215                 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
216                 writel_relaxed(ctrl_reg,
217                                 timer->base_addr + TTC_CNT_CNTRL_OFFSET);
218                 break;
219         case CLOCK_EVT_MODE_RESUME:
220                 ctrl_reg = readl_relaxed(timer->base_addr +
221                                         TTC_CNT_CNTRL_OFFSET);
222                 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
223                 writel_relaxed(ctrl_reg,
224                                 timer->base_addr + TTC_CNT_CNTRL_OFFSET);
225                 break;
226         }
227 }
228
229 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
230                 unsigned long event, void *data)
231 {
232         struct clk_notifier_data *ndata = data;
233         struct ttc_timer *ttc = to_ttc_timer(nb);
234         struct ttc_timer_clocksource *ttccs = container_of(ttc,
235                         struct ttc_timer_clocksource, ttc);
236
237         switch (event) {
238         case PRE_RATE_CHANGE:
239         {
240                 u32 psv;
241                 unsigned long factor, rate_low, rate_high;
242
243                 if (ndata->new_rate > ndata->old_rate) {
244                         factor = DIV_ROUND_CLOSEST(ndata->new_rate,
245                                         ndata->old_rate);
246                         rate_low = ndata->old_rate;
247                         rate_high = ndata->new_rate;
248                 } else {
249                         factor = DIV_ROUND_CLOSEST(ndata->old_rate,
250                                         ndata->new_rate);
251                         rate_low = ndata->new_rate;
252                         rate_high = ndata->old_rate;
253                 }
254
255                 if (!is_power_of_2(factor))
256                                 return NOTIFY_BAD;
257
258                 if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
259                         return NOTIFY_BAD;
260
261                 factor = __ilog2_u32(factor);
262
263                 /*
264                  * store timer clock ctrl register so we can restore it in case
265                  * of an abort.
266                  */
267                 ttccs->scale_clk_ctrl_reg_old =
268                         readl_relaxed(ttccs->ttc.base_addr +
269                         TTC_CLK_CNTRL_OFFSET);
270
271                 psv = (ttccs->scale_clk_ctrl_reg_old &
272                                 TTC_CLK_CNTRL_PSV_MASK) >>
273                                 TTC_CLK_CNTRL_PSV_SHIFT;
274                 if (ndata->new_rate < ndata->old_rate)
275                         psv -= factor;
276                 else
277                         psv += factor;
278
279                 /* prescaler within legal range? */
280                 if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
281                         return NOTIFY_BAD;
282
283                 ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
284                         ~TTC_CLK_CNTRL_PSV_MASK;
285                 ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
286
287
288                 /* scale down: adjust divider in post-change notification */
289                 if (ndata->new_rate < ndata->old_rate)
290                         return NOTIFY_DONE;
291
292                 /* scale up: adjust divider now - before frequency change */
293                 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
294                                ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
295                 break;
296         }
297         case POST_RATE_CHANGE:
298                 /* scale up: pre-change notification did the adjustment */
299                 if (ndata->new_rate > ndata->old_rate)
300                         return NOTIFY_OK;
301
302                 /* scale down: adjust divider now - after frequency change */
303                 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
304                                ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
305                 break;
306
307         case ABORT_RATE_CHANGE:
308                 /* we have to undo the adjustment in case we scale up */
309                 if (ndata->new_rate < ndata->old_rate)
310                         return NOTIFY_OK;
311
312                 /* restore original register value */
313                 writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
314                                ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
315                 /* fall through */
316         default:
317                 return NOTIFY_DONE;
318         }
319
320         return NOTIFY_DONE;
321 }
322
323 static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
324                                          u32 timer_width)
325 {
326         struct ttc_timer_clocksource *ttccs;
327         int err;
328
329         ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
330         if (WARN_ON(!ttccs))
331                 return;
332
333         ttccs->ttc.clk = clk;
334
335         err = clk_prepare_enable(ttccs->ttc.clk);
336         if (WARN_ON(err)) {
337                 kfree(ttccs);
338                 return;
339         }
340
341         ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
342
343         ttccs->ttc.clk_rate_change_nb.notifier_call =
344                 ttc_rate_change_clocksource_cb;
345         ttccs->ttc.clk_rate_change_nb.next = NULL;
346         if (clk_notifier_register(ttccs->ttc.clk,
347                                 &ttccs->ttc.clk_rate_change_nb))
348                 pr_warn("Unable to register clock notifier.\n");
349
350         ttccs->ttc.base_addr = base;
351         ttccs->cs.name = "ttc_clocksource";
352         ttccs->cs.rating = 200;
353         ttccs->cs.read = __ttc_clocksource_read;
354         ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
355         ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
356
357         /*
358          * Setup the clock source counter to be an incrementing counter
359          * with no interrupt and it rolls over at 0xFFFF. Pre-scale
360          * it by 32 also. Let it start running now.
361          */
362         writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
363         writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
364                      ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
365         writel_relaxed(CNT_CNTRL_RESET,
366                      ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
367
368         err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
369         if (WARN_ON(err)) {
370                 kfree(ttccs);
371                 return;
372         }
373
374         ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
375         sched_clock_register(ttc_sched_clock_read, timer_width,
376                              ttccs->ttc.freq / PRESCALE);
377 }
378
379 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
380                 unsigned long event, void *data)
381 {
382         struct clk_notifier_data *ndata = data;
383         struct ttc_timer *ttc = to_ttc_timer(nb);
384         struct ttc_timer_clockevent *ttcce = container_of(ttc,
385                         struct ttc_timer_clockevent, ttc);
386
387         switch (event) {
388         case POST_RATE_CHANGE:
389                 /* update cached frequency */
390                 ttc->freq = ndata->new_rate;
391
392                 clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
393
394                 /* fall through */
395         case PRE_RATE_CHANGE:
396         case ABORT_RATE_CHANGE:
397         default:
398                 return NOTIFY_DONE;
399         }
400 }
401
402 static void __init ttc_setup_clockevent(struct clk *clk,
403                                                 void __iomem *base, u32 irq)
404 {
405         struct ttc_timer_clockevent *ttcce;
406         int err;
407
408         ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
409         if (WARN_ON(!ttcce))
410                 return;
411
412         ttcce->ttc.clk = clk;
413
414         err = clk_prepare_enable(ttcce->ttc.clk);
415         if (WARN_ON(err)) {
416                 kfree(ttcce);
417                 return;
418         }
419
420         ttcce->ttc.clk_rate_change_nb.notifier_call =
421                 ttc_rate_change_clockevent_cb;
422         ttcce->ttc.clk_rate_change_nb.next = NULL;
423         if (clk_notifier_register(ttcce->ttc.clk,
424                                 &ttcce->ttc.clk_rate_change_nb))
425                 pr_warn("Unable to register clock notifier.\n");
426         ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
427
428         ttcce->ttc.base_addr = base;
429         ttcce->ce.name = "ttc_clockevent";
430         ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
431         ttcce->ce.set_next_event = ttc_set_next_event;
432         ttcce->ce.set_mode = ttc_set_mode;
433         ttcce->ce.rating = 200;
434         ttcce->ce.irq = irq;
435         ttcce->ce.cpumask = cpu_possible_mask;
436
437         /*
438          * Setup the clock event timer to be an interval timer which
439          * is prescaled by 32 using the interval interrupt. Leave it
440          * disabled for now.
441          */
442         writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
443         writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
444                      ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
445         writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
446
447         err = request_irq(irq, ttc_clock_event_interrupt,
448                           IRQF_TIMER, ttcce->ce.name, ttcce);
449         if (WARN_ON(err)) {
450                 kfree(ttcce);
451                 return;
452         }
453
454         clockevents_config_and_register(&ttcce->ce,
455                         ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
456 }
457
458 /**
459  * ttc_timer_init - Initialize the timer
460  *
461  * Initializes the timer hardware and register the clock source and clock event
462  * timers with Linux kernal timer framework
463  */
464 static void __init ttc_timer_init(struct device_node *timer)
465 {
466         unsigned int irq;
467         void __iomem *timer_baseaddr;
468         struct clk *clk_cs, *clk_ce;
469         static int initialized;
470         int clksel;
471         u32 timer_width = 16;
472
473         if (initialized)
474                 return;
475
476         initialized = 1;
477
478         /*
479          * Get the 1st Triple Timer Counter (TTC) block from the device tree
480          * and use it. Note that the event timer uses the interrupt and it's the
481          * 2nd TTC hence the irq_of_parse_and_map(,1)
482          */
483         timer_baseaddr = of_iomap(timer, 0);
484         if (!timer_baseaddr) {
485                 pr_err("ERROR: invalid timer base address\n");
486                 BUG();
487         }
488
489         irq = irq_of_parse_and_map(timer, 1);
490         if (irq <= 0) {
491                 pr_err("ERROR: invalid interrupt number\n");
492                 BUG();
493         }
494
495         of_property_read_u32(timer, "timer-width", &timer_width);
496
497         clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
498         clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
499         clk_cs = of_clk_get(timer, clksel);
500         if (IS_ERR(clk_cs)) {
501                 pr_err("ERROR: timer input clock not found\n");
502                 BUG();
503         }
504
505         clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
506         clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
507         clk_ce = of_clk_get(timer, clksel);
508         if (IS_ERR(clk_ce)) {
509                 pr_err("ERROR: timer input clock not found\n");
510                 BUG();
511         }
512
513         ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
514         ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
515
516         pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
517 }
518
519 CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);