]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/cpufreq_conservative.c
cpufreq: Move common part from governors to separate file, v2
[karo-tx-linux.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
26
27 /*
28  * dbs is used in this file as a shortform for demandbased switching
29  * It helps to keep variable names smaller, simpler
30  */
31
32 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
34
35 /*
36  * The polling frequency of this governor depends on the capability of
37  * the processor. Default polling frequency is 1000 times the transition
38  * latency of the processor. The governor will work on any processor with
39  * transition latency <= 10mS, using appropriate sampling
40  * rate.
41  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42  * this governor will not work.
43  * All times here are in uS.
44  */
45 #define MIN_SAMPLING_RATE_RATIO                 (2)
46
47 static unsigned int min_sampling_rate;
48
49 #define LATENCY_MULTIPLIER                      (1000)
50 #define MIN_LATENCY_MULTIPLIER                  (100)
51 #define DEF_SAMPLING_DOWN_FACTOR                (1)
52 #define MAX_SAMPLING_DOWN_FACTOR                (10)
53 #define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
54
55 static void do_dbs_timer(struct work_struct *work);
56
57 struct cpu_dbs_info_s {
58         cputime64_t prev_cpu_idle;
59         cputime64_t prev_cpu_wall;
60         cputime64_t prev_cpu_nice;
61         struct cpufreq_policy *cur_policy;
62         struct delayed_work work;
63         unsigned int down_skip;
64         unsigned int requested_freq;
65         int cpu;
66         unsigned int enable:1;
67         /*
68          * percpu mutex that serializes governor limit change with
69          * do_dbs_timer invocation. We do not want do_dbs_timer to run
70          * when user is changing the governor or limits.
71          */
72         struct mutex timer_mutex;
73 };
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75
76 static unsigned int dbs_enable; /* number of CPUs using this policy */
77
78 /*
79  * dbs_mutex protects dbs_enable in governor start/stop.
80  */
81 static DEFINE_MUTEX(dbs_mutex);
82
83 static struct dbs_tuners {
84         unsigned int sampling_rate;
85         unsigned int sampling_down_factor;
86         unsigned int up_threshold;
87         unsigned int down_threshold;
88         unsigned int ignore_nice;
89         unsigned int freq_step;
90 } dbs_tuners_ins = {
91         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92         .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93         .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
94         .ignore_nice = 0,
95         .freq_step = 5,
96 };
97
98 /* keep track of frequency transitions */
99 static int
100 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
101                      void *data)
102 {
103         struct cpufreq_freqs *freq = data;
104         struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
105                                                         freq->cpu);
106
107         struct cpufreq_policy *policy;
108
109         if (!this_dbs_info->enable)
110                 return 0;
111
112         policy = this_dbs_info->cur_policy;
113
114         /*
115          * we only care if our internally tracked freq moves outside
116          * the 'valid' ranges of freqency available to us otherwise
117          * we do not change it
118         */
119         if (this_dbs_info->requested_freq > policy->max
120                         || this_dbs_info->requested_freq < policy->min)
121                 this_dbs_info->requested_freq = freq->new;
122
123         return 0;
124 }
125
126 static struct notifier_block dbs_cpufreq_notifier_block = {
127         .notifier_call = dbs_cpufreq_notifier
128 };
129
130 /************************** sysfs interface ************************/
131 static ssize_t show_sampling_rate_min(struct kobject *kobj,
132                                       struct attribute *attr, char *buf)
133 {
134         return sprintf(buf, "%u\n", min_sampling_rate);
135 }
136
137 define_one_global_ro(sampling_rate_min);
138
139 /* cpufreq_conservative Governor Tunables */
140 #define show_one(file_name, object)                                     \
141 static ssize_t show_##file_name                                         \
142 (struct kobject *kobj, struct attribute *attr, char *buf)               \
143 {                                                                       \
144         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
145 }
146 show_one(sampling_rate, sampling_rate);
147 show_one(sampling_down_factor, sampling_down_factor);
148 show_one(up_threshold, up_threshold);
149 show_one(down_threshold, down_threshold);
150 show_one(ignore_nice_load, ignore_nice);
151 show_one(freq_step, freq_step);
152
153 static ssize_t store_sampling_down_factor(struct kobject *a,
154                                           struct attribute *b,
155                                           const char *buf, size_t count)
156 {
157         unsigned int input;
158         int ret;
159         ret = sscanf(buf, "%u", &input);
160
161         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
162                 return -EINVAL;
163
164         dbs_tuners_ins.sampling_down_factor = input;
165         return count;
166 }
167
168 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
169                                    const char *buf, size_t count)
170 {
171         unsigned int input;
172         int ret;
173         ret = sscanf(buf, "%u", &input);
174
175         if (ret != 1)
176                 return -EINVAL;
177
178         dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
179         return count;
180 }
181
182 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
183                                   const char *buf, size_t count)
184 {
185         unsigned int input;
186         int ret;
187         ret = sscanf(buf, "%u", &input);
188
189         if (ret != 1 || input > 100 ||
190                         input <= dbs_tuners_ins.down_threshold)
191                 return -EINVAL;
192
193         dbs_tuners_ins.up_threshold = input;
194         return count;
195 }
196
197 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
198                                     const char *buf, size_t count)
199 {
200         unsigned int input;
201         int ret;
202         ret = sscanf(buf, "%u", &input);
203
204         /* cannot be lower than 11 otherwise freq will not fall */
205         if (ret != 1 || input < 11 || input > 100 ||
206                         input >= dbs_tuners_ins.up_threshold)
207                 return -EINVAL;
208
209         dbs_tuners_ins.down_threshold = input;
210         return count;
211 }
212
213 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
214                                       const char *buf, size_t count)
215 {
216         unsigned int input;
217         int ret;
218
219         unsigned int j;
220
221         ret = sscanf(buf, "%u", &input);
222         if (ret != 1)
223                 return -EINVAL;
224
225         if (input > 1)
226                 input = 1;
227
228         if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
229                 return count;
230
231         dbs_tuners_ins.ignore_nice = input;
232
233         /* we need to re-evaluate prev_cpu_idle */
234         for_each_online_cpu(j) {
235                 struct cpu_dbs_info_s *dbs_info;
236                 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
237                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
238                                                 &dbs_info->prev_cpu_wall);
239                 if (dbs_tuners_ins.ignore_nice)
240                         dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
241         }
242         return count;
243 }
244
245 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
246                                const char *buf, size_t count)
247 {
248         unsigned int input;
249         int ret;
250         ret = sscanf(buf, "%u", &input);
251
252         if (ret != 1)
253                 return -EINVAL;
254
255         if (input > 100)
256                 input = 100;
257
258         /* no need to test here if freq_step is zero as the user might actually
259          * want this, they would be crazy though :) */
260         dbs_tuners_ins.freq_step = input;
261         return count;
262 }
263
264 define_one_global_rw(sampling_rate);
265 define_one_global_rw(sampling_down_factor);
266 define_one_global_rw(up_threshold);
267 define_one_global_rw(down_threshold);
268 define_one_global_rw(ignore_nice_load);
269 define_one_global_rw(freq_step);
270
271 static struct attribute *dbs_attributes[] = {
272         &sampling_rate_min.attr,
273         &sampling_rate.attr,
274         &sampling_down_factor.attr,
275         &up_threshold.attr,
276         &down_threshold.attr,
277         &ignore_nice_load.attr,
278         &freq_step.attr,
279         NULL
280 };
281
282 static struct attribute_group dbs_attr_group = {
283         .attrs = dbs_attributes,
284         .name = "conservative",
285 };
286
287 /************************** sysfs end ************************/
288
289 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
290 {
291         unsigned int load = 0;
292         unsigned int max_load = 0;
293         unsigned int freq_target;
294
295         struct cpufreq_policy *policy;
296         unsigned int j;
297
298         policy = this_dbs_info->cur_policy;
299
300         /*
301          * Every sampling_rate, we check, if current idle time is less
302          * than 20% (default), then we try to increase frequency
303          * Every sampling_rate*sampling_down_factor, we check, if current
304          * idle time is more than 80%, then we try to decrease frequency
305          *
306          * Any frequency increase takes it to the maximum frequency.
307          * Frequency reduction happens at minimum steps of
308          * 5% (default) of maximum frequency
309          */
310
311         /* Get Absolute Load */
312         for_each_cpu(j, policy->cpus) {
313                 struct cpu_dbs_info_s *j_dbs_info;
314                 cputime64_t cur_wall_time, cur_idle_time;
315                 unsigned int idle_time, wall_time;
316
317                 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
318
319                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
320
321                 wall_time = (unsigned int)
322                         (cur_wall_time - j_dbs_info->prev_cpu_wall);
323                 j_dbs_info->prev_cpu_wall = cur_wall_time;
324
325                 idle_time = (unsigned int)
326                         (cur_idle_time - j_dbs_info->prev_cpu_idle);
327                 j_dbs_info->prev_cpu_idle = cur_idle_time;
328
329                 if (dbs_tuners_ins.ignore_nice) {
330                         u64 cur_nice;
331                         unsigned long cur_nice_jiffies;
332
333                         cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
334                                          j_dbs_info->prev_cpu_nice;
335                         /*
336                          * Assumption: nice time between sampling periods will
337                          * be less than 2^32 jiffies for 32 bit sys
338                          */
339                         cur_nice_jiffies = (unsigned long)
340                                         cputime64_to_jiffies64(cur_nice);
341
342                         j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
343                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
344                 }
345
346                 if (unlikely(!wall_time || wall_time < idle_time))
347                         continue;
348
349                 load = 100 * (wall_time - idle_time) / wall_time;
350
351                 if (load > max_load)
352                         max_load = load;
353         }
354
355         /*
356          * break out if we 'cannot' reduce the speed as the user might
357          * want freq_step to be zero
358          */
359         if (dbs_tuners_ins.freq_step == 0)
360                 return;
361
362         /* Check for frequency increase */
363         if (max_load > dbs_tuners_ins.up_threshold) {
364                 this_dbs_info->down_skip = 0;
365
366                 /* if we are already at full speed then break out early */
367                 if (this_dbs_info->requested_freq == policy->max)
368                         return;
369
370                 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
371
372                 /* max freq cannot be less than 100. But who knows.... */
373                 if (unlikely(freq_target == 0))
374                         freq_target = 5;
375
376                 this_dbs_info->requested_freq += freq_target;
377                 if (this_dbs_info->requested_freq > policy->max)
378                         this_dbs_info->requested_freq = policy->max;
379
380                 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
381                         CPUFREQ_RELATION_H);
382                 return;
383         }
384
385         /*
386          * The optimal frequency is the frequency that is the lowest that
387          * can support the current CPU usage without triggering the up
388          * policy. To be safe, we focus 10 points under the threshold.
389          */
390         if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
391                 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
392
393                 this_dbs_info->requested_freq -= freq_target;
394                 if (this_dbs_info->requested_freq < policy->min)
395                         this_dbs_info->requested_freq = policy->min;
396
397                 /*
398                  * if we cannot reduce the frequency anymore, break out early
399                  */
400                 if (policy->cur == policy->min)
401                         return;
402
403                 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
404                                 CPUFREQ_RELATION_H);
405                 return;
406         }
407 }
408
409 static void do_dbs_timer(struct work_struct *work)
410 {
411         struct cpu_dbs_info_s *dbs_info =
412                 container_of(work, struct cpu_dbs_info_s, work.work);
413         unsigned int cpu = dbs_info->cpu;
414
415         /* We want all CPUs to do sampling nearly on same jiffy */
416         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
417
418         delay -= jiffies % delay;
419
420         mutex_lock(&dbs_info->timer_mutex);
421
422         dbs_check_cpu(dbs_info);
423
424         schedule_delayed_work_on(cpu, &dbs_info->work, delay);
425         mutex_unlock(&dbs_info->timer_mutex);
426 }
427
428 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
429 {
430         /* We want all CPUs to do sampling nearly on same jiffy */
431         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
432         delay -= jiffies % delay;
433
434         dbs_info->enable = 1;
435         INIT_DEFERRABLE_WORK(&dbs_info->work, do_dbs_timer);
436         schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
437 }
438
439 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
440 {
441         dbs_info->enable = 0;
442         cancel_delayed_work_sync(&dbs_info->work);
443 }
444
445 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
446                                    unsigned int event)
447 {
448         unsigned int cpu = policy->cpu;
449         struct cpu_dbs_info_s *this_dbs_info;
450         unsigned int j;
451         int rc;
452
453         this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
454
455         switch (event) {
456         case CPUFREQ_GOV_START:
457                 if ((!cpu_online(cpu)) || (!policy->cur))
458                         return -EINVAL;
459
460                 mutex_lock(&dbs_mutex);
461
462                 for_each_cpu(j, policy->cpus) {
463                         struct cpu_dbs_info_s *j_dbs_info;
464                         j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
465                         j_dbs_info->cur_policy = policy;
466
467                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
468                                                 &j_dbs_info->prev_cpu_wall);
469                         if (dbs_tuners_ins.ignore_nice)
470                                 j_dbs_info->prev_cpu_nice =
471                                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
472                 }
473                 this_dbs_info->cpu = cpu;
474                 this_dbs_info->down_skip = 0;
475                 this_dbs_info->requested_freq = policy->cur;
476
477                 mutex_init(&this_dbs_info->timer_mutex);
478                 dbs_enable++;
479                 /*
480                  * Start the timerschedule work, when this governor
481                  * is used for first time
482                  */
483                 if (dbs_enable == 1) {
484                         unsigned int latency;
485                         /* policy latency is in nS. Convert it to uS first */
486                         latency = policy->cpuinfo.transition_latency / 1000;
487                         if (latency == 0)
488                                 latency = 1;
489
490                         rc = sysfs_create_group(cpufreq_global_kobject,
491                                                 &dbs_attr_group);
492                         if (rc) {
493                                 mutex_unlock(&dbs_mutex);
494                                 return rc;
495                         }
496
497                         /*
498                          * conservative does not implement micro like ondemand
499                          * governor, thus we are bound to jiffes/HZ
500                          */
501                         min_sampling_rate =
502                                 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
503                         /* Bring kernel and HW constraints together */
504                         min_sampling_rate = max(min_sampling_rate,
505                                         MIN_LATENCY_MULTIPLIER * latency);
506                         dbs_tuners_ins.sampling_rate =
507                                 max(min_sampling_rate,
508                                     latency * LATENCY_MULTIPLIER);
509
510                         cpufreq_register_notifier(
511                                         &dbs_cpufreq_notifier_block,
512                                         CPUFREQ_TRANSITION_NOTIFIER);
513                 }
514                 mutex_unlock(&dbs_mutex);
515
516                 dbs_timer_init(this_dbs_info);
517
518                 break;
519
520         case CPUFREQ_GOV_STOP:
521                 dbs_timer_exit(this_dbs_info);
522
523                 mutex_lock(&dbs_mutex);
524                 dbs_enable--;
525                 mutex_destroy(&this_dbs_info->timer_mutex);
526
527                 /*
528                  * Stop the timerschedule work, when this governor
529                  * is used for first time
530                  */
531                 if (dbs_enable == 0)
532                         cpufreq_unregister_notifier(
533                                         &dbs_cpufreq_notifier_block,
534                                         CPUFREQ_TRANSITION_NOTIFIER);
535
536                 mutex_unlock(&dbs_mutex);
537                 if (!dbs_enable)
538                         sysfs_remove_group(cpufreq_global_kobject,
539                                            &dbs_attr_group);
540
541                 break;
542
543         case CPUFREQ_GOV_LIMITS:
544                 mutex_lock(&this_dbs_info->timer_mutex);
545                 if (policy->max < this_dbs_info->cur_policy->cur)
546                         __cpufreq_driver_target(
547                                         this_dbs_info->cur_policy,
548                                         policy->max, CPUFREQ_RELATION_H);
549                 else if (policy->min > this_dbs_info->cur_policy->cur)
550                         __cpufreq_driver_target(
551                                         this_dbs_info->cur_policy,
552                                         policy->min, CPUFREQ_RELATION_L);
553                 dbs_check_cpu(this_dbs_info);
554                 mutex_unlock(&this_dbs_info->timer_mutex);
555
556                 break;
557         }
558         return 0;
559 }
560
561 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
562 static
563 #endif
564 struct cpufreq_governor cpufreq_gov_conservative = {
565         .name                   = "conservative",
566         .governor               = cpufreq_governor_dbs,
567         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
568         .owner                  = THIS_MODULE,
569 };
570
571 static int __init cpufreq_gov_dbs_init(void)
572 {
573         return cpufreq_register_governor(&cpufreq_gov_conservative);
574 }
575
576 static void __exit cpufreq_gov_dbs_exit(void)
577 {
578         cpufreq_unregister_governor(&cpufreq_gov_conservative);
579 }
580
581
582 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
583 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
584                 "Low Latency Frequency Transition capable processors "
585                 "optimised for use in a battery environment");
586 MODULE_LICENSE("GPL");
587
588 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
589 fs_initcall(cpufreq_gov_dbs_init);
590 #else
591 module_init(cpufreq_gov_dbs_init);
592 #endif
593 module_exit(cpufreq_gov_dbs_exit);