]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/imx6q-cpufreq.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livep...
[karo-tx-linux.git] / drivers / cpufreq / imx6q-cpufreq.c
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pm_opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18
19 #define PU_SOC_VOLTAGE_NORMAL   1250000
20 #define PU_SOC_VOLTAGE_HIGH     1275000
21 #define FREQ_1P2_GHZ            1200000000
22
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32
33 /* clk used by i.MX6UL */
34 static struct clk *pll2_bus_clk;
35 static struct clk *secondary_sel_clk;
36
37 static struct device *cpu_dev;
38 static bool free_opp;
39 static struct cpufreq_frequency_table *freq_table;
40 static unsigned int transition_latency;
41
42 static u32 *imx6_soc_volt;
43 static u32 soc_opp_count;
44
45 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
46 {
47         struct dev_pm_opp *opp;
48         unsigned long freq_hz, volt, volt_old;
49         unsigned int old_freq, new_freq;
50         int ret;
51
52         new_freq = freq_table[index].frequency;
53         freq_hz = new_freq * 1000;
54         old_freq = clk_get_rate(arm_clk) / 1000;
55
56         opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
57         if (IS_ERR(opp)) {
58                 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
59                 return PTR_ERR(opp);
60         }
61
62         volt = dev_pm_opp_get_voltage(opp);
63         dev_pm_opp_put(opp);
64
65         volt_old = regulator_get_voltage(arm_reg);
66
67         dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
68                 old_freq / 1000, volt_old / 1000,
69                 new_freq / 1000, volt / 1000);
70
71         /* scaling up?  scale voltage before frequency */
72         if (new_freq > old_freq) {
73                 if (!IS_ERR(pu_reg)) {
74                         ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
75                         if (ret) {
76                                 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
77                                 return ret;
78                         }
79                 }
80                 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
81                 if (ret) {
82                         dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
83                         return ret;
84                 }
85                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
86                 if (ret) {
87                         dev_err(cpu_dev,
88                                 "failed to scale vddarm up: %d\n", ret);
89                         return ret;
90                 }
91         }
92
93         /*
94          * The setpoints are selected per PLL/PDF frequencies, so we need to
95          * reprogram PLL for frequency scaling.  The procedure of reprogramming
96          * PLL1 is as below.
97          * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
98          * flow is slightly different from other i.MX6 OSC.
99          * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
100          *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
101          *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
102          *  - Disable pll2_pfd2_396m_clk
103          */
104         if (of_machine_is_compatible("fsl,imx6ul")) {
105                 /*
106                  * When changing pll1_sw_clk's parent to pll1_sys_clk,
107                  * CPU may run at higher than 528MHz, this will lead to
108                  * the system unstable if the voltage is lower than the
109                  * voltage of 528MHz, so lower the CPU frequency to one
110                  * half before changing CPU frequency.
111                  */
112                 clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
113                 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
114                 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
115                         clk_set_parent(secondary_sel_clk, pll2_bus_clk);
116                 else
117                         clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
118                 clk_set_parent(step_clk, secondary_sel_clk);
119                 clk_set_parent(pll1_sw_clk, step_clk);
120         } else {
121                 clk_set_parent(step_clk, pll2_pfd2_396m_clk);
122                 clk_set_parent(pll1_sw_clk, step_clk);
123                 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
124                         clk_set_rate(pll1_sys_clk, new_freq * 1000);
125                         clk_set_parent(pll1_sw_clk, pll1_sys_clk);
126                 }
127         }
128
129         /* Ensure the arm clock divider is what we expect */
130         ret = clk_set_rate(arm_clk, new_freq * 1000);
131         if (ret) {
132                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
133                 regulator_set_voltage_tol(arm_reg, volt_old, 0);
134                 return ret;
135         }
136
137         /* scaling down?  scale voltage after frequency */
138         if (new_freq < old_freq) {
139                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
140                 if (ret) {
141                         dev_warn(cpu_dev,
142                                  "failed to scale vddarm down: %d\n", ret);
143                         ret = 0;
144                 }
145                 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
146                 if (ret) {
147                         dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
148                         ret = 0;
149                 }
150                 if (!IS_ERR(pu_reg)) {
151                         ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
152                         if (ret) {
153                                 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
154                                 ret = 0;
155                         }
156                 }
157         }
158
159         return 0;
160 }
161
162 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
163 {
164         int ret;
165
166         policy->clk = arm_clk;
167         ret = cpufreq_generic_init(policy, freq_table, transition_latency);
168         policy->suspend_freq = policy->max;
169
170         return ret;
171 }
172
173 static struct cpufreq_driver imx6q_cpufreq_driver = {
174         .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
175         .verify = cpufreq_generic_frequency_table_verify,
176         .target_index = imx6q_set_target,
177         .get = cpufreq_generic_get,
178         .init = imx6q_cpufreq_init,
179         .name = "imx6q-cpufreq",
180         .attr = cpufreq_generic_attr,
181         .suspend = cpufreq_generic_suspend,
182 };
183
184 static int imx6q_cpufreq_probe(struct platform_device *pdev)
185 {
186         struct device_node *np;
187         struct dev_pm_opp *opp;
188         unsigned long min_volt, max_volt;
189         int num, ret;
190         const struct property *prop;
191         const __be32 *val;
192         u32 nr, i, j;
193
194         cpu_dev = get_cpu_device(0);
195         if (!cpu_dev) {
196                 pr_err("failed to get cpu0 device\n");
197                 return -ENODEV;
198         }
199
200         np = of_node_get(cpu_dev->of_node);
201         if (!np) {
202                 dev_err(cpu_dev, "failed to find cpu0 node\n");
203                 return -ENOENT;
204         }
205
206         arm_clk = clk_get(cpu_dev, "arm");
207         pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
208         pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
209         step_clk = clk_get(cpu_dev, "step");
210         pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
211         if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
212             IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
213                 dev_err(cpu_dev, "failed to get clocks\n");
214                 ret = -ENOENT;
215                 goto put_clk;
216         }
217
218         if (of_machine_is_compatible("fsl,imx6ul")) {
219                 pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
220                 secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
221                 if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
222                         dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
223                         ret = -ENOENT;
224                         goto put_clk;
225                 }
226         }
227
228         arm_reg = regulator_get(cpu_dev, "arm");
229         pu_reg = regulator_get_optional(cpu_dev, "pu");
230         soc_reg = regulator_get(cpu_dev, "soc");
231         if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
232                         PTR_ERR(soc_reg) == -EPROBE_DEFER ||
233                         PTR_ERR(pu_reg) == -EPROBE_DEFER) {
234                 ret = -EPROBE_DEFER;
235                 dev_dbg(cpu_dev, "regulators not ready, defer\n");
236                 goto put_reg;
237         }
238         if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
239                 dev_err(cpu_dev, "failed to get regulators\n");
240                 ret = -ENOENT;
241                 goto put_reg;
242         }
243
244         /*
245          * We expect an OPP table supplied by platform.
246          * Just, incase the platform did not supply the OPP
247          * table, it will try to get it.
248          */
249         num = dev_pm_opp_get_opp_count(cpu_dev);
250         if (num < 0) {
251                 ret = dev_pm_opp_of_add_table(cpu_dev);
252                 if (ret < 0) {
253                         dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
254                         goto put_reg;
255                 }
256
257                 /* Because we have added the OPPs here, we must free them */
258                 free_opp = true;
259
260                 num = dev_pm_opp_get_opp_count(cpu_dev);
261                 if (num < 0) {
262                         ret = num;
263                         dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
264                         goto out_free_opp;
265                 }
266         }
267
268         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
269         if (ret) {
270                 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
271                 goto out_free_opp;
272         }
273
274         /* Make imx6_soc_volt array's size same as arm opp number */
275         imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
276         if (imx6_soc_volt == NULL) {
277                 ret = -ENOMEM;
278                 goto free_freq_table;
279         }
280
281         prop = of_find_property(np, "fsl,soc-operating-points", NULL);
282         if (!prop || !prop->value)
283                 goto soc_opp_out;
284
285         /*
286          * Each OPP is a set of tuples consisting of frequency and
287          * voltage like <freq-kHz vol-uV>.
288          */
289         nr = prop->length / sizeof(u32);
290         if (nr % 2 || (nr / 2) < num)
291                 goto soc_opp_out;
292
293         for (j = 0; j < num; j++) {
294                 val = prop->value;
295                 for (i = 0; i < nr / 2; i++) {
296                         unsigned long freq = be32_to_cpup(val++);
297                         unsigned long volt = be32_to_cpup(val++);
298                         if (freq_table[j].frequency == freq) {
299                                 imx6_soc_volt[soc_opp_count++] = volt;
300                                 break;
301                         }
302                 }
303         }
304
305 soc_opp_out:
306         /* use fixed soc opp volt if no valid soc opp info found in dtb */
307         if (soc_opp_count != num) {
308                 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
309                 for (j = 0; j < num; j++)
310                         imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
311                 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
312                         imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
313         }
314
315         if (of_property_read_u32(np, "clock-latency", &transition_latency))
316                 transition_latency = CPUFREQ_ETERNAL;
317
318         /*
319          * Calculate the ramp time for max voltage change in the
320          * VDDSOC and VDDPU regulators.
321          */
322         ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
323         if (ret > 0)
324                 transition_latency += ret * 1000;
325         if (!IS_ERR(pu_reg)) {
326                 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
327                 if (ret > 0)
328                         transition_latency += ret * 1000;
329         }
330
331         /*
332          * OPP is maintained in order of increasing frequency, and
333          * freq_table initialised from OPP is therefore sorted in the
334          * same order.
335          */
336         opp = dev_pm_opp_find_freq_exact(cpu_dev,
337                                   freq_table[0].frequency * 1000, true);
338         min_volt = dev_pm_opp_get_voltage(opp);
339         dev_pm_opp_put(opp);
340         opp = dev_pm_opp_find_freq_exact(cpu_dev,
341                                   freq_table[--num].frequency * 1000, true);
342         max_volt = dev_pm_opp_get_voltage(opp);
343         dev_pm_opp_put(opp);
344
345         ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
346         if (ret > 0)
347                 transition_latency += ret * 1000;
348
349         ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
350         if (ret) {
351                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
352                 goto free_freq_table;
353         }
354
355         of_node_put(np);
356         return 0;
357
358 free_freq_table:
359         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
360 out_free_opp:
361         if (free_opp)
362                 dev_pm_opp_of_remove_table(cpu_dev);
363 put_reg:
364         if (!IS_ERR(arm_reg))
365                 regulator_put(arm_reg);
366         if (!IS_ERR(pu_reg))
367                 regulator_put(pu_reg);
368         if (!IS_ERR(soc_reg))
369                 regulator_put(soc_reg);
370 put_clk:
371         if (!IS_ERR(arm_clk))
372                 clk_put(arm_clk);
373         if (!IS_ERR(pll1_sys_clk))
374                 clk_put(pll1_sys_clk);
375         if (!IS_ERR(pll1_sw_clk))
376                 clk_put(pll1_sw_clk);
377         if (!IS_ERR(step_clk))
378                 clk_put(step_clk);
379         if (!IS_ERR(pll2_pfd2_396m_clk))
380                 clk_put(pll2_pfd2_396m_clk);
381         if (!IS_ERR(pll2_bus_clk))
382                 clk_put(pll2_bus_clk);
383         if (!IS_ERR(secondary_sel_clk))
384                 clk_put(secondary_sel_clk);
385         of_node_put(np);
386         return ret;
387 }
388
389 static int imx6q_cpufreq_remove(struct platform_device *pdev)
390 {
391         cpufreq_unregister_driver(&imx6q_cpufreq_driver);
392         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
393         if (free_opp)
394                 dev_pm_opp_of_remove_table(cpu_dev);
395         regulator_put(arm_reg);
396         if (!IS_ERR(pu_reg))
397                 regulator_put(pu_reg);
398         regulator_put(soc_reg);
399         clk_put(arm_clk);
400         clk_put(pll1_sys_clk);
401         clk_put(pll1_sw_clk);
402         clk_put(step_clk);
403         clk_put(pll2_pfd2_396m_clk);
404         clk_put(pll2_bus_clk);
405         clk_put(secondary_sel_clk);
406
407         return 0;
408 }
409
410 static struct platform_driver imx6q_cpufreq_platdrv = {
411         .driver = {
412                 .name   = "imx6q-cpufreq",
413         },
414         .probe          = imx6q_cpufreq_probe,
415         .remove         = imx6q_cpufreq_remove,
416 };
417 module_platform_driver(imx6q_cpufreq_platdrv);
418
419 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
420 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
421 MODULE_LICENSE("GPL");