]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/clocksource/qcom-timer.c
Merge tag 'media/v4.2-3' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[karo-tx-linux.git] / drivers / clocksource / qcom-timer.c
1 /*
2  *
3  * Copyright (C) 2007 Google, Inc.
4  * Copyright (c) 2009-2012,2014, The Linux Foundation. All rights reserved.
5  *
6  * This software is licensed under the terms of the GNU General Public
7  * License version 2, as published by the Free Software Foundation, and
8  * may be copied, distributed, and modified under those terms.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16
17 #include <linux/clocksource.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/sched_clock.h>
28
29 #include <asm/delay.h>
30
31 #define TIMER_MATCH_VAL                 0x0000
32 #define TIMER_COUNT_VAL                 0x0004
33 #define TIMER_ENABLE                    0x0008
34 #define TIMER_ENABLE_CLR_ON_MATCH_EN    BIT(1)
35 #define TIMER_ENABLE_EN                 BIT(0)
36 #define TIMER_CLEAR                     0x000C
37 #define DGT_CLK_CTL                     0x10
38 #define DGT_CLK_CTL_DIV_4               0x3
39 #define TIMER_STS_GPT0_CLR_PEND         BIT(10)
40
41 #define GPT_HZ 32768
42
43 static void __iomem *event_base;
44 static void __iomem *sts_base;
45
46 static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
47 {
48         struct clock_event_device *evt = dev_id;
49         /* Stop the timer tick */
50         if (evt->mode == CLOCK_EVT_MODE_ONESHOT) {
51                 u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
52                 ctrl &= ~TIMER_ENABLE_EN;
53                 writel_relaxed(ctrl, event_base + TIMER_ENABLE);
54         }
55         evt->event_handler(evt);
56         return IRQ_HANDLED;
57 }
58
59 static int msm_timer_set_next_event(unsigned long cycles,
60                                     struct clock_event_device *evt)
61 {
62         u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
63
64         ctrl &= ~TIMER_ENABLE_EN;
65         writel_relaxed(ctrl, event_base + TIMER_ENABLE);
66
67         writel_relaxed(ctrl, event_base + TIMER_CLEAR);
68         writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
69
70         if (sts_base)
71                 while (readl_relaxed(sts_base) & TIMER_STS_GPT0_CLR_PEND)
72                         cpu_relax();
73
74         writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
75         return 0;
76 }
77
78 static void msm_timer_set_mode(enum clock_event_mode mode,
79                               struct clock_event_device *evt)
80 {
81         u32 ctrl;
82
83         ctrl = readl_relaxed(event_base + TIMER_ENABLE);
84         ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
85
86         switch (mode) {
87         case CLOCK_EVT_MODE_RESUME:
88         case CLOCK_EVT_MODE_PERIODIC:
89                 break;
90         case CLOCK_EVT_MODE_ONESHOT:
91                 /* Timer is enabled in set_next_event */
92                 break;
93         case CLOCK_EVT_MODE_UNUSED:
94         case CLOCK_EVT_MODE_SHUTDOWN:
95                 break;
96         }
97         writel_relaxed(ctrl, event_base + TIMER_ENABLE);
98 }
99
100 static struct clock_event_device __percpu *msm_evt;
101
102 static void __iomem *source_base;
103
104 static notrace cycle_t msm_read_timer_count(struct clocksource *cs)
105 {
106         return readl_relaxed(source_base + TIMER_COUNT_VAL);
107 }
108
109 static struct clocksource msm_clocksource = {
110         .name   = "dg_timer",
111         .rating = 300,
112         .read   = msm_read_timer_count,
113         .mask   = CLOCKSOURCE_MASK(32),
114         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
115 };
116
117 static int msm_timer_irq;
118 static int msm_timer_has_ppi;
119
120 static int msm_local_timer_setup(struct clock_event_device *evt)
121 {
122         int cpu = smp_processor_id();
123         int err;
124
125         evt->irq = msm_timer_irq;
126         evt->name = "msm_timer";
127         evt->features = CLOCK_EVT_FEAT_ONESHOT;
128         evt->rating = 200;
129         evt->set_mode = msm_timer_set_mode;
130         evt->set_next_event = msm_timer_set_next_event;
131         evt->cpumask = cpumask_of(cpu);
132
133         clockevents_config_and_register(evt, GPT_HZ, 4, 0xffffffff);
134
135         if (msm_timer_has_ppi) {
136                 enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
137         } else {
138                 err = request_irq(evt->irq, msm_timer_interrupt,
139                                 IRQF_TIMER | IRQF_NOBALANCING |
140                                 IRQF_TRIGGER_RISING, "gp_timer", evt);
141                 if (err)
142                         pr_err("request_irq failed\n");
143         }
144
145         return 0;
146 }
147
148 static void msm_local_timer_stop(struct clock_event_device *evt)
149 {
150         evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
151         disable_percpu_irq(evt->irq);
152 }
153
154 static int msm_timer_cpu_notify(struct notifier_block *self,
155                                            unsigned long action, void *hcpu)
156 {
157         /*
158          * Grab cpu pointer in each case to avoid spurious
159          * preemptible warnings
160          */
161         switch (action & ~CPU_TASKS_FROZEN) {
162         case CPU_STARTING:
163                 msm_local_timer_setup(this_cpu_ptr(msm_evt));
164                 break;
165         case CPU_DYING:
166                 msm_local_timer_stop(this_cpu_ptr(msm_evt));
167                 break;
168         }
169
170         return NOTIFY_OK;
171 }
172
173 static struct notifier_block msm_timer_cpu_nb = {
174         .notifier_call = msm_timer_cpu_notify,
175 };
176
177 static u64 notrace msm_sched_clock_read(void)
178 {
179         return msm_clocksource.read(&msm_clocksource);
180 }
181
182 static unsigned long msm_read_current_timer(void)
183 {
184         return msm_clocksource.read(&msm_clocksource);
185 }
186
187 static struct delay_timer msm_delay_timer = {
188         .read_current_timer = msm_read_current_timer,
189 };
190
191 static void __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
192                                   bool percpu)
193 {
194         struct clocksource *cs = &msm_clocksource;
195         int res = 0;
196
197         msm_timer_irq = irq;
198         msm_timer_has_ppi = percpu;
199
200         msm_evt = alloc_percpu(struct clock_event_device);
201         if (!msm_evt) {
202                 pr_err("memory allocation failed for clockevents\n");
203                 goto err;
204         }
205
206         if (percpu)
207                 res = request_percpu_irq(irq, msm_timer_interrupt,
208                                          "gp_timer", msm_evt);
209
210         if (res) {
211                 pr_err("request_percpu_irq failed\n");
212         } else {
213                 res = register_cpu_notifier(&msm_timer_cpu_nb);
214                 if (res) {
215                         free_percpu_irq(irq, msm_evt);
216                         goto err;
217                 }
218
219                 /* Immediately configure the timer on the boot CPU */
220                 msm_local_timer_setup(raw_cpu_ptr(msm_evt));
221         }
222
223 err:
224         writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
225         res = clocksource_register_hz(cs, dgt_hz);
226         if (res)
227                 pr_err("clocksource_register failed\n");
228         sched_clock_register(msm_sched_clock_read, sched_bits, dgt_hz);
229         msm_delay_timer.freq = dgt_hz;
230         register_current_timer_delay(&msm_delay_timer);
231 }
232
233 static void __init msm_dt_timer_init(struct device_node *np)
234 {
235         u32 freq;
236         int irq;
237         struct resource res;
238         u32 percpu_offset;
239         void __iomem *base;
240         void __iomem *cpu0_base;
241
242         base = of_iomap(np, 0);
243         if (!base) {
244                 pr_err("Failed to map event base\n");
245                 return;
246         }
247
248         /* We use GPT0 for the clockevent */
249         irq = irq_of_parse_and_map(np, 1);
250         if (irq <= 0) {
251                 pr_err("Can't get irq\n");
252                 return;
253         }
254
255         /* We use CPU0's DGT for the clocksource */
256         if (of_property_read_u32(np, "cpu-offset", &percpu_offset))
257                 percpu_offset = 0;
258
259         if (of_address_to_resource(np, 0, &res)) {
260                 pr_err("Failed to parse DGT resource\n");
261                 return;
262         }
263
264         cpu0_base = ioremap(res.start + percpu_offset, resource_size(&res));
265         if (!cpu0_base) {
266                 pr_err("Failed to map source base\n");
267                 return;
268         }
269
270         if (of_property_read_u32(np, "clock-frequency", &freq)) {
271                 pr_err("Unknown frequency\n");
272                 return;
273         }
274
275         event_base = base + 0x4;
276         sts_base = base + 0x88;
277         source_base = cpu0_base + 0x24;
278         freq /= 4;
279         writel_relaxed(DGT_CLK_CTL_DIV_4, source_base + DGT_CLK_CTL);
280
281         msm_timer_init(freq, 32, irq, !!percpu_offset);
282 }
283 CLOCKSOURCE_OF_DECLARE(kpss_timer, "qcom,kpss-timer", msm_dt_timer_init);
284 CLOCKSOURCE_OF_DECLARE(scss_timer, "qcom,scss-timer", msm_dt_timer_init);