]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/cpufreq-dt.c
Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / cpufreq / cpufreq-dt.c
1 /*
2  * Copyright (C) 2012 Freescale Semiconductor, Inc.
3  *
4  * Copyright (C) 2014 Linaro.
5  * Viresh Kumar <viresh.kumar@linaro.org>
6  *
7  * The OPP code in function set_target() is reused from
8  * drivers/cpufreq/omap-cpufreq.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14
15 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
16
17 #include <linux/clk.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpufreq-dt.h>
22 #include <linux/cpumask.h>
23 #include <linux/err.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/pm_opp.h>
27 #include <linux/platform_device.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <linux/thermal.h>
31
32 struct private_data {
33         struct device *cpu_dev;
34         struct regulator *cpu_reg;
35         struct thermal_cooling_device *cdev;
36         unsigned int voltage_tolerance; /* in percentage */
37 };
38
39 static int set_target(struct cpufreq_policy *policy, unsigned int index)
40 {
41         struct dev_pm_opp *opp;
42         struct cpufreq_frequency_table *freq_table = policy->freq_table;
43         struct clk *cpu_clk = policy->clk;
44         struct private_data *priv = policy->driver_data;
45         struct device *cpu_dev = priv->cpu_dev;
46         struct regulator *cpu_reg = priv->cpu_reg;
47         unsigned long volt = 0, volt_old = 0, tol = 0;
48         unsigned int old_freq, new_freq;
49         long freq_Hz, freq_exact;
50         int ret;
51
52         freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
53         if (freq_Hz <= 0)
54                 freq_Hz = freq_table[index].frequency * 1000;
55
56         freq_exact = freq_Hz;
57         new_freq = freq_Hz / 1000;
58         old_freq = clk_get_rate(cpu_clk) / 1000;
59
60         if (!IS_ERR(cpu_reg)) {
61                 rcu_read_lock();
62                 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
63                 if (IS_ERR(opp)) {
64                         rcu_read_unlock();
65                         dev_err(cpu_dev, "failed to find OPP for %ld\n",
66                                 freq_Hz);
67                         return PTR_ERR(opp);
68                 }
69                 volt = dev_pm_opp_get_voltage(opp);
70                 rcu_read_unlock();
71                 tol = volt * priv->voltage_tolerance / 100;
72                 volt_old = regulator_get_voltage(cpu_reg);
73         }
74
75         dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
76                 old_freq / 1000, volt_old ? volt_old / 1000 : -1,
77                 new_freq / 1000, volt ? volt / 1000 : -1);
78
79         /* scaling up?  scale voltage before frequency */
80         if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
81                 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
82                 if (ret) {
83                         dev_err(cpu_dev, "failed to scale voltage up: %d\n",
84                                 ret);
85                         return ret;
86                 }
87         }
88
89         ret = clk_set_rate(cpu_clk, freq_exact);
90         if (ret) {
91                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
92                 if (!IS_ERR(cpu_reg))
93                         regulator_set_voltage_tol(cpu_reg, volt_old, tol);
94                 return ret;
95         }
96
97         /* scaling down?  scale voltage after frequency */
98         if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
99                 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
100                 if (ret) {
101                         dev_err(cpu_dev, "failed to scale voltage down: %d\n",
102                                 ret);
103                         clk_set_rate(cpu_clk, old_freq * 1000);
104                 }
105         }
106
107         return ret;
108 }
109
110 static int allocate_resources(int cpu, struct device **cdev,
111                               struct regulator **creg, struct clk **cclk)
112 {
113         struct device *cpu_dev;
114         struct regulator *cpu_reg;
115         struct clk *cpu_clk;
116         int ret = 0;
117         char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
118
119         cpu_dev = get_cpu_device(cpu);
120         if (!cpu_dev) {
121                 pr_err("failed to get cpu%d device\n", cpu);
122                 return -ENODEV;
123         }
124
125         /* Try "cpu0" for older DTs */
126         if (!cpu)
127                 reg = reg_cpu0;
128         else
129                 reg = reg_cpu;
130
131 try_again:
132         cpu_reg = regulator_get_optional(cpu_dev, reg);
133         if (IS_ERR(cpu_reg)) {
134                 /*
135                  * If cpu's regulator supply node is present, but regulator is
136                  * not yet registered, we should try defering probe.
137                  */
138                 if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
139                         dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
140                                 cpu);
141                         return -EPROBE_DEFER;
142                 }
143
144                 /* Try with "cpu-supply" */
145                 if (reg == reg_cpu0) {
146                         reg = reg_cpu;
147                         goto try_again;
148                 }
149
150                 dev_dbg(cpu_dev, "no regulator for cpu%d: %ld\n",
151                         cpu, PTR_ERR(cpu_reg));
152         }
153
154         cpu_clk = clk_get(cpu_dev, NULL);
155         if (IS_ERR(cpu_clk)) {
156                 /* put regulator */
157                 if (!IS_ERR(cpu_reg))
158                         regulator_put(cpu_reg);
159
160                 ret = PTR_ERR(cpu_clk);
161
162                 /*
163                  * If cpu's clk node is present, but clock is not yet
164                  * registered, we should try defering probe.
165                  */
166                 if (ret == -EPROBE_DEFER)
167                         dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
168                 else
169                         dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", ret,
170                                 cpu);
171         } else {
172                 *cdev = cpu_dev;
173                 *creg = cpu_reg;
174                 *cclk = cpu_clk;
175         }
176
177         return ret;
178 }
179
180 static int cpufreq_init(struct cpufreq_policy *policy)
181 {
182         struct cpufreq_dt_platform_data *pd;
183         struct cpufreq_frequency_table *freq_table;
184         struct thermal_cooling_device *cdev;
185         struct device_node *np;
186         struct private_data *priv;
187         struct device *cpu_dev;
188         struct regulator *cpu_reg;
189         struct clk *cpu_clk;
190         unsigned int transition_latency;
191         int ret;
192
193         ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
194         if (ret) {
195                 pr_err("%s: Failed to allocate resources\n: %d", __func__, ret);
196                 return ret;
197         }
198
199         np = of_node_get(cpu_dev->of_node);
200         if (!np) {
201                 dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
202                 ret = -ENOENT;
203                 goto out_put_reg_clk;
204         }
205
206         /* OPPs might be populated at runtime, don't check for error here */
207         of_init_opp_table(cpu_dev);
208
209         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
210         if (ret) {
211                 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
212                 goto out_put_node;
213         }
214
215         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
216         if (!priv) {
217                 ret = -ENOMEM;
218                 goto out_free_table;
219         }
220
221         of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
222
223         if (of_property_read_u32(np, "clock-latency", &transition_latency))
224                 transition_latency = CPUFREQ_ETERNAL;
225
226         if (!IS_ERR(cpu_reg)) {
227                 struct dev_pm_opp *opp;
228                 unsigned long min_uV, max_uV;
229                 int i;
230
231                 /*
232                  * OPP is maintained in order of increasing frequency, and
233                  * freq_table initialised from OPP is therefore sorted in the
234                  * same order.
235                  */
236                 for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
237                         ;
238                 rcu_read_lock();
239                 opp = dev_pm_opp_find_freq_exact(cpu_dev,
240                                 freq_table[0].frequency * 1000, true);
241                 min_uV = dev_pm_opp_get_voltage(opp);
242                 opp = dev_pm_opp_find_freq_exact(cpu_dev,
243                                 freq_table[i-1].frequency * 1000, true);
244                 max_uV = dev_pm_opp_get_voltage(opp);
245                 rcu_read_unlock();
246                 ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
247                 if (ret > 0)
248                         transition_latency += ret * 1000;
249         }
250
251         /*
252          * For now, just loading the cooling device;
253          * thermal DT code takes care of matching them.
254          */
255         if (of_find_property(np, "#cooling-cells", NULL)) {
256                 cdev = of_cpufreq_cooling_register(np, cpu_present_mask);
257                 if (IS_ERR(cdev))
258                         dev_err(cpu_dev,
259                                 "running cpufreq without cooling device: %ld\n",
260                                 PTR_ERR(cdev));
261                 else
262                         priv->cdev = cdev;
263         }
264
265         priv->cpu_dev = cpu_dev;
266         priv->cpu_reg = cpu_reg;
267         policy->driver_data = priv;
268
269         policy->clk = cpu_clk;
270         ret = cpufreq_table_validate_and_show(policy, freq_table);
271         if (ret) {
272                 dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
273                         ret);
274                 goto out_cooling_unregister;
275         }
276
277         policy->cpuinfo.transition_latency = transition_latency;
278
279         pd = cpufreq_get_driver_data();
280         if (pd && !pd->independent_clocks)
281                 cpumask_setall(policy->cpus);
282
283         of_node_put(np);
284
285         return 0;
286
287 out_cooling_unregister:
288         cpufreq_cooling_unregister(priv->cdev);
289         kfree(priv);
290 out_free_table:
291         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
292 out_put_node:
293         of_node_put(np);
294 out_put_reg_clk:
295         clk_put(cpu_clk);
296         if (!IS_ERR(cpu_reg))
297                 regulator_put(cpu_reg);
298
299         return ret;
300 }
301
302 static int cpufreq_exit(struct cpufreq_policy *policy)
303 {
304         struct private_data *priv = policy->driver_data;
305
306         cpufreq_cooling_unregister(priv->cdev);
307         dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
308         clk_put(policy->clk);
309         if (!IS_ERR(priv->cpu_reg))
310                 regulator_put(priv->cpu_reg);
311         kfree(priv);
312
313         return 0;
314 }
315
316 static struct cpufreq_driver dt_cpufreq_driver = {
317         .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
318         .verify = cpufreq_generic_frequency_table_verify,
319         .target_index = set_target,
320         .get = cpufreq_generic_get,
321         .init = cpufreq_init,
322         .exit = cpufreq_exit,
323         .name = "cpufreq-dt",
324         .attr = cpufreq_generic_attr,
325 };
326
327 static int dt_cpufreq_probe(struct platform_device *pdev)
328 {
329         struct device *cpu_dev;
330         struct regulator *cpu_reg;
331         struct clk *cpu_clk;
332         int ret;
333
334         /*
335          * All per-cluster (CPUs sharing clock/voltages) initialization is done
336          * from ->init(). In probe(), we just need to make sure that clk and
337          * regulators are available. Else defer probe and retry.
338          *
339          * FIXME: Is checking this only for CPU0 sufficient ?
340          */
341         ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
342         if (ret)
343                 return ret;
344
345         clk_put(cpu_clk);
346         if (!IS_ERR(cpu_reg))
347                 regulator_put(cpu_reg);
348
349         dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);
350
351         ret = cpufreq_register_driver(&dt_cpufreq_driver);
352         if (ret)
353                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
354
355         return ret;
356 }
357
358 static int dt_cpufreq_remove(struct platform_device *pdev)
359 {
360         cpufreq_unregister_driver(&dt_cpufreq_driver);
361         return 0;
362 }
363
364 static struct platform_driver dt_cpufreq_platdrv = {
365         .driver = {
366                 .name   = "cpufreq-dt",
367                 .owner  = THIS_MODULE,
368         },
369         .probe          = dt_cpufreq_probe,
370         .remove         = dt_cpufreq_remove,
371 };
372 module_platform_driver(dt_cpufreq_platdrv);
373
374 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
375 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
376 MODULE_DESCRIPTION("Generic cpufreq driver");
377 MODULE_LICENSE("GPL");