]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/edac/edac_mc.c
Merge tag 'kbuild-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[karo-tx-linux.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 static int edac_report = EDAC_REPORTING_ENABLED;
47
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51
52 /*
53  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54  *      apei/ghes and i7core_edac to be used at the same time.
55  */
56 static void const *edac_mc_owner;
57
58 static struct bus_type mc_bus[EDAC_MAX_MCS];
59
60 int edac_get_report_status(void)
61 {
62         return edac_report;
63 }
64 EXPORT_SYMBOL_GPL(edac_get_report_status);
65
66 void edac_set_report_status(int new)
67 {
68         if (new == EDAC_REPORTING_ENABLED ||
69             new == EDAC_REPORTING_DISABLED ||
70             new == EDAC_REPORTING_FORCE)
71                 edac_report = new;
72 }
73 EXPORT_SYMBOL_GPL(edac_set_report_status);
74
75 static int edac_report_set(const char *str, const struct kernel_param *kp)
76 {
77         if (!str)
78                 return -EINVAL;
79
80         if (!strncmp(str, "on", 2))
81                 edac_report = EDAC_REPORTING_ENABLED;
82         else if (!strncmp(str, "off", 3))
83                 edac_report = EDAC_REPORTING_DISABLED;
84         else if (!strncmp(str, "force", 5))
85                 edac_report = EDAC_REPORTING_FORCE;
86
87         return 0;
88 }
89
90 static int edac_report_get(char *buffer, const struct kernel_param *kp)
91 {
92         int ret = 0;
93
94         switch (edac_report) {
95         case EDAC_REPORTING_ENABLED:
96                 ret = sprintf(buffer, "on");
97                 break;
98         case EDAC_REPORTING_DISABLED:
99                 ret = sprintf(buffer, "off");
100                 break;
101         case EDAC_REPORTING_FORCE:
102                 ret = sprintf(buffer, "force");
103                 break;
104         default:
105                 ret = -EINVAL;
106                 break;
107         }
108
109         return ret;
110 }
111
112 static const struct kernel_param_ops edac_report_ops = {
113         .set = edac_report_set,
114         .get = edac_report_get,
115 };
116
117 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
118
119 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
120                                  unsigned len)
121 {
122         struct mem_ctl_info *mci = dimm->mci;
123         int i, n, count = 0;
124         char *p = buf;
125
126         for (i = 0; i < mci->n_layers; i++) {
127                 n = snprintf(p, len, "%s %d ",
128                               edac_layer_name[mci->layers[i].type],
129                               dimm->location[i]);
130                 p += n;
131                 len -= n;
132                 count += n;
133                 if (!len)
134                         break;
135         }
136
137         return count;
138 }
139
140 #ifdef CONFIG_EDAC_DEBUG
141
142 static void edac_mc_dump_channel(struct rank_info *chan)
143 {
144         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
145         edac_dbg(4, "    channel = %p\n", chan);
146         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
147         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
148 }
149
150 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
151 {
152         char location[80];
153
154         edac_dimm_info_location(dimm, location, sizeof(location));
155
156         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
157                  dimm->mci->csbased ? "rank" : "dimm",
158                  number, location, dimm->csrow, dimm->cschannel);
159         edac_dbg(4, "  dimm = %p\n", dimm);
160         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
161         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
163         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
164 }
165
166 static void edac_mc_dump_csrow(struct csrow_info *csrow)
167 {
168         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
169         edac_dbg(4, "  csrow = %p\n", csrow);
170         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
171         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
172         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
173         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
174         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
175         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
176 }
177
178 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
179 {
180         edac_dbg(3, "\tmci = %p\n", mci);
181         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
182         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
183         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
184         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
185         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186                  mci->nr_csrows, mci->csrows);
187         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188                  mci->tot_dimms, mci->dimms);
189         edac_dbg(3, "\tdev = %p\n", mci->pdev);
190         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191                  mci->mod_name, mci->ctl_name);
192         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
193 }
194
195 #endif                          /* CONFIG_EDAC_DEBUG */
196
197 const char * const edac_mem_types[] = {
198         [MEM_EMPTY]     = "Empty csrow",
199         [MEM_RESERVED]  = "Reserved csrow type",
200         [MEM_UNKNOWN]   = "Unknown csrow type",
201         [MEM_FPM]       = "Fast page mode RAM",
202         [MEM_EDO]       = "Extended data out RAM",
203         [MEM_BEDO]      = "Burst Extended data out RAM",
204         [MEM_SDR]       = "Single data rate SDRAM",
205         [MEM_RDR]       = "Registered single data rate SDRAM",
206         [MEM_DDR]       = "Double data rate SDRAM",
207         [MEM_RDDR]      = "Registered Double data rate SDRAM",
208         [MEM_RMBS]      = "Rambus DRAM",
209         [MEM_DDR2]      = "Unbuffered DDR2 RAM",
210         [MEM_FB_DDR2]   = "Fully buffered DDR2",
211         [MEM_RDDR2]     = "Registered DDR2 RAM",
212         [MEM_XDR]       = "Rambus XDR",
213         [MEM_DDR3]      = "Unbuffered DDR3 RAM",
214         [MEM_RDDR3]     = "Registered DDR3 RAM",
215         [MEM_LRDDR3]    = "Load-Reduced DDR3 RAM",
216         [MEM_DDR4]      = "Unbuffered DDR4 RAM",
217         [MEM_RDDR4]     = "Registered DDR4 RAM",
218 };
219 EXPORT_SYMBOL_GPL(edac_mem_types);
220
221 /**
222  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
223  * @p:          pointer to a pointer with the memory offset to be used. At
224  *              return, this will be incremented to point to the next offset
225  * @size:       Size of the data structure to be reserved
226  * @n_elems:    Number of elements that should be reserved
227  *
228  * If 'size' is a constant, the compiler will optimize this whole function
229  * down to either a no-op or the addition of a constant to the value of '*p'.
230  *
231  * The 'p' pointer is absolutely needed to keep the proper advancing
232  * further in memory to the proper offsets when allocating the struct along
233  * with its embedded structs, as edac_device_alloc_ctl_info() does it
234  * above, for example.
235  *
236  * At return, the pointer 'p' will be incremented to be used on a next call
237  * to this function.
238  */
239 void *edac_align_ptr(void **p, unsigned size, int n_elems)
240 {
241         unsigned align, r;
242         void *ptr = *p;
243
244         *p += size * n_elems;
245
246         /*
247          * 'p' can possibly be an unaligned item X such that sizeof(X) is
248          * 'size'.  Adjust 'p' so that its alignment is at least as
249          * stringent as what the compiler would provide for X and return
250          * the aligned result.
251          * Here we assume that the alignment of a "long long" is the most
252          * stringent alignment that the compiler will ever provide by default.
253          * As far as I know, this is a reasonable assumption.
254          */
255         if (size > sizeof(long))
256                 align = sizeof(long long);
257         else if (size > sizeof(int))
258                 align = sizeof(long);
259         else if (size > sizeof(short))
260                 align = sizeof(int);
261         else if (size > sizeof(char))
262                 align = sizeof(short);
263         else
264                 return (char *)ptr;
265
266         r = (unsigned long)p % align;
267
268         if (r == 0)
269                 return (char *)ptr;
270
271         *p += align - r;
272
273         return (void *)(((unsigned long)ptr) + align - r);
274 }
275
276 static void _edac_mc_free(struct mem_ctl_info *mci)
277 {
278         int i, chn, row;
279         struct csrow_info *csr;
280         const unsigned int tot_dimms = mci->tot_dimms;
281         const unsigned int tot_channels = mci->num_cschannel;
282         const unsigned int tot_csrows = mci->nr_csrows;
283
284         if (mci->dimms) {
285                 for (i = 0; i < tot_dimms; i++)
286                         kfree(mci->dimms[i]);
287                 kfree(mci->dimms);
288         }
289         if (mci->csrows) {
290                 for (row = 0; row < tot_csrows; row++) {
291                         csr = mci->csrows[row];
292                         if (csr) {
293                                 if (csr->channels) {
294                                         for (chn = 0; chn < tot_channels; chn++)
295                                                 kfree(csr->channels[chn]);
296                                         kfree(csr->channels);
297                                 }
298                                 kfree(csr);
299                         }
300                 }
301                 kfree(mci->csrows);
302         }
303         kfree(mci);
304 }
305
306 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
307                                    unsigned n_layers,
308                                    struct edac_mc_layer *layers,
309                                    unsigned sz_pvt)
310 {
311         struct mem_ctl_info *mci;
312         struct edac_mc_layer *layer;
313         struct csrow_info *csr;
314         struct rank_info *chan;
315         struct dimm_info *dimm;
316         u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
317         unsigned pos[EDAC_MAX_LAYERS];
318         unsigned size, tot_dimms = 1, count = 1;
319         unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
320         void *pvt, *p, *ptr = NULL;
321         int i, j, row, chn, n, len, off;
322         bool per_rank = false;
323
324         BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
325         /*
326          * Calculate the total amount of dimms and csrows/cschannels while
327          * in the old API emulation mode
328          */
329         for (i = 0; i < n_layers; i++) {
330                 tot_dimms *= layers[i].size;
331                 if (layers[i].is_virt_csrow)
332                         tot_csrows *= layers[i].size;
333                 else
334                         tot_channels *= layers[i].size;
335
336                 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
337                         per_rank = true;
338         }
339
340         /* Figure out the offsets of the various items from the start of an mc
341          * structure.  We want the alignment of each item to be at least as
342          * stringent as what the compiler would provide if we could simply
343          * hardcode everything into a single struct.
344          */
345         mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
346         layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
347         for (i = 0; i < n_layers; i++) {
348                 count *= layers[i].size;
349                 edac_dbg(4, "errcount layer %d size %d\n", i, count);
350                 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
351                 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
352                 tot_errcount += 2 * count;
353         }
354
355         edac_dbg(4, "allocating %d error counters\n", tot_errcount);
356         pvt = edac_align_ptr(&ptr, sz_pvt, 1);
357         size = ((unsigned long)pvt) + sz_pvt;
358
359         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
360                  size,
361                  tot_dimms,
362                  per_rank ? "ranks" : "dimms",
363                  tot_csrows * tot_channels);
364
365         mci = kzalloc(size, GFP_KERNEL);
366         if (mci == NULL)
367                 return NULL;
368
369         /* Adjust pointers so they point within the memory we just allocated
370          * rather than an imaginary chunk of memory located at address 0.
371          */
372         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
373         for (i = 0; i < n_layers; i++) {
374                 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
375                 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
376         }
377         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
378
379         /* setup index and various internal pointers */
380         mci->mc_idx = mc_num;
381         mci->tot_dimms = tot_dimms;
382         mci->pvt_info = pvt;
383         mci->n_layers = n_layers;
384         mci->layers = layer;
385         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
386         mci->nr_csrows = tot_csrows;
387         mci->num_cschannel = tot_channels;
388         mci->csbased = per_rank;
389
390         /*
391          * Alocate and fill the csrow/channels structs
392          */
393         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
394         if (!mci->csrows)
395                 goto error;
396         for (row = 0; row < tot_csrows; row++) {
397                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
398                 if (!csr)
399                         goto error;
400                 mci->csrows[row] = csr;
401                 csr->csrow_idx = row;
402                 csr->mci = mci;
403                 csr->nr_channels = tot_channels;
404                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
405                                         GFP_KERNEL);
406                 if (!csr->channels)
407                         goto error;
408
409                 for (chn = 0; chn < tot_channels; chn++) {
410                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
411                         if (!chan)
412                                 goto error;
413                         csr->channels[chn] = chan;
414                         chan->chan_idx = chn;
415                         chan->csrow = csr;
416                 }
417         }
418
419         /*
420          * Allocate and fill the dimm structs
421          */
422         mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
423         if (!mci->dimms)
424                 goto error;
425
426         memset(&pos, 0, sizeof(pos));
427         row = 0;
428         chn = 0;
429         for (i = 0; i < tot_dimms; i++) {
430                 chan = mci->csrows[row]->channels[chn];
431                 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
432                 if (off < 0 || off >= tot_dimms) {
433                         edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
434                         goto error;
435                 }
436
437                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
438                 if (!dimm)
439                         goto error;
440                 mci->dimms[off] = dimm;
441                 dimm->mci = mci;
442
443                 /*
444                  * Copy DIMM location and initialize it.
445                  */
446                 len = sizeof(dimm->label);
447                 p = dimm->label;
448                 n = snprintf(p, len, "mc#%u", mc_num);
449                 p += n;
450                 len -= n;
451                 for (j = 0; j < n_layers; j++) {
452                         n = snprintf(p, len, "%s#%u",
453                                      edac_layer_name[layers[j].type],
454                                      pos[j]);
455                         p += n;
456                         len -= n;
457                         dimm->location[j] = pos[j];
458
459                         if (len <= 0)
460                                 break;
461                 }
462
463                 /* Link it to the csrows old API data */
464                 chan->dimm = dimm;
465                 dimm->csrow = row;
466                 dimm->cschannel = chn;
467
468                 /* Increment csrow location */
469                 if (layers[0].is_virt_csrow) {
470                         chn++;
471                         if (chn == tot_channels) {
472                                 chn = 0;
473                                 row++;
474                         }
475                 } else {
476                         row++;
477                         if (row == tot_csrows) {
478                                 row = 0;
479                                 chn++;
480                         }
481                 }
482
483                 /* Increment dimm location */
484                 for (j = n_layers - 1; j >= 0; j--) {
485                         pos[j]++;
486                         if (pos[j] < layers[j].size)
487                                 break;
488                         pos[j] = 0;
489                 }
490         }
491
492         mci->op_state = OP_ALLOC;
493
494         return mci;
495
496 error:
497         _edac_mc_free(mci);
498
499         return NULL;
500 }
501 EXPORT_SYMBOL_GPL(edac_mc_alloc);
502
503 void edac_mc_free(struct mem_ctl_info *mci)
504 {
505         edac_dbg(1, "\n");
506
507         /* If we're not yet registered with sysfs free only what was allocated
508          * in edac_mc_alloc().
509          */
510         if (!device_is_registered(&mci->dev)) {
511                 _edac_mc_free(mci);
512                 return;
513         }
514
515         /* the mci instance is freed here, when the sysfs object is dropped */
516         edac_unregister_sysfs(mci);
517 }
518 EXPORT_SYMBOL_GPL(edac_mc_free);
519
520 bool edac_has_mcs(void)
521 {
522         bool ret;
523
524         mutex_lock(&mem_ctls_mutex);
525
526         ret = list_empty(&mc_devices);
527
528         mutex_unlock(&mem_ctls_mutex);
529
530         return !ret;
531 }
532 EXPORT_SYMBOL_GPL(edac_has_mcs);
533
534 /* Caller must hold mem_ctls_mutex */
535 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
536 {
537         struct mem_ctl_info *mci;
538         struct list_head *item;
539
540         edac_dbg(3, "\n");
541
542         list_for_each(item, &mc_devices) {
543                 mci = list_entry(item, struct mem_ctl_info, link);
544
545                 if (mci->pdev == dev)
546                         return mci;
547         }
548
549         return NULL;
550 }
551
552 /**
553  * find_mci_by_dev
554  *
555  *      scan list of controllers looking for the one that manages
556  *      the 'dev' device
557  * @dev: pointer to a struct device related with the MCI
558  */
559 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
560 {
561         struct mem_ctl_info *ret;
562
563         mutex_lock(&mem_ctls_mutex);
564         ret = __find_mci_by_dev(dev);
565         mutex_unlock(&mem_ctls_mutex);
566
567         return ret;
568 }
569 EXPORT_SYMBOL_GPL(find_mci_by_dev);
570
571 /*
572  * edac_mc_workq_function
573  *      performs the operation scheduled by a workq request
574  */
575 static void edac_mc_workq_function(struct work_struct *work_req)
576 {
577         struct delayed_work *d_work = to_delayed_work(work_req);
578         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
579
580         mutex_lock(&mem_ctls_mutex);
581
582         if (mci->op_state != OP_RUNNING_POLL) {
583                 mutex_unlock(&mem_ctls_mutex);
584                 return;
585         }
586
587         if (edac_op_state == EDAC_OPSTATE_POLL)
588                 mci->edac_check(mci);
589
590         mutex_unlock(&mem_ctls_mutex);
591
592         /* Queue ourselves again. */
593         edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
594 }
595
596 /*
597  * edac_mc_reset_delay_period(unsigned long value)
598  *
599  *      user space has updated our poll period value, need to
600  *      reset our workq delays
601  */
602 void edac_mc_reset_delay_period(unsigned long value)
603 {
604         struct mem_ctl_info *mci;
605         struct list_head *item;
606
607         mutex_lock(&mem_ctls_mutex);
608
609         list_for_each(item, &mc_devices) {
610                 mci = list_entry(item, struct mem_ctl_info, link);
611
612                 if (mci->op_state == OP_RUNNING_POLL)
613                         edac_mod_work(&mci->work, value);
614         }
615         mutex_unlock(&mem_ctls_mutex);
616 }
617
618
619
620 /* Return 0 on success, 1 on failure.
621  * Before calling this function, caller must
622  * assign a unique value to mci->mc_idx.
623  *
624  *      locking model:
625  *
626  *              called with the mem_ctls_mutex lock held
627  */
628 static int add_mc_to_global_list(struct mem_ctl_info *mci)
629 {
630         struct list_head *item, *insert_before;
631         struct mem_ctl_info *p;
632
633         insert_before = &mc_devices;
634
635         p = __find_mci_by_dev(mci->pdev);
636         if (unlikely(p != NULL))
637                 goto fail0;
638
639         list_for_each(item, &mc_devices) {
640                 p = list_entry(item, struct mem_ctl_info, link);
641
642                 if (p->mc_idx >= mci->mc_idx) {
643                         if (unlikely(p->mc_idx == mci->mc_idx))
644                                 goto fail1;
645
646                         insert_before = item;
647                         break;
648                 }
649         }
650
651         list_add_tail_rcu(&mci->link, insert_before);
652         return 0;
653
654 fail0:
655         edac_printk(KERN_WARNING, EDAC_MC,
656                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
657                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
658         return 1;
659
660 fail1:
661         edac_printk(KERN_WARNING, EDAC_MC,
662                 "bug in low-level driver: attempt to assign\n"
663                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
664         return 1;
665 }
666
667 static int del_mc_from_global_list(struct mem_ctl_info *mci)
668 {
669         list_del_rcu(&mci->link);
670
671         /* these are for safe removal of devices from global list while
672          * NMI handlers may be traversing list
673          */
674         synchronize_rcu();
675         INIT_LIST_HEAD(&mci->link);
676
677         return list_empty(&mc_devices);
678 }
679
680 struct mem_ctl_info *edac_mc_find(int idx)
681 {
682         struct mem_ctl_info *mci = NULL;
683         struct list_head *item;
684
685         mutex_lock(&mem_ctls_mutex);
686
687         list_for_each(item, &mc_devices) {
688                 mci = list_entry(item, struct mem_ctl_info, link);
689
690                 if (mci->mc_idx >= idx) {
691                         if (mci->mc_idx == idx) {
692                                 goto unlock;
693                         }
694                         break;
695                 }
696         }
697
698 unlock:
699         mutex_unlock(&mem_ctls_mutex);
700         return mci;
701 }
702 EXPORT_SYMBOL(edac_mc_find);
703
704
705 /* FIXME - should a warning be printed if no error detection? correction? */
706 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
707                                const struct attribute_group **groups)
708 {
709         int ret = -EINVAL;
710         edac_dbg(0, "\n");
711
712         if (mci->mc_idx >= EDAC_MAX_MCS) {
713                 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
714                 return -ENODEV;
715         }
716
717 #ifdef CONFIG_EDAC_DEBUG
718         if (edac_debug_level >= 3)
719                 edac_mc_dump_mci(mci);
720
721         if (edac_debug_level >= 4) {
722                 int i;
723
724                 for (i = 0; i < mci->nr_csrows; i++) {
725                         struct csrow_info *csrow = mci->csrows[i];
726                         u32 nr_pages = 0;
727                         int j;
728
729                         for (j = 0; j < csrow->nr_channels; j++)
730                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
731                         if (!nr_pages)
732                                 continue;
733                         edac_mc_dump_csrow(csrow);
734                         for (j = 0; j < csrow->nr_channels; j++)
735                                 if (csrow->channels[j]->dimm->nr_pages)
736                                         edac_mc_dump_channel(csrow->channels[j]);
737                 }
738                 for (i = 0; i < mci->tot_dimms; i++)
739                         if (mci->dimms[i]->nr_pages)
740                                 edac_mc_dump_dimm(mci->dimms[i], i);
741         }
742 #endif
743         mutex_lock(&mem_ctls_mutex);
744
745         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
746                 ret = -EPERM;
747                 goto fail0;
748         }
749
750         if (add_mc_to_global_list(mci))
751                 goto fail0;
752
753         /* set load time so that error rate can be tracked */
754         mci->start_time = jiffies;
755
756         mci->bus = &mc_bus[mci->mc_idx];
757
758         if (edac_create_sysfs_mci_device(mci, groups)) {
759                 edac_mc_printk(mci, KERN_WARNING,
760                         "failed to create sysfs device\n");
761                 goto fail1;
762         }
763
764         if (mci->edac_check) {
765                 mci->op_state = OP_RUNNING_POLL;
766
767                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
768                 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
769
770         } else {
771                 mci->op_state = OP_RUNNING_INTERRUPT;
772         }
773
774         /* Report action taken */
775         edac_mc_printk(mci, KERN_INFO,
776                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
777                 mci->mod_name, mci->ctl_name, mci->dev_name,
778                 edac_op_state_to_string(mci->op_state));
779
780         edac_mc_owner = mci->mod_name;
781
782         mutex_unlock(&mem_ctls_mutex);
783         return 0;
784
785 fail1:
786         del_mc_from_global_list(mci);
787
788 fail0:
789         mutex_unlock(&mem_ctls_mutex);
790         return ret;
791 }
792 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
793
794 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
795 {
796         struct mem_ctl_info *mci;
797
798         edac_dbg(0, "\n");
799
800         mutex_lock(&mem_ctls_mutex);
801
802         /* find the requested mci struct in the global list */
803         mci = __find_mci_by_dev(dev);
804         if (mci == NULL) {
805                 mutex_unlock(&mem_ctls_mutex);
806                 return NULL;
807         }
808
809         /* mark MCI offline: */
810         mci->op_state = OP_OFFLINE;
811
812         if (del_mc_from_global_list(mci))
813                 edac_mc_owner = NULL;
814
815         mutex_unlock(&mem_ctls_mutex);
816
817         if (mci->edac_check)
818                 edac_stop_work(&mci->work);
819
820         /* remove from sysfs */
821         edac_remove_sysfs_mci_device(mci);
822
823         edac_printk(KERN_INFO, EDAC_MC,
824                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
825                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
826
827         return mci;
828 }
829 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
830
831 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
832                                 u32 size)
833 {
834         struct page *pg;
835         void *virt_addr;
836         unsigned long flags = 0;
837
838         edac_dbg(3, "\n");
839
840         /* ECC error page was not in our memory. Ignore it. */
841         if (!pfn_valid(page))
842                 return;
843
844         /* Find the actual page structure then map it and fix */
845         pg = pfn_to_page(page);
846
847         if (PageHighMem(pg))
848                 local_irq_save(flags);
849
850         virt_addr = kmap_atomic(pg);
851
852         /* Perform architecture specific atomic scrub operation */
853         edac_atomic_scrub(virt_addr + offset, size);
854
855         /* Unmap and complete */
856         kunmap_atomic(virt_addr);
857
858         if (PageHighMem(pg))
859                 local_irq_restore(flags);
860 }
861
862 /* FIXME - should return -1 */
863 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
864 {
865         struct csrow_info **csrows = mci->csrows;
866         int row, i, j, n;
867
868         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
869         row = -1;
870
871         for (i = 0; i < mci->nr_csrows; i++) {
872                 struct csrow_info *csrow = csrows[i];
873                 n = 0;
874                 for (j = 0; j < csrow->nr_channels; j++) {
875                         struct dimm_info *dimm = csrow->channels[j]->dimm;
876                         n += dimm->nr_pages;
877                 }
878                 if (n == 0)
879                         continue;
880
881                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
882                          mci->mc_idx,
883                          csrow->first_page, page, csrow->last_page,
884                          csrow->page_mask);
885
886                 if ((page >= csrow->first_page) &&
887                     (page <= csrow->last_page) &&
888                     ((page & csrow->page_mask) ==
889                      (csrow->first_page & csrow->page_mask))) {
890                         row = i;
891                         break;
892                 }
893         }
894
895         if (row == -1)
896                 edac_mc_printk(mci, KERN_ERR,
897                         "could not look up page error address %lx\n",
898                         (unsigned long)page);
899
900         return row;
901 }
902 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
903
904 const char *edac_layer_name[] = {
905         [EDAC_MC_LAYER_BRANCH] = "branch",
906         [EDAC_MC_LAYER_CHANNEL] = "channel",
907         [EDAC_MC_LAYER_SLOT] = "slot",
908         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
909         [EDAC_MC_LAYER_ALL_MEM] = "memory",
910 };
911 EXPORT_SYMBOL_GPL(edac_layer_name);
912
913 static void edac_inc_ce_error(struct mem_ctl_info *mci,
914                               bool enable_per_layer_report,
915                               const int pos[EDAC_MAX_LAYERS],
916                               const u16 count)
917 {
918         int i, index = 0;
919
920         mci->ce_mc += count;
921
922         if (!enable_per_layer_report) {
923                 mci->ce_noinfo_count += count;
924                 return;
925         }
926
927         for (i = 0; i < mci->n_layers; i++) {
928                 if (pos[i] < 0)
929                         break;
930                 index += pos[i];
931                 mci->ce_per_layer[i][index] += count;
932
933                 if (i < mci->n_layers - 1)
934                         index *= mci->layers[i + 1].size;
935         }
936 }
937
938 static void edac_inc_ue_error(struct mem_ctl_info *mci,
939                                     bool enable_per_layer_report,
940                                     const int pos[EDAC_MAX_LAYERS],
941                                     const u16 count)
942 {
943         int i, index = 0;
944
945         mci->ue_mc += count;
946
947         if (!enable_per_layer_report) {
948                 mci->ue_noinfo_count += count;
949                 return;
950         }
951
952         for (i = 0; i < mci->n_layers; i++) {
953                 if (pos[i] < 0)
954                         break;
955                 index += pos[i];
956                 mci->ue_per_layer[i][index] += count;
957
958                 if (i < mci->n_layers - 1)
959                         index *= mci->layers[i + 1].size;
960         }
961 }
962
963 static void edac_ce_error(struct mem_ctl_info *mci,
964                           const u16 error_count,
965                           const int pos[EDAC_MAX_LAYERS],
966                           const char *msg,
967                           const char *location,
968                           const char *label,
969                           const char *detail,
970                           const char *other_detail,
971                           const bool enable_per_layer_report,
972                           const unsigned long page_frame_number,
973                           const unsigned long offset_in_page,
974                           long grain)
975 {
976         unsigned long remapped_page;
977         char *msg_aux = "";
978
979         if (*msg)
980                 msg_aux = " ";
981
982         if (edac_mc_get_log_ce()) {
983                 if (other_detail && *other_detail)
984                         edac_mc_printk(mci, KERN_WARNING,
985                                        "%d CE %s%son %s (%s %s - %s)\n",
986                                        error_count, msg, msg_aux, label,
987                                        location, detail, other_detail);
988                 else
989                         edac_mc_printk(mci, KERN_WARNING,
990                                        "%d CE %s%son %s (%s %s)\n",
991                                        error_count, msg, msg_aux, label,
992                                        location, detail);
993         }
994         edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
995
996         if (mci->scrub_mode == SCRUB_SW_SRC) {
997                 /*
998                         * Some memory controllers (called MCs below) can remap
999                         * memory so that it is still available at a different
1000                         * address when PCI devices map into memory.
1001                         * MC's that can't do this, lose the memory where PCI
1002                         * devices are mapped. This mapping is MC-dependent
1003                         * and so we call back into the MC driver for it to
1004                         * map the MC page to a physical (CPU) page which can
1005                         * then be mapped to a virtual page - which can then
1006                         * be scrubbed.
1007                         */
1008                 remapped_page = mci->ctl_page_to_phys ?
1009                         mci->ctl_page_to_phys(mci, page_frame_number) :
1010                         page_frame_number;
1011
1012                 edac_mc_scrub_block(remapped_page,
1013                                         offset_in_page, grain);
1014         }
1015 }
1016
1017 static void edac_ue_error(struct mem_ctl_info *mci,
1018                           const u16 error_count,
1019                           const int pos[EDAC_MAX_LAYERS],
1020                           const char *msg,
1021                           const char *location,
1022                           const char *label,
1023                           const char *detail,
1024                           const char *other_detail,
1025                           const bool enable_per_layer_report)
1026 {
1027         char *msg_aux = "";
1028
1029         if (*msg)
1030                 msg_aux = " ";
1031
1032         if (edac_mc_get_log_ue()) {
1033                 if (other_detail && *other_detail)
1034                         edac_mc_printk(mci, KERN_WARNING,
1035                                        "%d UE %s%son %s (%s %s - %s)\n",
1036                                        error_count, msg, msg_aux, label,
1037                                        location, detail, other_detail);
1038                 else
1039                         edac_mc_printk(mci, KERN_WARNING,
1040                                        "%d UE %s%son %s (%s %s)\n",
1041                                        error_count, msg, msg_aux, label,
1042                                        location, detail);
1043         }
1044
1045         if (edac_mc_get_panic_on_ue()) {
1046                 if (other_detail && *other_detail)
1047                         panic("UE %s%son %s (%s%s - %s)\n",
1048                               msg, msg_aux, label, location, detail, other_detail);
1049                 else
1050                         panic("UE %s%son %s (%s%s)\n",
1051                               msg, msg_aux, label, location, detail);
1052         }
1053
1054         edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1055 }
1056
1057 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1058                               struct mem_ctl_info *mci,
1059                               struct edac_raw_error_desc *e)
1060 {
1061         char detail[80];
1062         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1063
1064         /* Memory type dependent details about the error */
1065         if (type == HW_EVENT_ERR_CORRECTED) {
1066                 snprintf(detail, sizeof(detail),
1067                         "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1068                         e->page_frame_number, e->offset_in_page,
1069                         e->grain, e->syndrome);
1070                 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1071                               detail, e->other_detail, e->enable_per_layer_report,
1072                               e->page_frame_number, e->offset_in_page, e->grain);
1073         } else {
1074                 snprintf(detail, sizeof(detail),
1075                         "page:0x%lx offset:0x%lx grain:%ld",
1076                         e->page_frame_number, e->offset_in_page, e->grain);
1077
1078                 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1079                               detail, e->other_detail, e->enable_per_layer_report);
1080         }
1081
1082
1083 }
1084 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1085
1086 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1087                           struct mem_ctl_info *mci,
1088                           const u16 error_count,
1089                           const unsigned long page_frame_number,
1090                           const unsigned long offset_in_page,
1091                           const unsigned long syndrome,
1092                           const int top_layer,
1093                           const int mid_layer,
1094                           const int low_layer,
1095                           const char *msg,
1096                           const char *other_detail)
1097 {
1098         char *p;
1099         int row = -1, chan = -1;
1100         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1101         int i, n_labels = 0;
1102         u8 grain_bits;
1103         struct edac_raw_error_desc *e = &mci->error_desc;
1104
1105         edac_dbg(3, "MC%d\n", mci->mc_idx);
1106
1107         /* Fills the error report buffer */
1108         memset(e, 0, sizeof (*e));
1109         e->error_count = error_count;
1110         e->top_layer = top_layer;
1111         e->mid_layer = mid_layer;
1112         e->low_layer = low_layer;
1113         e->page_frame_number = page_frame_number;
1114         e->offset_in_page = offset_in_page;
1115         e->syndrome = syndrome;
1116         e->msg = msg;
1117         e->other_detail = other_detail;
1118
1119         /*
1120          * Check if the event report is consistent and if the memory
1121          * location is known. If it is known, enable_per_layer_report will be
1122          * true, the DIMM(s) label info will be filled and the per-layer
1123          * error counters will be incremented.
1124          */
1125         for (i = 0; i < mci->n_layers; i++) {
1126                 if (pos[i] >= (int)mci->layers[i].size) {
1127
1128                         edac_mc_printk(mci, KERN_ERR,
1129                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1130                                        edac_layer_name[mci->layers[i].type],
1131                                        pos[i], mci->layers[i].size);
1132                         /*
1133                          * Instead of just returning it, let's use what's
1134                          * known about the error. The increment routines and
1135                          * the DIMM filter logic will do the right thing by
1136                          * pointing the likely damaged DIMMs.
1137                          */
1138                         pos[i] = -1;
1139                 }
1140                 if (pos[i] >= 0)
1141                         e->enable_per_layer_report = true;
1142         }
1143
1144         /*
1145          * Get the dimm label/grain that applies to the match criteria.
1146          * As the error algorithm may not be able to point to just one memory
1147          * stick, the logic here will get all possible labels that could
1148          * pottentially be affected by the error.
1149          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1150          * to have only the MC channel and the MC dimm (also called "branch")
1151          * but the channel is not known, as the memory is arranged in pairs,
1152          * where each memory belongs to a separate channel within the same
1153          * branch.
1154          */
1155         p = e->label;
1156         *p = '\0';
1157
1158         for (i = 0; i < mci->tot_dimms; i++) {
1159                 struct dimm_info *dimm = mci->dimms[i];
1160
1161                 if (top_layer >= 0 && top_layer != dimm->location[0])
1162                         continue;
1163                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1164                         continue;
1165                 if (low_layer >= 0 && low_layer != dimm->location[2])
1166                         continue;
1167
1168                 /* get the max grain, over the error match range */
1169                 if (dimm->grain > e->grain)
1170                         e->grain = dimm->grain;
1171
1172                 /*
1173                  * If the error is memory-controller wide, there's no need to
1174                  * seek for the affected DIMMs because the whole
1175                  * channel/memory controller/...  may be affected.
1176                  * Also, don't show errors for empty DIMM slots.
1177                  */
1178                 if (e->enable_per_layer_report && dimm->nr_pages) {
1179                         if (n_labels >= EDAC_MAX_LABELS) {
1180                                 e->enable_per_layer_report = false;
1181                                 break;
1182                         }
1183                         n_labels++;
1184                         if (p != e->label) {
1185                                 strcpy(p, OTHER_LABEL);
1186                                 p += strlen(OTHER_LABEL);
1187                         }
1188                         strcpy(p, dimm->label);
1189                         p += strlen(p);
1190                         *p = '\0';
1191
1192                         /*
1193                          * get csrow/channel of the DIMM, in order to allow
1194                          * incrementing the compat API counters
1195                          */
1196                         edac_dbg(4, "%s csrows map: (%d,%d)\n",
1197                                  mci->csbased ? "rank" : "dimm",
1198                                  dimm->csrow, dimm->cschannel);
1199                         if (row == -1)
1200                                 row = dimm->csrow;
1201                         else if (row >= 0 && row != dimm->csrow)
1202                                 row = -2;
1203
1204                         if (chan == -1)
1205                                 chan = dimm->cschannel;
1206                         else if (chan >= 0 && chan != dimm->cschannel)
1207                                 chan = -2;
1208                 }
1209         }
1210
1211         if (!e->enable_per_layer_report) {
1212                 strcpy(e->label, "any memory");
1213         } else {
1214                 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1215                 if (p == e->label)
1216                         strcpy(e->label, "unknown memory");
1217                 if (type == HW_EVENT_ERR_CORRECTED) {
1218                         if (row >= 0) {
1219                                 mci->csrows[row]->ce_count += error_count;
1220                                 if (chan >= 0)
1221                                         mci->csrows[row]->channels[chan]->ce_count += error_count;
1222                         }
1223                 } else
1224                         if (row >= 0)
1225                                 mci->csrows[row]->ue_count += error_count;
1226         }
1227
1228         /* Fill the RAM location data */
1229         p = e->location;
1230
1231         for (i = 0; i < mci->n_layers; i++) {
1232                 if (pos[i] < 0)
1233                         continue;
1234
1235                 p += sprintf(p, "%s:%d ",
1236                              edac_layer_name[mci->layers[i].type],
1237                              pos[i]);
1238         }
1239         if (p > e->location)
1240                 *(p - 1) = '\0';
1241
1242         /* Report the error via the trace interface */
1243         grain_bits = fls_long(e->grain) + 1;
1244
1245         if (IS_ENABLED(CONFIG_RAS))
1246                 trace_mc_event(type, e->msg, e->label, e->error_count,
1247                                mci->mc_idx, e->top_layer, e->mid_layer,
1248                                e->low_layer,
1249                                (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1250                                grain_bits, e->syndrome, e->other_detail);
1251
1252         edac_raw_mc_handle_error(type, mci, e);
1253 }
1254 EXPORT_SYMBOL_GPL(edac_mc_handle_error);