]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/cpufreq_conservative.c
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/cpufreq.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/kobject.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25
26 #include "cpufreq_governor.h"
27
28 /* Conservative governor macors */
29 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
30 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
31 #define DEF_SAMPLING_DOWN_FACTOR                (1)
32 #define MAX_SAMPLING_DOWN_FACTOR                (10)
33
34 static struct dbs_data cs_dbs_data;
35 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
36
37 static struct cs_dbs_tuners cs_tuners = {
38         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
39         .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
40         .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
41         .ignore_nice = 0,
42         .freq_step = 5,
43 };
44
45 /*
46  * Every sampling_rate, we check, if current idle time is less than 20%
47  * (default), then we try to increase frequency Every sampling_rate *
48  * sampling_down_factor, we check, if current idle time is more than 80%, then
49  * we try to decrease frequency
50  *
51  * Any frequency increase takes it to the maximum frequency. Frequency reduction
52  * happens at minimum steps of 5% (default) of maximum frequency
53  */
54 static void cs_check_cpu(int cpu, unsigned int load)
55 {
56         struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
57         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
58         unsigned int freq_target;
59
60         /*
61          * break out if we 'cannot' reduce the speed as the user might
62          * want freq_step to be zero
63          */
64         if (cs_tuners.freq_step == 0)
65                 return;
66
67         /* Check for frequency increase */
68         if (load > cs_tuners.up_threshold) {
69                 dbs_info->down_skip = 0;
70
71                 /* if we are already at full speed then break out early */
72                 if (dbs_info->requested_freq == policy->max)
73                         return;
74
75                 freq_target = (cs_tuners.freq_step * policy->max) / 100;
76
77                 /* max freq cannot be less than 100. But who knows.... */
78                 if (unlikely(freq_target == 0))
79                         freq_target = 5;
80
81                 dbs_info->requested_freq += freq_target;
82                 if (dbs_info->requested_freq > policy->max)
83                         dbs_info->requested_freq = policy->max;
84
85                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
86                         CPUFREQ_RELATION_H);
87                 return;
88         }
89
90         /*
91          * The optimal frequency is the frequency that is the lowest that can
92          * support the current CPU usage without triggering the up policy. To be
93          * safe, we focus 10 points under the threshold.
94          */
95         if (load < (cs_tuners.down_threshold - 10)) {
96                 freq_target = (cs_tuners.freq_step * policy->max) / 100;
97
98                 dbs_info->requested_freq -= freq_target;
99                 if (dbs_info->requested_freq < policy->min)
100                         dbs_info->requested_freq = policy->min;
101
102                 /*
103                  * if we cannot reduce the frequency anymore, break out early
104                  */
105                 if (policy->cur == policy->min)
106                         return;
107
108                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
109                                 CPUFREQ_RELATION_H);
110                 return;
111         }
112 }
113
114 static void cs_dbs_timer(struct work_struct *work)
115 {
116         struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
117                         struct cs_cpu_dbs_info_s, cdbs.work.work);
118         unsigned int cpu = dbs_info->cdbs.cpu;
119         int delay = delay_for_sampling_rate(cs_tuners.sampling_rate);
120
121         mutex_lock(&dbs_info->cdbs.timer_mutex);
122
123         dbs_check_cpu(&cs_dbs_data, cpu);
124
125         schedule_delayed_work_on(cpu, &dbs_info->cdbs.work, delay);
126         mutex_unlock(&dbs_info->cdbs.timer_mutex);
127 }
128
129 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
130                 void *data)
131 {
132         struct cpufreq_freqs *freq = data;
133         struct cs_cpu_dbs_info_s *dbs_info =
134                                         &per_cpu(cs_cpu_dbs_info, freq->cpu);
135         struct cpufreq_policy *policy;
136
137         if (!dbs_info->enable)
138                 return 0;
139
140         policy = dbs_info->cdbs.cur_policy;
141
142         /*
143          * we only care if our internally tracked freq moves outside the 'valid'
144          * ranges of freqency available to us otherwise we do not change it
145         */
146         if (dbs_info->requested_freq > policy->max
147                         || dbs_info->requested_freq < policy->min)
148                 dbs_info->requested_freq = freq->new;
149
150         return 0;
151 }
152
153 /************************** sysfs interface ************************/
154 static ssize_t show_sampling_rate_min(struct kobject *kobj,
155                                       struct attribute *attr, char *buf)
156 {
157         return sprintf(buf, "%u\n", cs_dbs_data.min_sampling_rate);
158 }
159
160 static ssize_t store_sampling_down_factor(struct kobject *a,
161                                           struct attribute *b,
162                                           const char *buf, size_t count)
163 {
164         unsigned int input;
165         int ret;
166         ret = sscanf(buf, "%u", &input);
167
168         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
169                 return -EINVAL;
170
171         cs_tuners.sampling_down_factor = input;
172         return count;
173 }
174
175 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
176                                    const char *buf, size_t count)
177 {
178         unsigned int input;
179         int ret;
180         ret = sscanf(buf, "%u", &input);
181
182         if (ret != 1)
183                 return -EINVAL;
184
185         cs_tuners.sampling_rate = max(input, cs_dbs_data.min_sampling_rate);
186         return count;
187 }
188
189 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
190                                   const char *buf, size_t count)
191 {
192         unsigned int input;
193         int ret;
194         ret = sscanf(buf, "%u", &input);
195
196         if (ret != 1 || input > 100 || input <= cs_tuners.down_threshold)
197                 return -EINVAL;
198
199         cs_tuners.up_threshold = input;
200         return count;
201 }
202
203 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
204                                     const char *buf, size_t count)
205 {
206         unsigned int input;
207         int ret;
208         ret = sscanf(buf, "%u", &input);
209
210         /* cannot be lower than 11 otherwise freq will not fall */
211         if (ret != 1 || input < 11 || input > 100 ||
212                         input >= cs_tuners.up_threshold)
213                 return -EINVAL;
214
215         cs_tuners.down_threshold = input;
216         return count;
217 }
218
219 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
220                                       const char *buf, size_t count)
221 {
222         unsigned int input, j;
223         int ret;
224
225         ret = sscanf(buf, "%u", &input);
226         if (ret != 1)
227                 return -EINVAL;
228
229         if (input > 1)
230                 input = 1;
231
232         if (input == cs_tuners.ignore_nice) /* nothing to do */
233                 return count;
234
235         cs_tuners.ignore_nice = input;
236
237         /* we need to re-evaluate prev_cpu_idle */
238         for_each_online_cpu(j) {
239                 struct cs_cpu_dbs_info_s *dbs_info;
240                 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
241                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
242                                                 &dbs_info->cdbs.prev_cpu_wall);
243                 if (cs_tuners.ignore_nice)
244                         dbs_info->cdbs.prev_cpu_nice =
245                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
246         }
247         return count;
248 }
249
250 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
251                                const char *buf, size_t count)
252 {
253         unsigned int input;
254         int ret;
255         ret = sscanf(buf, "%u", &input);
256
257         if (ret != 1)
258                 return -EINVAL;
259
260         if (input > 100)
261                 input = 100;
262
263         /*
264          * no need to test here if freq_step is zero as the user might actually
265          * want this, they would be crazy though :)
266          */
267         cs_tuners.freq_step = input;
268         return count;
269 }
270
271 show_one(cs, sampling_rate, sampling_rate);
272 show_one(cs, sampling_down_factor, sampling_down_factor);
273 show_one(cs, up_threshold, up_threshold);
274 show_one(cs, down_threshold, down_threshold);
275 show_one(cs, ignore_nice_load, ignore_nice);
276 show_one(cs, freq_step, freq_step);
277
278 define_one_global_rw(sampling_rate);
279 define_one_global_rw(sampling_down_factor);
280 define_one_global_rw(up_threshold);
281 define_one_global_rw(down_threshold);
282 define_one_global_rw(ignore_nice_load);
283 define_one_global_rw(freq_step);
284 define_one_global_ro(sampling_rate_min);
285
286 static struct attribute *dbs_attributes[] = {
287         &sampling_rate_min.attr,
288         &sampling_rate.attr,
289         &sampling_down_factor.attr,
290         &up_threshold.attr,
291         &down_threshold.attr,
292         &ignore_nice_load.attr,
293         &freq_step.attr,
294         NULL
295 };
296
297 static struct attribute_group cs_attr_group = {
298         .attrs = dbs_attributes,
299         .name = "conservative",
300 };
301
302 /************************** sysfs end ************************/
303
304 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
305
306 static struct notifier_block cs_cpufreq_notifier_block = {
307         .notifier_call = dbs_cpufreq_notifier,
308 };
309
310 static struct cs_ops cs_ops = {
311         .notifier_block = &cs_cpufreq_notifier_block,
312 };
313
314 static struct dbs_data cs_dbs_data = {
315         .governor = GOV_CONSERVATIVE,
316         .attr_group = &cs_attr_group,
317         .tuners = &cs_tuners,
318         .get_cpu_cdbs = get_cpu_cdbs,
319         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
320         .gov_dbs_timer = cs_dbs_timer,
321         .gov_check_cpu = cs_check_cpu,
322         .gov_ops = &cs_ops,
323 };
324
325 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
326                                    unsigned int event)
327 {
328         return cpufreq_governor_dbs(&cs_dbs_data, policy, event);
329 }
330
331 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
332 static
333 #endif
334 struct cpufreq_governor cpufreq_gov_conservative = {
335         .name                   = "conservative",
336         .governor               = cs_cpufreq_governor_dbs,
337         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
338         .owner                  = THIS_MODULE,
339 };
340
341 static int __init cpufreq_gov_dbs_init(void)
342 {
343         mutex_init(&cs_dbs_data.mutex);
344         return cpufreq_register_governor(&cpufreq_gov_conservative);
345 }
346
347 static void __exit cpufreq_gov_dbs_exit(void)
348 {
349         cpufreq_unregister_governor(&cpufreq_gov_conservative);
350 }
351
352 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
353 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
354                 "Low Latency Frequency Transition capable processors "
355                 "optimised for use in a battery environment");
356 MODULE_LICENSE("GPL");
357
358 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
359 fs_initcall(cpufreq_gov_dbs_init);
360 #else
361 module_init(cpufreq_gov_dbs_init);
362 #endif
363 module_exit(cpufreq_gov_dbs_exit);