]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/edac/sb_edac.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[karo-tx-linux.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *       Mauro Carvalho Chehab
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
28 #include <asm/mce.h>
29
30 #include "edac_module.h"
31
32 /* Static vars */
33 static LIST_HEAD(sbridge_edac_list);
34
35 /*
36  * Alter this version for the module when modifications are made
37  */
38 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
39 #define EDAC_MOD_STR      "sbridge_edac"
40
41 /*
42  * Debug macros
43  */
44 #define sbridge_printk(level, fmt, arg...)                      \
45         edac_printk(level, "sbridge", fmt, ##arg)
46
47 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
48         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49
50 /*
51  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52  */
53 #define GET_BITFIELD(v, lo, hi) \
54         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
55
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58         0x80, 0x88, 0x90, 0x98, 0xa0,
59         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 };
61
62 static const u32 ibridge_dram_rule[] = {
63         0x60, 0x68, 0x70, 0x78, 0x80,
64         0x88, 0x90, 0x98, 0xa0, 0xa8,
65         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 };
68
69 static const u32 knl_dram_rule[] = {
70         0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71         0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72         0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73         0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74         0x100, 0x108, 0x110, 0x118,   /* 20-23 */
75 };
76
77 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
78 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
79
80 static char *show_dram_attr(u32 attr)
81 {
82         switch (attr) {
83                 case 0:
84                         return "DRAM";
85                 case 1:
86                         return "MMCFG";
87                 case 2:
88                         return "NXM";
89                 default:
90                         return "unknown";
91         }
92 }
93
94 static const u32 sbridge_interleave_list[] = {
95         0x84, 0x8c, 0x94, 0x9c, 0xa4,
96         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 };
98
99 static const u32 ibridge_interleave_list[] = {
100         0x64, 0x6c, 0x74, 0x7c, 0x84,
101         0x8c, 0x94, 0x9c, 0xa4, 0xac,
102         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 };
105
106 static const u32 knl_interleave_list[] = {
107         0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108         0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109         0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110         0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111         0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
112 };
113
114 struct interleave_pkg {
115         unsigned char start;
116         unsigned char end;
117 };
118
119 static const struct interleave_pkg sbridge_interleave_pkg[] = {
120         { 0, 2 },
121         { 3, 5 },
122         { 8, 10 },
123         { 11, 13 },
124         { 16, 18 },
125         { 19, 21 },
126         { 24, 26 },
127         { 27, 29 },
128 };
129
130 static const struct interleave_pkg ibridge_interleave_pkg[] = {
131         { 0, 3 },
132         { 4, 7 },
133         { 8, 11 },
134         { 12, 15 },
135         { 16, 19 },
136         { 20, 23 },
137         { 24, 27 },
138         { 28, 31 },
139 };
140
141 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
142                           int interleave)
143 {
144         return GET_BITFIELD(reg, table[interleave].start,
145                             table[interleave].end);
146 }
147
148 /* Devices 12 Function 7 */
149
150 #define TOLM            0x80
151 #define TOHM            0x84
152 #define HASWELL_TOLM    0xd0
153 #define HASWELL_TOHM_0  0xd4
154 #define HASWELL_TOHM_1  0xd8
155 #define KNL_TOLM        0xd0
156 #define KNL_TOHM_0      0xd4
157 #define KNL_TOHM_1      0xd8
158
159 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
160 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
161
162 /* Device 13 Function 6 */
163
164 #define SAD_TARGET      0xf0
165
166 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
167
168 #define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
169
170 #define SAD_CONTROL     0xf4
171
172 /* Device 14 function 0 */
173
174 static const u32 tad_dram_rule[] = {
175         0x40, 0x44, 0x48, 0x4c,
176         0x50, 0x54, 0x58, 0x5c,
177         0x60, 0x64, 0x68, 0x6c,
178 };
179 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
180
181 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
182 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
183 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
184 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
185 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
186 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
187 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
188
189 /* Device 15, function 0 */
190
191 #define MCMTR                   0x7c
192 #define KNL_MCMTR               0x624
193
194 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
195 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
196 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
197
198 /* Device 15, function 1 */
199
200 #define RASENABLES              0xac
201 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
202
203 /* Device 15, functions 2-5 */
204
205 static const int mtr_regs[] = {
206         0x80, 0x84, 0x88,
207 };
208
209 static const int knl_mtr_reg = 0xb60;
210
211 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
212 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
213 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
214 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
215 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
216
217 static const u32 tad_ch_nilv_offset[] = {
218         0x90, 0x94, 0x98, 0x9c,
219         0xa0, 0xa4, 0xa8, 0xac,
220         0xb0, 0xb4, 0xb8, 0xbc,
221 };
222 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
223 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
224
225 static const u32 rir_way_limit[] = {
226         0x108, 0x10c, 0x110, 0x114, 0x118,
227 };
228 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
229
230 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
231 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
232
233 #define MAX_RIR_WAY     8
234
235 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
236         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
237         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
238         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
239         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
240         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
241 };
242
243 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
244         GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
245
246 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
247         GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
248
249 /* Device 16, functions 2-7 */
250
251 /*
252  * FIXME: Implement the error count reads directly
253  */
254
255 static const u32 correrrcnt[] = {
256         0x104, 0x108, 0x10c, 0x110,
257 };
258
259 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
260 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
261 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
262 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
263
264 static const u32 correrrthrsld[] = {
265         0x11c, 0x120, 0x124, 0x128,
266 };
267
268 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
269 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
270
271
272 /* Device 17, function 0 */
273
274 #define SB_RANK_CFG_A           0x0328
275
276 #define IB_RANK_CFG_A           0x0320
277
278 /*
279  * sbridge structs
280  */
281
282 #define NUM_CHANNELS            4       /* Max channels per MC */
283 #define MAX_DIMMS               3       /* Max DIMMS per channel */
284 #define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
285 #define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
286 #define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
287 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
288
289 enum type {
290         SANDY_BRIDGE,
291         IVY_BRIDGE,
292         HASWELL,
293         BROADWELL,
294         KNIGHTS_LANDING,
295 };
296
297 enum domain {
298         IMC0 = 0,
299         IMC1,
300         SOCK,
301 };
302
303 struct sbridge_pvt;
304 struct sbridge_info {
305         enum type       type;
306         u32             mcmtr;
307         u32             rankcfgr;
308         u64             (*get_tolm)(struct sbridge_pvt *pvt);
309         u64             (*get_tohm)(struct sbridge_pvt *pvt);
310         u64             (*rir_limit)(u32 reg);
311         u64             (*sad_limit)(u32 reg);
312         u32             (*interleave_mode)(u32 reg);
313         u32             (*dram_attr)(u32 reg);
314         const u32       *dram_rule;
315         const u32       *interleave_list;
316         const struct interleave_pkg *interleave_pkg;
317         u8              max_sad;
318         u8              max_interleave;
319         u8              (*get_node_id)(struct sbridge_pvt *pvt);
320         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
321         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
322         struct pci_dev  *pci_vtd;
323 };
324
325 struct sbridge_channel {
326         u32             ranks;
327         u32             dimms;
328 };
329
330 struct pci_id_descr {
331         int                     dev_id;
332         int                     optional;
333         enum domain             dom;
334 };
335
336 struct pci_id_table {
337         const struct pci_id_descr       *descr;
338         int                             n_devs_per_imc;
339         int                             n_devs_per_sock;
340         int                             n_imcs_per_sock;
341         enum type                       type;
342 };
343
344 struct sbridge_dev {
345         struct list_head        list;
346         u8                      bus, mc;
347         u8                      node_id, source_id;
348         struct pci_dev          **pdev;
349         enum domain             dom;
350         int                     n_devs;
351         int                     i_devs;
352         struct mem_ctl_info     *mci;
353 };
354
355 struct knl_pvt {
356         struct pci_dev          *pci_cha[KNL_MAX_CHAS];
357         struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
358         struct pci_dev          *pci_mc0;
359         struct pci_dev          *pci_mc1;
360         struct pci_dev          *pci_mc0_misc;
361         struct pci_dev          *pci_mc1_misc;
362         struct pci_dev          *pci_mc_info; /* tolm, tohm */
363 };
364
365 struct sbridge_pvt {
366         /* Devices per socket */
367         struct pci_dev          *pci_ddrio;
368         struct pci_dev          *pci_sad0, *pci_sad1;
369         struct pci_dev          *pci_br0, *pci_br1;
370         /* Devices per memory controller */
371         struct pci_dev          *pci_ha, *pci_ta, *pci_ras;
372         struct pci_dev          *pci_tad[NUM_CHANNELS];
373
374         struct sbridge_dev      *sbridge_dev;
375
376         struct sbridge_info     info;
377         struct sbridge_channel  channel[NUM_CHANNELS];
378
379         /* Memory type detection */
380         bool                    is_mirrored, is_lockstep, is_close_pg;
381         bool                    is_chan_hash;
382
383         /* Memory description */
384         u64                     tolm, tohm;
385         struct knl_pvt knl;
386 };
387
388 #define PCI_DESCR(device_id, opt, domain)       \
389         .dev_id = (device_id),          \
390         .optional = opt,        \
391         .dom = domain
392
393 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
394                 /* Processor Home Agent */
395         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
396
397                 /* Memory controller */
398         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
399         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
400         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
401         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
402         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
403         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
404         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
405
406                 /* System Address Decoder */
407         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
408         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
409
410                 /* Broadcast Registers */
411         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
412 };
413
414 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {        \
415         .descr = A,                     \
416         .n_devs_per_imc = N,    \
417         .n_devs_per_sock = ARRAY_SIZE(A),       \
418         .n_imcs_per_sock = M,   \
419         .type = T                       \
420 }
421
422 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
423         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
424         {0,}                    /* 0 terminated list. */
425 };
426
427 /* This changes depending if 1HA or 2HA:
428  * 1HA:
429  *      0x0eb8 (17.0) is DDRIO0
430  * 2HA:
431  *      0x0ebc (17.4) is DDRIO0
432  */
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
435
436 /* pci ids */
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
439 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
440 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
441 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
442 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
443 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
444 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
447 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
448 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
454
455 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
456                 /* Processor Home Agent */
457         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
458
459                 /* Memory controller */
460         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
461         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
462         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
463         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
464         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
465         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
466
467                 /* Optional, mode 2HA */
468         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
469         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
470         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
471         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
472         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
473         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
474         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
475
476         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
477         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
478
479                 /* System Address Decoder */
480         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
481
482                 /* Broadcast Registers */
483         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
484         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
485
486 };
487
488 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
489         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
490         {0,}                    /* 0 terminated list. */
491 };
492
493 /* Haswell support */
494 /* EN processor:
495  *      - 1 IMC
496  *      - 3 DDR3 channels, 2 DPC per channel
497  * EP processor:
498  *      - 1 or 2 IMC
499  *      - 4 DDR4 channels, 3 DPC per channel
500  * EP 4S processor:
501  *      - 2 IMC
502  *      - 4 DDR4 channels, 3 DPC per channel
503  * EX processor:
504  *      - 2 IMC
505  *      - each IMC interfaces with a SMI 2 channel
506  *      - each SMI channel interfaces with a scalable memory buffer
507  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
508  */
509 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
510 #define HASWELL_HASYSDEFEATURE2 0x84
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM  0x2f71
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM  0x2f79
518 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
519 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
520 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
521 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
522 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
532 static const struct pci_id_descr pci_dev_descr_haswell[] = {
533         /* first item must be the HA */
534         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
535         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
536
537         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
538         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
539         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
540         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
541         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
542         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
543
544         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
545         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
546         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
547         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
548         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
549         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
550
551         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
552         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
553         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
554         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
555         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
556         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
557 };
558
559 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
560         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
561         {0,}                    /* 0 terminated list. */
562 };
563
564 /* Knight's Landing Support */
565 /*
566  * KNL's memory channels are swizzled between memory controllers.
567  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
568  */
569 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
570
571 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
572 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
573 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
574 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
575 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
576 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
577 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
578 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
579 /* SAD target - 1-29-1 (1 of these) */
580 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
581 /* Caching / Home Agent */
582 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
583 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
585
586 /*
587  * KNL differs from SB, IB, and Haswell in that it has multiple
588  * instances of the same device with the same device ID, so we handle that
589  * by creating as many copies in the table as we expect to find.
590  * (Like device ID must be grouped together.)
591  */
592
593 static const struct pci_id_descr pci_dev_descr_knl[] = {
594         [0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
595         [2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
596         [8]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
597         [9]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
598         [10]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
599         [11]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
600         [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
601 };
602
603 static const struct pci_id_table pci_dev_descr_knl_table[] = {
604         PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
605         {0,}
606 };
607
608 /*
609  * Broadwell support
610  *
611  * DE processor:
612  *      - 1 IMC
613  *      - 2 DDR3 channels, 2 DPC per channel
614  * EP processor:
615  *      - 1 or 2 IMC
616  *      - 4 DDR4 channels, 3 DPC per channel
617  * EP 4S processor:
618  *      - 2 IMC
619  *      - 4 DDR4 channels, 3 DPC per channel
620  * EX processor:
621  *      - 2 IMC
622  *      - each IMC interfaces with a SMI 2 channel
623  *      - each SMI channel interfaces with a scalable memory buffer
624  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
625  */
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM        0x6f71
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
632 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM        0x6f79
633 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
634 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
635 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
636 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
637 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
644
645 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
646         /* first item must be the HA */
647         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
648         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
649
650         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
651         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
652         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
653         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
654         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
655         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
656
657         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
658         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
659         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
660         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
661         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
662         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
663
664         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
665         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
666         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
667 };
668
669 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
670         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
671         {0,}                    /* 0 terminated list. */
672 };
673
674
675 /****************************************************************************
676                         Ancillary status routines
677  ****************************************************************************/
678
679 static inline int numrank(enum type type, u32 mtr)
680 {
681         int ranks = (1 << RANK_CNT_BITS(mtr));
682         int max = 4;
683
684         if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
685                 max = 8;
686
687         if (ranks > max) {
688                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
689                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
690                 return -EINVAL;
691         }
692
693         return ranks;
694 }
695
696 static inline int numrow(u32 mtr)
697 {
698         int rows = (RANK_WIDTH_BITS(mtr) + 12);
699
700         if (rows < 13 || rows > 18) {
701                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
702                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
703                 return -EINVAL;
704         }
705
706         return 1 << rows;
707 }
708
709 static inline int numcol(u32 mtr)
710 {
711         int cols = (COL_WIDTH_BITS(mtr) + 10);
712
713         if (cols > 12) {
714                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
715                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
716                 return -EINVAL;
717         }
718
719         return 1 << cols;
720 }
721
722 static struct sbridge_dev *get_sbridge_dev(u8 bus, enum domain dom, int multi_bus,
723                                            struct sbridge_dev *prev)
724 {
725         struct sbridge_dev *sbridge_dev;
726
727         /*
728          * If we have devices scattered across several busses that pertain
729          * to the same memory controller, we'll lump them all together.
730          */
731         if (multi_bus) {
732                 return list_first_entry_or_null(&sbridge_edac_list,
733                                 struct sbridge_dev, list);
734         }
735
736         sbridge_dev = list_entry(prev ? prev->list.next
737                                       : sbridge_edac_list.next, struct sbridge_dev, list);
738
739         list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
740                 if (sbridge_dev->bus == bus && (dom == SOCK || dom == sbridge_dev->dom))
741                         return sbridge_dev;
742         }
743
744         return NULL;
745 }
746
747 static struct sbridge_dev *alloc_sbridge_dev(u8 bus, enum domain dom,
748                                              const struct pci_id_table *table)
749 {
750         struct sbridge_dev *sbridge_dev;
751
752         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
753         if (!sbridge_dev)
754                 return NULL;
755
756         sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
757                                     sizeof(*sbridge_dev->pdev),
758                                     GFP_KERNEL);
759         if (!sbridge_dev->pdev) {
760                 kfree(sbridge_dev);
761                 return NULL;
762         }
763
764         sbridge_dev->bus = bus;
765         sbridge_dev->dom = dom;
766         sbridge_dev->n_devs = table->n_devs_per_imc;
767         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
768
769         return sbridge_dev;
770 }
771
772 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
773 {
774         list_del(&sbridge_dev->list);
775         kfree(sbridge_dev->pdev);
776         kfree(sbridge_dev);
777 }
778
779 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
780 {
781         u32 reg;
782
783         /* Address range is 32:28 */
784         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
785         return GET_TOLM(reg);
786 }
787
788 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
789 {
790         u32 reg;
791
792         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
793         return GET_TOHM(reg);
794 }
795
796 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
797 {
798         u32 reg;
799
800         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
801
802         return GET_TOLM(reg);
803 }
804
805 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
806 {
807         u32 reg;
808
809         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
810
811         return GET_TOHM(reg);
812 }
813
814 static u64 rir_limit(u32 reg)
815 {
816         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
817 }
818
819 static u64 sad_limit(u32 reg)
820 {
821         return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
822 }
823
824 static u32 interleave_mode(u32 reg)
825 {
826         return GET_BITFIELD(reg, 1, 1);
827 }
828
829 static u32 dram_attr(u32 reg)
830 {
831         return GET_BITFIELD(reg, 2, 3);
832 }
833
834 static u64 knl_sad_limit(u32 reg)
835 {
836         return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
837 }
838
839 static u32 knl_interleave_mode(u32 reg)
840 {
841         return GET_BITFIELD(reg, 1, 2);
842 }
843
844 static const char * const knl_intlv_mode[] = {
845         "[8:6]", "[10:8]", "[14:12]", "[32:30]"
846 };
847
848 static const char *get_intlv_mode_str(u32 reg, enum type t)
849 {
850         if (t == KNIGHTS_LANDING)
851                 return knl_intlv_mode[knl_interleave_mode(reg)];
852         else
853                 return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
854 }
855
856 static u32 dram_attr_knl(u32 reg)
857 {
858         return GET_BITFIELD(reg, 3, 4);
859 }
860
861
862 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
863 {
864         u32 reg;
865         enum mem_type mtype;
866
867         if (pvt->pci_ddrio) {
868                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
869                                       &reg);
870                 if (GET_BITFIELD(reg, 11, 11))
871                         /* FIXME: Can also be LRDIMM */
872                         mtype = MEM_RDDR3;
873                 else
874                         mtype = MEM_DDR3;
875         } else
876                 mtype = MEM_UNKNOWN;
877
878         return mtype;
879 }
880
881 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
882 {
883         u32 reg;
884         bool registered = false;
885         enum mem_type mtype = MEM_UNKNOWN;
886
887         if (!pvt->pci_ddrio)
888                 goto out;
889
890         pci_read_config_dword(pvt->pci_ddrio,
891                               HASWELL_DDRCRCLKCONTROLS, &reg);
892         /* Is_Rdimm */
893         if (GET_BITFIELD(reg, 16, 16))
894                 registered = true;
895
896         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
897         if (GET_BITFIELD(reg, 14, 14)) {
898                 if (registered)
899                         mtype = MEM_RDDR4;
900                 else
901                         mtype = MEM_DDR4;
902         } else {
903                 if (registered)
904                         mtype = MEM_RDDR3;
905                 else
906                         mtype = MEM_DDR3;
907         }
908
909 out:
910         return mtype;
911 }
912
913 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
914 {
915         /* for KNL value is fixed */
916         return DEV_X16;
917 }
918
919 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
920 {
921         /* there's no way to figure out */
922         return DEV_UNKNOWN;
923 }
924
925 static enum dev_type __ibridge_get_width(u32 mtr)
926 {
927         enum dev_type type;
928
929         switch (mtr) {
930         case 3:
931                 type = DEV_UNKNOWN;
932                 break;
933         case 2:
934                 type = DEV_X16;
935                 break;
936         case 1:
937                 type = DEV_X8;
938                 break;
939         case 0:
940                 type = DEV_X4;
941                 break;
942         }
943
944         return type;
945 }
946
947 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
948 {
949         /*
950          * ddr3_width on the documentation but also valid for DDR4 on
951          * Haswell
952          */
953         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
954 }
955
956 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
957 {
958         /* ddr3_width on the documentation but also valid for DDR4 */
959         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
960 }
961
962 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
963 {
964         /* DDR4 RDIMMS and LRDIMMS are supported */
965         return MEM_RDDR4;
966 }
967
968 static u8 get_node_id(struct sbridge_pvt *pvt)
969 {
970         u32 reg;
971         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
972         return GET_BITFIELD(reg, 0, 2);
973 }
974
975 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
976 {
977         u32 reg;
978
979         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
980         return GET_BITFIELD(reg, 0, 3);
981 }
982
983 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
984 {
985         u32 reg;
986
987         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
988         return GET_BITFIELD(reg, 0, 2);
989 }
990
991
992 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
993 {
994         u32 reg;
995
996         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
997         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
998 }
999
1000 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1001 {
1002         u64 rc;
1003         u32 reg;
1004
1005         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1006         rc = GET_BITFIELD(reg, 26, 31);
1007         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1008         rc = ((reg << 6) | rc) << 26;
1009
1010         return rc | 0x1ffffff;
1011 }
1012
1013 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1014 {
1015         u32 reg;
1016
1017         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1018         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1019 }
1020
1021 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1022 {
1023         u64 rc;
1024         u32 reg_lo, reg_hi;
1025
1026         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1027         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1028         rc = ((u64)reg_hi << 32) | reg_lo;
1029         return rc | 0x3ffffff;
1030 }
1031
1032
1033 static u64 haswell_rir_limit(u32 reg)
1034 {
1035         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1036 }
1037
1038 static inline u8 sad_pkg_socket(u8 pkg)
1039 {
1040         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1041         return ((pkg >> 3) << 2) | (pkg & 0x3);
1042 }
1043
1044 static inline u8 sad_pkg_ha(u8 pkg)
1045 {
1046         return (pkg >> 2) & 0x1;
1047 }
1048
1049 static int haswell_chan_hash(int idx, u64 addr)
1050 {
1051         int i;
1052
1053         /*
1054          * XOR even bits from 12:26 to bit0 of idx,
1055          *     odd bits from 13:27 to bit1
1056          */
1057         for (i = 12; i < 28; i += 2)
1058                 idx ^= (addr >> i) & 3;
1059
1060         return idx;
1061 }
1062
1063 /* Low bits of TAD limit, and some metadata. */
1064 static const u32 knl_tad_dram_limit_lo[] = {
1065         0x400, 0x500, 0x600, 0x700,
1066         0x800, 0x900, 0xa00, 0xb00,
1067 };
1068
1069 /* Low bits of TAD offset. */
1070 static const u32 knl_tad_dram_offset_lo[] = {
1071         0x404, 0x504, 0x604, 0x704,
1072         0x804, 0x904, 0xa04, 0xb04,
1073 };
1074
1075 /* High 16 bits of TAD limit and offset. */
1076 static const u32 knl_tad_dram_hi[] = {
1077         0x408, 0x508, 0x608, 0x708,
1078         0x808, 0x908, 0xa08, 0xb08,
1079 };
1080
1081 /* Number of ways a tad entry is interleaved. */
1082 static const u32 knl_tad_ways[] = {
1083         8, 6, 4, 3, 2, 1,
1084 };
1085
1086 /*
1087  * Retrieve the n'th Target Address Decode table entry
1088  * from the memory controller's TAD table.
1089  *
1090  * @pvt:        driver private data
1091  * @entry:      which entry you want to retrieve
1092  * @mc:         which memory controller (0 or 1)
1093  * @offset:     output tad range offset
1094  * @limit:      output address of first byte above tad range
1095  * @ways:       output number of interleave ways
1096  *
1097  * The offset value has curious semantics.  It's a sort of running total
1098  * of the sizes of all the memory regions that aren't mapped in this
1099  * tad table.
1100  */
1101 static int knl_get_tad(const struct sbridge_pvt *pvt,
1102                 const int entry,
1103                 const int mc,
1104                 u64 *offset,
1105                 u64 *limit,
1106                 int *ways)
1107 {
1108         u32 reg_limit_lo, reg_offset_lo, reg_hi;
1109         struct pci_dev *pci_mc;
1110         int way_id;
1111
1112         switch (mc) {
1113         case 0:
1114                 pci_mc = pvt->knl.pci_mc0;
1115                 break;
1116         case 1:
1117                 pci_mc = pvt->knl.pci_mc1;
1118                 break;
1119         default:
1120                 WARN_ON(1);
1121                 return -EINVAL;
1122         }
1123
1124         pci_read_config_dword(pci_mc,
1125                         knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1126         pci_read_config_dword(pci_mc,
1127                         knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1128         pci_read_config_dword(pci_mc,
1129                         knl_tad_dram_hi[entry], &reg_hi);
1130
1131         /* Is this TAD entry enabled? */
1132         if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1133                 return -ENODEV;
1134
1135         way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1136
1137         if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1138                 *ways = knl_tad_ways[way_id];
1139         } else {
1140                 *ways = 0;
1141                 sbridge_printk(KERN_ERR,
1142                                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1143                                 way_id);
1144                 return -ENODEV;
1145         }
1146
1147         /*
1148          * The least significant 6 bits of base and limit are truncated.
1149          * For limit, we fill the missing bits with 1s.
1150          */
1151         *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1152                                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1153         *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1154                                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1155
1156         return 0;
1157 }
1158
1159 /* Determine which memory controller is responsible for a given channel. */
1160 static int knl_channel_mc(int channel)
1161 {
1162         WARN_ON(channel < 0 || channel >= 6);
1163
1164         return channel < 3 ? 1 : 0;
1165 }
1166
1167 /*
1168  * Get the Nth entry from EDC_ROUTE_TABLE register.
1169  * (This is the per-tile mapping of logical interleave targets to
1170  *  physical EDC modules.)
1171  *
1172  * entry 0: 0:2
1173  *       1: 3:5
1174  *       2: 6:8
1175  *       3: 9:11
1176  *       4: 12:14
1177  *       5: 15:17
1178  *       6: 18:20
1179  *       7: 21:23
1180  * reserved: 24:31
1181  */
1182 static u32 knl_get_edc_route(int entry, u32 reg)
1183 {
1184         WARN_ON(entry >= KNL_MAX_EDCS);
1185         return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1186 }
1187
1188 /*
1189  * Get the Nth entry from MC_ROUTE_TABLE register.
1190  * (This is the per-tile mapping of logical interleave targets to
1191  *  physical DRAM channels modules.)
1192  *
1193  * entry 0: mc 0:2   channel 18:19
1194  *       1: mc 3:5   channel 20:21
1195  *       2: mc 6:8   channel 22:23
1196  *       3: mc 9:11  channel 24:25
1197  *       4: mc 12:14 channel 26:27
1198  *       5: mc 15:17 channel 28:29
1199  * reserved: 30:31
1200  *
1201  * Though we have 3 bits to identify the MC, we should only see
1202  * the values 0 or 1.
1203  */
1204
1205 static u32 knl_get_mc_route(int entry, u32 reg)
1206 {
1207         int mc, chan;
1208
1209         WARN_ON(entry >= KNL_MAX_CHANNELS);
1210
1211         mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1212         chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1213
1214         return knl_channel_remap(mc, chan);
1215 }
1216
1217 /*
1218  * Render the EDC_ROUTE register in human-readable form.
1219  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1220  */
1221 static void knl_show_edc_route(u32 reg, char *s)
1222 {
1223         int i;
1224
1225         for (i = 0; i < KNL_MAX_EDCS; i++) {
1226                 s[i*2] = knl_get_edc_route(i, reg) + '0';
1227                 s[i*2+1] = '-';
1228         }
1229
1230         s[KNL_MAX_EDCS*2 - 1] = '\0';
1231 }
1232
1233 /*
1234  * Render the MC_ROUTE register in human-readable form.
1235  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1236  */
1237 static void knl_show_mc_route(u32 reg, char *s)
1238 {
1239         int i;
1240
1241         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1242                 s[i*2] = knl_get_mc_route(i, reg) + '0';
1243                 s[i*2+1] = '-';
1244         }
1245
1246         s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1247 }
1248
1249 #define KNL_EDC_ROUTE 0xb8
1250 #define KNL_MC_ROUTE 0xb4
1251
1252 /* Is this dram rule backed by regular DRAM in flat mode? */
1253 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1254
1255 /* Is this dram rule cached? */
1256 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1257
1258 /* Is this rule backed by edc ? */
1259 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1260
1261 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1262 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1263
1264 /* Is this rule mod3? */
1265 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1266
1267 /*
1268  * Figure out how big our RAM modules are.
1269  *
1270  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1271  * have to figure this out from the SAD rules, interleave lists, route tables,
1272  * and TAD rules.
1273  *
1274  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1275  * inspect the TAD rules to figure out how large the SAD regions really are.
1276  *
1277  * When we know the real size of a SAD region and how many ways it's
1278  * interleaved, we know the individual contribution of each channel to
1279  * TAD is size/ways.
1280  *
1281  * Finally, we have to check whether each channel participates in each SAD
1282  * region.
1283  *
1284  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1285  * much memory the channel uses, we know the DIMM is at least that large.
1286  * (The BIOS might possibly choose not to map all available memory, in which
1287  * case we will underreport the size of the DIMM.)
1288  *
1289  * In theory, we could try to determine the EDC sizes as well, but that would
1290  * only work in flat mode, not in cache mode.
1291  *
1292  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1293  *            elements)
1294  */
1295 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1296 {
1297         u64 sad_base, sad_size, sad_limit = 0;
1298         u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1299         int sad_rule = 0;
1300         int tad_rule = 0;
1301         int intrlv_ways, tad_ways;
1302         u32 first_pkg, pkg;
1303         int i;
1304         u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1305         u32 dram_rule, interleave_reg;
1306         u32 mc_route_reg[KNL_MAX_CHAS];
1307         u32 edc_route_reg[KNL_MAX_CHAS];
1308         int edram_only;
1309         char edc_route_string[KNL_MAX_EDCS*2];
1310         char mc_route_string[KNL_MAX_CHANNELS*2];
1311         int cur_reg_start;
1312         int mc;
1313         int channel;
1314         int way;
1315         int participants[KNL_MAX_CHANNELS];
1316         int participant_count = 0;
1317
1318         for (i = 0; i < KNL_MAX_CHANNELS; i++)
1319                 mc_sizes[i] = 0;
1320
1321         /* Read the EDC route table in each CHA. */
1322         cur_reg_start = 0;
1323         for (i = 0; i < KNL_MAX_CHAS; i++) {
1324                 pci_read_config_dword(pvt->knl.pci_cha[i],
1325                                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1326
1327                 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1328                         knl_show_edc_route(edc_route_reg[i-1],
1329                                         edc_route_string);
1330                         if (cur_reg_start == i-1)
1331                                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1332                                         cur_reg_start, edc_route_string);
1333                         else
1334                                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1335                                         cur_reg_start, i-1, edc_route_string);
1336                         cur_reg_start = i;
1337                 }
1338         }
1339         knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1340         if (cur_reg_start == i-1)
1341                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1342                         cur_reg_start, edc_route_string);
1343         else
1344                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1345                         cur_reg_start, i-1, edc_route_string);
1346
1347         /* Read the MC route table in each CHA. */
1348         cur_reg_start = 0;
1349         for (i = 0; i < KNL_MAX_CHAS; i++) {
1350                 pci_read_config_dword(pvt->knl.pci_cha[i],
1351                         KNL_MC_ROUTE, &mc_route_reg[i]);
1352
1353                 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1354                         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1355                         if (cur_reg_start == i-1)
1356                                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1357                                         cur_reg_start, mc_route_string);
1358                         else
1359                                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1360                                         cur_reg_start, i-1, mc_route_string);
1361                         cur_reg_start = i;
1362                 }
1363         }
1364         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1365         if (cur_reg_start == i-1)
1366                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1367                         cur_reg_start, mc_route_string);
1368         else
1369                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1370                         cur_reg_start, i-1, mc_route_string);
1371
1372         /* Process DRAM rules */
1373         for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1374                 /* previous limit becomes the new base */
1375                 sad_base = sad_limit;
1376
1377                 pci_read_config_dword(pvt->pci_sad0,
1378                         pvt->info.dram_rule[sad_rule], &dram_rule);
1379
1380                 if (!DRAM_RULE_ENABLE(dram_rule))
1381                         break;
1382
1383                 edram_only = KNL_EDRAM_ONLY(dram_rule);
1384
1385                 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1386                 sad_size = sad_limit - sad_base;
1387
1388                 pci_read_config_dword(pvt->pci_sad0,
1389                         pvt->info.interleave_list[sad_rule], &interleave_reg);
1390
1391                 /*
1392                  * Find out how many ways this dram rule is interleaved.
1393                  * We stop when we see the first channel again.
1394                  */
1395                 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1396                                                 interleave_reg, 0);
1397                 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1398                         pkg = sad_pkg(pvt->info.interleave_pkg,
1399                                                 interleave_reg, intrlv_ways);
1400
1401                         if ((pkg & 0x8) == 0) {
1402                                 /*
1403                                  * 0 bit means memory is non-local,
1404                                  * which KNL doesn't support
1405                                  */
1406                                 edac_dbg(0, "Unexpected interleave target %d\n",
1407                                         pkg);
1408                                 return -1;
1409                         }
1410
1411                         if (pkg == first_pkg)
1412                                 break;
1413                 }
1414                 if (KNL_MOD3(dram_rule))
1415                         intrlv_ways *= 3;
1416
1417                 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1418                         sad_rule,
1419                         sad_base,
1420                         sad_limit,
1421                         intrlv_ways,
1422                         edram_only ? ", EDRAM" : "");
1423
1424                 /*
1425                  * Find out how big the SAD region really is by iterating
1426                  * over TAD tables (SAD regions may contain holes).
1427                  * Each memory controller might have a different TAD table, so
1428                  * we have to look at both.
1429                  *
1430                  * Livespace is the memory that's mapped in this TAD table,
1431                  * deadspace is the holes (this could be the MMIO hole, or it
1432                  * could be memory that's mapped by the other TAD table but
1433                  * not this one).
1434                  */
1435                 for (mc = 0; mc < 2; mc++) {
1436                         sad_actual_size[mc] = 0;
1437                         tad_livespace = 0;
1438                         for (tad_rule = 0;
1439                                         tad_rule < ARRAY_SIZE(
1440                                                 knl_tad_dram_limit_lo);
1441                                         tad_rule++) {
1442                                 if (knl_get_tad(pvt,
1443                                                 tad_rule,
1444                                                 mc,
1445                                                 &tad_deadspace,
1446                                                 &tad_limit,
1447                                                 &tad_ways))
1448                                         break;
1449
1450                                 tad_size = (tad_limit+1) -
1451                                         (tad_livespace + tad_deadspace);
1452                                 tad_livespace += tad_size;
1453                                 tad_base = (tad_limit+1) - tad_size;
1454
1455                                 if (tad_base < sad_base) {
1456                                         if (tad_limit > sad_base)
1457                                                 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1458                                 } else if (tad_base < sad_limit) {
1459                                         if (tad_limit+1 > sad_limit) {
1460                                                 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1461                                         } else {
1462                                                 /* TAD region is completely inside SAD region */
1463                                                 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1464                                                         tad_rule, tad_base,
1465                                                         tad_limit, tad_size,
1466                                                         mc);
1467                                                 sad_actual_size[mc] += tad_size;
1468                                         }
1469                                 }
1470                                 tad_base = tad_limit+1;
1471                         }
1472                 }
1473
1474                 for (mc = 0; mc < 2; mc++) {
1475                         edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1476                                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1477                 }
1478
1479                 /* Ignore EDRAM rule */
1480                 if (edram_only)
1481                         continue;
1482
1483                 /* Figure out which channels participate in interleave. */
1484                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1485                         participants[channel] = 0;
1486
1487                 /* For each channel, does at least one CHA have
1488                  * this channel mapped to the given target?
1489                  */
1490                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1491                         for (way = 0; way < intrlv_ways; way++) {
1492                                 int target;
1493                                 int cha;
1494
1495                                 if (KNL_MOD3(dram_rule))
1496                                         target = way;
1497                                 else
1498                                         target = 0x7 & sad_pkg(
1499                                 pvt->info.interleave_pkg, interleave_reg, way);
1500
1501                                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1502                                         if (knl_get_mc_route(target,
1503                                                 mc_route_reg[cha]) == channel
1504                                                 && !participants[channel]) {
1505                                                 participant_count++;
1506                                                 participants[channel] = 1;
1507                                                 break;
1508                                         }
1509                                 }
1510                         }
1511                 }
1512
1513                 if (participant_count != intrlv_ways)
1514                         edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1515                                 participant_count, intrlv_ways);
1516
1517                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1518                         mc = knl_channel_mc(channel);
1519                         if (participants[channel]) {
1520                                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1521                                         channel,
1522                                         sad_actual_size[mc]/intrlv_ways,
1523                                         sad_rule);
1524                                 mc_sizes[channel] +=
1525                                         sad_actual_size[mc]/intrlv_ways;
1526                         }
1527                 }
1528         }
1529
1530         return 0;
1531 }
1532
1533 static void get_source_id(struct mem_ctl_info *mci)
1534 {
1535         struct sbridge_pvt *pvt = mci->pvt_info;
1536         u32 reg;
1537
1538         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1539             pvt->info.type == KNIGHTS_LANDING)
1540                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1541         else
1542                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1543
1544         if (pvt->info.type == KNIGHTS_LANDING)
1545                 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1546         else
1547                 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1548 }
1549
1550 static int __populate_dimms(struct mem_ctl_info *mci,
1551                             u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1552                             enum edac_type mode)
1553 {
1554         struct sbridge_pvt *pvt = mci->pvt_info;
1555         int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1556                                                          : NUM_CHANNELS;
1557         unsigned int i, j, banks, ranks, rows, cols, npages;
1558         struct dimm_info *dimm;
1559         enum mem_type mtype;
1560         u64 size;
1561
1562         mtype = pvt->info.get_memory_type(pvt);
1563         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1564                 edac_dbg(0, "Memory is registered\n");
1565         else if (mtype == MEM_UNKNOWN)
1566                 edac_dbg(0, "Cannot determine memory type\n");
1567         else
1568                 edac_dbg(0, "Memory is unregistered\n");
1569
1570         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1571                 banks = 16;
1572         else
1573                 banks = 8;
1574
1575         for (i = 0; i < channels; i++) {
1576                 u32 mtr;
1577
1578                 int max_dimms_per_channel;
1579
1580                 if (pvt->info.type == KNIGHTS_LANDING) {
1581                         max_dimms_per_channel = 1;
1582                         if (!pvt->knl.pci_channel[i])
1583                                 continue;
1584                 } else {
1585                         max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1586                         if (!pvt->pci_tad[i])
1587                                 continue;
1588                 }
1589
1590                 for (j = 0; j < max_dimms_per_channel; j++) {
1591                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1592                         if (pvt->info.type == KNIGHTS_LANDING) {
1593                                 pci_read_config_dword(pvt->knl.pci_channel[i],
1594                                         knl_mtr_reg, &mtr);
1595                         } else {
1596                                 pci_read_config_dword(pvt->pci_tad[i],
1597                                         mtr_regs[j], &mtr);
1598                         }
1599                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1600                         if (IS_DIMM_PRESENT(mtr)) {
1601                                 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1602                                         sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1603                                                        pvt->sbridge_dev->source_id,
1604                                                        pvt->sbridge_dev->dom, i);
1605                                         return -ENODEV;
1606                                 }
1607                                 pvt->channel[i].dimms++;
1608
1609                                 ranks = numrank(pvt->info.type, mtr);
1610
1611                                 if (pvt->info.type == KNIGHTS_LANDING) {
1612                                         /* For DDR4, this is fixed. */
1613                                         cols = 1 << 10;
1614                                         rows = knl_mc_sizes[i] /
1615                                                 ((u64) cols * ranks * banks * 8);
1616                                 } else {
1617                                         rows = numrow(mtr);
1618                                         cols = numcol(mtr);
1619                                 }
1620
1621                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1622                                 npages = MiB_TO_PAGES(size);
1623
1624                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1625                                          pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1626                                          size, npages,
1627                                          banks, ranks, rows, cols);
1628
1629                                 dimm->nr_pages = npages;
1630                                 dimm->grain = 32;
1631                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1632                                 dimm->mtype = mtype;
1633                                 dimm->edac_mode = mode;
1634                                 snprintf(dimm->label, sizeof(dimm->label),
1635                                                  "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1636                                                  pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1637                         }
1638                 }
1639         }
1640
1641         return 0;
1642 }
1643
1644 static int get_dimm_config(struct mem_ctl_info *mci)
1645 {
1646         struct sbridge_pvt *pvt = mci->pvt_info;
1647         u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1648         enum edac_type mode;
1649         u32 reg;
1650
1651         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1652                 pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
1653                 pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1654         }
1655         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1656         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1657                  pvt->sbridge_dev->mc,
1658                  pvt->sbridge_dev->node_id,
1659                  pvt->sbridge_dev->source_id);
1660
1661         /* KNL doesn't support mirroring or lockstep,
1662          * and is always closed page
1663          */
1664         if (pvt->info.type == KNIGHTS_LANDING) {
1665                 mode = EDAC_S4ECD4ED;
1666                 pvt->is_mirrored = false;
1667
1668                 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1669                         return -1;
1670                 pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr);
1671         } else {
1672                 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1673                 if (IS_MIRROR_ENABLED(reg)) {
1674                         edac_dbg(0, "Memory mirror is enabled\n");
1675                         pvt->is_mirrored = true;
1676                 } else {
1677                         edac_dbg(0, "Memory mirror is disabled\n");
1678                         pvt->is_mirrored = false;
1679                 }
1680
1681                 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1682                 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1683                         edac_dbg(0, "Lockstep is enabled\n");
1684                         mode = EDAC_S8ECD8ED;
1685                         pvt->is_lockstep = true;
1686                 } else {
1687                         edac_dbg(0, "Lockstep is disabled\n");
1688                         mode = EDAC_S4ECD4ED;
1689                         pvt->is_lockstep = false;
1690                 }
1691                 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1692                         edac_dbg(0, "address map is on closed page mode\n");
1693                         pvt->is_close_pg = true;
1694                 } else {
1695                         edac_dbg(0, "address map is on open page mode\n");
1696                         pvt->is_close_pg = false;
1697                 }
1698         }
1699
1700         return __populate_dimms(mci, knl_mc_sizes, mode);
1701 }
1702
1703 static void get_memory_layout(const struct mem_ctl_info *mci)
1704 {
1705         struct sbridge_pvt *pvt = mci->pvt_info;
1706         int i, j, k, n_sads, n_tads, sad_interl;
1707         u32 reg;
1708         u64 limit, prv = 0;
1709         u64 tmp_mb;
1710         u32 gb, mb;
1711         u32 rir_way;
1712
1713         /*
1714          * Step 1) Get TOLM/TOHM ranges
1715          */
1716
1717         pvt->tolm = pvt->info.get_tolm(pvt);
1718         tmp_mb = (1 + pvt->tolm) >> 20;
1719
1720         gb = div_u64_rem(tmp_mb, 1024, &mb);
1721         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1722                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1723
1724         /* Address range is already 45:25 */
1725         pvt->tohm = pvt->info.get_tohm(pvt);
1726         tmp_mb = (1 + pvt->tohm) >> 20;
1727
1728         gb = div_u64_rem(tmp_mb, 1024, &mb);
1729         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1730                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1731
1732         /*
1733          * Step 2) Get SAD range and SAD Interleave list
1734          * TAD registers contain the interleave wayness. However, it
1735          * seems simpler to just discover it indirectly, with the
1736          * algorithm bellow.
1737          */
1738         prv = 0;
1739         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1740                 /* SAD_LIMIT Address range is 45:26 */
1741                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1742                                       &reg);
1743                 limit = pvt->info.sad_limit(reg);
1744
1745                 if (!DRAM_RULE_ENABLE(reg))
1746                         continue;
1747
1748                 if (limit <= prv)
1749                         break;
1750
1751                 tmp_mb = (limit + 1) >> 20;
1752                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1753                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1754                          n_sads,
1755                          show_dram_attr(pvt->info.dram_attr(reg)),
1756                          gb, (mb*1000)/1024,
1757                          ((u64)tmp_mb) << 20L,
1758                          get_intlv_mode_str(reg, pvt->info.type),
1759                          reg);
1760                 prv = limit;
1761
1762                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1763                                       &reg);
1764                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1765                 for (j = 0; j < 8; j++) {
1766                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1767                         if (j > 0 && sad_interl == pkg)
1768                                 break;
1769
1770                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1771                                  n_sads, j, pkg);
1772                 }
1773         }
1774
1775         if (pvt->info.type == KNIGHTS_LANDING)
1776                 return;
1777
1778         /*
1779          * Step 3) Get TAD range
1780          */
1781         prv = 0;
1782         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1783                 pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1784                 limit = TAD_LIMIT(reg);
1785                 if (limit <= prv)
1786                         break;
1787                 tmp_mb = (limit + 1) >> 20;
1788
1789                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1790                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1791                          n_tads, gb, (mb*1000)/1024,
1792                          ((u64)tmp_mb) << 20L,
1793                          (u32)(1 << TAD_SOCK(reg)),
1794                          (u32)TAD_CH(reg) + 1,
1795                          (u32)TAD_TGT0(reg),
1796                          (u32)TAD_TGT1(reg),
1797                          (u32)TAD_TGT2(reg),
1798                          (u32)TAD_TGT3(reg),
1799                          reg);
1800                 prv = limit;
1801         }
1802
1803         /*
1804          * Step 4) Get TAD offsets, per each channel
1805          */
1806         for (i = 0; i < NUM_CHANNELS; i++) {
1807                 if (!pvt->channel[i].dimms)
1808                         continue;
1809                 for (j = 0; j < n_tads; j++) {
1810                         pci_read_config_dword(pvt->pci_tad[i],
1811                                               tad_ch_nilv_offset[j],
1812                                               &reg);
1813                         tmp_mb = TAD_OFFSET(reg) >> 20;
1814                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1815                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1816                                  i, j,
1817                                  gb, (mb*1000)/1024,
1818                                  ((u64)tmp_mb) << 20L,
1819                                  reg);
1820                 }
1821         }
1822
1823         /*
1824          * Step 6) Get RIR Wayness/Limit, per each channel
1825          */
1826         for (i = 0; i < NUM_CHANNELS; i++) {
1827                 if (!pvt->channel[i].dimms)
1828                         continue;
1829                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1830                         pci_read_config_dword(pvt->pci_tad[i],
1831                                               rir_way_limit[j],
1832                                               &reg);
1833
1834                         if (!IS_RIR_VALID(reg))
1835                                 continue;
1836
1837                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1838                         rir_way = 1 << RIR_WAY(reg);
1839                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1840                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1841                                  i, j,
1842                                  gb, (mb*1000)/1024,
1843                                  ((u64)tmp_mb) << 20L,
1844                                  rir_way,
1845                                  reg);
1846
1847                         for (k = 0; k < rir_way; k++) {
1848                                 pci_read_config_dword(pvt->pci_tad[i],
1849                                                       rir_offset[j][k],
1850                                                       &reg);
1851                                 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1852
1853                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1854                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1855                                          i, j, k,
1856                                          gb, (mb*1000)/1024,
1857                                          ((u64)tmp_mb) << 20L,
1858                                          (u32)RIR_RNK_TGT(pvt->info.type, reg),
1859                                          reg);
1860                         }
1861                 }
1862         }
1863 }
1864
1865 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1866 {
1867         struct sbridge_dev *sbridge_dev;
1868
1869         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1870                 if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1871                         return sbridge_dev->mci;
1872         }
1873         return NULL;
1874 }
1875
1876 static int get_memory_error_data(struct mem_ctl_info *mci,
1877                                  u64 addr,
1878                                  u8 *socket, u8 *ha,
1879                                  long *channel_mask,
1880                                  u8 *rank,
1881                                  char **area_type, char *msg)
1882 {
1883         struct mem_ctl_info     *new_mci;
1884         struct sbridge_pvt *pvt = mci->pvt_info;
1885         struct pci_dev          *pci_ha;
1886         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1887         int                     sad_interl, idx, base_ch;
1888         int                     interleave_mode, shiftup = 0;
1889         unsigned                sad_interleave[pvt->info.max_interleave];
1890         u32                     reg, dram_rule;
1891         u8                      ch_way, sck_way, pkg, sad_ha = 0;
1892         u32                     tad_offset;
1893         u32                     rir_way;
1894         u32                     mb, gb;
1895         u64                     ch_addr, offset, limit = 0, prv = 0;
1896
1897
1898         /*
1899          * Step 0) Check if the address is at special memory ranges
1900          * The check bellow is probably enough to fill all cases where
1901          * the error is not inside a memory, except for the legacy
1902          * range (e. g. VGA addresses). It is unlikely, however, that the
1903          * memory controller would generate an error on that range.
1904          */
1905         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1906                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1907                 return -EINVAL;
1908         }
1909         if (addr >= (u64)pvt->tohm) {
1910                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1911                 return -EINVAL;
1912         }
1913
1914         /*
1915          * Step 1) Get socket
1916          */
1917         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1918                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1919                                       &reg);
1920
1921                 if (!DRAM_RULE_ENABLE(reg))
1922                         continue;
1923
1924                 limit = pvt->info.sad_limit(reg);
1925                 if (limit <= prv) {
1926                         sprintf(msg, "Can't discover the memory socket");
1927                         return -EINVAL;
1928                 }
1929                 if  (addr <= limit)
1930                         break;
1931                 prv = limit;
1932         }
1933         if (n_sads == pvt->info.max_sad) {
1934                 sprintf(msg, "Can't discover the memory socket");
1935                 return -EINVAL;
1936         }
1937         dram_rule = reg;
1938         *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1939         interleave_mode = pvt->info.interleave_mode(dram_rule);
1940
1941         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1942                               &reg);
1943
1944         if (pvt->info.type == SANDY_BRIDGE) {
1945                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1946                 for (sad_way = 0; sad_way < 8; sad_way++) {
1947                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1948                         if (sad_way > 0 && sad_interl == pkg)
1949                                 break;
1950                         sad_interleave[sad_way] = pkg;
1951                         edac_dbg(0, "SAD interleave #%d: %d\n",
1952                                  sad_way, sad_interleave[sad_way]);
1953                 }
1954                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1955                          pvt->sbridge_dev->mc,
1956                          n_sads,
1957                          addr,
1958                          limit,
1959                          sad_way + 7,
1960                          !interleave_mode ? "" : "XOR[18:16]");
1961                 if (interleave_mode)
1962                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1963                 else
1964                         idx = (addr >> 6) & 7;
1965                 switch (sad_way) {
1966                 case 1:
1967                         idx = 0;
1968                         break;
1969                 case 2:
1970                         idx = idx & 1;
1971                         break;
1972                 case 4:
1973                         idx = idx & 3;
1974                         break;
1975                 case 8:
1976                         break;
1977                 default:
1978                         sprintf(msg, "Can't discover socket interleave");
1979                         return -EINVAL;
1980                 }
1981                 *socket = sad_interleave[idx];
1982                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1983                          idx, sad_way, *socket);
1984         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1985                 int bits, a7mode = A7MODE(dram_rule);
1986
1987                 if (a7mode) {
1988                         /* A7 mode swaps P9 with P6 */
1989                         bits = GET_BITFIELD(addr, 7, 8) << 1;
1990                         bits |= GET_BITFIELD(addr, 9, 9);
1991                 } else
1992                         bits = GET_BITFIELD(addr, 6, 8);
1993
1994                 if (interleave_mode == 0) {
1995                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
1996                         idx = GET_BITFIELD(addr, 16, 18);
1997                         idx ^= bits;
1998                 } else
1999                         idx = bits;
2000
2001                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2002                 *socket = sad_pkg_socket(pkg);
2003                 sad_ha = sad_pkg_ha(pkg);
2004
2005                 if (a7mode) {
2006                         /* MCChanShiftUpEnable */
2007                         pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2008                         shiftup = GET_BITFIELD(reg, 22, 22);
2009                 }
2010
2011                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2012                          idx, *socket, sad_ha, shiftup);
2013         } else {
2014                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2015                 idx = (addr >> 6) & 7;
2016                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2017                 *socket = sad_pkg_socket(pkg);
2018                 sad_ha = sad_pkg_ha(pkg);
2019                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2020                          idx, *socket, sad_ha);
2021         }
2022
2023         *ha = sad_ha;
2024
2025         /*
2026          * Move to the proper node structure, in order to access the
2027          * right PCI registers
2028          */
2029         new_mci = get_mci_for_node_id(*socket, sad_ha);
2030         if (!new_mci) {
2031                 sprintf(msg, "Struct for socket #%u wasn't initialized",
2032                         *socket);
2033                 return -EINVAL;
2034         }
2035         mci = new_mci;
2036         pvt = mci->pvt_info;
2037
2038         /*
2039          * Step 2) Get memory channel
2040          */
2041         prv = 0;
2042         pci_ha = pvt->pci_ha;
2043         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2044                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2045                 limit = TAD_LIMIT(reg);
2046                 if (limit <= prv) {
2047                         sprintf(msg, "Can't discover the memory channel");
2048                         return -EINVAL;
2049                 }
2050                 if  (addr <= limit)
2051                         break;
2052                 prv = limit;
2053         }
2054         if (n_tads == MAX_TAD) {
2055                 sprintf(msg, "Can't discover the memory channel");
2056                 return -EINVAL;
2057         }
2058
2059         ch_way = TAD_CH(reg) + 1;
2060         sck_way = TAD_SOCK(reg);
2061
2062         if (ch_way == 3)
2063                 idx = addr >> 6;
2064         else {
2065                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2066                 if (pvt->is_chan_hash)
2067                         idx = haswell_chan_hash(idx, addr);
2068         }
2069         idx = idx % ch_way;
2070
2071         /*
2072          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2073          */
2074         switch (idx) {
2075         case 0:
2076                 base_ch = TAD_TGT0(reg);
2077                 break;
2078         case 1:
2079                 base_ch = TAD_TGT1(reg);
2080                 break;
2081         case 2:
2082                 base_ch = TAD_TGT2(reg);
2083                 break;
2084         case 3:
2085                 base_ch = TAD_TGT3(reg);
2086                 break;
2087         default:
2088                 sprintf(msg, "Can't discover the TAD target");
2089                 return -EINVAL;
2090         }
2091         *channel_mask = 1 << base_ch;
2092
2093         pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2094
2095         if (pvt->is_mirrored) {
2096                 *channel_mask |= 1 << ((base_ch + 2) % 4);
2097                 switch(ch_way) {
2098                 case 2:
2099                 case 4:
2100                         sck_xch = (1 << sck_way) * (ch_way >> 1);
2101                         break;
2102                 default:
2103                         sprintf(msg, "Invalid mirror set. Can't decode addr");
2104                         return -EINVAL;
2105                 }
2106         } else
2107                 sck_xch = (1 << sck_way) * ch_way;
2108
2109         if (pvt->is_lockstep)
2110                 *channel_mask |= 1 << ((base_ch + 1) % 4);
2111
2112         offset = TAD_OFFSET(tad_offset);
2113
2114         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2115                  n_tads,
2116                  addr,
2117                  limit,
2118                  sck_way,
2119                  ch_way,
2120                  offset,
2121                  idx,
2122                  base_ch,
2123                  *channel_mask);
2124
2125         /* Calculate channel address */
2126         /* Remove the TAD offset */
2127
2128         if (offset > addr) {
2129                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2130                         offset, addr);
2131                 return -EINVAL;
2132         }
2133
2134         ch_addr = addr - offset;
2135         ch_addr >>= (6 + shiftup);
2136         ch_addr /= sck_xch;
2137         ch_addr <<= (6 + shiftup);
2138         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2139
2140         /*
2141          * Step 3) Decode rank
2142          */
2143         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2144                 pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2145
2146                 if (!IS_RIR_VALID(reg))
2147                         continue;
2148
2149                 limit = pvt->info.rir_limit(reg);
2150                 gb = div_u64_rem(limit >> 20, 1024, &mb);
2151                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2152                          n_rir,
2153                          gb, (mb*1000)/1024,
2154                          limit,
2155                          1 << RIR_WAY(reg));
2156                 if  (ch_addr <= limit)
2157                         break;
2158         }
2159         if (n_rir == MAX_RIR_RANGES) {
2160                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2161                         ch_addr);
2162                 return -EINVAL;
2163         }
2164         rir_way = RIR_WAY(reg);
2165
2166         if (pvt->is_close_pg)
2167                 idx = (ch_addr >> 6);
2168         else
2169                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2170         idx %= 1 << rir_way;
2171
2172         pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2173         *rank = RIR_RNK_TGT(pvt->info.type, reg);
2174
2175         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2176                  n_rir,
2177                  ch_addr,
2178                  limit,
2179                  rir_way,
2180                  idx);
2181
2182         return 0;
2183 }
2184
2185 /****************************************************************************
2186         Device initialization routines: put/get, init/exit
2187  ****************************************************************************/
2188
2189 /*
2190  *      sbridge_put_all_devices 'put' all the devices that we have
2191  *                              reserved via 'get'
2192  */
2193 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2194 {
2195         int i;
2196
2197         edac_dbg(0, "\n");
2198         for (i = 0; i < sbridge_dev->n_devs; i++) {
2199                 struct pci_dev *pdev = sbridge_dev->pdev[i];
2200                 if (!pdev)
2201                         continue;
2202                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2203                          pdev->bus->number,
2204                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2205                 pci_dev_put(pdev);
2206         }
2207 }
2208
2209 static void sbridge_put_all_devices(void)
2210 {
2211         struct sbridge_dev *sbridge_dev, *tmp;
2212
2213         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2214                 sbridge_put_devices(sbridge_dev);
2215                 free_sbridge_dev(sbridge_dev);
2216         }
2217 }
2218
2219 static int sbridge_get_onedevice(struct pci_dev **prev,
2220                                  u8 *num_mc,
2221                                  const struct pci_id_table *table,
2222                                  const unsigned devno,
2223                                  const int multi_bus)
2224 {
2225         struct sbridge_dev *sbridge_dev = NULL;
2226         const struct pci_id_descr *dev_descr = &table->descr[devno];
2227         struct pci_dev *pdev = NULL;
2228         u8 bus = 0;
2229         int i = 0;
2230
2231         sbridge_printk(KERN_DEBUG,
2232                 "Seeking for: PCI ID %04x:%04x\n",
2233                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2234
2235         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2236                               dev_descr->dev_id, *prev);
2237
2238         if (!pdev) {
2239                 if (*prev) {
2240                         *prev = pdev;
2241                         return 0;
2242                 }
2243
2244                 if (dev_descr->optional)
2245                         return 0;
2246
2247                 /* if the HA wasn't found */
2248                 if (devno == 0)
2249                         return -ENODEV;
2250
2251                 sbridge_printk(KERN_INFO,
2252                         "Device not found: %04x:%04x\n",
2253                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2254
2255                 /* End of list, leave */
2256                 return -ENODEV;
2257         }
2258         bus = pdev->bus->number;
2259
2260 next_imc:
2261         sbridge_dev = get_sbridge_dev(bus, dev_descr->dom, multi_bus, sbridge_dev);
2262         if (!sbridge_dev) {
2263
2264                 if (dev_descr->dom == SOCK)
2265                         goto out_imc;
2266
2267                 sbridge_dev = alloc_sbridge_dev(bus, dev_descr->dom, table);
2268                 if (!sbridge_dev) {
2269                         pci_dev_put(pdev);
2270                         return -ENOMEM;
2271                 }
2272                 (*num_mc)++;
2273         }
2274
2275         if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2276                 sbridge_printk(KERN_ERR,
2277                         "Duplicated device for %04x:%04x\n",
2278                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2279                 pci_dev_put(pdev);
2280                 return -ENODEV;
2281         }
2282
2283         sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2284
2285         /* pdev belongs to more than one IMC, do extra gets */
2286         if (++i > 1)
2287                 pci_dev_get(pdev);
2288
2289         if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2290                 goto next_imc;
2291
2292 out_imc:
2293         /* Be sure that the device is enabled */
2294         if (unlikely(pci_enable_device(pdev) < 0)) {
2295                 sbridge_printk(KERN_ERR,
2296                         "Couldn't enable %04x:%04x\n",
2297                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2298                 return -ENODEV;
2299         }
2300
2301         edac_dbg(0, "Detected %04x:%04x\n",
2302                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2303
2304         /*
2305          * As stated on drivers/pci/search.c, the reference count for
2306          * @from is always decremented if it is not %NULL. So, as we need
2307          * to get all devices up to null, we need to do a get for the device
2308          */
2309         pci_dev_get(pdev);
2310
2311         *prev = pdev;
2312
2313         return 0;
2314 }
2315
2316 /*
2317  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2318  *                           devices we want to reference for this driver.
2319  * @num_mc: pointer to the memory controllers count, to be incremented in case
2320  *          of success.
2321  * @table: model specific table
2322  *
2323  * returns 0 in case of success or error code
2324  */
2325 static int sbridge_get_all_devices(u8 *num_mc,
2326                                         const struct pci_id_table *table)
2327 {
2328         int i, rc;
2329         struct pci_dev *pdev = NULL;
2330         int allow_dups = 0;
2331         int multi_bus = 0;
2332
2333         if (table->type == KNIGHTS_LANDING)
2334                 allow_dups = multi_bus = 1;
2335         while (table && table->descr) {
2336                 for (i = 0; i < table->n_devs_per_sock; i++) {
2337                         if (!allow_dups || i == 0 ||
2338                                         table->descr[i].dev_id !=
2339                                                 table->descr[i-1].dev_id) {
2340                                 pdev = NULL;
2341                         }
2342                         do {
2343                                 rc = sbridge_get_onedevice(&pdev, num_mc,
2344                                                            table, i, multi_bus);
2345                                 if (rc < 0) {
2346                                         if (i == 0) {
2347                                                 i = table->n_devs_per_sock;
2348                                                 break;
2349                                         }
2350                                         sbridge_put_all_devices();
2351                                         return -ENODEV;
2352                                 }
2353                         } while (pdev && !allow_dups);
2354                 }
2355                 table++;
2356         }
2357
2358         return 0;
2359 }
2360
2361 /*
2362  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2363  * the format: XXXa. So we can convert from a device to the corresponding
2364  * channel like this
2365  */
2366 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2367
2368 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2369                                  struct sbridge_dev *sbridge_dev)
2370 {
2371         struct sbridge_pvt *pvt = mci->pvt_info;
2372         struct pci_dev *pdev;
2373         u8 saw_chan_mask = 0;
2374         int i;
2375
2376         for (i = 0; i < sbridge_dev->n_devs; i++) {
2377                 pdev = sbridge_dev->pdev[i];
2378                 if (!pdev)
2379                         continue;
2380
2381                 switch (pdev->device) {
2382                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2383                         pvt->pci_sad0 = pdev;
2384                         break;
2385                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2386                         pvt->pci_sad1 = pdev;
2387                         break;
2388                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2389                         pvt->pci_br0 = pdev;
2390                         break;
2391                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2392                         pvt->pci_ha = pdev;
2393                         break;
2394                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2395                         pvt->pci_ta = pdev;
2396                         break;
2397                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2398                         pvt->pci_ras = pdev;
2399                         break;
2400                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2401                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2402                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2403                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2404                 {
2405                         int id = TAD_DEV_TO_CHAN(pdev->device);
2406                         pvt->pci_tad[id] = pdev;
2407                         saw_chan_mask |= 1 << id;
2408                 }
2409                         break;
2410                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2411                         pvt->pci_ddrio = pdev;
2412                         break;
2413                 default:
2414                         goto error;
2415                 }
2416
2417                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2418                          pdev->vendor, pdev->device,
2419                          sbridge_dev->bus,
2420                          pdev);
2421         }
2422
2423         /* Check if everything were registered */
2424         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2425             !pvt->pci_ras || !pvt->pci_ta)
2426                 goto enodev;
2427
2428         if (saw_chan_mask != 0x0f)
2429                 goto enodev;
2430         return 0;
2431
2432 enodev:
2433         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2434         return -ENODEV;
2435
2436 error:
2437         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2438                        PCI_VENDOR_ID_INTEL, pdev->device);
2439         return -EINVAL;
2440 }
2441
2442 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2443                                  struct sbridge_dev *sbridge_dev)
2444 {
2445         struct sbridge_pvt *pvt = mci->pvt_info;
2446         struct pci_dev *pdev;
2447         u8 saw_chan_mask = 0;
2448         int i;
2449
2450         for (i = 0; i < sbridge_dev->n_devs; i++) {
2451                 pdev = sbridge_dev->pdev[i];
2452                 if (!pdev)
2453                         continue;
2454
2455                 switch (pdev->device) {
2456                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2457                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2458                         pvt->pci_ha = pdev;
2459                         break;
2460                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2461                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2462                         pvt->pci_ta = pdev;
2463                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2464                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2465                         pvt->pci_ras = pdev;
2466                         break;
2467                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2468                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2469                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2470                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2471                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2472                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2473                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2474                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2475                 {
2476                         int id = TAD_DEV_TO_CHAN(pdev->device);
2477                         pvt->pci_tad[id] = pdev;
2478                         saw_chan_mask |= 1 << id;
2479                 }
2480                         break;
2481                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2482                         pvt->pci_ddrio = pdev;
2483                         break;
2484                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2485                         pvt->pci_ddrio = pdev;
2486                         break;
2487                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2488                         pvt->pci_sad0 = pdev;
2489                         break;
2490                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2491                         pvt->pci_br0 = pdev;
2492                         break;
2493                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2494                         pvt->pci_br1 = pdev;
2495                         break;
2496                 default:
2497                         goto error;
2498                 }
2499
2500                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2501                          sbridge_dev->bus,
2502                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2503                          pdev);
2504         }
2505
2506         /* Check if everything were registered */
2507         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2508             !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2509                 goto enodev;
2510
2511         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2512             saw_chan_mask != 0x03)   /* -EP */
2513                 goto enodev;
2514         return 0;
2515
2516 enodev:
2517         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2518         return -ENODEV;
2519
2520 error:
2521         sbridge_printk(KERN_ERR,
2522                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2523                         pdev->device);
2524         return -EINVAL;
2525 }
2526
2527 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2528                                  struct sbridge_dev *sbridge_dev)
2529 {
2530         struct sbridge_pvt *pvt = mci->pvt_info;
2531         struct pci_dev *pdev;
2532         u8 saw_chan_mask = 0;
2533         int i;
2534
2535         /* there's only one device per system; not tied to any bus */
2536         if (pvt->info.pci_vtd == NULL)
2537                 /* result will be checked later */
2538                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2539                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2540                                                    NULL);
2541
2542         for (i = 0; i < sbridge_dev->n_devs; i++) {
2543                 pdev = sbridge_dev->pdev[i];
2544                 if (!pdev)
2545                         continue;
2546
2547                 switch (pdev->device) {
2548                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2549                         pvt->pci_sad0 = pdev;
2550                         break;
2551                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2552                         pvt->pci_sad1 = pdev;
2553                         break;
2554                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2555                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2556                         pvt->pci_ha = pdev;
2557                         break;
2558                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2559                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2560                         pvt->pci_ta = pdev;
2561                         break;
2562                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2563                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2564                         pvt->pci_ras = pdev;
2565                         break;
2566                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2567                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2568                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2569                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2570                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2571                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2572                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2573                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2574                 {
2575                         int id = TAD_DEV_TO_CHAN(pdev->device);
2576                         pvt->pci_tad[id] = pdev;
2577                         saw_chan_mask |= 1 << id;
2578                 }
2579                         break;
2580                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2581                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2582                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2583                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2584                         if (!pvt->pci_ddrio)
2585                                 pvt->pci_ddrio = pdev;
2586                         break;
2587                 default:
2588                         break;
2589                 }
2590
2591                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2592                          sbridge_dev->bus,
2593                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2594                          pdev);
2595         }
2596
2597         /* Check if everything were registered */
2598         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2599             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2600                 goto enodev;
2601
2602         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2603             saw_chan_mask != 0x03)   /* -EP */
2604                 goto enodev;
2605         return 0;
2606
2607 enodev:
2608         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2609         return -ENODEV;
2610 }
2611
2612 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2613                                  struct sbridge_dev *sbridge_dev)
2614 {
2615         struct sbridge_pvt *pvt = mci->pvt_info;
2616         struct pci_dev *pdev;
2617         u8 saw_chan_mask = 0;
2618         int i;
2619
2620         /* there's only one device per system; not tied to any bus */
2621         if (pvt->info.pci_vtd == NULL)
2622                 /* result will be checked later */
2623                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2624                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2625                                                    NULL);
2626
2627         for (i = 0; i < sbridge_dev->n_devs; i++) {
2628                 pdev = sbridge_dev->pdev[i];
2629                 if (!pdev)
2630                         continue;
2631
2632                 switch (pdev->device) {
2633                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2634                         pvt->pci_sad0 = pdev;
2635                         break;
2636                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2637                         pvt->pci_sad1 = pdev;
2638                         break;
2639                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2640                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2641                         pvt->pci_ha = pdev;
2642                         break;
2643                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2644                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2645                         pvt->pci_ta = pdev;
2646                         break;
2647                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2648                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2649                         pvt->pci_ras = pdev;
2650                         break;
2651                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2652                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2653                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2654                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2655                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2656                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2657                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2658                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2659                 {
2660                         int id = TAD_DEV_TO_CHAN(pdev->device);
2661                         pvt->pci_tad[id] = pdev;
2662                         saw_chan_mask |= 1 << id;
2663                 }
2664                         break;
2665                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2666                         pvt->pci_ddrio = pdev;
2667                         break;
2668                 default:
2669                         break;
2670                 }
2671
2672                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2673                          sbridge_dev->bus,
2674                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2675                          pdev);
2676         }
2677
2678         /* Check if everything were registered */
2679         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2680             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2681                 goto enodev;
2682
2683         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2684             saw_chan_mask != 0x03)   /* -EP */
2685                 goto enodev;
2686         return 0;
2687
2688 enodev:
2689         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2690         return -ENODEV;
2691 }
2692
2693 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2694                         struct sbridge_dev *sbridge_dev)
2695 {
2696         struct sbridge_pvt *pvt = mci->pvt_info;
2697         struct pci_dev *pdev;
2698         int dev, func;
2699
2700         int i;
2701         int devidx;
2702
2703         for (i = 0; i < sbridge_dev->n_devs; i++) {
2704                 pdev = sbridge_dev->pdev[i];
2705                 if (!pdev)
2706                         continue;
2707
2708                 /* Extract PCI device and function. */
2709                 dev = (pdev->devfn >> 3) & 0x1f;
2710                 func = pdev->devfn & 0x7;
2711
2712                 switch (pdev->device) {
2713                 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2714                         if (dev == 8)
2715                                 pvt->knl.pci_mc0 = pdev;
2716                         else if (dev == 9)
2717                                 pvt->knl.pci_mc1 = pdev;
2718                         else {
2719                                 sbridge_printk(KERN_ERR,
2720                                         "Memory controller in unexpected place! (dev %d, fn %d)\n",
2721                                         dev, func);
2722                                 continue;
2723                         }
2724                         break;
2725
2726                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2727                         pvt->pci_sad0 = pdev;
2728                         break;
2729
2730                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2731                         pvt->pci_sad1 = pdev;
2732                         break;
2733
2734                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2735                         /* There are one of these per tile, and range from
2736                          * 1.14.0 to 1.18.5.
2737                          */
2738                         devidx = ((dev-14)*8)+func;
2739
2740                         if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2741                                 sbridge_printk(KERN_ERR,
2742                                         "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2743                                         dev, func);
2744                                 continue;
2745                         }
2746
2747                         WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2748
2749                         pvt->knl.pci_cha[devidx] = pdev;
2750                         break;
2751
2752                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2753                         devidx = -1;
2754
2755                         /*
2756                          *  MC0 channels 0-2 are device 9 function 2-4,
2757                          *  MC1 channels 3-5 are device 8 function 2-4.
2758                          */
2759
2760                         if (dev == 9)
2761                                 devidx = func-2;
2762                         else if (dev == 8)
2763                                 devidx = 3 + (func-2);
2764
2765                         if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2766                                 sbridge_printk(KERN_ERR,
2767                                         "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2768                                         dev, func);
2769                                 continue;
2770                         }
2771
2772                         WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2773                         pvt->knl.pci_channel[devidx] = pdev;
2774                         break;
2775
2776                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2777                         pvt->knl.pci_mc_info = pdev;
2778                         break;
2779
2780                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2781                         pvt->pci_ta = pdev;
2782                         break;
2783
2784                 default:
2785                         sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2786                                 pdev->device);
2787                         break;
2788                 }
2789         }
2790
2791         if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2792             !pvt->pci_sad0     || !pvt->pci_sad1    ||
2793             !pvt->pci_ta) {
2794                 goto enodev;
2795         }
2796
2797         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2798                 if (!pvt->knl.pci_channel[i]) {
2799                         sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2800                         goto enodev;
2801                 }
2802         }
2803
2804         for (i = 0; i < KNL_MAX_CHAS; i++) {
2805                 if (!pvt->knl.pci_cha[i]) {
2806                         sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2807                         goto enodev;
2808                 }
2809         }
2810
2811         return 0;
2812
2813 enodev:
2814         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2815         return -ENODEV;
2816 }
2817
2818 /****************************************************************************
2819                         Error check routines
2820  ****************************************************************************/
2821
2822 /*
2823  * While Sandy Bridge has error count registers, SMI BIOS read values from
2824  * and resets the counters. So, they are not reliable for the OS to read
2825  * from them. So, we have no option but to just trust on whatever MCE is
2826  * telling us about the errors.
2827  */
2828 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2829                                     const struct mce *m)
2830 {
2831         struct mem_ctl_info *new_mci;
2832         struct sbridge_pvt *pvt = mci->pvt_info;
2833         enum hw_event_mc_err_type tp_event;
2834         char *type, *optype, msg[256];
2835         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2836         bool overflow = GET_BITFIELD(m->status, 62, 62);
2837         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2838         bool recoverable;
2839         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2840         u32 mscod = GET_BITFIELD(m->status, 16, 31);
2841         u32 errcode = GET_BITFIELD(m->status, 0, 15);
2842         u32 channel = GET_BITFIELD(m->status, 0, 3);
2843         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2844         long channel_mask, first_channel;
2845         u8  rank, socket, ha;
2846         int rc, dimm;
2847         char *area_type = NULL;
2848
2849         if (pvt->info.type != SANDY_BRIDGE)
2850                 recoverable = true;
2851         else
2852                 recoverable = GET_BITFIELD(m->status, 56, 56);
2853
2854         if (uncorrected_error) {
2855                 if (ripv) {
2856                         type = "FATAL";
2857                         tp_event = HW_EVENT_ERR_FATAL;
2858                 } else {
2859                         type = "NON_FATAL";
2860                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2861                 }
2862         } else {
2863                 type = "CORRECTED";
2864                 tp_event = HW_EVENT_ERR_CORRECTED;
2865         }
2866
2867         /*
2868          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2869          * memory errors should fit in this mask:
2870          *      000f 0000 1mmm cccc (binary)
2871          * where:
2872          *      f = Correction Report Filtering Bit. If 1, subsequent errors
2873          *          won't be shown
2874          *      mmm = error type
2875          *      cccc = channel
2876          * If the mask doesn't match, report an error to the parsing logic
2877          */
2878         if (! ((errcode & 0xef80) == 0x80)) {
2879                 optype = "Can't parse: it is not a mem";
2880         } else {
2881                 switch (optypenum) {
2882                 case 0:
2883                         optype = "generic undef request error";
2884                         break;
2885                 case 1:
2886                         optype = "memory read error";
2887                         break;
2888                 case 2:
2889                         optype = "memory write error";
2890                         break;
2891                 case 3:
2892                         optype = "addr/cmd error";
2893                         break;
2894                 case 4:
2895                         optype = "memory scrubbing error";
2896                         break;
2897                 default:
2898                         optype = "reserved";
2899                         break;
2900                 }
2901         }
2902
2903         /* Only decode errors with an valid address (ADDRV) */
2904         if (!GET_BITFIELD(m->status, 58, 58))
2905                 return;
2906
2907         if (pvt->info.type == KNIGHTS_LANDING) {
2908                 if (channel == 14) {
2909                         edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2910                                 overflow ? " OVERFLOW" : "",
2911                                 (uncorrected_error && recoverable)
2912                                 ? " recoverable" : "",
2913                                 mscod, errcode,
2914                                 m->bank);
2915                 } else {
2916                         char A = *("A");
2917
2918                         /*
2919                          * Reported channel is in range 0-2, so we can't map it
2920                          * back to mc. To figure out mc we check machine check
2921                          * bank register that reported this error.
2922                          * bank15 means mc0 and bank16 means mc1.
2923                          */
2924                         channel = knl_channel_remap(m->bank == 16, channel);
2925                         channel_mask = 1 << channel;
2926
2927                         snprintf(msg, sizeof(msg),
2928                                 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2929                                 overflow ? " OVERFLOW" : "",
2930                                 (uncorrected_error && recoverable)
2931                                 ? " recoverable" : " ",
2932                                 mscod, errcode, channel, A + channel);
2933                         edac_mc_handle_error(tp_event, mci, core_err_cnt,
2934                                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2935                                 channel, 0, -1,
2936                                 optype, msg);
2937                 }
2938                 return;
2939         } else {
2940                 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2941                                 &channel_mask, &rank, &area_type, msg);
2942         }
2943
2944         if (rc < 0)
2945                 goto err_parsing;
2946         new_mci = get_mci_for_node_id(socket, ha);
2947         if (!new_mci) {
2948                 strcpy(msg, "Error: socket got corrupted!");
2949                 goto err_parsing;
2950         }
2951         mci = new_mci;
2952         pvt = mci->pvt_info;
2953
2954         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2955
2956         if (rank < 4)
2957                 dimm = 0;
2958         else if (rank < 8)
2959                 dimm = 1;
2960         else
2961                 dimm = 2;
2962
2963
2964         /*
2965          * FIXME: On some memory configurations (mirror, lockstep), the
2966          * Memory Controller can't point the error to a single DIMM. The
2967          * EDAC core should be handling the channel mask, in order to point
2968          * to the group of dimm's where the error may be happening.
2969          */
2970         if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
2971                 channel = first_channel;
2972
2973         snprintf(msg, sizeof(msg),
2974                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
2975                  overflow ? " OVERFLOW" : "",
2976                  (uncorrected_error && recoverable) ? " recoverable" : "",
2977                  area_type,
2978                  mscod, errcode,
2979                  socket, ha,
2980                  channel_mask,
2981                  rank);
2982
2983         edac_dbg(0, "%s\n", msg);
2984
2985         /* FIXME: need support for channel mask */
2986
2987         if (channel == CHANNEL_UNSPECIFIED)
2988                 channel = -1;
2989
2990         /* Call the helper to output message */
2991         edac_mc_handle_error(tp_event, mci, core_err_cnt,
2992                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2993                              channel, dimm, -1,
2994                              optype, msg);
2995         return;
2996 err_parsing:
2997         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2998                              -1, -1, -1,
2999                              msg, "");
3000
3001 }
3002
3003 /*
3004  * Check that logging is enabled and that this is the right type
3005  * of error for us to handle.
3006  */
3007 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3008                                    void *data)
3009 {
3010         struct mce *mce = (struct mce *)data;
3011         struct mem_ctl_info *mci;
3012         struct sbridge_pvt *pvt;
3013         char *type;
3014
3015         if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3016                 return NOTIFY_DONE;
3017
3018         mci = get_mci_for_node_id(mce->socketid, IMC0);
3019         if (!mci)
3020                 return NOTIFY_DONE;
3021         pvt = mci->pvt_info;
3022
3023         /*
3024          * Just let mcelog handle it if the error is
3025          * outside the memory controller. A memory error
3026          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3027          * bit 12 has an special meaning.
3028          */
3029         if ((mce->status & 0xefff) >> 7 != 1)
3030                 return NOTIFY_DONE;
3031
3032         if (mce->mcgstatus & MCG_STATUS_MCIP)
3033                 type = "Exception";
3034         else
3035                 type = "Event";
3036
3037         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3038
3039         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3040                           "Bank %d: %016Lx\n", mce->extcpu, type,
3041                           mce->mcgstatus, mce->bank, mce->status);
3042         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3043         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3044         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3045
3046         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3047                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3048                           mce->time, mce->socketid, mce->apicid);
3049
3050         sbridge_mce_output_error(mci, mce);
3051
3052         /* Advice mcelog that the error were handled */
3053         return NOTIFY_STOP;
3054 }
3055
3056 static struct notifier_block sbridge_mce_dec = {
3057         .notifier_call  = sbridge_mce_check_error,
3058         .priority       = MCE_PRIO_EDAC,
3059 };
3060
3061 /****************************************************************************
3062                         EDAC register/unregister logic
3063  ****************************************************************************/
3064
3065 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3066 {
3067         struct mem_ctl_info *mci = sbridge_dev->mci;
3068         struct sbridge_pvt *pvt;
3069
3070         if (unlikely(!mci || !mci->pvt_info)) {
3071                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3072
3073                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3074                 return;
3075         }
3076
3077         pvt = mci->pvt_info;
3078
3079         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3080                  mci, &sbridge_dev->pdev[0]->dev);
3081
3082         /* Remove MC sysfs nodes */
3083         edac_mc_del_mc(mci->pdev);
3084
3085         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3086         kfree(mci->ctl_name);
3087         edac_mc_free(mci);
3088         sbridge_dev->mci = NULL;
3089 }
3090
3091 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3092 {
3093         struct mem_ctl_info *mci;
3094         struct edac_mc_layer layers[2];
3095         struct sbridge_pvt *pvt;
3096         struct pci_dev *pdev = sbridge_dev->pdev[0];
3097         int rc;
3098
3099         /* allocate a new MC control structure */
3100         layers[0].type = EDAC_MC_LAYER_CHANNEL;
3101         layers[0].size = type == KNIGHTS_LANDING ?
3102                 KNL_MAX_CHANNELS : NUM_CHANNELS;
3103         layers[0].is_virt_csrow = false;
3104         layers[1].type = EDAC_MC_LAYER_SLOT;
3105         layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3106         layers[1].is_virt_csrow = true;
3107         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3108                             sizeof(*pvt));
3109
3110         if (unlikely(!mci))
3111                 return -ENOMEM;
3112
3113         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3114                  mci, &pdev->dev);
3115
3116         pvt = mci->pvt_info;
3117         memset(pvt, 0, sizeof(*pvt));
3118
3119         /* Associate sbridge_dev and mci for future usage */
3120         pvt->sbridge_dev = sbridge_dev;
3121         sbridge_dev->mci = mci;
3122
3123         mci->mtype_cap = type == KNIGHTS_LANDING ?
3124                 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3125         mci->edac_ctl_cap = EDAC_FLAG_NONE;
3126         mci->edac_cap = EDAC_FLAG_NONE;
3127         mci->mod_name = "sb_edac.c";
3128         mci->mod_ver = SBRIDGE_REVISION;
3129         mci->dev_name = pci_name(pdev);
3130         mci->ctl_page_to_phys = NULL;
3131
3132         pvt->info.type = type;
3133         switch (type) {
3134         case IVY_BRIDGE:
3135                 pvt->info.rankcfgr = IB_RANK_CFG_A;
3136                 pvt->info.get_tolm = ibridge_get_tolm;
3137                 pvt->info.get_tohm = ibridge_get_tohm;
3138                 pvt->info.dram_rule = ibridge_dram_rule;
3139                 pvt->info.get_memory_type = get_memory_type;
3140                 pvt->info.get_node_id = get_node_id;
3141                 pvt->info.rir_limit = rir_limit;
3142                 pvt->info.sad_limit = sad_limit;
3143                 pvt->info.interleave_mode = interleave_mode;
3144                 pvt->info.dram_attr = dram_attr;
3145                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3146                 pvt->info.interleave_list = ibridge_interleave_list;
3147                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3148                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3149                 pvt->info.get_width = ibridge_get_width;
3150
3151                 /* Store pci devices at mci for faster access */
3152                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3153                 if (unlikely(rc < 0))
3154                         goto fail0;
3155                 get_source_id(mci);
3156                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3157                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3158                 break;
3159         case SANDY_BRIDGE:
3160                 pvt->info.rankcfgr = SB_RANK_CFG_A;
3161                 pvt->info.get_tolm = sbridge_get_tolm;
3162                 pvt->info.get_tohm = sbridge_get_tohm;
3163                 pvt->info.dram_rule = sbridge_dram_rule;
3164                 pvt->info.get_memory_type = get_memory_type;
3165                 pvt->info.get_node_id = get_node_id;
3166                 pvt->info.rir_limit = rir_limit;
3167                 pvt->info.sad_limit = sad_limit;
3168                 pvt->info.interleave_mode = interleave_mode;
3169                 pvt->info.dram_attr = dram_attr;
3170                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3171                 pvt->info.interleave_list = sbridge_interleave_list;
3172                 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3173                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3174                 pvt->info.get_width = sbridge_get_width;
3175
3176                 /* Store pci devices at mci for faster access */
3177                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3178                 if (unlikely(rc < 0))
3179                         goto fail0;
3180                 get_source_id(mci);
3181                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3182                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3183                 break;
3184         case HASWELL:
3185                 /* rankcfgr isn't used */
3186                 pvt->info.get_tolm = haswell_get_tolm;
3187                 pvt->info.get_tohm = haswell_get_tohm;
3188                 pvt->info.dram_rule = ibridge_dram_rule;
3189                 pvt->info.get_memory_type = haswell_get_memory_type;
3190                 pvt->info.get_node_id = haswell_get_node_id;
3191                 pvt->info.rir_limit = haswell_rir_limit;
3192                 pvt->info.sad_limit = sad_limit;
3193                 pvt->info.interleave_mode = interleave_mode;
3194                 pvt->info.dram_attr = dram_attr;
3195                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3196                 pvt->info.interleave_list = ibridge_interleave_list;
3197                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3198                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3199                 pvt->info.get_width = ibridge_get_width;
3200
3201                 /* Store pci devices at mci for faster access */
3202                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3203                 if (unlikely(rc < 0))
3204                         goto fail0;
3205                 get_source_id(mci);
3206                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3207                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3208                 break;
3209         case BROADWELL:
3210                 /* rankcfgr isn't used */
3211                 pvt->info.get_tolm = haswell_get_tolm;
3212                 pvt->info.get_tohm = haswell_get_tohm;
3213                 pvt->info.dram_rule = ibridge_dram_rule;
3214                 pvt->info.get_memory_type = haswell_get_memory_type;
3215                 pvt->info.get_node_id = haswell_get_node_id;
3216                 pvt->info.rir_limit = haswell_rir_limit;
3217                 pvt->info.sad_limit = sad_limit;
3218                 pvt->info.interleave_mode = interleave_mode;
3219                 pvt->info.dram_attr = dram_attr;
3220                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3221                 pvt->info.interleave_list = ibridge_interleave_list;
3222                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3223                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3224                 pvt->info.get_width = broadwell_get_width;
3225
3226                 /* Store pci devices at mci for faster access */
3227                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3228                 if (unlikely(rc < 0))
3229                         goto fail0;
3230                 get_source_id(mci);
3231                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3232                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3233                 break;
3234         case KNIGHTS_LANDING:
3235                 /* pvt->info.rankcfgr == ??? */
3236                 pvt->info.get_tolm = knl_get_tolm;
3237                 pvt->info.get_tohm = knl_get_tohm;
3238                 pvt->info.dram_rule = knl_dram_rule;
3239                 pvt->info.get_memory_type = knl_get_memory_type;
3240                 pvt->info.get_node_id = knl_get_node_id;
3241                 pvt->info.rir_limit = NULL;
3242                 pvt->info.sad_limit = knl_sad_limit;
3243                 pvt->info.interleave_mode = knl_interleave_mode;
3244                 pvt->info.dram_attr = dram_attr_knl;
3245                 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3246                 pvt->info.interleave_list = knl_interleave_list;
3247                 pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3248                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3249                 pvt->info.get_width = knl_get_width;
3250
3251                 rc = knl_mci_bind_devs(mci, sbridge_dev);
3252                 if (unlikely(rc < 0))
3253                         goto fail0;
3254                 get_source_id(mci);
3255                 mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3256                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3257                 break;
3258         }
3259
3260         /* Get dimm basic config and the memory layout */
3261         rc = get_dimm_config(mci);
3262         if (rc < 0) {
3263                 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3264                 goto fail;
3265         }
3266         get_memory_layout(mci);
3267
3268         /* record ptr to the generic device */
3269         mci->pdev = &pdev->dev;
3270
3271         /* add this new MC control structure to EDAC's list of MCs */
3272         if (unlikely(edac_mc_add_mc(mci))) {
3273                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3274                 rc = -EINVAL;
3275                 goto fail;
3276         }
3277
3278         return 0;
3279
3280 fail:
3281         kfree(mci->ctl_name);
3282 fail0:
3283         edac_mc_free(mci);
3284         sbridge_dev->mci = NULL;
3285         return rc;
3286 }
3287
3288 #define ICPU(model, table) \
3289         { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3290
3291 static const struct x86_cpu_id sbridge_cpuids[] = {
3292         ICPU(INTEL_FAM6_SANDYBRIDGE_X,    pci_dev_descr_sbridge_table),
3293         ICPU(INTEL_FAM6_IVYBRIDGE_X,      pci_dev_descr_ibridge_table),
3294         ICPU(INTEL_FAM6_HASWELL_X,        pci_dev_descr_haswell_table),
3295         ICPU(INTEL_FAM6_BROADWELL_X,      pci_dev_descr_broadwell_table),
3296         ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
3297         ICPU(INTEL_FAM6_XEON_PHI_KNL,     pci_dev_descr_knl_table),
3298         ICPU(INTEL_FAM6_XEON_PHI_KNM,     pci_dev_descr_knl_table),
3299         { }
3300 };
3301 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3302
3303 /*
3304  *      sbridge_probe   Get all devices and register memory controllers
3305  *                      present.
3306  *      return:
3307  *              0 for FOUND a device
3308  *              < 0 for error code
3309  */
3310
3311 static int sbridge_probe(const struct x86_cpu_id *id)
3312 {
3313         int rc = -ENODEV;
3314         u8 mc, num_mc = 0;
3315         struct sbridge_dev *sbridge_dev;
3316         struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3317
3318         /* get the pci devices we want to reserve for our use */
3319         rc = sbridge_get_all_devices(&num_mc, ptable);
3320
3321         if (unlikely(rc < 0)) {
3322                 edac_dbg(0, "couldn't get all devices\n");
3323                 goto fail0;
3324         }
3325
3326         mc = 0;
3327
3328         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3329                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3330                          mc, mc + 1, num_mc);
3331
3332                 sbridge_dev->mc = mc++;
3333                 rc = sbridge_register_mci(sbridge_dev, ptable->type);
3334                 if (unlikely(rc < 0))
3335                         goto fail1;
3336         }
3337
3338         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3339
3340         return 0;
3341
3342 fail1:
3343         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3344                 sbridge_unregister_mci(sbridge_dev);
3345
3346         sbridge_put_all_devices();
3347 fail0:
3348         return rc;
3349 }
3350
3351 /*
3352  *      sbridge_remove  cleanup
3353  *
3354  */
3355 static void sbridge_remove(void)
3356 {
3357         struct sbridge_dev *sbridge_dev;
3358
3359         edac_dbg(0, "\n");
3360
3361         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3362                 sbridge_unregister_mci(sbridge_dev);
3363
3364         /* Release PCI resources */
3365         sbridge_put_all_devices();
3366 }
3367
3368 /*
3369  *      sbridge_init            Module entry function
3370  *                      Try to initialize this module for its devices
3371  */
3372 static int __init sbridge_init(void)
3373 {
3374         const struct x86_cpu_id *id;
3375         int rc;
3376
3377         edac_dbg(2, "\n");
3378
3379         id = x86_match_cpu(sbridge_cpuids);
3380         if (!id)
3381                 return -ENODEV;
3382
3383         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3384         opstate_init();
3385
3386         rc = sbridge_probe(id);
3387
3388         if (rc >= 0) {
3389                 mce_register_decode_chain(&sbridge_mce_dec);
3390                 if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3391                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3392                 return 0;
3393         }
3394
3395         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3396                       rc);
3397
3398         return rc;
3399 }
3400
3401 /*
3402  *      sbridge_exit()  Module exit function
3403  *                      Unregister the driver
3404  */
3405 static void __exit sbridge_exit(void)
3406 {
3407         edac_dbg(2, "\n");
3408         sbridge_remove();
3409         mce_unregister_decode_chain(&sbridge_mce_dec);
3410 }
3411
3412 module_init(sbridge_init);
3413 module_exit(sbridge_exit);
3414
3415 module_param(edac_op_state, int, 0444);
3416 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3417
3418 MODULE_LICENSE("GPL");
3419 MODULE_AUTHOR("Mauro Carvalho Chehab");
3420 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3421 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3422                    SBRIDGE_REVISION);