]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/dma/nbpfaxi.c
Merge tag 'nfs-for-4.13-5' of git://git.linux-nfs.org/projects/anna/linux-nfs
[karo-tx-linux.git] / drivers / dma / nbpfaxi.c
1 /*
2  * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
3  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  */
9
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/log2.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25
26 #include <dt-bindings/dma/nbpfaxi.h>
27
28 #include "dmaengine.h"
29
30 #define NBPF_REG_CHAN_OFFSET    0
31 #define NBPF_REG_CHAN_SIZE      0x40
32
33 /* Channel Current Transaction Byte register */
34 #define NBPF_CHAN_CUR_TR_BYTE   0x20
35
36 /* Channel Status register */
37 #define NBPF_CHAN_STAT  0x24
38 #define NBPF_CHAN_STAT_EN       1
39 #define NBPF_CHAN_STAT_TACT     4
40 #define NBPF_CHAN_STAT_ERR      0x10
41 #define NBPF_CHAN_STAT_END      0x20
42 #define NBPF_CHAN_STAT_TC       0x40
43 #define NBPF_CHAN_STAT_DER      0x400
44
45 /* Channel Control register */
46 #define NBPF_CHAN_CTRL  0x28
47 #define NBPF_CHAN_CTRL_SETEN    1
48 #define NBPF_CHAN_CTRL_CLREN    2
49 #define NBPF_CHAN_CTRL_STG      4
50 #define NBPF_CHAN_CTRL_SWRST    8
51 #define NBPF_CHAN_CTRL_CLRRQ    0x10
52 #define NBPF_CHAN_CTRL_CLREND   0x20
53 #define NBPF_CHAN_CTRL_CLRTC    0x40
54 #define NBPF_CHAN_CTRL_SETSUS   0x100
55 #define NBPF_CHAN_CTRL_CLRSUS   0x200
56
57 /* Channel Configuration register */
58 #define NBPF_CHAN_CFG   0x2c
59 #define NBPF_CHAN_CFG_SEL       7               /* terminal SELect: 0..7 */
60 #define NBPF_CHAN_CFG_REQD      8               /* REQuest Direction: DMAREQ is 0: input, 1: output */
61 #define NBPF_CHAN_CFG_LOEN      0x10            /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
62 #define NBPF_CHAN_CFG_HIEN      0x20            /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
63 #define NBPF_CHAN_CFG_LVL       0x40            /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
64 #define NBPF_CHAN_CFG_AM        0x700           /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
65 #define NBPF_CHAN_CFG_SDS       0xf000          /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
66 #define NBPF_CHAN_CFG_DDS       0xf0000         /* Destination Data Size: as above */
67 #define NBPF_CHAN_CFG_SAD       0x100000        /* Source ADdress counting: 0: increment, 1: fixed */
68 #define NBPF_CHAN_CFG_DAD       0x200000        /* Destination ADdress counting: 0: increment, 1: fixed */
69 #define NBPF_CHAN_CFG_TM        0x400000        /* Transfer Mode: 0: single, 1: block TM */
70 #define NBPF_CHAN_CFG_DEM       0x1000000       /* DMAEND interrupt Mask */
71 #define NBPF_CHAN_CFG_TCM       0x2000000       /* DMATCO interrupt Mask */
72 #define NBPF_CHAN_CFG_SBE       0x8000000       /* Sweep Buffer Enable */
73 #define NBPF_CHAN_CFG_RSEL      0x10000000      /* RM: Register Set sELect */
74 #define NBPF_CHAN_CFG_RSW       0x20000000      /* RM: Register Select sWitch */
75 #define NBPF_CHAN_CFG_REN       0x40000000      /* RM: Register Set Enable */
76 #define NBPF_CHAN_CFG_DMS       0x80000000      /* 0: register mode (RM), 1: link mode (LM) */
77
78 #define NBPF_CHAN_NXLA  0x38
79 #define NBPF_CHAN_CRLA  0x3c
80
81 /* Link Header field */
82 #define NBPF_HEADER_LV  1
83 #define NBPF_HEADER_LE  2
84 #define NBPF_HEADER_WBD 4
85 #define NBPF_HEADER_DIM 8
86
87 #define NBPF_CTRL       0x300
88 #define NBPF_CTRL_PR    1               /* 0: fixed priority, 1: round robin */
89 #define NBPF_CTRL_LVINT 2               /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
90
91 #define NBPF_DSTAT_ER   0x314
92 #define NBPF_DSTAT_END  0x318
93
94 #define NBPF_DMA_BUSWIDTHS \
95         (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
96          BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
97          BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
98          BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
99          BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
100
101 struct nbpf_config {
102         int num_channels;
103         int buffer_size;
104 };
105
106 /*
107  * We've got 3 types of objects, used to describe DMA transfers:
108  * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
109  *      in it, used to communicate with the user
110  * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
111  *      queuing, these must be DMAable, using either the streaming DMA API or
112  *      allocated from coherent memory - one per SG segment
113  * 3. one per SG segment descriptors, used to manage HW link descriptors from
114  *      (2). They do not have to be DMAable. They can either be (a) allocated
115  *      together with link descriptors as mixed (DMA / CPU) objects, or (b)
116  *      separately. Even if allocated separately it would be best to link them
117  *      to link descriptors once during channel resource allocation and always
118  *      use them as a single object.
119  * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
120  * treated as a single SG segment descriptor.
121  */
122
123 struct nbpf_link_reg {
124         u32     header;
125         u32     src_addr;
126         u32     dst_addr;
127         u32     transaction_size;
128         u32     config;
129         u32     interval;
130         u32     extension;
131         u32     next;
132 } __packed;
133
134 struct nbpf_device;
135 struct nbpf_channel;
136 struct nbpf_desc;
137
138 struct nbpf_link_desc {
139         struct nbpf_link_reg *hwdesc;
140         dma_addr_t hwdesc_dma_addr;
141         struct nbpf_desc *desc;
142         struct list_head node;
143 };
144
145 /**
146  * struct nbpf_desc - DMA transfer descriptor
147  * @async_tx:   dmaengine object
148  * @user_wait:  waiting for a user ack
149  * @length:     total transfer length
150  * @sg:         list of hardware descriptors, represented by struct nbpf_link_desc
151  * @node:       member in channel descriptor lists
152  */
153 struct nbpf_desc {
154         struct dma_async_tx_descriptor async_tx;
155         bool user_wait;
156         size_t length;
157         struct nbpf_channel *chan;
158         struct list_head sg;
159         struct list_head node;
160 };
161
162 /* Take a wild guess: allocate 4 segments per descriptor */
163 #define NBPF_SEGMENTS_PER_DESC 4
164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /   \
165         (sizeof(struct nbpf_desc) +                                     \
166          NBPF_SEGMENTS_PER_DESC *                                       \
167          (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
169
170 struct nbpf_desc_page {
171         struct list_head node;
172         struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
173         struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
174         struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
175 };
176
177 /**
178  * struct nbpf_channel - one DMAC channel
179  * @dma_chan:   standard dmaengine channel object
180  * @base:       register address base
181  * @nbpf:       DMAC
182  * @name:       IRQ name
183  * @irq:        IRQ number
184  * @slave_addr: address for slave DMA
185  * @slave_width:slave data size in bytes
186  * @slave_burst:maximum slave burst size in bytes
187  * @terminal:   DMA terminal, assigned to this channel
188  * @dmarq_cfg:  DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
189  * @flags:      configuration flags from DT
190  * @lock:       protect descriptor lists
191  * @free_links: list of free link descriptors
192  * @free:       list of free descriptors
193  * @queued:     list of queued descriptors
194  * @active:     list of descriptors, scheduled for processing
195  * @done:       list of completed descriptors, waiting post-processing
196  * @desc_page:  list of additionally allocated descriptor pages - if any
197  */
198 struct nbpf_channel {
199         struct dma_chan dma_chan;
200         struct tasklet_struct tasklet;
201         void __iomem *base;
202         struct nbpf_device *nbpf;
203         char name[16];
204         int irq;
205         dma_addr_t slave_src_addr;
206         size_t slave_src_width;
207         size_t slave_src_burst;
208         dma_addr_t slave_dst_addr;
209         size_t slave_dst_width;
210         size_t slave_dst_burst;
211         unsigned int terminal;
212         u32 dmarq_cfg;
213         unsigned long flags;
214         spinlock_t lock;
215         struct list_head free_links;
216         struct list_head free;
217         struct list_head queued;
218         struct list_head active;
219         struct list_head done;
220         struct list_head desc_page;
221         struct nbpf_desc *running;
222         bool paused;
223 };
224
225 struct nbpf_device {
226         struct dma_device dma_dev;
227         void __iomem *base;
228         u32 max_burst_mem_read;
229         u32 max_burst_mem_write;
230         struct clk *clk;
231         const struct nbpf_config *config;
232         unsigned int eirq;
233         struct nbpf_channel chan[];
234 };
235
236 enum nbpf_model {
237         NBPF1B4,
238         NBPF1B8,
239         NBPF1B16,
240         NBPF4B4,
241         NBPF4B8,
242         NBPF4B16,
243         NBPF8B4,
244         NBPF8B8,
245         NBPF8B16,
246 };
247
248 static struct nbpf_config nbpf_cfg[] = {
249         [NBPF1B4] = {
250                 .num_channels = 1,
251                 .buffer_size = 4,
252         },
253         [NBPF1B8] = {
254                 .num_channels = 1,
255                 .buffer_size = 8,
256         },
257         [NBPF1B16] = {
258                 .num_channels = 1,
259                 .buffer_size = 16,
260         },
261         [NBPF4B4] = {
262                 .num_channels = 4,
263                 .buffer_size = 4,
264         },
265         [NBPF4B8] = {
266                 .num_channels = 4,
267                 .buffer_size = 8,
268         },
269         [NBPF4B16] = {
270                 .num_channels = 4,
271                 .buffer_size = 16,
272         },
273         [NBPF8B4] = {
274                 .num_channels = 8,
275                 .buffer_size = 4,
276         },
277         [NBPF8B8] = {
278                 .num_channels = 8,
279                 .buffer_size = 8,
280         },
281         [NBPF8B16] = {
282                 .num_channels = 8,
283                 .buffer_size = 16,
284         },
285 };
286
287 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
288
289 /*
290  * dmaengine drivers seem to have a lot in common and instead of sharing more
291  * code, they reimplement those common algorithms independently. In this driver
292  * we try to separate the hardware-specific part from the (largely) generic
293  * part. This improves code readability and makes it possible in the future to
294  * reuse the generic code in form of a helper library. That generic code should
295  * be suitable for various DMA controllers, using transfer descriptors in RAM
296  * and pushing one SG list at a time to the DMA controller.
297  */
298
299 /*              Hardware-specific part          */
300
301 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
302                                  unsigned int offset)
303 {
304         u32 data = ioread32(chan->base + offset);
305         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
306                 __func__, chan->base, offset, data);
307         return data;
308 }
309
310 static inline void nbpf_chan_write(struct nbpf_channel *chan,
311                                    unsigned int offset, u32 data)
312 {
313         iowrite32(data, chan->base + offset);
314         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
315                 __func__, chan->base, offset, data);
316 }
317
318 static inline u32 nbpf_read(struct nbpf_device *nbpf,
319                             unsigned int offset)
320 {
321         u32 data = ioread32(nbpf->base + offset);
322         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
323                 __func__, nbpf->base, offset, data);
324         return data;
325 }
326
327 static inline void nbpf_write(struct nbpf_device *nbpf,
328                               unsigned int offset, u32 data)
329 {
330         iowrite32(data, nbpf->base + offset);
331         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
332                 __func__, nbpf->base, offset, data);
333 }
334
335 static void nbpf_chan_halt(struct nbpf_channel *chan)
336 {
337         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
338 }
339
340 static bool nbpf_status_get(struct nbpf_channel *chan)
341 {
342         u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
343
344         return status & BIT(chan - chan->nbpf->chan);
345 }
346
347 static void nbpf_status_ack(struct nbpf_channel *chan)
348 {
349         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
350 }
351
352 static u32 nbpf_error_get(struct nbpf_device *nbpf)
353 {
354         return nbpf_read(nbpf, NBPF_DSTAT_ER);
355 }
356
357 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
358 {
359         return nbpf->chan + __ffs(error);
360 }
361
362 static void nbpf_error_clear(struct nbpf_channel *chan)
363 {
364         u32 status;
365         int i;
366
367         /* Stop the channel, make sure DMA has been aborted */
368         nbpf_chan_halt(chan);
369
370         for (i = 1000; i; i--) {
371                 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
372                 if (!(status & NBPF_CHAN_STAT_TACT))
373                         break;
374                 cpu_relax();
375         }
376
377         if (!i)
378                 dev_err(chan->dma_chan.device->dev,
379                         "%s(): abort timeout, channel status 0x%x\n", __func__, status);
380
381         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
382 }
383
384 static int nbpf_start(struct nbpf_desc *desc)
385 {
386         struct nbpf_channel *chan = desc->chan;
387         struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
388
389         nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
390         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
391         chan->paused = false;
392
393         /* Software trigger MEMCPY - only MEMCPY uses the block mode */
394         if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
395                 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
396
397         dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
398                 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
399
400         return 0;
401 }
402
403 static void nbpf_chan_prepare(struct nbpf_channel *chan)
404 {
405         chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
406                 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
407                 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
408                  NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
409                 chan->terminal;
410 }
411
412 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
413 {
414         /* Don't output DMAACK */
415         chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
416         chan->terminal = 0;
417         chan->flags = 0;
418 }
419
420 static void nbpf_chan_configure(struct nbpf_channel *chan)
421 {
422         /*
423          * We assume, that only the link mode and DMA request line configuration
424          * have to be set in the configuration register manually. Dynamic
425          * per-transfer configuration will be loaded from transfer descriptors.
426          */
427         nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
428 }
429
430 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
431                         enum dma_transfer_direction direction)
432 {
433         int max_burst = nbpf->config->buffer_size * 8;
434
435         if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
436                 switch (direction) {
437                 case DMA_MEM_TO_MEM:
438                         max_burst = min_not_zero(nbpf->max_burst_mem_read,
439                                                  nbpf->max_burst_mem_write);
440                         break;
441                 case DMA_MEM_TO_DEV:
442                         if (nbpf->max_burst_mem_read)
443                                 max_burst = nbpf->max_burst_mem_read;
444                         break;
445                 case DMA_DEV_TO_MEM:
446                         if (nbpf->max_burst_mem_write)
447                                 max_burst = nbpf->max_burst_mem_write;
448                         break;
449                 case DMA_DEV_TO_DEV:
450                 default:
451                         break;
452                 }
453         }
454
455         /* Maximum supported bursts depend on the buffer size */
456         return min_t(int, __ffs(size), ilog2(max_burst));
457 }
458
459 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
460                              enum dma_slave_buswidth width, u32 burst)
461 {
462         size_t size;
463
464         if (!burst)
465                 burst = 1;
466
467         switch (width) {
468         case DMA_SLAVE_BUSWIDTH_8_BYTES:
469                 size = 8 * burst;
470                 break;
471
472         case DMA_SLAVE_BUSWIDTH_4_BYTES:
473                 size = 4 * burst;
474                 break;
475
476         case DMA_SLAVE_BUSWIDTH_2_BYTES:
477                 size = 2 * burst;
478                 break;
479
480         default:
481                 pr_warn("%s(): invalid bus width %u\n", __func__, width);
482         case DMA_SLAVE_BUSWIDTH_1_BYTE:
483                 size = burst;
484         }
485
486         return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
487 }
488
489 /*
490  * We need a way to recognise slaves, whose data is sent "raw" over the bus,
491  * i.e. it isn't known in advance how many bytes will be received. Therefore
492  * the slave driver has to provide a "large enough" buffer and either read the
493  * buffer, when it is full, or detect, that some data has arrived, then wait for
494  * a timeout, if no more data arrives - receive what's already there. We want to
495  * handle such slaves in a special way to allow an optimised mode for other
496  * users, for whom the amount of data is known in advance. So far there's no way
497  * to recognise such slaves. We use a data-width check to distinguish between
498  * the SD host and the PL011 UART.
499  */
500
501 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
502                          enum dma_transfer_direction direction,
503                          dma_addr_t src, dma_addr_t dst, size_t size, bool last)
504 {
505         struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
506         struct nbpf_desc *desc = ldesc->desc;
507         struct nbpf_channel *chan = desc->chan;
508         struct device *dev = chan->dma_chan.device->dev;
509         size_t mem_xfer, slave_xfer;
510         bool can_burst;
511
512         hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
513                 (last ? NBPF_HEADER_LE : 0);
514
515         hwdesc->src_addr = src;
516         hwdesc->dst_addr = dst;
517         hwdesc->transaction_size = size;
518
519         /*
520          * set config: SAD, DAD, DDS, SDS, etc.
521          * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
522          * but it is important to have transaction size a multiple of both
523          * receiver and transmitter transfer sizes. It is also possible to use
524          * different RAM and device transfer sizes, and it does work well with
525          * some devices, e.g. with V08R07S01E SD host controllers, which can use
526          * 128 byte transfers. But this doesn't work with other devices,
527          * especially when the transaction size is unknown. This is the case,
528          * e.g. with serial drivers like amba-pl011.c. For reception it sets up
529          * the transaction size of 4K and if fewer bytes are received, it
530          * pauses DMA and reads out data received via DMA as well as those left
531          * in the Rx FIFO. For this to work with the RAM side using burst
532          * transfers we enable the SBE bit and terminate the transfer in our
533          * .device_pause handler.
534          */
535         mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
536
537         switch (direction) {
538         case DMA_DEV_TO_MEM:
539                 can_burst = chan->slave_src_width >= 3;
540                 slave_xfer = min(mem_xfer, can_burst ?
541                                  chan->slave_src_burst : chan->slave_src_width);
542                 /*
543                  * Is the slave narrower than 64 bits, i.e. isn't using the full
544                  * bus width and cannot use bursts?
545                  */
546                 if (mem_xfer > chan->slave_src_burst && !can_burst)
547                         mem_xfer = chan->slave_src_burst;
548                 /* Device-to-RAM DMA is unreliable without REQD set */
549                 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
550                         (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
551                         NBPF_CHAN_CFG_SBE;
552                 break;
553
554         case DMA_MEM_TO_DEV:
555                 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
556                                  chan->slave_dst_burst : chan->slave_dst_width);
557                 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
558                         (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
559                 break;
560
561         case DMA_MEM_TO_MEM:
562                 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
563                         (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
564                         (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
565                 break;
566
567         default:
568                 return -EINVAL;
569         }
570
571         hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
572                 NBPF_CHAN_CFG_DMS;
573
574         dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
575                 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
576                 hwdesc->config, size, &src, &dst);
577
578         dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
579                                    DMA_TO_DEVICE);
580
581         return 0;
582 }
583
584 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
585 {
586         return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
587 }
588
589 static void nbpf_configure(struct nbpf_device *nbpf)
590 {
591         nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
592 }
593
594 /*              Generic part                    */
595
596 /* DMA ENGINE functions */
597 static void nbpf_issue_pending(struct dma_chan *dchan)
598 {
599         struct nbpf_channel *chan = nbpf_to_chan(dchan);
600         unsigned long flags;
601
602         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
603
604         spin_lock_irqsave(&chan->lock, flags);
605         if (list_empty(&chan->queued))
606                 goto unlock;
607
608         list_splice_tail_init(&chan->queued, &chan->active);
609
610         if (!chan->running) {
611                 struct nbpf_desc *desc = list_first_entry(&chan->active,
612                                                 struct nbpf_desc, node);
613                 if (!nbpf_start(desc))
614                         chan->running = desc;
615         }
616
617 unlock:
618         spin_unlock_irqrestore(&chan->lock, flags);
619 }
620
621 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
622                 dma_cookie_t cookie, struct dma_tx_state *state)
623 {
624         struct nbpf_channel *chan = nbpf_to_chan(dchan);
625         enum dma_status status = dma_cookie_status(dchan, cookie, state);
626
627         if (state) {
628                 dma_cookie_t running;
629                 unsigned long flags;
630
631                 spin_lock_irqsave(&chan->lock, flags);
632                 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
633
634                 if (cookie == running) {
635                         state->residue = nbpf_bytes_left(chan);
636                         dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
637                                 state->residue);
638                 } else if (status == DMA_IN_PROGRESS) {
639                         struct nbpf_desc *desc;
640                         bool found = false;
641
642                         list_for_each_entry(desc, &chan->active, node)
643                                 if (desc->async_tx.cookie == cookie) {
644                                         found = true;
645                                         break;
646                                 }
647
648                         if (!found)
649                                 list_for_each_entry(desc, &chan->queued, node)
650                                         if (desc->async_tx.cookie == cookie) {
651                                                 found = true;
652                                                 break;
653
654                                         }
655
656                         state->residue = found ? desc->length : 0;
657                 }
658
659                 spin_unlock_irqrestore(&chan->lock, flags);
660         }
661
662         if (chan->paused)
663                 status = DMA_PAUSED;
664
665         return status;
666 }
667
668 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
669 {
670         struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
671         struct nbpf_channel *chan = desc->chan;
672         unsigned long flags;
673         dma_cookie_t cookie;
674
675         spin_lock_irqsave(&chan->lock, flags);
676         cookie = dma_cookie_assign(tx);
677         list_add_tail(&desc->node, &chan->queued);
678         spin_unlock_irqrestore(&chan->lock, flags);
679
680         dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
681
682         return cookie;
683 }
684
685 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
686 {
687         struct dma_chan *dchan = &chan->dma_chan;
688         struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
689         struct nbpf_link_desc *ldesc;
690         struct nbpf_link_reg *hwdesc;
691         struct nbpf_desc *desc;
692         LIST_HEAD(head);
693         LIST_HEAD(lhead);
694         int i;
695         struct device *dev = dchan->device->dev;
696
697         if (!dpage)
698                 return -ENOMEM;
699
700         dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
701                 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
702
703         for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
704              i < ARRAY_SIZE(dpage->ldesc);
705              i++, ldesc++, hwdesc++) {
706                 ldesc->hwdesc = hwdesc;
707                 list_add_tail(&ldesc->node, &lhead);
708                 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
709                                         hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
710
711                 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
712                         hwdesc, &ldesc->hwdesc_dma_addr);
713         }
714
715         for (i = 0, desc = dpage->desc;
716              i < ARRAY_SIZE(dpage->desc);
717              i++, desc++) {
718                 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
719                 desc->async_tx.tx_submit = nbpf_tx_submit;
720                 desc->chan = chan;
721                 INIT_LIST_HEAD(&desc->sg);
722                 list_add_tail(&desc->node, &head);
723         }
724
725         /*
726          * This function cannot be called from interrupt context, so, no need to
727          * save flags
728          */
729         spin_lock_irq(&chan->lock);
730         list_splice_tail(&lhead, &chan->free_links);
731         list_splice_tail(&head, &chan->free);
732         list_add(&dpage->node, &chan->desc_page);
733         spin_unlock_irq(&chan->lock);
734
735         return ARRAY_SIZE(dpage->desc);
736 }
737
738 static void nbpf_desc_put(struct nbpf_desc *desc)
739 {
740         struct nbpf_channel *chan = desc->chan;
741         struct nbpf_link_desc *ldesc, *tmp;
742         unsigned long flags;
743
744         spin_lock_irqsave(&chan->lock, flags);
745         list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
746                 list_move(&ldesc->node, &chan->free_links);
747
748         list_add(&desc->node, &chan->free);
749         spin_unlock_irqrestore(&chan->lock, flags);
750 }
751
752 static void nbpf_scan_acked(struct nbpf_channel *chan)
753 {
754         struct nbpf_desc *desc, *tmp;
755         unsigned long flags;
756         LIST_HEAD(head);
757
758         spin_lock_irqsave(&chan->lock, flags);
759         list_for_each_entry_safe(desc, tmp, &chan->done, node)
760                 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
761                         list_move(&desc->node, &head);
762                         desc->user_wait = false;
763                 }
764         spin_unlock_irqrestore(&chan->lock, flags);
765
766         list_for_each_entry_safe(desc, tmp, &head, node) {
767                 list_del(&desc->node);
768                 nbpf_desc_put(desc);
769         }
770 }
771
772 /*
773  * We have to allocate descriptors with the channel lock dropped. This means,
774  * before we re-acquire the lock buffers can be taken already, so we have to
775  * re-check after re-acquiring the lock and possibly retry, if buffers are gone
776  * again.
777  */
778 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
779 {
780         struct nbpf_desc *desc = NULL;
781         struct nbpf_link_desc *ldesc, *prev = NULL;
782
783         nbpf_scan_acked(chan);
784
785         spin_lock_irq(&chan->lock);
786
787         do {
788                 int i = 0, ret;
789
790                 if (list_empty(&chan->free)) {
791                         /* No more free descriptors */
792                         spin_unlock_irq(&chan->lock);
793                         ret = nbpf_desc_page_alloc(chan);
794                         if (ret < 0)
795                                 return NULL;
796                         spin_lock_irq(&chan->lock);
797                         continue;
798                 }
799                 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
800                 list_del(&desc->node);
801
802                 do {
803                         if (list_empty(&chan->free_links)) {
804                                 /* No more free link descriptors */
805                                 spin_unlock_irq(&chan->lock);
806                                 ret = nbpf_desc_page_alloc(chan);
807                                 if (ret < 0) {
808                                         nbpf_desc_put(desc);
809                                         return NULL;
810                                 }
811                                 spin_lock_irq(&chan->lock);
812                                 continue;
813                         }
814
815                         ldesc = list_first_entry(&chan->free_links,
816                                                  struct nbpf_link_desc, node);
817                         ldesc->desc = desc;
818                         if (prev)
819                                 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
820
821                         prev = ldesc;
822                         list_move_tail(&ldesc->node, &desc->sg);
823
824                         i++;
825                 } while (i < len);
826         } while (!desc);
827
828         prev->hwdesc->next = 0;
829
830         spin_unlock_irq(&chan->lock);
831
832         return desc;
833 }
834
835 static void nbpf_chan_idle(struct nbpf_channel *chan)
836 {
837         struct nbpf_desc *desc, *tmp;
838         unsigned long flags;
839         LIST_HEAD(head);
840
841         spin_lock_irqsave(&chan->lock, flags);
842
843         list_splice_init(&chan->done, &head);
844         list_splice_init(&chan->active, &head);
845         list_splice_init(&chan->queued, &head);
846
847         chan->running = NULL;
848
849         spin_unlock_irqrestore(&chan->lock, flags);
850
851         list_for_each_entry_safe(desc, tmp, &head, node) {
852                 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
853                         __func__, desc, desc->async_tx.cookie);
854                 list_del(&desc->node);
855                 nbpf_desc_put(desc);
856         }
857 }
858
859 static int nbpf_pause(struct dma_chan *dchan)
860 {
861         struct nbpf_channel *chan = nbpf_to_chan(dchan);
862
863         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
864
865         chan->paused = true;
866         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
867         /* See comment in nbpf_prep_one() */
868         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
869
870         return 0;
871 }
872
873 static int nbpf_terminate_all(struct dma_chan *dchan)
874 {
875         struct nbpf_channel *chan = nbpf_to_chan(dchan);
876
877         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
878         dev_dbg(dchan->device->dev, "Terminating\n");
879
880         nbpf_chan_halt(chan);
881         nbpf_chan_idle(chan);
882
883         return 0;
884 }
885
886 static int nbpf_config(struct dma_chan *dchan,
887                        struct dma_slave_config *config)
888 {
889         struct nbpf_channel *chan = nbpf_to_chan(dchan);
890
891         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
892
893         /*
894          * We could check config->slave_id to match chan->terminal here,
895          * but with DT they would be coming from the same source, so
896          * such a check would be superflous
897          */
898
899         chan->slave_dst_addr = config->dst_addr;
900         chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
901                                                config->dst_addr_width, 1);
902         chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
903                                                config->dst_addr_width,
904                                                config->dst_maxburst);
905         chan->slave_src_addr = config->src_addr;
906         chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
907                                                config->src_addr_width, 1);
908         chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
909                                                config->src_addr_width,
910                                                config->src_maxburst);
911
912         return 0;
913 }
914
915 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
916                 struct scatterlist *src_sg, struct scatterlist *dst_sg,
917                 size_t len, enum dma_transfer_direction direction,
918                 unsigned long flags)
919 {
920         struct nbpf_link_desc *ldesc;
921         struct scatterlist *mem_sg;
922         struct nbpf_desc *desc;
923         bool inc_src, inc_dst;
924         size_t data_len = 0;
925         int i = 0;
926
927         switch (direction) {
928         case DMA_DEV_TO_MEM:
929                 mem_sg = dst_sg;
930                 inc_src = false;
931                 inc_dst = true;
932                 break;
933
934         case DMA_MEM_TO_DEV:
935                 mem_sg = src_sg;
936                 inc_src = true;
937                 inc_dst = false;
938                 break;
939
940         default:
941         case DMA_MEM_TO_MEM:
942                 mem_sg = src_sg;
943                 inc_src = true;
944                 inc_dst = true;
945         }
946
947         desc = nbpf_desc_get(chan, len);
948         if (!desc)
949                 return NULL;
950
951         desc->async_tx.flags = flags;
952         desc->async_tx.cookie = -EBUSY;
953         desc->user_wait = false;
954
955         /*
956          * This is a private descriptor list, and we own the descriptor. No need
957          * to lock.
958          */
959         list_for_each_entry(ldesc, &desc->sg, node) {
960                 int ret = nbpf_prep_one(ldesc, direction,
961                                         sg_dma_address(src_sg),
962                                         sg_dma_address(dst_sg),
963                                         sg_dma_len(mem_sg),
964                                         i == len - 1);
965                 if (ret < 0) {
966                         nbpf_desc_put(desc);
967                         return NULL;
968                 }
969                 data_len += sg_dma_len(mem_sg);
970                 if (inc_src)
971                         src_sg = sg_next(src_sg);
972                 if (inc_dst)
973                         dst_sg = sg_next(dst_sg);
974                 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
975                 i++;
976         }
977
978         desc->length = data_len;
979
980         /* The user has to return the descriptor to us ASAP via .tx_submit() */
981         return &desc->async_tx;
982 }
983
984 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
985         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
986         size_t len, unsigned long flags)
987 {
988         struct nbpf_channel *chan = nbpf_to_chan(dchan);
989         struct scatterlist dst_sg;
990         struct scatterlist src_sg;
991
992         sg_init_table(&dst_sg, 1);
993         sg_init_table(&src_sg, 1);
994
995         sg_dma_address(&dst_sg) = dst;
996         sg_dma_address(&src_sg) = src;
997
998         sg_dma_len(&dst_sg) = len;
999         sg_dma_len(&src_sg) = len;
1000
1001         dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
1002                 __func__, len, &src, &dst);
1003
1004         return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
1005                             DMA_MEM_TO_MEM, flags);
1006 }
1007
1008 static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg(
1009         struct dma_chan *dchan,
1010         struct scatterlist *dst_sg, unsigned int dst_nents,
1011         struct scatterlist *src_sg, unsigned int src_nents,
1012         unsigned long flags)
1013 {
1014         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1015
1016         if (dst_nents != src_nents)
1017                 return NULL;
1018
1019         return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents,
1020                             DMA_MEM_TO_MEM, flags);
1021 }
1022
1023 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1024         struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1025         enum dma_transfer_direction direction, unsigned long flags, void *context)
1026 {
1027         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1028         struct scatterlist slave_sg;
1029
1030         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1031
1032         sg_init_table(&slave_sg, 1);
1033
1034         switch (direction) {
1035         case DMA_MEM_TO_DEV:
1036                 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1037                 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1038                                     direction, flags);
1039
1040         case DMA_DEV_TO_MEM:
1041                 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1042                 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1043                                     direction, flags);
1044
1045         default:
1046                 return NULL;
1047         }
1048 }
1049
1050 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1051 {
1052         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1053         int ret;
1054
1055         INIT_LIST_HEAD(&chan->free);
1056         INIT_LIST_HEAD(&chan->free_links);
1057         INIT_LIST_HEAD(&chan->queued);
1058         INIT_LIST_HEAD(&chan->active);
1059         INIT_LIST_HEAD(&chan->done);
1060
1061         ret = nbpf_desc_page_alloc(chan);
1062         if (ret < 0)
1063                 return ret;
1064
1065         dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1066                 chan->terminal);
1067
1068         nbpf_chan_configure(chan);
1069
1070         return ret;
1071 }
1072
1073 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1074 {
1075         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1076         struct nbpf_desc_page *dpage, *tmp;
1077
1078         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1079
1080         nbpf_chan_halt(chan);
1081         nbpf_chan_idle(chan);
1082         /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1083         nbpf_chan_prepare_default(chan);
1084
1085         list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1086                 struct nbpf_link_desc *ldesc;
1087                 int i;
1088                 list_del(&dpage->node);
1089                 for (i = 0, ldesc = dpage->ldesc;
1090                      i < ARRAY_SIZE(dpage->ldesc);
1091                      i++, ldesc++)
1092                         dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1093                                          sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1094                 free_page((unsigned long)dpage);
1095         }
1096 }
1097
1098 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1099                                       struct of_dma *ofdma)
1100 {
1101         struct nbpf_device *nbpf = ofdma->of_dma_data;
1102         struct dma_chan *dchan;
1103         struct nbpf_channel *chan;
1104
1105         if (dma_spec->args_count != 2)
1106                 return NULL;
1107
1108         dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1109         if (!dchan)
1110                 return NULL;
1111
1112         dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1113                 dma_spec->np->name);
1114
1115         chan = nbpf_to_chan(dchan);
1116
1117         chan->terminal = dma_spec->args[0];
1118         chan->flags = dma_spec->args[1];
1119
1120         nbpf_chan_prepare(chan);
1121         nbpf_chan_configure(chan);
1122
1123         return dchan;
1124 }
1125
1126 static void nbpf_chan_tasklet(unsigned long data)
1127 {
1128         struct nbpf_channel *chan = (struct nbpf_channel *)data;
1129         struct nbpf_desc *desc, *tmp;
1130         struct dmaengine_desc_callback cb;
1131
1132         while (!list_empty(&chan->done)) {
1133                 bool found = false, must_put, recycling = false;
1134
1135                 spin_lock_irq(&chan->lock);
1136
1137                 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1138                         if (!desc->user_wait) {
1139                                 /* Newly completed descriptor, have to process */
1140                                 found = true;
1141                                 break;
1142                         } else if (async_tx_test_ack(&desc->async_tx)) {
1143                                 /*
1144                                  * This descriptor was waiting for a user ACK,
1145                                  * it can be recycled now.
1146                                  */
1147                                 list_del(&desc->node);
1148                                 spin_unlock_irq(&chan->lock);
1149                                 nbpf_desc_put(desc);
1150                                 recycling = true;
1151                                 break;
1152                         }
1153                 }
1154
1155                 if (recycling)
1156                         continue;
1157
1158                 if (!found) {
1159                         /* This can happen if TERMINATE_ALL has been called */
1160                         spin_unlock_irq(&chan->lock);
1161                         break;
1162                 }
1163
1164                 dma_cookie_complete(&desc->async_tx);
1165
1166                 /*
1167                  * With released lock we cannot dereference desc, maybe it's
1168                  * still on the "done" list
1169                  */
1170                 if (async_tx_test_ack(&desc->async_tx)) {
1171                         list_del(&desc->node);
1172                         must_put = true;
1173                 } else {
1174                         desc->user_wait = true;
1175                         must_put = false;
1176                 }
1177
1178                 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1179
1180                 /* ack and callback completed descriptor */
1181                 spin_unlock_irq(&chan->lock);
1182
1183                 dmaengine_desc_callback_invoke(&cb, NULL);
1184
1185                 if (must_put)
1186                         nbpf_desc_put(desc);
1187         }
1188 }
1189
1190 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1191 {
1192         struct nbpf_channel *chan = dev;
1193         bool done = nbpf_status_get(chan);
1194         struct nbpf_desc *desc;
1195         irqreturn_t ret;
1196         bool bh = false;
1197
1198         if (!done)
1199                 return IRQ_NONE;
1200
1201         nbpf_status_ack(chan);
1202
1203         dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1204
1205         spin_lock(&chan->lock);
1206         desc = chan->running;
1207         if (WARN_ON(!desc)) {
1208                 ret = IRQ_NONE;
1209                 goto unlock;
1210         } else {
1211                 ret = IRQ_HANDLED;
1212                 bh = true;
1213         }
1214
1215         list_move_tail(&desc->node, &chan->done);
1216         chan->running = NULL;
1217
1218         if (!list_empty(&chan->active)) {
1219                 desc = list_first_entry(&chan->active,
1220                                         struct nbpf_desc, node);
1221                 if (!nbpf_start(desc))
1222                         chan->running = desc;
1223         }
1224
1225 unlock:
1226         spin_unlock(&chan->lock);
1227
1228         if (bh)
1229                 tasklet_schedule(&chan->tasklet);
1230
1231         return ret;
1232 }
1233
1234 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1235 {
1236         struct nbpf_device *nbpf = dev;
1237         u32 error = nbpf_error_get(nbpf);
1238
1239         dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1240
1241         if (!error)
1242                 return IRQ_NONE;
1243
1244         do {
1245                 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1246                 /* On error: abort all queued transfers, no callback */
1247                 nbpf_error_clear(chan);
1248                 nbpf_chan_idle(chan);
1249                 error = nbpf_error_get(nbpf);
1250         } while (error);
1251
1252         return IRQ_HANDLED;
1253 }
1254
1255 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1256 {
1257         struct dma_device *dma_dev = &nbpf->dma_dev;
1258         struct nbpf_channel *chan = nbpf->chan + n;
1259         int ret;
1260
1261         chan->nbpf = nbpf;
1262         chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1263         INIT_LIST_HEAD(&chan->desc_page);
1264         spin_lock_init(&chan->lock);
1265         chan->dma_chan.device = dma_dev;
1266         dma_cookie_init(&chan->dma_chan);
1267         nbpf_chan_prepare_default(chan);
1268
1269         dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1270
1271         snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1272
1273         tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1274         ret = devm_request_irq(dma_dev->dev, chan->irq,
1275                         nbpf_chan_irq, IRQF_SHARED,
1276                         chan->name, chan);
1277         if (ret < 0)
1278                 return ret;
1279
1280         /* Add the channel to DMA device channel list */
1281         list_add_tail(&chan->dma_chan.device_node,
1282                       &dma_dev->channels);
1283
1284         return 0;
1285 }
1286
1287 static const struct of_device_id nbpf_match[] = {
1288         {.compatible = "renesas,nbpfaxi64dmac1b4",      .data = &nbpf_cfg[NBPF1B4]},
1289         {.compatible = "renesas,nbpfaxi64dmac1b8",      .data = &nbpf_cfg[NBPF1B8]},
1290         {.compatible = "renesas,nbpfaxi64dmac1b16",     .data = &nbpf_cfg[NBPF1B16]},
1291         {.compatible = "renesas,nbpfaxi64dmac4b4",      .data = &nbpf_cfg[NBPF4B4]},
1292         {.compatible = "renesas,nbpfaxi64dmac4b8",      .data = &nbpf_cfg[NBPF4B8]},
1293         {.compatible = "renesas,nbpfaxi64dmac4b16",     .data = &nbpf_cfg[NBPF4B16]},
1294         {.compatible = "renesas,nbpfaxi64dmac8b4",      .data = &nbpf_cfg[NBPF8B4]},
1295         {.compatible = "renesas,nbpfaxi64dmac8b8",      .data = &nbpf_cfg[NBPF8B8]},
1296         {.compatible = "renesas,nbpfaxi64dmac8b16",     .data = &nbpf_cfg[NBPF8B16]},
1297         {}
1298 };
1299 MODULE_DEVICE_TABLE(of, nbpf_match);
1300
1301 static int nbpf_probe(struct platform_device *pdev)
1302 {
1303         struct device *dev = &pdev->dev;
1304         const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
1305         struct device_node *np = dev->of_node;
1306         struct nbpf_device *nbpf;
1307         struct dma_device *dma_dev;
1308         struct resource *iomem, *irq_res;
1309         const struct nbpf_config *cfg;
1310         int num_channels;
1311         int ret, irq, eirq, i;
1312         int irqbuf[9] /* maximum 8 channels + error IRQ */;
1313         unsigned int irqs = 0;
1314
1315         BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1316
1317         /* DT only */
1318         if (!np || !of_id || !of_id->data)
1319                 return -ENODEV;
1320
1321         cfg = of_id->data;
1322         num_channels = cfg->num_channels;
1323
1324         nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
1325                             sizeof(nbpf->chan[0]), GFP_KERNEL);
1326         if (!nbpf)
1327                 return -ENOMEM;
1328
1329         dma_dev = &nbpf->dma_dev;
1330         dma_dev->dev = dev;
1331
1332         iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1333         nbpf->base = devm_ioremap_resource(dev, iomem);
1334         if (IS_ERR(nbpf->base))
1335                 return PTR_ERR(nbpf->base);
1336
1337         nbpf->clk = devm_clk_get(dev, NULL);
1338         if (IS_ERR(nbpf->clk))
1339                 return PTR_ERR(nbpf->clk);
1340
1341         of_property_read_u32(np, "max-burst-mem-read",
1342                              &nbpf->max_burst_mem_read);
1343         of_property_read_u32(np, "max-burst-mem-write",
1344                              &nbpf->max_burst_mem_write);
1345
1346         nbpf->config = cfg;
1347
1348         for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1349                 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1350                 if (!irq_res)
1351                         break;
1352
1353                 for (irq = irq_res->start; irq <= irq_res->end;
1354                      irq++, irqs++)
1355                         irqbuf[irqs] = irq;
1356         }
1357
1358         /*
1359          * 3 IRQ resource schemes are supported:
1360          * 1. 1 shared IRQ for error and all channels
1361          * 2. 2 IRQs: one for error and one shared for all channels
1362          * 3. 1 IRQ for error and an own IRQ for each channel
1363          */
1364         if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1365                 return -ENXIO;
1366
1367         if (irqs == 1) {
1368                 eirq = irqbuf[0];
1369
1370                 for (i = 0; i <= num_channels; i++)
1371                         nbpf->chan[i].irq = irqbuf[0];
1372         } else {
1373                 eirq = platform_get_irq_byname(pdev, "error");
1374                 if (eirq < 0)
1375                         return eirq;
1376
1377                 if (irqs == num_channels + 1) {
1378                         struct nbpf_channel *chan;
1379
1380                         for (i = 0, chan = nbpf->chan; i <= num_channels;
1381                              i++, chan++) {
1382                                 /* Skip the error IRQ */
1383                                 if (irqbuf[i] == eirq)
1384                                         i++;
1385                                 chan->irq = irqbuf[i];
1386                         }
1387
1388                         if (chan != nbpf->chan + num_channels)
1389                                 return -EINVAL;
1390                 } else {
1391                         /* 2 IRQs and more than one channel */
1392                         if (irqbuf[0] == eirq)
1393                                 irq = irqbuf[1];
1394                         else
1395                                 irq = irqbuf[0];
1396
1397                         for (i = 0; i <= num_channels; i++)
1398                                 nbpf->chan[i].irq = irq;
1399                 }
1400         }
1401
1402         ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1403                                IRQF_SHARED, "dma error", nbpf);
1404         if (ret < 0)
1405                 return ret;
1406         nbpf->eirq = eirq;
1407
1408         INIT_LIST_HEAD(&dma_dev->channels);
1409
1410         /* Create DMA Channel */
1411         for (i = 0; i < num_channels; i++) {
1412                 ret = nbpf_chan_probe(nbpf, i);
1413                 if (ret < 0)
1414                         return ret;
1415         }
1416
1417         dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1418         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1419         dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1420         dma_cap_set(DMA_SG, dma_dev->cap_mask);
1421
1422         /* Common and MEMCPY operations */
1423         dma_dev->device_alloc_chan_resources
1424                 = nbpf_alloc_chan_resources;
1425         dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1426         dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg;
1427         dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1428         dma_dev->device_tx_status = nbpf_tx_status;
1429         dma_dev->device_issue_pending = nbpf_issue_pending;
1430
1431         /*
1432          * If we drop support for unaligned MEMCPY buffer addresses and / or
1433          * lengths by setting
1434          * dma_dev->copy_align = 4;
1435          * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1436          * DMA_MEM_TO_MEM
1437          */
1438
1439         /* Compulsory for DMA_SLAVE fields */
1440         dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1441         dma_dev->device_config = nbpf_config;
1442         dma_dev->device_pause = nbpf_pause;
1443         dma_dev->device_terminate_all = nbpf_terminate_all;
1444
1445         dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1446         dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1447         dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1448
1449         platform_set_drvdata(pdev, nbpf);
1450
1451         ret = clk_prepare_enable(nbpf->clk);
1452         if (ret < 0)
1453                 return ret;
1454
1455         nbpf_configure(nbpf);
1456
1457         ret = dma_async_device_register(dma_dev);
1458         if (ret < 0)
1459                 goto e_clk_off;
1460
1461         ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1462         if (ret < 0)
1463                 goto e_dma_dev_unreg;
1464
1465         return 0;
1466
1467 e_dma_dev_unreg:
1468         dma_async_device_unregister(dma_dev);
1469 e_clk_off:
1470         clk_disable_unprepare(nbpf->clk);
1471
1472         return ret;
1473 }
1474
1475 static int nbpf_remove(struct platform_device *pdev)
1476 {
1477         struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1478         int i;
1479
1480         devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1481
1482         for (i = 0; i < nbpf->config->num_channels; i++) {
1483                 struct nbpf_channel *chan = nbpf->chan + i;
1484
1485                 devm_free_irq(&pdev->dev, chan->irq, chan);
1486
1487                 tasklet_kill(&chan->tasklet);
1488         }
1489
1490         of_dma_controller_free(pdev->dev.of_node);
1491         dma_async_device_unregister(&nbpf->dma_dev);
1492         clk_disable_unprepare(nbpf->clk);
1493
1494         return 0;
1495 }
1496
1497 static const struct platform_device_id nbpf_ids[] = {
1498         {"nbpfaxi64dmac1b4",    (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1499         {"nbpfaxi64dmac1b8",    (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1500         {"nbpfaxi64dmac1b16",   (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1501         {"nbpfaxi64dmac4b4",    (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1502         {"nbpfaxi64dmac4b8",    (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1503         {"nbpfaxi64dmac4b16",   (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1504         {"nbpfaxi64dmac8b4",    (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1505         {"nbpfaxi64dmac8b8",    (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1506         {"nbpfaxi64dmac8b16",   (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1507         {},
1508 };
1509 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1510
1511 #ifdef CONFIG_PM
1512 static int nbpf_runtime_suspend(struct device *dev)
1513 {
1514         struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1515         clk_disable_unprepare(nbpf->clk);
1516         return 0;
1517 }
1518
1519 static int nbpf_runtime_resume(struct device *dev)
1520 {
1521         struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1522         return clk_prepare_enable(nbpf->clk);
1523 }
1524 #endif
1525
1526 static const struct dev_pm_ops nbpf_pm_ops = {
1527         SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1528 };
1529
1530 static struct platform_driver nbpf_driver = {
1531         .driver = {
1532                 .name = "dma-nbpf",
1533                 .of_match_table = nbpf_match,
1534                 .pm = &nbpf_pm_ops,
1535         },
1536         .id_table = nbpf_ids,
1537         .probe = nbpf_probe,
1538         .remove = nbpf_remove,
1539 };
1540
1541 module_platform_driver(nbpf_driver);
1542
1543 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1544 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1545 MODULE_LICENSE("GPL v2");