]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/dma/imx-sdma.c
5a457777f5c016991fafa91127948bf8130539f7
[karo-tx-linux.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/wait.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
44
45 #include "dmaengine.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130         u32 count   : 16; /* size of the buffer pointed by this BD */
131         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132         u32 command :  8; /* command mostlky used for channel 0 */
133 };
134
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139         struct sdma_mode_count  mode;
140         u32 buffer_addr;        /* address of the buffer described */
141         u32 ext_buffer_addr;    /* extended buffer address */
142 } __attribute__ ((packed));
143
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr      current buffer descriptor processed
148  * @base_bd_ptr         first element of buffer descriptor array
149  * @unused              padding. The SDMA engine expects an array of 128 byte
150  *                      control blocks
151  */
152 struct sdma_channel_control {
153         u32 current_bd_ptr;
154         u32 base_bd_ptr;
155         u32 unused[2];
156 } __attribute__ ((packed));
157
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:         program counter
162  * @t:          test bit: status of arithmetic & test instruction
163  * @rpc:        return program counter
164  * @sf:         source fault while loading data
165  * @spc:        loop start program counter
166  * @df:         destination fault while storing data
167  * @epc:        loop end program counter
168  * @lm:         loop mode
169  */
170 struct sdma_state_registers {
171         u32 pc     :14;
172         u32 unused1: 1;
173         u32 t      : 1;
174         u32 rpc    :14;
175         u32 unused0: 1;
176         u32 sf     : 1;
177         u32 spc    :14;
178         u32 unused2: 1;
179         u32 df     : 1;
180         u32 epc    :14;
181         u32 lm     : 2;
182 } __attribute__ ((packed));
183
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:      channel state bits
188  * @gReg:               general registers
189  * @mda:                burst dma destination address register
190  * @msa:                burst dma source address register
191  * @ms:                 burst dma status register
192  * @md:                 burst dma data register
193  * @pda:                peripheral dma destination address register
194  * @psa:                peripheral dma source address register
195  * @ps:                 peripheral dma status register
196  * @pd:                 peripheral dma data register
197  * @ca:                 CRC polynomial register
198  * @cs:                 CRC accumulator register
199  * @dda:                dedicated core destination address register
200  * @dsa:                dedicated core source address register
201  * @ds:                 dedicated core status register
202  * @dd:                 dedicated core data register
203  */
204 struct sdma_context_data {
205         struct sdma_state_registers  channel_state;
206         u32  gReg[8];
207         u32  mda;
208         u32  msa;
209         u32  ms;
210         u32  md;
211         u32  pda;
212         u32  psa;
213         u32  ps;
214         u32  pd;
215         u32  ca;
216         u32  cs;
217         u32  dda;
218         u32  dsa;
219         u32  ds;
220         u32  dd;
221         u32  scratch0;
222         u32  scratch1;
223         u32  scratch2;
224         u32  scratch3;
225         u32  scratch4;
226         u32  scratch5;
227         u32  scratch6;
228         u32  scratch7;
229 } __attribute__ ((packed));
230
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232
233 struct sdma_engine;
234
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma                pointer to the SDMA engine for this channel
239  * @channel             the channel number, matches dmaengine chan_id + 1
240  * @direction           transfer type. Needed for setting SDMA script
241  * @peripheral_type     Peripheral type. Needed for setting SDMA script
242  * @event_id0           aka dma request line
243  * @event_id1           for channels that use 2 events
244  * @word_size           peripheral access size
245  * @buf_tail            ID of the buffer that was processed
246  * @done                channel completion
247  * @num_bd              max NUM_BD. number of descriptors currently handling
248  */
249 struct sdma_channel {
250         struct sdma_engine              *sdma;
251         unsigned int                    channel;
252         enum dma_transfer_direction             direction;
253         enum sdma_peripheral_type       peripheral_type;
254         unsigned int                    event_id0;
255         unsigned int                    event_id1;
256         enum dma_slave_buswidth         word_size;
257         unsigned int                    buf_tail;
258         struct completion               done;
259         unsigned int                    num_bd;
260         struct sdma_buffer_descriptor   *bd;
261         dma_addr_t                      bd_phys;
262         unsigned int                    pc_from_device, pc_to_device;
263         unsigned long                   flags;
264         dma_addr_t                      per_address;
265         unsigned long                   event_mask[2];
266         unsigned long                   watermark_level;
267         u32                             shp_addr, per_addr;
268         struct dma_chan                 chan;
269         spinlock_t                      lock;
270         struct dma_async_tx_descriptor  desc;
271         enum dma_status                 status;
272         unsigned int                    chn_count;
273         unsigned int                    chn_real_count;
274         struct tasklet_struct           tasklet;
275 };
276
277 #define IMX_DMA_SG_LOOP         BIT(0)
278
279 #define MAX_DMA_CHANNELS 32
280 #define MXC_SDMA_DEFAULT_PRIORITY 1
281 #define MXC_SDMA_MIN_PRIORITY 1
282 #define MXC_SDMA_MAX_PRIORITY 7
283
284 #define SDMA_FIRMWARE_MAGIC 0x414d4453
285
286 /**
287  * struct sdma_firmware_header - Layout of the firmware image
288  *
289  * @magic               "SDMA"
290  * @version_major       increased whenever layout of struct sdma_script_start_addrs
291  *                      changes.
292  * @version_minor       firmware minor version (for binary compatible changes)
293  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
294  * @num_script_addrs    Number of script addresses in this image
295  * @ram_code_start      offset of SDMA ram image in this firmware image
296  * @ram_code_size       size of SDMA ram image
297  * @script_addrs        Stores the start address of the SDMA scripts
298  *                      (in SDMA memory space)
299  */
300 struct sdma_firmware_header {
301         u32     magic;
302         u32     version_major;
303         u32     version_minor;
304         u32     script_addrs_start;
305         u32     num_script_addrs;
306         u32     ram_code_start;
307         u32     ram_code_size;
308 };
309
310 enum sdma_devtype {
311         IMX31_SDMA,     /* runs on i.mx31 */
312         IMX35_SDMA,     /* runs on i.mx35 and later */
313 };
314
315 struct sdma_engine {
316         struct device                   *dev;
317         struct device_dma_parameters    dma_parms;
318         struct sdma_channel             channel[MAX_DMA_CHANNELS];
319         struct sdma_channel_control     *channel_control;
320         void __iomem                    *regs;
321         enum sdma_devtype               devtype;
322         unsigned int                    num_events;
323         struct sdma_context_data        *context;
324         dma_addr_t                      context_phys;
325         struct dma_device               dma_device;
326         struct clk                      *clk;
327         struct mutex                    channel_0_lock;
328         struct sdma_script_start_addrs  *script_addrs;
329 };
330
331 static struct platform_device_id sdma_devtypes[] = {
332         {
333                 .name = "imx31-sdma",
334                 .driver_data = IMX31_SDMA,
335         }, {
336                 .name = "imx35-sdma",
337                 .driver_data = IMX35_SDMA,
338         }, {
339                 /* sentinel */
340         }
341 };
342 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
343
344 static const struct of_device_id sdma_dt_ids[] = {
345         { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
346         { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
347         { /* sentinel */ }
348 };
349 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
350
351 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
352 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
353 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
354 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
355
356 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
357 {
358         u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
359                                                       SDMA_CHNENBL0_IMX35);
360         return chnenbl0 + event * 4;
361 }
362
363 static int sdma_config_ownership(struct sdma_channel *sdmac,
364                 bool event_override, bool mcu_override, bool dsp_override)
365 {
366         struct sdma_engine *sdma = sdmac->sdma;
367         int channel = sdmac->channel;
368         unsigned long evt, mcu, dsp;
369
370         if (event_override && mcu_override && dsp_override)
371                 return -EINVAL;
372
373         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
374         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
375         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
376
377         if (dsp_override)
378                 __clear_bit(channel, &dsp);
379         else
380                 __set_bit(channel, &dsp);
381
382         if (event_override)
383                 __clear_bit(channel, &evt);
384         else
385                 __set_bit(channel, &evt);
386
387         if (mcu_override)
388                 __clear_bit(channel, &mcu);
389         else
390                 __set_bit(channel, &mcu);
391
392         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
393         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
394         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
395
396         return 0;
397 }
398
399 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
400 {
401         writel(BIT(channel), sdma->regs + SDMA_H_START);
402 }
403
404 /*
405  * sdma_run_channel - run a channel and wait till it's done
406  */
407 static int sdma_run_channel(struct sdma_channel *sdmac)
408 {
409         struct sdma_engine *sdma = sdmac->sdma;
410         int channel = sdmac->channel;
411         int ret;
412
413         init_completion(&sdmac->done);
414
415         sdma_enable_channel(sdma, channel);
416
417         ret = wait_for_completion_timeout(&sdmac->done, HZ);
418
419         return ret ? 0 : -ETIMEDOUT;
420 }
421
422 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
423                 u32 address)
424 {
425         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
426         void *buf_virt;
427         dma_addr_t buf_phys;
428         int ret;
429
430         mutex_lock(&sdma->channel_0_lock);
431
432         buf_virt = dma_alloc_coherent(NULL,
433                         size,
434                         &buf_phys, GFP_KERNEL);
435         if (!buf_virt) {
436                 ret = -ENOMEM;
437                 goto err_out;
438         }
439
440         bd0->mode.command = C0_SETPM;
441         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
442         bd0->mode.count = size / 2;
443         bd0->buffer_addr = buf_phys;
444         bd0->ext_buffer_addr = address;
445
446         memcpy(buf_virt, buf, size);
447
448         ret = sdma_run_channel(&sdma->channel[0]);
449
450         dma_free_coherent(NULL, size, buf_virt, buf_phys);
451
452 err_out:
453         mutex_unlock(&sdma->channel_0_lock);
454
455         return ret;
456 }
457
458 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
459 {
460         struct sdma_engine *sdma = sdmac->sdma;
461         int channel = sdmac->channel;
462         unsigned long val;
463         u32 chnenbl = chnenbl_ofs(sdma, event);
464
465         val = readl_relaxed(sdma->regs + chnenbl);
466         __set_bit(channel, &val);
467         writel_relaxed(val, sdma->regs + chnenbl);
468 }
469
470 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
471 {
472         struct sdma_engine *sdma = sdmac->sdma;
473         int channel = sdmac->channel;
474         u32 chnenbl = chnenbl_ofs(sdma, event);
475         unsigned long val;
476
477         val = readl_relaxed(sdma->regs + chnenbl);
478         __clear_bit(channel, &val);
479         writel_relaxed(val, sdma->regs + chnenbl);
480 }
481
482 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
483 {
484         struct sdma_buffer_descriptor *bd;
485
486         /*
487          * loop mode. Iterate over descriptors, re-setup them and
488          * call callback function.
489          */
490         while (1) {
491                 bd = &sdmac->bd[sdmac->buf_tail];
492
493                 if (bd->mode.status & BD_DONE)
494                         break;
495
496                 if (bd->mode.status & BD_RROR)
497                         sdmac->status = DMA_ERROR;
498                 else
499                         sdmac->status = DMA_IN_PROGRESS;
500
501                 bd->mode.status |= BD_DONE;
502                 sdmac->buf_tail++;
503                 sdmac->buf_tail %= sdmac->num_bd;
504
505                 if (sdmac->desc.callback)
506                         sdmac->desc.callback(sdmac->desc.callback_param);
507         }
508 }
509
510 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
511 {
512         struct sdma_buffer_descriptor *bd;
513         int i, error = 0;
514
515         sdmac->chn_real_count = 0;
516         /*
517          * non loop mode. Iterate over all descriptors, collect
518          * errors and call callback function
519          */
520         for (i = 0; i < sdmac->num_bd; i++) {
521                 bd = &sdmac->bd[i];
522
523                  if (bd->mode.status & (BD_DONE | BD_RROR))
524                         error = -EIO;
525                  sdmac->chn_real_count += bd->mode.count;
526         }
527
528         if (error)
529                 sdmac->status = DMA_ERROR;
530         else
531                 sdmac->status = DMA_SUCCESS;
532
533         dma_cookie_complete(&sdmac->desc);
534         if (sdmac->desc.callback)
535                 sdmac->desc.callback(sdmac->desc.callback_param);
536 }
537
538 static void sdma_tasklet(unsigned long data)
539 {
540         struct sdma_channel *sdmac = (struct sdma_channel *) data;
541
542         complete(&sdmac->done);
543
544         /* not interested in channel 0 interrupts */
545         if (sdmac->channel == 0)
546                 return;
547
548         if (sdmac->flags & IMX_DMA_SG_LOOP)
549                 sdma_handle_channel_loop(sdmac);
550         else
551                 mxc_sdma_handle_channel_normal(sdmac);
552 }
553
554 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
555 {
556         struct sdma_engine *sdma = dev_id;
557         unsigned long stat;
558
559         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
560         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
561
562         while (stat) {
563                 int channel = fls(stat) - 1;
564                 struct sdma_channel *sdmac = &sdma->channel[channel];
565
566                 tasklet_schedule(&sdmac->tasklet);
567
568                 __clear_bit(channel, &stat);
569         }
570
571         return IRQ_HANDLED;
572 }
573
574 /*
575  * sets the pc of SDMA script according to the peripheral type
576  */
577 static void sdma_get_pc(struct sdma_channel *sdmac,
578                 enum sdma_peripheral_type peripheral_type)
579 {
580         struct sdma_engine *sdma = sdmac->sdma;
581         int per_2_emi = 0, emi_2_per = 0;
582         /*
583          * These are needed once we start to support transfers between
584          * two peripherals or memory-to-memory transfers
585          */
586         int per_2_per = 0, emi_2_emi = 0;
587
588         sdmac->pc_from_device = 0;
589         sdmac->pc_to_device = 0;
590
591         switch (peripheral_type) {
592         case IMX_DMATYPE_MEMORY:
593                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
594                 break;
595         case IMX_DMATYPE_DSP:
596                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
597                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
598                 break;
599         case IMX_DMATYPE_FIRI:
600                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
601                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
602                 break;
603         case IMX_DMATYPE_UART:
604                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
605                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
606                 break;
607         case IMX_DMATYPE_UART_SP:
608                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
609                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
610                 break;
611         case IMX_DMATYPE_ATA:
612                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
613                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
614                 break;
615         case IMX_DMATYPE_CSPI:
616         case IMX_DMATYPE_EXT:
617         case IMX_DMATYPE_SSI:
618                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
619                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
620                 break;
621         case IMX_DMATYPE_SSI_SP:
622         case IMX_DMATYPE_MMC:
623         case IMX_DMATYPE_SDHC:
624         case IMX_DMATYPE_CSPI_SP:
625         case IMX_DMATYPE_ESAI:
626         case IMX_DMATYPE_MSHC_SP:
627                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
628                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
629                 break;
630         case IMX_DMATYPE_ASRC:
631                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
632                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
633                 per_2_per = sdma->script_addrs->per_2_per_addr;
634                 break;
635         case IMX_DMATYPE_MSHC:
636                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
637                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
638                 break;
639         case IMX_DMATYPE_CCM:
640                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
641                 break;
642         case IMX_DMATYPE_SPDIF:
643                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
644                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
645                 break;
646         case IMX_DMATYPE_IPU_MEMORY:
647                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
648                 break;
649         default:
650                 break;
651         }
652
653         sdmac->pc_from_device = per_2_emi;
654         sdmac->pc_to_device = emi_2_per;
655 }
656
657 static int sdma_load_context(struct sdma_channel *sdmac)
658 {
659         struct sdma_engine *sdma = sdmac->sdma;
660         int channel = sdmac->channel;
661         int load_address;
662         struct sdma_context_data *context = sdma->context;
663         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
664         int ret;
665
666         if (sdmac->direction == DMA_DEV_TO_MEM) {
667                 load_address = sdmac->pc_from_device;
668         } else {
669                 load_address = sdmac->pc_to_device;
670         }
671
672         if (load_address < 0)
673                 return load_address;
674
675         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
676         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
677         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
678         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
679         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
680         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
681
682         mutex_lock(&sdma->channel_0_lock);
683
684         memset(context, 0, sizeof(*context));
685         context->channel_state.pc = load_address;
686
687         /* Send by context the event mask,base address for peripheral
688          * and watermark level
689          */
690         context->gReg[0] = sdmac->event_mask[1];
691         context->gReg[1] = sdmac->event_mask[0];
692         context->gReg[2] = sdmac->per_addr;
693         context->gReg[6] = sdmac->shp_addr;
694         context->gReg[7] = sdmac->watermark_level;
695
696         bd0->mode.command = C0_SETDM;
697         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
698         bd0->mode.count = sizeof(*context) / 4;
699         bd0->buffer_addr = sdma->context_phys;
700         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
701
702         ret = sdma_run_channel(&sdma->channel[0]);
703
704         mutex_unlock(&sdma->channel_0_lock);
705
706         return ret;
707 }
708
709 static void sdma_disable_channel(struct sdma_channel *sdmac)
710 {
711         struct sdma_engine *sdma = sdmac->sdma;
712         int channel = sdmac->channel;
713
714         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
715         sdmac->status = DMA_ERROR;
716 }
717
718 static int sdma_config_channel(struct sdma_channel *sdmac)
719 {
720         int ret;
721
722         sdma_disable_channel(sdmac);
723
724         sdmac->event_mask[0] = 0;
725         sdmac->event_mask[1] = 0;
726         sdmac->shp_addr = 0;
727         sdmac->per_addr = 0;
728
729         if (sdmac->event_id0) {
730                 if (sdmac->event_id0 >= sdmac->sdma->num_events)
731                         return -EINVAL;
732                 sdma_event_enable(sdmac, sdmac->event_id0);
733         }
734
735         switch (sdmac->peripheral_type) {
736         case IMX_DMATYPE_DSP:
737                 sdma_config_ownership(sdmac, false, true, true);
738                 break;
739         case IMX_DMATYPE_MEMORY:
740                 sdma_config_ownership(sdmac, false, true, false);
741                 break;
742         default:
743                 sdma_config_ownership(sdmac, true, true, false);
744                 break;
745         }
746
747         sdma_get_pc(sdmac, sdmac->peripheral_type);
748
749         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
750                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
751                 /* Handle multiple event channels differently */
752                 if (sdmac->event_id1) {
753                         sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
754                         if (sdmac->event_id1 > 31)
755                                 __set_bit(31, &sdmac->watermark_level);
756                         sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
757                         if (sdmac->event_id0 > 31)
758                                 __set_bit(30, &sdmac->watermark_level);
759                 } else {
760                         __set_bit(sdmac->event_id0, sdmac->event_mask);
761                 }
762                 /* Watermark Level */
763                 sdmac->watermark_level |= sdmac->watermark_level;
764                 /* Address */
765                 sdmac->shp_addr = sdmac->per_address;
766         } else {
767                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
768         }
769
770         ret = sdma_load_context(sdmac);
771
772         return ret;
773 }
774
775 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
776                 unsigned int priority)
777 {
778         struct sdma_engine *sdma = sdmac->sdma;
779         int channel = sdmac->channel;
780
781         if (priority < MXC_SDMA_MIN_PRIORITY
782             || priority > MXC_SDMA_MAX_PRIORITY) {
783                 return -EINVAL;
784         }
785
786         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
787
788         return 0;
789 }
790
791 static int sdma_request_channel(struct sdma_channel *sdmac)
792 {
793         struct sdma_engine *sdma = sdmac->sdma;
794         int channel = sdmac->channel;
795         int ret = -EBUSY;
796
797         sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
798         if (!sdmac->bd) {
799                 ret = -ENOMEM;
800                 goto out;
801         }
802
803         memset(sdmac->bd, 0, PAGE_SIZE);
804
805         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
806         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
807
808         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
809
810         init_completion(&sdmac->done);
811
812         sdmac->buf_tail = 0;
813
814         return 0;
815 out:
816
817         return ret;
818 }
819
820 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
821 {
822         return container_of(chan, struct sdma_channel, chan);
823 }
824
825 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
826 {
827         unsigned long flags;
828         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
829         dma_cookie_t cookie;
830
831         spin_lock_irqsave(&sdmac->lock, flags);
832
833         cookie = dma_cookie_assign(tx);
834
835         spin_unlock_irqrestore(&sdmac->lock, flags);
836
837         return cookie;
838 }
839
840 static int sdma_alloc_chan_resources(struct dma_chan *chan)
841 {
842         struct sdma_channel *sdmac = to_sdma_chan(chan);
843         struct imx_dma_data *data = chan->private;
844         int prio, ret;
845
846         if (!data)
847                 return -EINVAL;
848
849         switch (data->priority) {
850         case DMA_PRIO_HIGH:
851                 prio = 3;
852                 break;
853         case DMA_PRIO_MEDIUM:
854                 prio = 2;
855                 break;
856         case DMA_PRIO_LOW:
857         default:
858                 prio = 1;
859                 break;
860         }
861
862         sdmac->peripheral_type = data->peripheral_type;
863         sdmac->event_id0 = data->dma_request;
864
865         clk_enable(sdmac->sdma->clk);
866
867         ret = sdma_request_channel(sdmac);
868         if (ret)
869                 return ret;
870
871         ret = sdma_set_channel_priority(sdmac, prio);
872         if (ret)
873                 return ret;
874
875         dma_async_tx_descriptor_init(&sdmac->desc, chan);
876         sdmac->desc.tx_submit = sdma_tx_submit;
877         /* txd.flags will be overwritten in prep funcs */
878         sdmac->desc.flags = DMA_CTRL_ACK;
879
880         return 0;
881 }
882
883 static void sdma_free_chan_resources(struct dma_chan *chan)
884 {
885         struct sdma_channel *sdmac = to_sdma_chan(chan);
886         struct sdma_engine *sdma = sdmac->sdma;
887
888         sdma_disable_channel(sdmac);
889
890         if (sdmac->event_id0)
891                 sdma_event_disable(sdmac, sdmac->event_id0);
892         if (sdmac->event_id1)
893                 sdma_event_disable(sdmac, sdmac->event_id1);
894
895         sdmac->event_id0 = 0;
896         sdmac->event_id1 = 0;
897
898         sdma_set_channel_priority(sdmac, 0);
899
900         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
901
902         clk_disable(sdma->clk);
903 }
904
905 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
906                 struct dma_chan *chan, struct scatterlist *sgl,
907                 unsigned int sg_len, enum dma_transfer_direction direction,
908                 unsigned long flags, void *context)
909 {
910         struct sdma_channel *sdmac = to_sdma_chan(chan);
911         struct sdma_engine *sdma = sdmac->sdma;
912         int ret, i, count;
913         int channel = sdmac->channel;
914         struct scatterlist *sg;
915
916         if (sdmac->status == DMA_IN_PROGRESS)
917                 return NULL;
918         sdmac->status = DMA_IN_PROGRESS;
919
920         sdmac->flags = 0;
921
922         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
923                         sg_len, channel);
924
925         sdmac->direction = direction;
926         ret = sdma_load_context(sdmac);
927         if (ret)
928                 goto err_out;
929
930         if (sg_len > NUM_BD) {
931                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
932                                 channel, sg_len, NUM_BD);
933                 ret = -EINVAL;
934                 goto err_out;
935         }
936
937         sdmac->chn_count = 0;
938         for_each_sg(sgl, sg, sg_len, i) {
939                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
940                 int param;
941
942                 bd->buffer_addr = sg->dma_address;
943
944                 count = sg->length;
945
946                 if (count > 0xffff) {
947                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
948                                         channel, count, 0xffff);
949                         ret = -EINVAL;
950                         goto err_out;
951                 }
952
953                 bd->mode.count = count;
954                 sdmac->chn_count += count;
955
956                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
957                         ret =  -EINVAL;
958                         goto err_out;
959                 }
960
961                 switch (sdmac->word_size) {
962                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
963                         bd->mode.command = 0;
964                         if (count & 3 || sg->dma_address & 3)
965                                 return NULL;
966                         break;
967                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
968                         bd->mode.command = 2;
969                         if (count & 1 || sg->dma_address & 1)
970                                 return NULL;
971                         break;
972                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
973                         bd->mode.command = 1;
974                         break;
975                 default:
976                         return NULL;
977                 }
978
979                 param = BD_DONE | BD_EXTD | BD_CONT;
980
981                 if (i + 1 == sg_len) {
982                         param |= BD_INTR;
983                         param |= BD_LAST;
984                         param &= ~BD_CONT;
985                 }
986
987                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
988                                 i, count, sg->dma_address,
989                                 param & BD_WRAP ? "wrap" : "",
990                                 param & BD_INTR ? " intr" : "");
991
992                 bd->mode.status = param;
993         }
994
995         sdmac->num_bd = sg_len;
996         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
997
998         return &sdmac->desc;
999 err_out:
1000         sdmac->status = DMA_ERROR;
1001         return NULL;
1002 }
1003
1004 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1005                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1006                 size_t period_len, enum dma_transfer_direction direction,
1007                 void *context)
1008 {
1009         struct sdma_channel *sdmac = to_sdma_chan(chan);
1010         struct sdma_engine *sdma = sdmac->sdma;
1011         int num_periods = buf_len / period_len;
1012         int channel = sdmac->channel;
1013         int ret, i = 0, buf = 0;
1014
1015         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1016
1017         if (sdmac->status == DMA_IN_PROGRESS)
1018                 return NULL;
1019
1020         sdmac->status = DMA_IN_PROGRESS;
1021
1022         sdmac->flags |= IMX_DMA_SG_LOOP;
1023         sdmac->direction = direction;
1024         ret = sdma_load_context(sdmac);
1025         if (ret)
1026                 goto err_out;
1027
1028         if (num_periods > NUM_BD) {
1029                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1030                                 channel, num_periods, NUM_BD);
1031                 goto err_out;
1032         }
1033
1034         if (period_len > 0xffff) {
1035                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1036                                 channel, period_len, 0xffff);
1037                 goto err_out;
1038         }
1039
1040         while (buf < buf_len) {
1041                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1042                 int param;
1043
1044                 bd->buffer_addr = dma_addr;
1045
1046                 bd->mode.count = period_len;
1047
1048                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1049                         goto err_out;
1050                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1051                         bd->mode.command = 0;
1052                 else
1053                         bd->mode.command = sdmac->word_size;
1054
1055                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1056                 if (i + 1 == num_periods)
1057                         param |= BD_WRAP;
1058
1059                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1060                                 i, period_len, dma_addr,
1061                                 param & BD_WRAP ? "wrap" : "",
1062                                 param & BD_INTR ? " intr" : "");
1063
1064                 bd->mode.status = param;
1065
1066                 dma_addr += period_len;
1067                 buf += period_len;
1068
1069                 i++;
1070         }
1071
1072         sdmac->num_bd = num_periods;
1073         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1074
1075         return &sdmac->desc;
1076 err_out:
1077         sdmac->status = DMA_ERROR;
1078         return NULL;
1079 }
1080
1081 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1082                 unsigned long arg)
1083 {
1084         struct sdma_channel *sdmac = to_sdma_chan(chan);
1085         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1086
1087         switch (cmd) {
1088         case DMA_TERMINATE_ALL:
1089                 sdma_disable_channel(sdmac);
1090                 return 0;
1091         case DMA_SLAVE_CONFIG:
1092                 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1093                         sdmac->per_address = dmaengine_cfg->src_addr;
1094                         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1095                                                 dmaengine_cfg->src_addr_width;
1096                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1097                 } else {
1098                         sdmac->per_address = dmaengine_cfg->dst_addr;
1099                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1100                                                 dmaengine_cfg->dst_addr_width;
1101                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1102                 }
1103                 sdmac->direction = dmaengine_cfg->direction;
1104                 return sdma_config_channel(sdmac);
1105         default:
1106                 return -ENOSYS;
1107         }
1108
1109         return -EINVAL;
1110 }
1111
1112 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1113                                             dma_cookie_t cookie,
1114                                             struct dma_tx_state *txstate)
1115 {
1116         struct sdma_channel *sdmac = to_sdma_chan(chan);
1117         dma_cookie_t last_used;
1118
1119         last_used = chan->cookie;
1120
1121         dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1122                         sdmac->chn_count - sdmac->chn_real_count);
1123
1124         return sdmac->status;
1125 }
1126
1127 static void sdma_issue_pending(struct dma_chan *chan)
1128 {
1129         struct sdma_channel *sdmac = to_sdma_chan(chan);
1130         struct sdma_engine *sdma = sdmac->sdma;
1131
1132         if (sdmac->status == DMA_IN_PROGRESS)
1133                 sdma_enable_channel(sdma, sdmac->channel);
1134 }
1135
1136 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1137
1138 static void sdma_add_scripts(struct sdma_engine *sdma,
1139                 const struct sdma_script_start_addrs *addr)
1140 {
1141         s32 *addr_arr = (u32 *)addr;
1142         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1143         int i;
1144
1145         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1146                 if (addr_arr[i] > 0)
1147                         saddr_arr[i] = addr_arr[i];
1148 }
1149
1150 static void sdma_load_firmware(const struct firmware *fw, void *context)
1151 {
1152         struct sdma_engine *sdma = context;
1153         const struct sdma_firmware_header *header;
1154         const struct sdma_script_start_addrs *addr;
1155         unsigned short *ram_code;
1156
1157         if (!fw) {
1158                 dev_err(sdma->dev, "firmware not found\n");
1159                 return;
1160         }
1161
1162         if (fw->size < sizeof(*header))
1163                 goto err_firmware;
1164
1165         header = (struct sdma_firmware_header *)fw->data;
1166
1167         if (header->magic != SDMA_FIRMWARE_MAGIC)
1168                 goto err_firmware;
1169         if (header->ram_code_start + header->ram_code_size > fw->size)
1170                 goto err_firmware;
1171
1172         addr = (void *)header + header->script_addrs_start;
1173         ram_code = (void *)header + header->ram_code_start;
1174
1175         clk_enable(sdma->clk);
1176         /* download the RAM image for SDMA */
1177         sdma_load_script(sdma, ram_code,
1178                         header->ram_code_size,
1179                         addr->ram_code_start_addr);
1180         clk_disable(sdma->clk);
1181
1182         sdma_add_scripts(sdma, addr);
1183
1184         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1185                         header->version_major,
1186                         header->version_minor);
1187
1188 err_firmware:
1189         release_firmware(fw);
1190 }
1191
1192 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1193                 const char *fw_name)
1194 {
1195         int ret;
1196
1197         ret = request_firmware_nowait(THIS_MODULE,
1198                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1199                         GFP_KERNEL, sdma, sdma_load_firmware);
1200
1201         return ret;
1202 }
1203
1204 static int __init sdma_init(struct sdma_engine *sdma)
1205 {
1206         int i, ret;
1207         dma_addr_t ccb_phys;
1208
1209         switch (sdma->devtype) {
1210         case IMX31_SDMA:
1211                 sdma->num_events = 32;
1212                 break;
1213         case IMX35_SDMA:
1214                 sdma->num_events = 48;
1215                 break;
1216         default:
1217                 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1218                         sdma->devtype);
1219                 return -ENODEV;
1220         }
1221
1222         clk_enable(sdma->clk);
1223
1224         /* Be sure SDMA has not started yet */
1225         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1226
1227         sdma->channel_control = dma_alloc_coherent(NULL,
1228                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1229                         sizeof(struct sdma_context_data),
1230                         &ccb_phys, GFP_KERNEL);
1231
1232         if (!sdma->channel_control) {
1233                 ret = -ENOMEM;
1234                 goto err_dma_alloc;
1235         }
1236
1237         sdma->context = (void *)sdma->channel_control +
1238                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1239         sdma->context_phys = ccb_phys +
1240                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1241
1242         /* Zero-out the CCB structures array just allocated */
1243         memset(sdma->channel_control, 0,
1244                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1245
1246         /* disable all channels */
1247         for (i = 0; i < sdma->num_events; i++)
1248                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1249
1250         /* All channels have priority 0 */
1251         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1252                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1253
1254         ret = sdma_request_channel(&sdma->channel[0]);
1255         if (ret)
1256                 goto err_dma_alloc;
1257
1258         sdma_config_ownership(&sdma->channel[0], false, true, false);
1259
1260         /* Set Command Channel (Channel Zero) */
1261         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1262
1263         /* Set bits of CONFIG register but with static context switching */
1264         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1265         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1266
1267         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1268
1269         /* Set bits of CONFIG register with given context switching mode */
1270         writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1271
1272         /* Initializes channel's priorities */
1273         sdma_set_channel_priority(&sdma->channel[0], 7);
1274
1275         clk_disable(sdma->clk);
1276
1277         return 0;
1278
1279 err_dma_alloc:
1280         clk_disable(sdma->clk);
1281         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1282         return ret;
1283 }
1284
1285 static int __init sdma_probe(struct platform_device *pdev)
1286 {
1287         const struct of_device_id *of_id =
1288                         of_match_device(sdma_dt_ids, &pdev->dev);
1289         struct device_node *np = pdev->dev.of_node;
1290         const char *fw_name;
1291         int ret;
1292         int irq;
1293         struct resource *iores;
1294         struct sdma_platform_data *pdata = pdev->dev.platform_data;
1295         int i;
1296         struct sdma_engine *sdma;
1297         s32 *saddr_arr;
1298
1299         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1300         if (!sdma)
1301                 return -ENOMEM;
1302
1303         mutex_init(&sdma->channel_0_lock);
1304
1305         sdma->dev = &pdev->dev;
1306
1307         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1308         irq = platform_get_irq(pdev, 0);
1309         if (!iores || irq < 0) {
1310                 ret = -EINVAL;
1311                 goto err_irq;
1312         }
1313
1314         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1315                 ret = -EBUSY;
1316                 goto err_request_region;
1317         }
1318
1319         sdma->clk = clk_get(&pdev->dev, NULL);
1320         if (IS_ERR(sdma->clk)) {
1321                 ret = PTR_ERR(sdma->clk);
1322                 goto err_clk;
1323         }
1324
1325         sdma->regs = ioremap(iores->start, resource_size(iores));
1326         if (!sdma->regs) {
1327                 ret = -ENOMEM;
1328                 goto err_ioremap;
1329         }
1330
1331         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1332         if (ret)
1333                 goto err_request_irq;
1334
1335         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1336         if (!sdma->script_addrs) {
1337                 ret = -ENOMEM;
1338                 goto err_alloc;
1339         }
1340
1341         /* initially no scripts available */
1342         saddr_arr = (s32 *)sdma->script_addrs;
1343         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1344                 saddr_arr[i] = -EINVAL;
1345
1346         if (of_id)
1347                 pdev->id_entry = of_id->data;
1348         sdma->devtype = pdev->id_entry->driver_data;
1349
1350         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1351         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1352
1353         INIT_LIST_HEAD(&sdma->dma_device.channels);
1354         /* Initialize channel parameters */
1355         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1356                 struct sdma_channel *sdmac = &sdma->channel[i];
1357
1358                 sdmac->sdma = sdma;
1359                 spin_lock_init(&sdmac->lock);
1360
1361                 sdmac->chan.device = &sdma->dma_device;
1362                 dma_cookie_init(&sdmac->chan);
1363                 sdmac->channel = i;
1364
1365                 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1366                              (unsigned long) sdmac);
1367                 /*
1368                  * Add the channel to the DMAC list. Do not add channel 0 though
1369                  * because we need it internally in the SDMA driver. This also means
1370                  * that channel 0 in dmaengine counting matches sdma channel 1.
1371                  */
1372                 if (i)
1373                         list_add_tail(&sdmac->chan.device_node,
1374                                         &sdma->dma_device.channels);
1375         }
1376
1377         ret = sdma_init(sdma);
1378         if (ret)
1379                 goto err_init;
1380
1381         if (pdata && pdata->script_addrs)
1382                 sdma_add_scripts(sdma, pdata->script_addrs);
1383
1384         if (pdata) {
1385                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1386                 if (ret)
1387                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1388         } else {
1389                 /*
1390                  * Because that device tree does not encode ROM script address,
1391                  * the RAM script in firmware is mandatory for device tree
1392                  * probe, otherwise it fails.
1393                  */
1394                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1395                                               &fw_name);
1396                 if (ret)
1397                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1398                 else {
1399                         ret = sdma_get_firmware(sdma, fw_name);
1400                         if (ret)
1401                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1402                 }
1403         }
1404
1405         sdma->dma_device.dev = &pdev->dev;
1406
1407         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1408         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1409         sdma->dma_device.device_tx_status = sdma_tx_status;
1410         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1411         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1412         sdma->dma_device.device_control = sdma_control;
1413         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1414         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1415         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1416
1417         ret = dma_async_device_register(&sdma->dma_device);
1418         if (ret) {
1419                 dev_err(&pdev->dev, "unable to register\n");
1420                 goto err_init;
1421         }
1422
1423         dev_info(sdma->dev, "initialized\n");
1424
1425         return 0;
1426
1427 err_init:
1428         kfree(sdma->script_addrs);
1429 err_alloc:
1430         free_irq(irq, sdma);
1431 err_request_irq:
1432         iounmap(sdma->regs);
1433 err_ioremap:
1434         clk_put(sdma->clk);
1435 err_clk:
1436         release_mem_region(iores->start, resource_size(iores));
1437 err_request_region:
1438 err_irq:
1439         kfree(sdma);
1440         return ret;
1441 }
1442
1443 static int __exit sdma_remove(struct platform_device *pdev)
1444 {
1445         return -EBUSY;
1446 }
1447
1448 static struct platform_driver sdma_driver = {
1449         .driver         = {
1450                 .name   = "imx-sdma",
1451                 .of_match_table = sdma_dt_ids,
1452         },
1453         .id_table       = sdma_devtypes,
1454         .remove         = __exit_p(sdma_remove),
1455 };
1456
1457 static int __init sdma_module_init(void)
1458 {
1459         return platform_driver_probe(&sdma_driver, sdma_probe);
1460 }
1461 module_init(sdma_module_init);
1462
1463 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1464 MODULE_DESCRIPTION("i.MX SDMA driver");
1465 MODULE_LICENSE("GPL");