]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/intel_pstate.c
netdev: Move octeon/octeon_mgmt driver to cavium directory.
[karo-tx-linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define ATOM_RATIOS             0x66a
38 #define ATOM_VIDS               0x66b
39 #define ATOM_TURBO_RATIOS       0x66c
40 #define ATOM_TURBO_VIDS         0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50
51 static inline int32_t div_fp(s64 x, s64 y)
52 {
53         return div64_s64((int64_t)x << FRAC_BITS, y);
54 }
55
56 static inline int ceiling_fp(int32_t x)
57 {
58         int mask, ret;
59
60         ret = fp_toint(x);
61         mask = (1 << FRAC_BITS) - 1;
62         if (x & mask)
63                 ret += 1;
64         return ret;
65 }
66
67 struct sample {
68         int32_t core_pct_busy;
69         int32_t busy_scaled;
70         u64 aperf;
71         u64 mperf;
72         u64 tsc;
73         int freq;
74         ktime_t time;
75 };
76
77 struct pstate_data {
78         int     current_pstate;
79         int     min_pstate;
80         int     max_pstate;
81         int     max_pstate_physical;
82         int     scaling;
83         int     turbo_pstate;
84 };
85
86 struct vid_data {
87         int min;
88         int max;
89         int turbo;
90         int32_t ratio;
91 };
92
93 struct _pid {
94         int setpoint;
95         int32_t integral;
96         int32_t p_gain;
97         int32_t i_gain;
98         int32_t d_gain;
99         int deadband;
100         int32_t last_err;
101 };
102
103 struct cpudata {
104         int cpu;
105
106         struct timer_list timer;
107
108         struct pstate_data pstate;
109         struct vid_data vid;
110         struct _pid pid;
111
112         ktime_t last_sample_time;
113         u64     prev_aperf;
114         u64     prev_mperf;
115         u64     prev_tsc;
116         u64     prev_cummulative_iowait;
117         struct sample sample;
118 };
119
120 static struct cpudata **all_cpu_data;
121 struct pstate_adjust_policy {
122         int sample_rate_ms;
123         int deadband;
124         int setpoint;
125         int p_gain_pct;
126         int d_gain_pct;
127         int i_gain_pct;
128 };
129
130 struct pstate_funcs {
131         int (*get_max)(void);
132         int (*get_max_physical)(void);
133         int (*get_min)(void);
134         int (*get_turbo)(void);
135         int (*get_scaling)(void);
136         void (*set)(struct cpudata*, int pstate);
137         void (*get_vid)(struct cpudata *);
138         int32_t (*get_target_pstate)(struct cpudata *);
139 };
140
141 struct cpu_defaults {
142         struct pstate_adjust_policy pid_policy;
143         struct pstate_funcs funcs;
144 };
145
146 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
147 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
148
149 static struct pstate_adjust_policy pid_params;
150 static struct pstate_funcs pstate_funcs;
151 static int hwp_active;
152
153 struct perf_limits {
154         int no_turbo;
155         int turbo_disabled;
156         int max_perf_pct;
157         int min_perf_pct;
158         int32_t max_perf;
159         int32_t min_perf;
160         int max_policy_pct;
161         int max_sysfs_pct;
162         int min_policy_pct;
163         int min_sysfs_pct;
164 };
165
166 static struct perf_limits performance_limits = {
167         .no_turbo = 0,
168         .turbo_disabled = 0,
169         .max_perf_pct = 100,
170         .max_perf = int_tofp(1),
171         .min_perf_pct = 100,
172         .min_perf = int_tofp(1),
173         .max_policy_pct = 100,
174         .max_sysfs_pct = 100,
175         .min_policy_pct = 0,
176         .min_sysfs_pct = 0,
177 };
178
179 static struct perf_limits powersave_limits = {
180         .no_turbo = 0,
181         .turbo_disabled = 0,
182         .max_perf_pct = 100,
183         .max_perf = int_tofp(1),
184         .min_perf_pct = 0,
185         .min_perf = 0,
186         .max_policy_pct = 100,
187         .max_sysfs_pct = 100,
188         .min_policy_pct = 0,
189         .min_sysfs_pct = 0,
190 };
191
192 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
193 static struct perf_limits *limits = &performance_limits;
194 #else
195 static struct perf_limits *limits = &powersave_limits;
196 #endif
197
198 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
199                              int deadband, int integral) {
200         pid->setpoint = setpoint;
201         pid->deadband  = deadband;
202         pid->integral  = int_tofp(integral);
203         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
204 }
205
206 static inline void pid_p_gain_set(struct _pid *pid, int percent)
207 {
208         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
209 }
210
211 static inline void pid_i_gain_set(struct _pid *pid, int percent)
212 {
213         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
214 }
215
216 static inline void pid_d_gain_set(struct _pid *pid, int percent)
217 {
218         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
219 }
220
221 static signed int pid_calc(struct _pid *pid, int32_t busy)
222 {
223         signed int result;
224         int32_t pterm, dterm, fp_error;
225         int32_t integral_limit;
226
227         fp_error = int_tofp(pid->setpoint) - busy;
228
229         if (abs(fp_error) <= int_tofp(pid->deadband))
230                 return 0;
231
232         pterm = mul_fp(pid->p_gain, fp_error);
233
234         pid->integral += fp_error;
235
236         /*
237          * We limit the integral here so that it will never
238          * get higher than 30.  This prevents it from becoming
239          * too large an input over long periods of time and allows
240          * it to get factored out sooner.
241          *
242          * The value of 30 was chosen through experimentation.
243          */
244         integral_limit = int_tofp(30);
245         if (pid->integral > integral_limit)
246                 pid->integral = integral_limit;
247         if (pid->integral < -integral_limit)
248                 pid->integral = -integral_limit;
249
250         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
251         pid->last_err = fp_error;
252
253         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
254         result = result + (1 << (FRAC_BITS-1));
255         return (signed int)fp_toint(result);
256 }
257
258 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
259 {
260         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
261         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
262         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
263
264         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
265 }
266
267 static inline void intel_pstate_reset_all_pid(void)
268 {
269         unsigned int cpu;
270
271         for_each_online_cpu(cpu) {
272                 if (all_cpu_data[cpu])
273                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
274         }
275 }
276
277 static inline void update_turbo_state(void)
278 {
279         u64 misc_en;
280         struct cpudata *cpu;
281
282         cpu = all_cpu_data[0];
283         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
284         limits->turbo_disabled =
285                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
286                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
287 }
288
289 static void intel_pstate_hwp_set(void)
290 {
291         int min, hw_min, max, hw_max, cpu, range, adj_range;
292         u64 value, cap;
293
294         rdmsrl(MSR_HWP_CAPABILITIES, cap);
295         hw_min = HWP_LOWEST_PERF(cap);
296         hw_max = HWP_HIGHEST_PERF(cap);
297         range = hw_max - hw_min;
298
299         get_online_cpus();
300
301         for_each_online_cpu(cpu) {
302                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
303                 adj_range = limits->min_perf_pct * range / 100;
304                 min = hw_min + adj_range;
305                 value &= ~HWP_MIN_PERF(~0L);
306                 value |= HWP_MIN_PERF(min);
307
308                 adj_range = limits->max_perf_pct * range / 100;
309                 max = hw_min + adj_range;
310                 if (limits->no_turbo) {
311                         hw_max = HWP_GUARANTEED_PERF(cap);
312                         if (hw_max < max)
313                                 max = hw_max;
314                 }
315
316                 value &= ~HWP_MAX_PERF(~0L);
317                 value |= HWP_MAX_PERF(max);
318                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
319         }
320
321         put_online_cpus();
322 }
323
324 /************************** debugfs begin ************************/
325 static int pid_param_set(void *data, u64 val)
326 {
327         *(u32 *)data = val;
328         intel_pstate_reset_all_pid();
329         return 0;
330 }
331
332 static int pid_param_get(void *data, u64 *val)
333 {
334         *val = *(u32 *)data;
335         return 0;
336 }
337 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
338
339 struct pid_param {
340         char *name;
341         void *value;
342 };
343
344 static struct pid_param pid_files[] = {
345         {"sample_rate_ms", &pid_params.sample_rate_ms},
346         {"d_gain_pct", &pid_params.d_gain_pct},
347         {"i_gain_pct", &pid_params.i_gain_pct},
348         {"deadband", &pid_params.deadband},
349         {"setpoint", &pid_params.setpoint},
350         {"p_gain_pct", &pid_params.p_gain_pct},
351         {NULL, NULL}
352 };
353
354 static void __init intel_pstate_debug_expose_params(void)
355 {
356         struct dentry *debugfs_parent;
357         int i = 0;
358
359         if (hwp_active)
360                 return;
361         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
362         if (IS_ERR_OR_NULL(debugfs_parent))
363                 return;
364         while (pid_files[i].name) {
365                 debugfs_create_file(pid_files[i].name, 0660,
366                                     debugfs_parent, pid_files[i].value,
367                                     &fops_pid_param);
368                 i++;
369         }
370 }
371
372 /************************** debugfs end ************************/
373
374 /************************** sysfs begin ************************/
375 #define show_one(file_name, object)                                     \
376         static ssize_t show_##file_name                                 \
377         (struct kobject *kobj, struct attribute *attr, char *buf)       \
378         {                                                               \
379                 return sprintf(buf, "%u\n", limits->object);            \
380         }
381
382 static ssize_t show_turbo_pct(struct kobject *kobj,
383                                 struct attribute *attr, char *buf)
384 {
385         struct cpudata *cpu;
386         int total, no_turbo, turbo_pct;
387         uint32_t turbo_fp;
388
389         cpu = all_cpu_data[0];
390
391         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
392         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
393         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
394         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
395         return sprintf(buf, "%u\n", turbo_pct);
396 }
397
398 static ssize_t show_num_pstates(struct kobject *kobj,
399                                 struct attribute *attr, char *buf)
400 {
401         struct cpudata *cpu;
402         int total;
403
404         cpu = all_cpu_data[0];
405         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
406         return sprintf(buf, "%u\n", total);
407 }
408
409 static ssize_t show_no_turbo(struct kobject *kobj,
410                              struct attribute *attr, char *buf)
411 {
412         ssize_t ret;
413
414         update_turbo_state();
415         if (limits->turbo_disabled)
416                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
417         else
418                 ret = sprintf(buf, "%u\n", limits->no_turbo);
419
420         return ret;
421 }
422
423 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
424                               const char *buf, size_t count)
425 {
426         unsigned int input;
427         int ret;
428
429         ret = sscanf(buf, "%u", &input);
430         if (ret != 1)
431                 return -EINVAL;
432
433         update_turbo_state();
434         if (limits->turbo_disabled) {
435                 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
436                 return -EPERM;
437         }
438
439         limits->no_turbo = clamp_t(int, input, 0, 1);
440
441         if (hwp_active)
442                 intel_pstate_hwp_set();
443
444         return count;
445 }
446
447 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
448                                   const char *buf, size_t count)
449 {
450         unsigned int input;
451         int ret;
452
453         ret = sscanf(buf, "%u", &input);
454         if (ret != 1)
455                 return -EINVAL;
456
457         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
458         limits->max_perf_pct = min(limits->max_policy_pct,
459                                    limits->max_sysfs_pct);
460         limits->max_perf_pct = max(limits->min_policy_pct,
461                                    limits->max_perf_pct);
462         limits->max_perf_pct = max(limits->min_perf_pct,
463                                    limits->max_perf_pct);
464         limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
465                                   int_tofp(100));
466
467         if (hwp_active)
468                 intel_pstate_hwp_set();
469         return count;
470 }
471
472 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
473                                   const char *buf, size_t count)
474 {
475         unsigned int input;
476         int ret;
477
478         ret = sscanf(buf, "%u", &input);
479         if (ret != 1)
480                 return -EINVAL;
481
482         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
483         limits->min_perf_pct = max(limits->min_policy_pct,
484                                    limits->min_sysfs_pct);
485         limits->min_perf_pct = min(limits->max_policy_pct,
486                                    limits->min_perf_pct);
487         limits->min_perf_pct = min(limits->max_perf_pct,
488                                    limits->min_perf_pct);
489         limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
490                                   int_tofp(100));
491
492         if (hwp_active)
493                 intel_pstate_hwp_set();
494         return count;
495 }
496
497 show_one(max_perf_pct, max_perf_pct);
498 show_one(min_perf_pct, min_perf_pct);
499
500 define_one_global_rw(no_turbo);
501 define_one_global_rw(max_perf_pct);
502 define_one_global_rw(min_perf_pct);
503 define_one_global_ro(turbo_pct);
504 define_one_global_ro(num_pstates);
505
506 static struct attribute *intel_pstate_attributes[] = {
507         &no_turbo.attr,
508         &max_perf_pct.attr,
509         &min_perf_pct.attr,
510         &turbo_pct.attr,
511         &num_pstates.attr,
512         NULL
513 };
514
515 static struct attribute_group intel_pstate_attr_group = {
516         .attrs = intel_pstate_attributes,
517 };
518
519 static void __init intel_pstate_sysfs_expose_params(void)
520 {
521         struct kobject *intel_pstate_kobject;
522         int rc;
523
524         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
525                                                 &cpu_subsys.dev_root->kobj);
526         BUG_ON(!intel_pstate_kobject);
527         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
528         BUG_ON(rc);
529 }
530 /************************** sysfs end ************************/
531
532 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
533 {
534         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
535 }
536
537 static int atom_get_min_pstate(void)
538 {
539         u64 value;
540
541         rdmsrl(ATOM_RATIOS, value);
542         return (value >> 8) & 0x7F;
543 }
544
545 static int atom_get_max_pstate(void)
546 {
547         u64 value;
548
549         rdmsrl(ATOM_RATIOS, value);
550         return (value >> 16) & 0x7F;
551 }
552
553 static int atom_get_turbo_pstate(void)
554 {
555         u64 value;
556
557         rdmsrl(ATOM_TURBO_RATIOS, value);
558         return value & 0x7F;
559 }
560
561 static void atom_set_pstate(struct cpudata *cpudata, int pstate)
562 {
563         u64 val;
564         int32_t vid_fp;
565         u32 vid;
566
567         val = (u64)pstate << 8;
568         if (limits->no_turbo && !limits->turbo_disabled)
569                 val |= (u64)1 << 32;
570
571         vid_fp = cpudata->vid.min + mul_fp(
572                 int_tofp(pstate - cpudata->pstate.min_pstate),
573                 cpudata->vid.ratio);
574
575         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
576         vid = ceiling_fp(vid_fp);
577
578         if (pstate > cpudata->pstate.max_pstate)
579                 vid = cpudata->vid.turbo;
580
581         val |= vid;
582
583         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
584 }
585
586 static int silvermont_get_scaling(void)
587 {
588         u64 value;
589         int i;
590         /* Defined in Table 35-6 from SDM (Sept 2015) */
591         static int silvermont_freq_table[] = {
592                 83300, 100000, 133300, 116700, 80000};
593
594         rdmsrl(MSR_FSB_FREQ, value);
595         i = value & 0x7;
596         WARN_ON(i > 4);
597
598         return silvermont_freq_table[i];
599 }
600
601 static int airmont_get_scaling(void)
602 {
603         u64 value;
604         int i;
605         /* Defined in Table 35-10 from SDM (Sept 2015) */
606         static int airmont_freq_table[] = {
607                 83300, 100000, 133300, 116700, 80000,
608                 93300, 90000, 88900, 87500};
609
610         rdmsrl(MSR_FSB_FREQ, value);
611         i = value & 0xF;
612         WARN_ON(i > 8);
613
614         return airmont_freq_table[i];
615 }
616
617 static void atom_get_vid(struct cpudata *cpudata)
618 {
619         u64 value;
620
621         rdmsrl(ATOM_VIDS, value);
622         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
623         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
624         cpudata->vid.ratio = div_fp(
625                 cpudata->vid.max - cpudata->vid.min,
626                 int_tofp(cpudata->pstate.max_pstate -
627                         cpudata->pstate.min_pstate));
628
629         rdmsrl(ATOM_TURBO_VIDS, value);
630         cpudata->vid.turbo = value & 0x7f;
631 }
632
633 static int core_get_min_pstate(void)
634 {
635         u64 value;
636
637         rdmsrl(MSR_PLATFORM_INFO, value);
638         return (value >> 40) & 0xFF;
639 }
640
641 static int core_get_max_pstate_physical(void)
642 {
643         u64 value;
644
645         rdmsrl(MSR_PLATFORM_INFO, value);
646         return (value >> 8) & 0xFF;
647 }
648
649 static int core_get_max_pstate(void)
650 {
651         u64 tar;
652         u64 plat_info;
653         int max_pstate;
654         int err;
655
656         rdmsrl(MSR_PLATFORM_INFO, plat_info);
657         max_pstate = (plat_info >> 8) & 0xFF;
658
659         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
660         if (!err) {
661                 /* Do some sanity checking for safety */
662                 if (plat_info & 0x600000000) {
663                         u64 tdp_ctrl;
664                         u64 tdp_ratio;
665                         int tdp_msr;
666
667                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
668                         if (err)
669                                 goto skip_tar;
670
671                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
672                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
673                         if (err)
674                                 goto skip_tar;
675
676                         if (tdp_ratio - 1 == tar) {
677                                 max_pstate = tar;
678                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
679                         } else {
680                                 goto skip_tar;
681                         }
682                 }
683         }
684
685 skip_tar:
686         return max_pstate;
687 }
688
689 static int core_get_turbo_pstate(void)
690 {
691         u64 value;
692         int nont, ret;
693
694         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
695         nont = core_get_max_pstate();
696         ret = (value) & 255;
697         if (ret <= nont)
698                 ret = nont;
699         return ret;
700 }
701
702 static inline int core_get_scaling(void)
703 {
704         return 100000;
705 }
706
707 static void core_set_pstate(struct cpudata *cpudata, int pstate)
708 {
709         u64 val;
710
711         val = (u64)pstate << 8;
712         if (limits->no_turbo && !limits->turbo_disabled)
713                 val |= (u64)1 << 32;
714
715         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
716 }
717
718 static int knl_get_turbo_pstate(void)
719 {
720         u64 value;
721         int nont, ret;
722
723         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
724         nont = core_get_max_pstate();
725         ret = (((value) >> 8) & 0xFF);
726         if (ret <= nont)
727                 ret = nont;
728         return ret;
729 }
730
731 static struct cpu_defaults core_params = {
732         .pid_policy = {
733                 .sample_rate_ms = 10,
734                 .deadband = 0,
735                 .setpoint = 97,
736                 .p_gain_pct = 20,
737                 .d_gain_pct = 0,
738                 .i_gain_pct = 0,
739         },
740         .funcs = {
741                 .get_max = core_get_max_pstate,
742                 .get_max_physical = core_get_max_pstate_physical,
743                 .get_min = core_get_min_pstate,
744                 .get_turbo = core_get_turbo_pstate,
745                 .get_scaling = core_get_scaling,
746                 .set = core_set_pstate,
747                 .get_target_pstate = get_target_pstate_use_performance,
748         },
749 };
750
751 static struct cpu_defaults silvermont_params = {
752         .pid_policy = {
753                 .sample_rate_ms = 10,
754                 .deadband = 0,
755                 .setpoint = 60,
756                 .p_gain_pct = 14,
757                 .d_gain_pct = 0,
758                 .i_gain_pct = 4,
759         },
760         .funcs = {
761                 .get_max = atom_get_max_pstate,
762                 .get_max_physical = atom_get_max_pstate,
763                 .get_min = atom_get_min_pstate,
764                 .get_turbo = atom_get_turbo_pstate,
765                 .set = atom_set_pstate,
766                 .get_scaling = silvermont_get_scaling,
767                 .get_vid = atom_get_vid,
768                 .get_target_pstate = get_target_pstate_use_cpu_load,
769         },
770 };
771
772 static struct cpu_defaults airmont_params = {
773         .pid_policy = {
774                 .sample_rate_ms = 10,
775                 .deadband = 0,
776                 .setpoint = 60,
777                 .p_gain_pct = 14,
778                 .d_gain_pct = 0,
779                 .i_gain_pct = 4,
780         },
781         .funcs = {
782                 .get_max = atom_get_max_pstate,
783                 .get_max_physical = atom_get_max_pstate,
784                 .get_min = atom_get_min_pstate,
785                 .get_turbo = atom_get_turbo_pstate,
786                 .set = atom_set_pstate,
787                 .get_scaling = airmont_get_scaling,
788                 .get_vid = atom_get_vid,
789                 .get_target_pstate = get_target_pstate_use_cpu_load,
790         },
791 };
792
793 static struct cpu_defaults knl_params = {
794         .pid_policy = {
795                 .sample_rate_ms = 10,
796                 .deadband = 0,
797                 .setpoint = 97,
798                 .p_gain_pct = 20,
799                 .d_gain_pct = 0,
800                 .i_gain_pct = 0,
801         },
802         .funcs = {
803                 .get_max = core_get_max_pstate,
804                 .get_max_physical = core_get_max_pstate_physical,
805                 .get_min = core_get_min_pstate,
806                 .get_turbo = knl_get_turbo_pstate,
807                 .get_scaling = core_get_scaling,
808                 .set = core_set_pstate,
809                 .get_target_pstate = get_target_pstate_use_performance,
810         },
811 };
812
813 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
814 {
815         int max_perf = cpu->pstate.turbo_pstate;
816         int max_perf_adj;
817         int min_perf;
818
819         if (limits->no_turbo || limits->turbo_disabled)
820                 max_perf = cpu->pstate.max_pstate;
821
822         /*
823          * performance can be limited by user through sysfs, by cpufreq
824          * policy, or by cpu specific default values determined through
825          * experimentation.
826          */
827         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits->max_perf));
828         *max = clamp_t(int, max_perf_adj,
829                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
830
831         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits->min_perf));
832         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
833 }
834
835 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
836 {
837         int max_perf, min_perf;
838
839         if (force) {
840                 update_turbo_state();
841
842                 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
843
844                 pstate = clamp_t(int, pstate, min_perf, max_perf);
845
846                 if (pstate == cpu->pstate.current_pstate)
847                         return;
848         }
849         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
850
851         cpu->pstate.current_pstate = pstate;
852
853         pstate_funcs.set(cpu, pstate);
854 }
855
856 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
857 {
858         cpu->pstate.min_pstate = pstate_funcs.get_min();
859         cpu->pstate.max_pstate = pstate_funcs.get_max();
860         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
861         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
862         cpu->pstate.scaling = pstate_funcs.get_scaling();
863
864         if (pstate_funcs.get_vid)
865                 pstate_funcs.get_vid(cpu);
866         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
867 }
868
869 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
870 {
871         struct sample *sample = &cpu->sample;
872         int64_t core_pct;
873
874         core_pct = int_tofp(sample->aperf) * int_tofp(100);
875         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
876
877         sample->freq = fp_toint(
878                 mul_fp(int_tofp(
879                         cpu->pstate.max_pstate_physical *
880                         cpu->pstate.scaling / 100),
881                         core_pct));
882
883         sample->core_pct_busy = (int32_t)core_pct;
884 }
885
886 static inline void intel_pstate_sample(struct cpudata *cpu)
887 {
888         u64 aperf, mperf;
889         unsigned long flags;
890         u64 tsc;
891
892         local_irq_save(flags);
893         rdmsrl(MSR_IA32_APERF, aperf);
894         rdmsrl(MSR_IA32_MPERF, mperf);
895         tsc = rdtsc();
896         if ((cpu->prev_mperf == mperf) || (cpu->prev_tsc == tsc)) {
897                 local_irq_restore(flags);
898                 return;
899         }
900         local_irq_restore(flags);
901
902         cpu->last_sample_time = cpu->sample.time;
903         cpu->sample.time = ktime_get();
904         cpu->sample.aperf = aperf;
905         cpu->sample.mperf = mperf;
906         cpu->sample.tsc =  tsc;
907         cpu->sample.aperf -= cpu->prev_aperf;
908         cpu->sample.mperf -= cpu->prev_mperf;
909         cpu->sample.tsc -= cpu->prev_tsc;
910
911         intel_pstate_calc_busy(cpu);
912
913         cpu->prev_aperf = aperf;
914         cpu->prev_mperf = mperf;
915         cpu->prev_tsc = tsc;
916 }
917
918 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
919 {
920         int delay;
921
922         delay = msecs_to_jiffies(50);
923         mod_timer_pinned(&cpu->timer, jiffies + delay);
924 }
925
926 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
927 {
928         int delay;
929
930         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
931         mod_timer_pinned(&cpu->timer, jiffies + delay);
932 }
933
934 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
935 {
936         struct sample *sample = &cpu->sample;
937         u64 cummulative_iowait, delta_iowait_us;
938         u64 delta_iowait_mperf;
939         u64 mperf, now;
940         int32_t cpu_load;
941
942         cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
943
944         /*
945          * Convert iowait time into number of IO cycles spent at max_freq.
946          * IO is considered as busy only for the cpu_load algorithm. For
947          * performance this is not needed since we always try to reach the
948          * maximum P-State, so we are already boosting the IOs.
949          */
950         delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
951         delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
952                 cpu->pstate.max_pstate, MSEC_PER_SEC);
953
954         mperf = cpu->sample.mperf + delta_iowait_mperf;
955         cpu->prev_cummulative_iowait = cummulative_iowait;
956
957
958         /*
959          * The load can be estimated as the ratio of the mperf counter
960          * running at a constant frequency during active periods
961          * (C0) and the time stamp counter running at the same frequency
962          * also during C-states.
963          */
964         cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
965         cpu->sample.busy_scaled = cpu_load;
966
967         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
968 }
969
970 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
971 {
972         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
973         s64 duration_us;
974         u32 sample_time;
975
976         /*
977          * core_busy is the ratio of actual performance to max
978          * max_pstate is the max non turbo pstate available
979          * current_pstate was the pstate that was requested during
980          *      the last sample period.
981          *
982          * We normalize core_busy, which was our actual percent
983          * performance to what we requested during the last sample
984          * period. The result will be a percentage of busy at a
985          * specified pstate.
986          */
987         core_busy = cpu->sample.core_pct_busy;
988         max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
989         current_pstate = int_tofp(cpu->pstate.current_pstate);
990         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
991
992         /*
993          * Since we have a deferred timer, it will not fire unless
994          * we are in C0.  So, determine if the actual elapsed time
995          * is significantly greater (3x) than our sample interval.  If it
996          * is, then we were idle for a long enough period of time
997          * to adjust our busyness.
998          */
999         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
1000         duration_us = ktime_us_delta(cpu->sample.time,
1001                                      cpu->last_sample_time);
1002         if (duration_us > sample_time * 3) {
1003                 sample_ratio = div_fp(int_tofp(sample_time),
1004                                       int_tofp(duration_us));
1005                 core_busy = mul_fp(core_busy, sample_ratio);
1006         }
1007
1008         cpu->sample.busy_scaled = core_busy;
1009         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1010 }
1011
1012 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1013 {
1014         int from, target_pstate;
1015         struct sample *sample;
1016
1017         from = cpu->pstate.current_pstate;
1018
1019         target_pstate = pstate_funcs.get_target_pstate(cpu);
1020
1021         intel_pstate_set_pstate(cpu, target_pstate, true);
1022
1023         sample = &cpu->sample;
1024         trace_pstate_sample(fp_toint(sample->core_pct_busy),
1025                 fp_toint(sample->busy_scaled),
1026                 from,
1027                 cpu->pstate.current_pstate,
1028                 sample->mperf,
1029                 sample->aperf,
1030                 sample->tsc,
1031                 sample->freq);
1032 }
1033
1034 static void intel_hwp_timer_func(unsigned long __data)
1035 {
1036         struct cpudata *cpu = (struct cpudata *) __data;
1037
1038         intel_pstate_sample(cpu);
1039         intel_hwp_set_sample_time(cpu);
1040 }
1041
1042 static void intel_pstate_timer_func(unsigned long __data)
1043 {
1044         struct cpudata *cpu = (struct cpudata *) __data;
1045
1046         intel_pstate_sample(cpu);
1047
1048         intel_pstate_adjust_busy_pstate(cpu);
1049
1050         intel_pstate_set_sample_time(cpu);
1051 }
1052
1053 #define ICPU(model, policy) \
1054         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1055                         (unsigned long)&policy }
1056
1057 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1058         ICPU(0x2a, core_params),
1059         ICPU(0x2d, core_params),
1060         ICPU(0x37, silvermont_params),
1061         ICPU(0x3a, core_params),
1062         ICPU(0x3c, core_params),
1063         ICPU(0x3d, core_params),
1064         ICPU(0x3e, core_params),
1065         ICPU(0x3f, core_params),
1066         ICPU(0x45, core_params),
1067         ICPU(0x46, core_params),
1068         ICPU(0x47, core_params),
1069         ICPU(0x4c, airmont_params),
1070         ICPU(0x4e, core_params),
1071         ICPU(0x4f, core_params),
1072         ICPU(0x5e, core_params),
1073         ICPU(0x56, core_params),
1074         ICPU(0x57, knl_params),
1075         {}
1076 };
1077 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1078
1079 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1080         ICPU(0x56, core_params),
1081         {}
1082 };
1083
1084 static int intel_pstate_init_cpu(unsigned int cpunum)
1085 {
1086         struct cpudata *cpu;
1087
1088         if (!all_cpu_data[cpunum])
1089                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1090                                                GFP_KERNEL);
1091         if (!all_cpu_data[cpunum])
1092                 return -ENOMEM;
1093
1094         cpu = all_cpu_data[cpunum];
1095
1096         cpu->cpu = cpunum;
1097
1098         if (hwp_active)
1099                 intel_pstate_hwp_enable(cpu);
1100
1101         intel_pstate_get_cpu_pstates(cpu);
1102
1103         init_timer_deferrable(&cpu->timer);
1104         cpu->timer.data = (unsigned long)cpu;
1105         cpu->timer.expires = jiffies + HZ/100;
1106
1107         if (!hwp_active)
1108                 cpu->timer.function = intel_pstate_timer_func;
1109         else
1110                 cpu->timer.function = intel_hwp_timer_func;
1111
1112         intel_pstate_busy_pid_reset(cpu);
1113         intel_pstate_sample(cpu);
1114
1115         add_timer_on(&cpu->timer, cpunum);
1116
1117         pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1118
1119         return 0;
1120 }
1121
1122 static unsigned int intel_pstate_get(unsigned int cpu_num)
1123 {
1124         struct sample *sample;
1125         struct cpudata *cpu;
1126
1127         cpu = all_cpu_data[cpu_num];
1128         if (!cpu)
1129                 return 0;
1130         sample = &cpu->sample;
1131         return sample->freq;
1132 }
1133
1134 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1135 {
1136         if (!policy->cpuinfo.max_freq)
1137                 return -ENODEV;
1138
1139         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1140             policy->max >= policy->cpuinfo.max_freq) {
1141                 pr_debug("intel_pstate: set performance\n");
1142                 limits = &performance_limits;
1143                 if (hwp_active)
1144                         intel_pstate_hwp_set();
1145                 return 0;
1146         }
1147
1148         pr_debug("intel_pstate: set powersave\n");
1149         limits = &powersave_limits;
1150         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1151         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1152         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1153                                               policy->cpuinfo.max_freq);
1154         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1155
1156         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1157         limits->min_perf_pct = max(limits->min_policy_pct,
1158                                    limits->min_sysfs_pct);
1159         limits->min_perf_pct = min(limits->max_policy_pct,
1160                                    limits->min_perf_pct);
1161         limits->max_perf_pct = min(limits->max_policy_pct,
1162                                    limits->max_sysfs_pct);
1163         limits->max_perf_pct = max(limits->min_policy_pct,
1164                                    limits->max_perf_pct);
1165         limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1166
1167         /* Make sure min_perf_pct <= max_perf_pct */
1168         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1169
1170         limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1171                                   int_tofp(100));
1172         limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1173                                   int_tofp(100));
1174
1175         if (hwp_active)
1176                 intel_pstate_hwp_set();
1177
1178         return 0;
1179 }
1180
1181 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1182 {
1183         cpufreq_verify_within_cpu_limits(policy);
1184
1185         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1186             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1187                 return -EINVAL;
1188
1189         return 0;
1190 }
1191
1192 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1193 {
1194         int cpu_num = policy->cpu;
1195         struct cpudata *cpu = all_cpu_data[cpu_num];
1196
1197         pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1198
1199         del_timer_sync(&all_cpu_data[cpu_num]->timer);
1200         if (hwp_active)
1201                 return;
1202
1203         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1204 }
1205
1206 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1207 {
1208         struct cpudata *cpu;
1209         int rc;
1210
1211         rc = intel_pstate_init_cpu(policy->cpu);
1212         if (rc)
1213                 return rc;
1214
1215         cpu = all_cpu_data[policy->cpu];
1216
1217         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1218                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1219         else
1220                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1221
1222         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1223         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1224
1225         /* cpuinfo and default policy values */
1226         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1227         policy->cpuinfo.max_freq =
1228                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1229         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1230         cpumask_set_cpu(policy->cpu, policy->cpus);
1231
1232         return 0;
1233 }
1234
1235 static struct cpufreq_driver intel_pstate_driver = {
1236         .flags          = CPUFREQ_CONST_LOOPS,
1237         .verify         = intel_pstate_verify_policy,
1238         .setpolicy      = intel_pstate_set_policy,
1239         .get            = intel_pstate_get,
1240         .init           = intel_pstate_cpu_init,
1241         .stop_cpu       = intel_pstate_stop_cpu,
1242         .name           = "intel_pstate",
1243 };
1244
1245 static int __initdata no_load;
1246 static int __initdata no_hwp;
1247 static int __initdata hwp_only;
1248 static unsigned int force_load;
1249
1250 static int intel_pstate_msrs_not_valid(void)
1251 {
1252         if (!pstate_funcs.get_max() ||
1253             !pstate_funcs.get_min() ||
1254             !pstate_funcs.get_turbo())
1255                 return -ENODEV;
1256
1257         return 0;
1258 }
1259
1260 static void copy_pid_params(struct pstate_adjust_policy *policy)
1261 {
1262         pid_params.sample_rate_ms = policy->sample_rate_ms;
1263         pid_params.p_gain_pct = policy->p_gain_pct;
1264         pid_params.i_gain_pct = policy->i_gain_pct;
1265         pid_params.d_gain_pct = policy->d_gain_pct;
1266         pid_params.deadband = policy->deadband;
1267         pid_params.setpoint = policy->setpoint;
1268 }
1269
1270 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1271 {
1272         pstate_funcs.get_max   = funcs->get_max;
1273         pstate_funcs.get_max_physical = funcs->get_max_physical;
1274         pstate_funcs.get_min   = funcs->get_min;
1275         pstate_funcs.get_turbo = funcs->get_turbo;
1276         pstate_funcs.get_scaling = funcs->get_scaling;
1277         pstate_funcs.set       = funcs->set;
1278         pstate_funcs.get_vid   = funcs->get_vid;
1279         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1280
1281 }
1282
1283 #if IS_ENABLED(CONFIG_ACPI)
1284 #include <acpi/processor.h>
1285
1286 static bool intel_pstate_no_acpi_pss(void)
1287 {
1288         int i;
1289
1290         for_each_possible_cpu(i) {
1291                 acpi_status status;
1292                 union acpi_object *pss;
1293                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1294                 struct acpi_processor *pr = per_cpu(processors, i);
1295
1296                 if (!pr)
1297                         continue;
1298
1299                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1300                 if (ACPI_FAILURE(status))
1301                         continue;
1302
1303                 pss = buffer.pointer;
1304                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1305                         kfree(pss);
1306                         return false;
1307                 }
1308
1309                 kfree(pss);
1310         }
1311
1312         return true;
1313 }
1314
1315 static bool intel_pstate_has_acpi_ppc(void)
1316 {
1317         int i;
1318
1319         for_each_possible_cpu(i) {
1320                 struct acpi_processor *pr = per_cpu(processors, i);
1321
1322                 if (!pr)
1323                         continue;
1324                 if (acpi_has_method(pr->handle, "_PPC"))
1325                         return true;
1326         }
1327         return false;
1328 }
1329
1330 enum {
1331         PSS,
1332         PPC,
1333 };
1334
1335 struct hw_vendor_info {
1336         u16  valid;
1337         char oem_id[ACPI_OEM_ID_SIZE];
1338         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1339         int  oem_pwr_table;
1340 };
1341
1342 /* Hardware vendor-specific info that has its own power management modes */
1343 static struct hw_vendor_info vendor_info[] = {
1344         {1, "HP    ", "ProLiant", PSS},
1345         {1, "ORACLE", "X4-2    ", PPC},
1346         {1, "ORACLE", "X4-2L   ", PPC},
1347         {1, "ORACLE", "X4-2B   ", PPC},
1348         {1, "ORACLE", "X3-2    ", PPC},
1349         {1, "ORACLE", "X3-2L   ", PPC},
1350         {1, "ORACLE", "X3-2B   ", PPC},
1351         {1, "ORACLE", "X4470M2 ", PPC},
1352         {1, "ORACLE", "X4270M3 ", PPC},
1353         {1, "ORACLE", "X4270M2 ", PPC},
1354         {1, "ORACLE", "X4170M2 ", PPC},
1355         {1, "ORACLE", "X4170 M3", PPC},
1356         {1, "ORACLE", "X4275 M3", PPC},
1357         {1, "ORACLE", "X6-2    ", PPC},
1358         {1, "ORACLE", "Sudbury ", PPC},
1359         {0, "", ""},
1360 };
1361
1362 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1363 {
1364         struct acpi_table_header hdr;
1365         struct hw_vendor_info *v_info;
1366         const struct x86_cpu_id *id;
1367         u64 misc_pwr;
1368
1369         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1370         if (id) {
1371                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1372                 if ( misc_pwr & (1 << 8))
1373                         return true;
1374         }
1375
1376         if (acpi_disabled ||
1377             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1378                 return false;
1379
1380         for (v_info = vendor_info; v_info->valid; v_info++) {
1381                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1382                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1383                                                 ACPI_OEM_TABLE_ID_SIZE))
1384                         switch (v_info->oem_pwr_table) {
1385                         case PSS:
1386                                 return intel_pstate_no_acpi_pss();
1387                         case PPC:
1388                                 return intel_pstate_has_acpi_ppc() &&
1389                                         (!force_load);
1390                         }
1391         }
1392
1393         return false;
1394 }
1395 #else /* CONFIG_ACPI not enabled */
1396 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1397 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1398 #endif /* CONFIG_ACPI */
1399
1400 static int __init intel_pstate_init(void)
1401 {
1402         int cpu, rc = 0;
1403         const struct x86_cpu_id *id;
1404         struct cpu_defaults *cpu_def;
1405
1406         if (no_load)
1407                 return -ENODEV;
1408
1409         id = x86_match_cpu(intel_pstate_cpu_ids);
1410         if (!id)
1411                 return -ENODEV;
1412
1413         /*
1414          * The Intel pstate driver will be ignored if the platform
1415          * firmware has its own power management modes.
1416          */
1417         if (intel_pstate_platform_pwr_mgmt_exists())
1418                 return -ENODEV;
1419
1420         cpu_def = (struct cpu_defaults *)id->driver_data;
1421
1422         copy_pid_params(&cpu_def->pid_policy);
1423         copy_cpu_funcs(&cpu_def->funcs);
1424
1425         if (intel_pstate_msrs_not_valid())
1426                 return -ENODEV;
1427
1428         pr_info("Intel P-state driver initializing.\n");
1429
1430         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1431         if (!all_cpu_data)
1432                 return -ENOMEM;
1433
1434         if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) {
1435                 pr_info("intel_pstate: HWP enabled\n");
1436                 hwp_active++;
1437         }
1438
1439         if (!hwp_active && hwp_only)
1440                 goto out;
1441
1442         rc = cpufreq_register_driver(&intel_pstate_driver);
1443         if (rc)
1444                 goto out;
1445
1446         intel_pstate_debug_expose_params();
1447         intel_pstate_sysfs_expose_params();
1448
1449         return rc;
1450 out:
1451         get_online_cpus();
1452         for_each_online_cpu(cpu) {
1453                 if (all_cpu_data[cpu]) {
1454                         del_timer_sync(&all_cpu_data[cpu]->timer);
1455                         kfree(all_cpu_data[cpu]);
1456                 }
1457         }
1458
1459         put_online_cpus();
1460         vfree(all_cpu_data);
1461         return -ENODEV;
1462 }
1463 device_initcall(intel_pstate_init);
1464
1465 static int __init intel_pstate_setup(char *str)
1466 {
1467         if (!str)
1468                 return -EINVAL;
1469
1470         if (!strcmp(str, "disable"))
1471                 no_load = 1;
1472         if (!strcmp(str, "no_hwp")) {
1473                 pr_info("intel_pstate: HWP disabled\n");
1474                 no_hwp = 1;
1475         }
1476         if (!strcmp(str, "force"))
1477                 force_load = 1;
1478         if (!strcmp(str, "hwp_only"))
1479                 hwp_only = 1;
1480         return 0;
1481 }
1482 early_param("intel_pstate", intel_pstate_setup);
1483
1484 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1485 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1486 MODULE_LICENSE("GPL");