]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
drm/i915: kill dev_priv->pc8.gpu_idle
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = (struct drm_info_node *) m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (obj->user_pin_count > 0)
100                 return "P";
101         else if (i915_gem_obj_is_pinned(obj))
102                 return "p";
103         else
104                 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109         switch (obj->tiling_mode) {
110         default:
111         case I915_TILING_NONE: return " ";
112         case I915_TILING_X: return "X";
113         case I915_TILING_Y: return "Y";
114         }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125         struct i915_vma *vma;
126         int pin_count = 0;
127
128         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129                    &obj->base,
130                    get_pin_flag(obj),
131                    get_tiling_flag(obj),
132                    get_global_flag(obj),
133                    obj->base.size / 1024,
134                    obj->base.read_domains,
135                    obj->base.write_domain,
136                    obj->last_read_seqno,
137                    obj->last_write_seqno,
138                    obj->last_fenced_seqno,
139                    i915_cache_level_str(obj->cache_level),
140                    obj->dirty ? " dirty" : "",
141                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142         if (obj->base.name)
143                 seq_printf(m, " (name: %d)", obj->base.name);
144         list_for_each_entry(vma, &obj->vma_list, vma_link)
145                 if (vma->pin_count > 0)
146                         pin_count++;
147                 seq_printf(m, " (pinned x %d)", pin_count);
148         if (obj->pin_display)
149                 seq_printf(m, " (display)");
150         if (obj->fence_reg != I915_FENCE_REG_NONE)
151                 seq_printf(m, " (fence: %d)", obj->fence_reg);
152         list_for_each_entry(vma, &obj->vma_list, vma_link) {
153                 if (!i915_is_ggtt(vma->vm))
154                         seq_puts(m, " (pp");
155                 else
156                         seq_puts(m, " (g");
157                 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158                            vma->node.start, vma->node.size);
159         }
160         if (obj->stolen)
161                 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162         if (obj->pin_mappable || obj->fault_mappable) {
163                 char s[3], *t = s;
164                 if (obj->pin_mappable)
165                         *t++ = 'p';
166                 if (obj->fault_mappable)
167                         *t++ = 'f';
168                 *t = '\0';
169                 seq_printf(m, " (%s mappable)", s);
170         }
171         if (obj->ring != NULL)
172                 seq_printf(m, " (%s)", obj->ring->name);
173 }
174
175 static void describe_ctx(struct seq_file *m, struct i915_hw_context *ctx)
176 {
177         seq_putc(m, ctx->is_initialized ? 'I' : 'i');
178         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
179         seq_putc(m, ' ');
180 }
181
182 static int i915_gem_object_list_info(struct seq_file *m, void *data)
183 {
184         struct drm_info_node *node = (struct drm_info_node *) m->private;
185         uintptr_t list = (uintptr_t) node->info_ent->data;
186         struct list_head *head;
187         struct drm_device *dev = node->minor->dev;
188         struct drm_i915_private *dev_priv = dev->dev_private;
189         struct i915_address_space *vm = &dev_priv->gtt.base;
190         struct i915_vma *vma;
191         size_t total_obj_size, total_gtt_size;
192         int count, ret;
193
194         ret = mutex_lock_interruptible(&dev->struct_mutex);
195         if (ret)
196                 return ret;
197
198         /* FIXME: the user of this interface might want more than just GGTT */
199         switch (list) {
200         case ACTIVE_LIST:
201                 seq_puts(m, "Active:\n");
202                 head = &vm->active_list;
203                 break;
204         case INACTIVE_LIST:
205                 seq_puts(m, "Inactive:\n");
206                 head = &vm->inactive_list;
207                 break;
208         default:
209                 mutex_unlock(&dev->struct_mutex);
210                 return -EINVAL;
211         }
212
213         total_obj_size = total_gtt_size = count = 0;
214         list_for_each_entry(vma, head, mm_list) {
215                 seq_printf(m, "   ");
216                 describe_obj(m, vma->obj);
217                 seq_printf(m, "\n");
218                 total_obj_size += vma->obj->base.size;
219                 total_gtt_size += vma->node.size;
220                 count++;
221         }
222         mutex_unlock(&dev->struct_mutex);
223
224         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
225                    count, total_obj_size, total_gtt_size);
226         return 0;
227 }
228
229 static int obj_rank_by_stolen(void *priv,
230                               struct list_head *A, struct list_head *B)
231 {
232         struct drm_i915_gem_object *a =
233                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
234         struct drm_i915_gem_object *b =
235                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
236
237         return a->stolen->start - b->stolen->start;
238 }
239
240 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
241 {
242         struct drm_info_node *node = (struct drm_info_node *) m->private;
243         struct drm_device *dev = node->minor->dev;
244         struct drm_i915_private *dev_priv = dev->dev_private;
245         struct drm_i915_gem_object *obj;
246         size_t total_obj_size, total_gtt_size;
247         LIST_HEAD(stolen);
248         int count, ret;
249
250         ret = mutex_lock_interruptible(&dev->struct_mutex);
251         if (ret)
252                 return ret;
253
254         total_obj_size = total_gtt_size = count = 0;
255         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
256                 if (obj->stolen == NULL)
257                         continue;
258
259                 list_add(&obj->obj_exec_link, &stolen);
260
261                 total_obj_size += obj->base.size;
262                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
263                 count++;
264         }
265         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
266                 if (obj->stolen == NULL)
267                         continue;
268
269                 list_add(&obj->obj_exec_link, &stolen);
270
271                 total_obj_size += obj->base.size;
272                 count++;
273         }
274         list_sort(NULL, &stolen, obj_rank_by_stolen);
275         seq_puts(m, "Stolen:\n");
276         while (!list_empty(&stolen)) {
277                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
278                 seq_puts(m, "   ");
279                 describe_obj(m, obj);
280                 seq_putc(m, '\n');
281                 list_del_init(&obj->obj_exec_link);
282         }
283         mutex_unlock(&dev->struct_mutex);
284
285         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
286                    count, total_obj_size, total_gtt_size);
287         return 0;
288 }
289
290 #define count_objects(list, member) do { \
291         list_for_each_entry(obj, list, member) { \
292                 size += i915_gem_obj_ggtt_size(obj); \
293                 ++count; \
294                 if (obj->map_and_fenceable) { \
295                         mappable_size += i915_gem_obj_ggtt_size(obj); \
296                         ++mappable_count; \
297                 } \
298         } \
299 } while (0)
300
301 struct file_stats {
302         int count;
303         size_t total, active, inactive, unbound;
304 };
305
306 static int per_file_stats(int id, void *ptr, void *data)
307 {
308         struct drm_i915_gem_object *obj = ptr;
309         struct file_stats *stats = data;
310
311         stats->count++;
312         stats->total += obj->base.size;
313
314         if (i915_gem_obj_ggtt_bound(obj)) {
315                 if (!list_empty(&obj->ring_list))
316                         stats->active += obj->base.size;
317                 else
318                         stats->inactive += obj->base.size;
319         } else {
320                 if (!list_empty(&obj->global_list))
321                         stats->unbound += obj->base.size;
322         }
323
324         return 0;
325 }
326
327 #define count_vmas(list, member) do { \
328         list_for_each_entry(vma, list, member) { \
329                 size += i915_gem_obj_ggtt_size(vma->obj); \
330                 ++count; \
331                 if (vma->obj->map_and_fenceable) { \
332                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
333                         ++mappable_count; \
334                 } \
335         } \
336 } while (0)
337
338 static int i915_gem_object_info(struct seq_file *m, void* data)
339 {
340         struct drm_info_node *node = (struct drm_info_node *) m->private;
341         struct drm_device *dev = node->minor->dev;
342         struct drm_i915_private *dev_priv = dev->dev_private;
343         u32 count, mappable_count, purgeable_count;
344         size_t size, mappable_size, purgeable_size;
345         struct drm_i915_gem_object *obj;
346         struct i915_address_space *vm = &dev_priv->gtt.base;
347         struct drm_file *file;
348         struct i915_vma *vma;
349         int ret;
350
351         ret = mutex_lock_interruptible(&dev->struct_mutex);
352         if (ret)
353                 return ret;
354
355         seq_printf(m, "%u objects, %zu bytes\n",
356                    dev_priv->mm.object_count,
357                    dev_priv->mm.object_memory);
358
359         size = count = mappable_size = mappable_count = 0;
360         count_objects(&dev_priv->mm.bound_list, global_list);
361         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
362                    count, mappable_count, size, mappable_size);
363
364         size = count = mappable_size = mappable_count = 0;
365         count_vmas(&vm->active_list, mm_list);
366         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
367                    count, mappable_count, size, mappable_size);
368
369         size = count = mappable_size = mappable_count = 0;
370         count_vmas(&vm->inactive_list, mm_list);
371         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
372                    count, mappable_count, size, mappable_size);
373
374         size = count = purgeable_size = purgeable_count = 0;
375         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
376                 size += obj->base.size, ++count;
377                 if (obj->madv == I915_MADV_DONTNEED)
378                         purgeable_size += obj->base.size, ++purgeable_count;
379         }
380         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
381
382         size = count = mappable_size = mappable_count = 0;
383         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
384                 if (obj->fault_mappable) {
385                         size += i915_gem_obj_ggtt_size(obj);
386                         ++count;
387                 }
388                 if (obj->pin_mappable) {
389                         mappable_size += i915_gem_obj_ggtt_size(obj);
390                         ++mappable_count;
391                 }
392                 if (obj->madv == I915_MADV_DONTNEED) {
393                         purgeable_size += obj->base.size;
394                         ++purgeable_count;
395                 }
396         }
397         seq_printf(m, "%u purgeable objects, %zu bytes\n",
398                    purgeable_count, purgeable_size);
399         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
400                    mappable_count, mappable_size);
401         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
402                    count, size);
403
404         seq_printf(m, "%zu [%lu] gtt total\n",
405                    dev_priv->gtt.base.total,
406                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
407
408         seq_putc(m, '\n');
409         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
410                 struct file_stats stats;
411                 struct task_struct *task;
412
413                 memset(&stats, 0, sizeof(stats));
414                 idr_for_each(&file->object_idr, per_file_stats, &stats);
415                 /*
416                  * Although we have a valid reference on file->pid, that does
417                  * not guarantee that the task_struct who called get_pid() is
418                  * still alive (e.g. get_pid(current) => fork() => exit()).
419                  * Therefore, we need to protect this ->comm access using RCU.
420                  */
421                 rcu_read_lock();
422                 task = pid_task(file->pid, PIDTYPE_PID);
423                 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu unbound)\n",
424                            task ? task->comm : "<unknown>",
425                            stats.count,
426                            stats.total,
427                            stats.active,
428                            stats.inactive,
429                            stats.unbound);
430                 rcu_read_unlock();
431         }
432
433         mutex_unlock(&dev->struct_mutex);
434
435         return 0;
436 }
437
438 static int i915_gem_gtt_info(struct seq_file *m, void *data)
439 {
440         struct drm_info_node *node = (struct drm_info_node *) m->private;
441         struct drm_device *dev = node->minor->dev;
442         uintptr_t list = (uintptr_t) node->info_ent->data;
443         struct drm_i915_private *dev_priv = dev->dev_private;
444         struct drm_i915_gem_object *obj;
445         size_t total_obj_size, total_gtt_size;
446         int count, ret;
447
448         ret = mutex_lock_interruptible(&dev->struct_mutex);
449         if (ret)
450                 return ret;
451
452         total_obj_size = total_gtt_size = count = 0;
453         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
454                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
455                         continue;
456
457                 seq_puts(m, "   ");
458                 describe_obj(m, obj);
459                 seq_putc(m, '\n');
460                 total_obj_size += obj->base.size;
461                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
462                 count++;
463         }
464
465         mutex_unlock(&dev->struct_mutex);
466
467         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
468                    count, total_obj_size, total_gtt_size);
469
470         return 0;
471 }
472
473 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
474 {
475         struct drm_info_node *node = (struct drm_info_node *) m->private;
476         struct drm_device *dev = node->minor->dev;
477         unsigned long flags;
478         struct intel_crtc *crtc;
479
480         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
481                 const char pipe = pipe_name(crtc->pipe);
482                 const char plane = plane_name(crtc->plane);
483                 struct intel_unpin_work *work;
484
485                 spin_lock_irqsave(&dev->event_lock, flags);
486                 work = crtc->unpin_work;
487                 if (work == NULL) {
488                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
489                                    pipe, plane);
490                 } else {
491                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
492                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
493                                            pipe, plane);
494                         } else {
495                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
496                                            pipe, plane);
497                         }
498                         if (work->enable_stall_check)
499                                 seq_puts(m, "Stall check enabled, ");
500                         else
501                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
502                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
503
504                         if (work->old_fb_obj) {
505                                 struct drm_i915_gem_object *obj = work->old_fb_obj;
506                                 if (obj)
507                                         seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
508                                                    i915_gem_obj_ggtt_offset(obj));
509                         }
510                         if (work->pending_flip_obj) {
511                                 struct drm_i915_gem_object *obj = work->pending_flip_obj;
512                                 if (obj)
513                                         seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
514                                                    i915_gem_obj_ggtt_offset(obj));
515                         }
516                 }
517                 spin_unlock_irqrestore(&dev->event_lock, flags);
518         }
519
520         return 0;
521 }
522
523 static int i915_gem_request_info(struct seq_file *m, void *data)
524 {
525         struct drm_info_node *node = (struct drm_info_node *) m->private;
526         struct drm_device *dev = node->minor->dev;
527         drm_i915_private_t *dev_priv = dev->dev_private;
528         struct intel_ring_buffer *ring;
529         struct drm_i915_gem_request *gem_request;
530         int ret, count, i;
531
532         ret = mutex_lock_interruptible(&dev->struct_mutex);
533         if (ret)
534                 return ret;
535
536         count = 0;
537         for_each_ring(ring, dev_priv, i) {
538                 if (list_empty(&ring->request_list))
539                         continue;
540
541                 seq_printf(m, "%s requests:\n", ring->name);
542                 list_for_each_entry(gem_request,
543                                     &ring->request_list,
544                                     list) {
545                         seq_printf(m, "    %d @ %d\n",
546                                    gem_request->seqno,
547                                    (int) (jiffies - gem_request->emitted_jiffies));
548                 }
549                 count++;
550         }
551         mutex_unlock(&dev->struct_mutex);
552
553         if (count == 0)
554                 seq_puts(m, "No requests\n");
555
556         return 0;
557 }
558
559 static void i915_ring_seqno_info(struct seq_file *m,
560                                  struct intel_ring_buffer *ring)
561 {
562         if (ring->get_seqno) {
563                 seq_printf(m, "Current sequence (%s): %u\n",
564                            ring->name, ring->get_seqno(ring, false));
565         }
566 }
567
568 static int i915_gem_seqno_info(struct seq_file *m, void *data)
569 {
570         struct drm_info_node *node = (struct drm_info_node *) m->private;
571         struct drm_device *dev = node->minor->dev;
572         drm_i915_private_t *dev_priv = dev->dev_private;
573         struct intel_ring_buffer *ring;
574         int ret, i;
575
576         ret = mutex_lock_interruptible(&dev->struct_mutex);
577         if (ret)
578                 return ret;
579         intel_runtime_pm_get(dev_priv);
580
581         for_each_ring(ring, dev_priv, i)
582                 i915_ring_seqno_info(m, ring);
583
584         intel_runtime_pm_put(dev_priv);
585         mutex_unlock(&dev->struct_mutex);
586
587         return 0;
588 }
589
590
591 static int i915_interrupt_info(struct seq_file *m, void *data)
592 {
593         struct drm_info_node *node = (struct drm_info_node *) m->private;
594         struct drm_device *dev = node->minor->dev;
595         drm_i915_private_t *dev_priv = dev->dev_private;
596         struct intel_ring_buffer *ring;
597         int ret, i, pipe;
598
599         ret = mutex_lock_interruptible(&dev->struct_mutex);
600         if (ret)
601                 return ret;
602         intel_runtime_pm_get(dev_priv);
603
604         if (INTEL_INFO(dev)->gen >= 8) {
605                 int i;
606                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
607                            I915_READ(GEN8_MASTER_IRQ));
608
609                 for (i = 0; i < 4; i++) {
610                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
611                                    i, I915_READ(GEN8_GT_IMR(i)));
612                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
613                                    i, I915_READ(GEN8_GT_IIR(i)));
614                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
615                                    i, I915_READ(GEN8_GT_IER(i)));
616                 }
617
618                 for_each_pipe(i) {
619                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
620                                    pipe_name(i),
621                                    I915_READ(GEN8_DE_PIPE_IMR(i)));
622                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
623                                    pipe_name(i),
624                                    I915_READ(GEN8_DE_PIPE_IIR(i)));
625                         seq_printf(m, "Pipe %c IER:\t%08x\n",
626                                    pipe_name(i),
627                                    I915_READ(GEN8_DE_PIPE_IER(i)));
628                 }
629
630                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
631                            I915_READ(GEN8_DE_PORT_IMR));
632                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
633                            I915_READ(GEN8_DE_PORT_IIR));
634                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
635                            I915_READ(GEN8_DE_PORT_IER));
636
637                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
638                            I915_READ(GEN8_DE_MISC_IMR));
639                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
640                            I915_READ(GEN8_DE_MISC_IIR));
641                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
642                            I915_READ(GEN8_DE_MISC_IER));
643
644                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
645                            I915_READ(GEN8_PCU_IMR));
646                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
647                            I915_READ(GEN8_PCU_IIR));
648                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
649                            I915_READ(GEN8_PCU_IER));
650         } else if (IS_VALLEYVIEW(dev)) {
651                 seq_printf(m, "Display IER:\t%08x\n",
652                            I915_READ(VLV_IER));
653                 seq_printf(m, "Display IIR:\t%08x\n",
654                            I915_READ(VLV_IIR));
655                 seq_printf(m, "Display IIR_RW:\t%08x\n",
656                            I915_READ(VLV_IIR_RW));
657                 seq_printf(m, "Display IMR:\t%08x\n",
658                            I915_READ(VLV_IMR));
659                 for_each_pipe(pipe)
660                         seq_printf(m, "Pipe %c stat:\t%08x\n",
661                                    pipe_name(pipe),
662                                    I915_READ(PIPESTAT(pipe)));
663
664                 seq_printf(m, "Master IER:\t%08x\n",
665                            I915_READ(VLV_MASTER_IER));
666
667                 seq_printf(m, "Render IER:\t%08x\n",
668                            I915_READ(GTIER));
669                 seq_printf(m, "Render IIR:\t%08x\n",
670                            I915_READ(GTIIR));
671                 seq_printf(m, "Render IMR:\t%08x\n",
672                            I915_READ(GTIMR));
673
674                 seq_printf(m, "PM IER:\t\t%08x\n",
675                            I915_READ(GEN6_PMIER));
676                 seq_printf(m, "PM IIR:\t\t%08x\n",
677                            I915_READ(GEN6_PMIIR));
678                 seq_printf(m, "PM IMR:\t\t%08x\n",
679                            I915_READ(GEN6_PMIMR));
680
681                 seq_printf(m, "Port hotplug:\t%08x\n",
682                            I915_READ(PORT_HOTPLUG_EN));
683                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
684                            I915_READ(VLV_DPFLIPSTAT));
685                 seq_printf(m, "DPINVGTT:\t%08x\n",
686                            I915_READ(DPINVGTT));
687
688         } else if (!HAS_PCH_SPLIT(dev)) {
689                 seq_printf(m, "Interrupt enable:    %08x\n",
690                            I915_READ(IER));
691                 seq_printf(m, "Interrupt identity:  %08x\n",
692                            I915_READ(IIR));
693                 seq_printf(m, "Interrupt mask:      %08x\n",
694                            I915_READ(IMR));
695                 for_each_pipe(pipe)
696                         seq_printf(m, "Pipe %c stat:         %08x\n",
697                                    pipe_name(pipe),
698                                    I915_READ(PIPESTAT(pipe)));
699         } else {
700                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
701                            I915_READ(DEIER));
702                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
703                            I915_READ(DEIIR));
704                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
705                            I915_READ(DEIMR));
706                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
707                            I915_READ(SDEIER));
708                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
709                            I915_READ(SDEIIR));
710                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
711                            I915_READ(SDEIMR));
712                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
713                            I915_READ(GTIER));
714                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
715                            I915_READ(GTIIR));
716                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
717                            I915_READ(GTIMR));
718         }
719         for_each_ring(ring, dev_priv, i) {
720                 if (INTEL_INFO(dev)->gen >= 6) {
721                         seq_printf(m,
722                                    "Graphics Interrupt mask (%s):       %08x\n",
723                                    ring->name, I915_READ_IMR(ring));
724                 }
725                 i915_ring_seqno_info(m, ring);
726         }
727         intel_runtime_pm_put(dev_priv);
728         mutex_unlock(&dev->struct_mutex);
729
730         return 0;
731 }
732
733 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
734 {
735         struct drm_info_node *node = (struct drm_info_node *) m->private;
736         struct drm_device *dev = node->minor->dev;
737         drm_i915_private_t *dev_priv = dev->dev_private;
738         int i, ret;
739
740         ret = mutex_lock_interruptible(&dev->struct_mutex);
741         if (ret)
742                 return ret;
743
744         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
745         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
746         for (i = 0; i < dev_priv->num_fence_regs; i++) {
747                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
748
749                 seq_printf(m, "Fence %d, pin count = %d, object = ",
750                            i, dev_priv->fence_regs[i].pin_count);
751                 if (obj == NULL)
752                         seq_puts(m, "unused");
753                 else
754                         describe_obj(m, obj);
755                 seq_putc(m, '\n');
756         }
757
758         mutex_unlock(&dev->struct_mutex);
759         return 0;
760 }
761
762 static int i915_hws_info(struct seq_file *m, void *data)
763 {
764         struct drm_info_node *node = (struct drm_info_node *) m->private;
765         struct drm_device *dev = node->minor->dev;
766         drm_i915_private_t *dev_priv = dev->dev_private;
767         struct intel_ring_buffer *ring;
768         const u32 *hws;
769         int i;
770
771         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
772         hws = ring->status_page.page_addr;
773         if (hws == NULL)
774                 return 0;
775
776         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
777                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
778                            i * 4,
779                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
780         }
781         return 0;
782 }
783
784 static ssize_t
785 i915_error_state_write(struct file *filp,
786                        const char __user *ubuf,
787                        size_t cnt,
788                        loff_t *ppos)
789 {
790         struct i915_error_state_file_priv *error_priv = filp->private_data;
791         struct drm_device *dev = error_priv->dev;
792         int ret;
793
794         DRM_DEBUG_DRIVER("Resetting error state\n");
795
796         ret = mutex_lock_interruptible(&dev->struct_mutex);
797         if (ret)
798                 return ret;
799
800         i915_destroy_error_state(dev);
801         mutex_unlock(&dev->struct_mutex);
802
803         return cnt;
804 }
805
806 static int i915_error_state_open(struct inode *inode, struct file *file)
807 {
808         struct drm_device *dev = inode->i_private;
809         struct i915_error_state_file_priv *error_priv;
810
811         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
812         if (!error_priv)
813                 return -ENOMEM;
814
815         error_priv->dev = dev;
816
817         i915_error_state_get(dev, error_priv);
818
819         file->private_data = error_priv;
820
821         return 0;
822 }
823
824 static int i915_error_state_release(struct inode *inode, struct file *file)
825 {
826         struct i915_error_state_file_priv *error_priv = file->private_data;
827
828         i915_error_state_put(error_priv);
829         kfree(error_priv);
830
831         return 0;
832 }
833
834 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
835                                      size_t count, loff_t *pos)
836 {
837         struct i915_error_state_file_priv *error_priv = file->private_data;
838         struct drm_i915_error_state_buf error_str;
839         loff_t tmp_pos = 0;
840         ssize_t ret_count = 0;
841         int ret;
842
843         ret = i915_error_state_buf_init(&error_str, count, *pos);
844         if (ret)
845                 return ret;
846
847         ret = i915_error_state_to_str(&error_str, error_priv);
848         if (ret)
849                 goto out;
850
851         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
852                                             error_str.buf,
853                                             error_str.bytes);
854
855         if (ret_count < 0)
856                 ret = ret_count;
857         else
858                 *pos = error_str.start + ret_count;
859 out:
860         i915_error_state_buf_release(&error_str);
861         return ret ?: ret_count;
862 }
863
864 static const struct file_operations i915_error_state_fops = {
865         .owner = THIS_MODULE,
866         .open = i915_error_state_open,
867         .read = i915_error_state_read,
868         .write = i915_error_state_write,
869         .llseek = default_llseek,
870         .release = i915_error_state_release,
871 };
872
873 static int
874 i915_next_seqno_get(void *data, u64 *val)
875 {
876         struct drm_device *dev = data;
877         drm_i915_private_t *dev_priv = dev->dev_private;
878         int ret;
879
880         ret = mutex_lock_interruptible(&dev->struct_mutex);
881         if (ret)
882                 return ret;
883
884         *val = dev_priv->next_seqno;
885         mutex_unlock(&dev->struct_mutex);
886
887         return 0;
888 }
889
890 static int
891 i915_next_seqno_set(void *data, u64 val)
892 {
893         struct drm_device *dev = data;
894         int ret;
895
896         ret = mutex_lock_interruptible(&dev->struct_mutex);
897         if (ret)
898                 return ret;
899
900         ret = i915_gem_set_seqno(dev, val);
901         mutex_unlock(&dev->struct_mutex);
902
903         return ret;
904 }
905
906 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
907                         i915_next_seqno_get, i915_next_seqno_set,
908                         "0x%llx\n");
909
910 static int i915_rstdby_delays(struct seq_file *m, void *unused)
911 {
912         struct drm_info_node *node = (struct drm_info_node *) m->private;
913         struct drm_device *dev = node->minor->dev;
914         drm_i915_private_t *dev_priv = dev->dev_private;
915         u16 crstanddelay;
916         int ret;
917
918         ret = mutex_lock_interruptible(&dev->struct_mutex);
919         if (ret)
920                 return ret;
921         intel_runtime_pm_get(dev_priv);
922
923         crstanddelay = I915_READ16(CRSTANDVID);
924
925         intel_runtime_pm_put(dev_priv);
926         mutex_unlock(&dev->struct_mutex);
927
928         seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
929
930         return 0;
931 }
932
933 static int i915_cur_delayinfo(struct seq_file *m, void *unused)
934 {
935         struct drm_info_node *node = (struct drm_info_node *) m->private;
936         struct drm_device *dev = node->minor->dev;
937         drm_i915_private_t *dev_priv = dev->dev_private;
938         int ret = 0;
939
940         intel_runtime_pm_get(dev_priv);
941
942         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
943
944         if (IS_GEN5(dev)) {
945                 u16 rgvswctl = I915_READ16(MEMSWCTL);
946                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
947
948                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
949                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
950                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
951                            MEMSTAT_VID_SHIFT);
952                 seq_printf(m, "Current P-state: %d\n",
953                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
954         } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
955                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
956                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
957                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
958                 u32 rpstat, cagf, reqf;
959                 u32 rpupei, rpcurup, rpprevup;
960                 u32 rpdownei, rpcurdown, rpprevdown;
961                 int max_freq;
962
963                 /* RPSTAT1 is in the GT power well */
964                 ret = mutex_lock_interruptible(&dev->struct_mutex);
965                 if (ret)
966                         goto out;
967
968                 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
969
970                 reqf = I915_READ(GEN6_RPNSWREQ);
971                 reqf &= ~GEN6_TURBO_DISABLE;
972                 if (IS_HASWELL(dev))
973                         reqf >>= 24;
974                 else
975                         reqf >>= 25;
976                 reqf *= GT_FREQUENCY_MULTIPLIER;
977
978                 rpstat = I915_READ(GEN6_RPSTAT1);
979                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
980                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
981                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
982                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
983                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
984                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
985                 if (IS_HASWELL(dev))
986                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
987                 else
988                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
989                 cagf *= GT_FREQUENCY_MULTIPLIER;
990
991                 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
992                 mutex_unlock(&dev->struct_mutex);
993
994                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
995                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
996                 seq_printf(m, "Render p-state ratio: %d\n",
997                            (gt_perf_status & 0xff00) >> 8);
998                 seq_printf(m, "Render p-state VID: %d\n",
999                            gt_perf_status & 0xff);
1000                 seq_printf(m, "Render p-state limit: %d\n",
1001                            rp_state_limits & 0xff);
1002                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1003                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1004                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1005                            GEN6_CURICONT_MASK);
1006                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1007                            GEN6_CURBSYTAVG_MASK);
1008                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1009                            GEN6_CURBSYTAVG_MASK);
1010                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1011                            GEN6_CURIAVG_MASK);
1012                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1013                            GEN6_CURBSYTAVG_MASK);
1014                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1015                            GEN6_CURBSYTAVG_MASK);
1016
1017                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1018                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1019                            max_freq * GT_FREQUENCY_MULTIPLIER);
1020
1021                 max_freq = (rp_state_cap & 0xff00) >> 8;
1022                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1023                            max_freq * GT_FREQUENCY_MULTIPLIER);
1024
1025                 max_freq = rp_state_cap & 0xff;
1026                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1027                            max_freq * GT_FREQUENCY_MULTIPLIER);
1028
1029                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1030                            dev_priv->rps.hw_max * GT_FREQUENCY_MULTIPLIER);
1031         } else if (IS_VALLEYVIEW(dev)) {
1032                 u32 freq_sts, val;
1033
1034                 mutex_lock(&dev_priv->rps.hw_lock);
1035                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1036                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1037                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1038
1039                 val = valleyview_rps_max_freq(dev_priv);
1040                 seq_printf(m, "max GPU freq: %d MHz\n",
1041                            vlv_gpu_freq(dev_priv, val));
1042
1043                 val = valleyview_rps_min_freq(dev_priv);
1044                 seq_printf(m, "min GPU freq: %d MHz\n",
1045                            vlv_gpu_freq(dev_priv, val));
1046
1047                 seq_printf(m, "current GPU freq: %d MHz\n",
1048                            vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1049                 mutex_unlock(&dev_priv->rps.hw_lock);
1050         } else {
1051                 seq_puts(m, "no P-state info available\n");
1052         }
1053
1054 out:
1055         intel_runtime_pm_put(dev_priv);
1056         return ret;
1057 }
1058
1059 static int i915_delayfreq_table(struct seq_file *m, void *unused)
1060 {
1061         struct drm_info_node *node = (struct drm_info_node *) m->private;
1062         struct drm_device *dev = node->minor->dev;
1063         drm_i915_private_t *dev_priv = dev->dev_private;
1064         u32 delayfreq;
1065         int ret, i;
1066
1067         ret = mutex_lock_interruptible(&dev->struct_mutex);
1068         if (ret)
1069                 return ret;
1070         intel_runtime_pm_get(dev_priv);
1071
1072         for (i = 0; i < 16; i++) {
1073                 delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
1074                 seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
1075                            (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
1076         }
1077
1078         intel_runtime_pm_put(dev_priv);
1079
1080         mutex_unlock(&dev->struct_mutex);
1081
1082         return 0;
1083 }
1084
1085 static inline int MAP_TO_MV(int map)
1086 {
1087         return 1250 - (map * 25);
1088 }
1089
1090 static int i915_inttoext_table(struct seq_file *m, void *unused)
1091 {
1092         struct drm_info_node *node = (struct drm_info_node *) m->private;
1093         struct drm_device *dev = node->minor->dev;
1094         drm_i915_private_t *dev_priv = dev->dev_private;
1095         u32 inttoext;
1096         int ret, i;
1097
1098         ret = mutex_lock_interruptible(&dev->struct_mutex);
1099         if (ret)
1100                 return ret;
1101         intel_runtime_pm_get(dev_priv);
1102
1103         for (i = 1; i <= 32; i++) {
1104                 inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
1105                 seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
1106         }
1107
1108         intel_runtime_pm_put(dev_priv);
1109         mutex_unlock(&dev->struct_mutex);
1110
1111         return 0;
1112 }
1113
1114 static int ironlake_drpc_info(struct seq_file *m)
1115 {
1116         struct drm_info_node *node = (struct drm_info_node *) m->private;
1117         struct drm_device *dev = node->minor->dev;
1118         drm_i915_private_t *dev_priv = dev->dev_private;
1119         u32 rgvmodectl, rstdbyctl;
1120         u16 crstandvid;
1121         int ret;
1122
1123         ret = mutex_lock_interruptible(&dev->struct_mutex);
1124         if (ret)
1125                 return ret;
1126         intel_runtime_pm_get(dev_priv);
1127
1128         rgvmodectl = I915_READ(MEMMODECTL);
1129         rstdbyctl = I915_READ(RSTDBYCTL);
1130         crstandvid = I915_READ16(CRSTANDVID);
1131
1132         intel_runtime_pm_put(dev_priv);
1133         mutex_unlock(&dev->struct_mutex);
1134
1135         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1136                    "yes" : "no");
1137         seq_printf(m, "Boost freq: %d\n",
1138                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1139                    MEMMODE_BOOST_FREQ_SHIFT);
1140         seq_printf(m, "HW control enabled: %s\n",
1141                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1142         seq_printf(m, "SW control enabled: %s\n",
1143                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1144         seq_printf(m, "Gated voltage change: %s\n",
1145                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1146         seq_printf(m, "Starting frequency: P%d\n",
1147                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1148         seq_printf(m, "Max P-state: P%d\n",
1149                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1150         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1151         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1152         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1153         seq_printf(m, "Render standby enabled: %s\n",
1154                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1155         seq_puts(m, "Current RS state: ");
1156         switch (rstdbyctl & RSX_STATUS_MASK) {
1157         case RSX_STATUS_ON:
1158                 seq_puts(m, "on\n");
1159                 break;
1160         case RSX_STATUS_RC1:
1161                 seq_puts(m, "RC1\n");
1162                 break;
1163         case RSX_STATUS_RC1E:
1164                 seq_puts(m, "RC1E\n");
1165                 break;
1166         case RSX_STATUS_RS1:
1167                 seq_puts(m, "RS1\n");
1168                 break;
1169         case RSX_STATUS_RS2:
1170                 seq_puts(m, "RS2 (RC6)\n");
1171                 break;
1172         case RSX_STATUS_RS3:
1173                 seq_puts(m, "RC3 (RC6+)\n");
1174                 break;
1175         default:
1176                 seq_puts(m, "unknown\n");
1177                 break;
1178         }
1179
1180         return 0;
1181 }
1182
1183 static int vlv_drpc_info(struct seq_file *m)
1184 {
1185
1186         struct drm_info_node *node = (struct drm_info_node *) m->private;
1187         struct drm_device *dev = node->minor->dev;
1188         struct drm_i915_private *dev_priv = dev->dev_private;
1189         u32 rpmodectl1, rcctl1;
1190         unsigned fw_rendercount = 0, fw_mediacount = 0;
1191
1192         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1193         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1194
1195         seq_printf(m, "Video Turbo Mode: %s\n",
1196                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1197         seq_printf(m, "Turbo enabled: %s\n",
1198                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1199         seq_printf(m, "HW control enabled: %s\n",
1200                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1201         seq_printf(m, "SW control enabled: %s\n",
1202                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1203                           GEN6_RP_MEDIA_SW_MODE));
1204         seq_printf(m, "RC6 Enabled: %s\n",
1205                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1206                                         GEN6_RC_CTL_EI_MODE(1))));
1207         seq_printf(m, "Render Power Well: %s\n",
1208                         (I915_READ(VLV_GTLC_PW_STATUS) &
1209                                 VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1210         seq_printf(m, "Media Power Well: %s\n",
1211                         (I915_READ(VLV_GTLC_PW_STATUS) &
1212                                 VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1213
1214         spin_lock_irq(&dev_priv->uncore.lock);
1215         fw_rendercount = dev_priv->uncore.fw_rendercount;
1216         fw_mediacount = dev_priv->uncore.fw_mediacount;
1217         spin_unlock_irq(&dev_priv->uncore.lock);
1218
1219         seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1220         seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1221
1222
1223         return 0;
1224 }
1225
1226
1227 static int gen6_drpc_info(struct seq_file *m)
1228 {
1229
1230         struct drm_info_node *node = (struct drm_info_node *) m->private;
1231         struct drm_device *dev = node->minor->dev;
1232         struct drm_i915_private *dev_priv = dev->dev_private;
1233         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1234         unsigned forcewake_count;
1235         int count = 0, ret;
1236
1237         ret = mutex_lock_interruptible(&dev->struct_mutex);
1238         if (ret)
1239                 return ret;
1240         intel_runtime_pm_get(dev_priv);
1241
1242         spin_lock_irq(&dev_priv->uncore.lock);
1243         forcewake_count = dev_priv->uncore.forcewake_count;
1244         spin_unlock_irq(&dev_priv->uncore.lock);
1245
1246         if (forcewake_count) {
1247                 seq_puts(m, "RC information inaccurate because somebody "
1248                             "holds a forcewake reference \n");
1249         } else {
1250                 /* NB: we cannot use forcewake, else we read the wrong values */
1251                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1252                         udelay(10);
1253                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1254         }
1255
1256         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1257         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1258
1259         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1260         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1261         mutex_unlock(&dev->struct_mutex);
1262         mutex_lock(&dev_priv->rps.hw_lock);
1263         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1264         mutex_unlock(&dev_priv->rps.hw_lock);
1265
1266         intel_runtime_pm_put(dev_priv);
1267
1268         seq_printf(m, "Video Turbo Mode: %s\n",
1269                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1270         seq_printf(m, "HW control enabled: %s\n",
1271                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1272         seq_printf(m, "SW control enabled: %s\n",
1273                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1274                           GEN6_RP_MEDIA_SW_MODE));
1275         seq_printf(m, "RC1e Enabled: %s\n",
1276                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1277         seq_printf(m, "RC6 Enabled: %s\n",
1278                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1279         seq_printf(m, "Deep RC6 Enabled: %s\n",
1280                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1281         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1282                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1283         seq_puts(m, "Current RC state: ");
1284         switch (gt_core_status & GEN6_RCn_MASK) {
1285         case GEN6_RC0:
1286                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1287                         seq_puts(m, "Core Power Down\n");
1288                 else
1289                         seq_puts(m, "on\n");
1290                 break;
1291         case GEN6_RC3:
1292                 seq_puts(m, "RC3\n");
1293                 break;
1294         case GEN6_RC6:
1295                 seq_puts(m, "RC6\n");
1296                 break;
1297         case GEN6_RC7:
1298                 seq_puts(m, "RC7\n");
1299                 break;
1300         default:
1301                 seq_puts(m, "Unknown\n");
1302                 break;
1303         }
1304
1305         seq_printf(m, "Core Power Down: %s\n",
1306                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1307
1308         /* Not exactly sure what this is */
1309         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1310                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1311         seq_printf(m, "RC6 residency since boot: %u\n",
1312                    I915_READ(GEN6_GT_GFX_RC6));
1313         seq_printf(m, "RC6+ residency since boot: %u\n",
1314                    I915_READ(GEN6_GT_GFX_RC6p));
1315         seq_printf(m, "RC6++ residency since boot: %u\n",
1316                    I915_READ(GEN6_GT_GFX_RC6pp));
1317
1318         seq_printf(m, "RC6   voltage: %dmV\n",
1319                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1320         seq_printf(m, "RC6+  voltage: %dmV\n",
1321                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1322         seq_printf(m, "RC6++ voltage: %dmV\n",
1323                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1324         return 0;
1325 }
1326
1327 static int i915_drpc_info(struct seq_file *m, void *unused)
1328 {
1329         struct drm_info_node *node = (struct drm_info_node *) m->private;
1330         struct drm_device *dev = node->minor->dev;
1331
1332         if (IS_VALLEYVIEW(dev))
1333                 return vlv_drpc_info(m);
1334         else if (IS_GEN6(dev) || IS_GEN7(dev))
1335                 return gen6_drpc_info(m);
1336         else
1337                 return ironlake_drpc_info(m);
1338 }
1339
1340 static int i915_fbc_status(struct seq_file *m, void *unused)
1341 {
1342         struct drm_info_node *node = (struct drm_info_node *) m->private;
1343         struct drm_device *dev = node->minor->dev;
1344         drm_i915_private_t *dev_priv = dev->dev_private;
1345
1346         if (!HAS_FBC(dev)) {
1347                 seq_puts(m, "FBC unsupported on this chipset\n");
1348                 return 0;
1349         }
1350
1351         intel_runtime_pm_get(dev_priv);
1352
1353         if (intel_fbc_enabled(dev)) {
1354                 seq_puts(m, "FBC enabled\n");
1355         } else {
1356                 seq_puts(m, "FBC disabled: ");
1357                 switch (dev_priv->fbc.no_fbc_reason) {
1358                 case FBC_OK:
1359                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1360                         break;
1361                 case FBC_UNSUPPORTED:
1362                         seq_puts(m, "unsupported by this chipset");
1363                         break;
1364                 case FBC_NO_OUTPUT:
1365                         seq_puts(m, "no outputs");
1366                         break;
1367                 case FBC_STOLEN_TOO_SMALL:
1368                         seq_puts(m, "not enough stolen memory");
1369                         break;
1370                 case FBC_UNSUPPORTED_MODE:
1371                         seq_puts(m, "mode not supported");
1372                         break;
1373                 case FBC_MODE_TOO_LARGE:
1374                         seq_puts(m, "mode too large");
1375                         break;
1376                 case FBC_BAD_PLANE:
1377                         seq_puts(m, "FBC unsupported on plane");
1378                         break;
1379                 case FBC_NOT_TILED:
1380                         seq_puts(m, "scanout buffer not tiled");
1381                         break;
1382                 case FBC_MULTIPLE_PIPES:
1383                         seq_puts(m, "multiple pipes are enabled");
1384                         break;
1385                 case FBC_MODULE_PARAM:
1386                         seq_puts(m, "disabled per module param (default off)");
1387                         break;
1388                 case FBC_CHIP_DEFAULT:
1389                         seq_puts(m, "disabled per chip default");
1390                         break;
1391                 default:
1392                         seq_puts(m, "unknown reason");
1393                 }
1394                 seq_putc(m, '\n');
1395         }
1396
1397         intel_runtime_pm_put(dev_priv);
1398
1399         return 0;
1400 }
1401
1402 static int i915_ips_status(struct seq_file *m, void *unused)
1403 {
1404         struct drm_info_node *node = (struct drm_info_node *) m->private;
1405         struct drm_device *dev = node->minor->dev;
1406         struct drm_i915_private *dev_priv = dev->dev_private;
1407
1408         if (!HAS_IPS(dev)) {
1409                 seq_puts(m, "not supported\n");
1410                 return 0;
1411         }
1412
1413         intel_runtime_pm_get(dev_priv);
1414
1415         if (IS_BROADWELL(dev) || I915_READ(IPS_CTL) & IPS_ENABLE)
1416                 seq_puts(m, "enabled\n");
1417         else
1418                 seq_puts(m, "disabled\n");
1419
1420         intel_runtime_pm_put(dev_priv);
1421
1422         return 0;
1423 }
1424
1425 static int i915_sr_status(struct seq_file *m, void *unused)
1426 {
1427         struct drm_info_node *node = (struct drm_info_node *) m->private;
1428         struct drm_device *dev = node->minor->dev;
1429         drm_i915_private_t *dev_priv = dev->dev_private;
1430         bool sr_enabled = false;
1431
1432         intel_runtime_pm_get(dev_priv);
1433
1434         if (HAS_PCH_SPLIT(dev))
1435                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1436         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1437                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1438         else if (IS_I915GM(dev))
1439                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1440         else if (IS_PINEVIEW(dev))
1441                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1442
1443         intel_runtime_pm_put(dev_priv);
1444
1445         seq_printf(m, "self-refresh: %s\n",
1446                    sr_enabled ? "enabled" : "disabled");
1447
1448         return 0;
1449 }
1450
1451 static int i915_emon_status(struct seq_file *m, void *unused)
1452 {
1453         struct drm_info_node *node = (struct drm_info_node *) m->private;
1454         struct drm_device *dev = node->minor->dev;
1455         drm_i915_private_t *dev_priv = dev->dev_private;
1456         unsigned long temp, chipset, gfx;
1457         int ret;
1458
1459         if (!IS_GEN5(dev))
1460                 return -ENODEV;
1461
1462         ret = mutex_lock_interruptible(&dev->struct_mutex);
1463         if (ret)
1464                 return ret;
1465
1466         temp = i915_mch_val(dev_priv);
1467         chipset = i915_chipset_val(dev_priv);
1468         gfx = i915_gfx_val(dev_priv);
1469         mutex_unlock(&dev->struct_mutex);
1470
1471         seq_printf(m, "GMCH temp: %ld\n", temp);
1472         seq_printf(m, "Chipset power: %ld\n", chipset);
1473         seq_printf(m, "GFX power: %ld\n", gfx);
1474         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1475
1476         return 0;
1477 }
1478
1479 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1480 {
1481         struct drm_info_node *node = (struct drm_info_node *) m->private;
1482         struct drm_device *dev = node->minor->dev;
1483         drm_i915_private_t *dev_priv = dev->dev_private;
1484         int ret = 0;
1485         int gpu_freq, ia_freq;
1486
1487         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1488                 seq_puts(m, "unsupported on this chipset\n");
1489                 return 0;
1490         }
1491
1492         intel_runtime_pm_get(dev_priv);
1493
1494         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1495
1496         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1497         if (ret)
1498                 goto out;
1499
1500         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1501
1502         for (gpu_freq = dev_priv->rps.min_delay;
1503              gpu_freq <= dev_priv->rps.max_delay;
1504              gpu_freq++) {
1505                 ia_freq = gpu_freq;
1506                 sandybridge_pcode_read(dev_priv,
1507                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1508                                        &ia_freq);
1509                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1510                            gpu_freq * GT_FREQUENCY_MULTIPLIER,
1511                            ((ia_freq >> 0) & 0xff) * 100,
1512                            ((ia_freq >> 8) & 0xff) * 100);
1513         }
1514
1515         mutex_unlock(&dev_priv->rps.hw_lock);
1516
1517 out:
1518         intel_runtime_pm_put(dev_priv);
1519         return ret;
1520 }
1521
1522 static int i915_gfxec(struct seq_file *m, void *unused)
1523 {
1524         struct drm_info_node *node = (struct drm_info_node *) m->private;
1525         struct drm_device *dev = node->minor->dev;
1526         drm_i915_private_t *dev_priv = dev->dev_private;
1527         int ret;
1528
1529         ret = mutex_lock_interruptible(&dev->struct_mutex);
1530         if (ret)
1531                 return ret;
1532         intel_runtime_pm_get(dev_priv);
1533
1534         seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1535         intel_runtime_pm_put(dev_priv);
1536
1537         mutex_unlock(&dev->struct_mutex);
1538
1539         return 0;
1540 }
1541
1542 static int i915_opregion(struct seq_file *m, void *unused)
1543 {
1544         struct drm_info_node *node = (struct drm_info_node *) m->private;
1545         struct drm_device *dev = node->minor->dev;
1546         drm_i915_private_t *dev_priv = dev->dev_private;
1547         struct intel_opregion *opregion = &dev_priv->opregion;
1548         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1549         int ret;
1550
1551         if (data == NULL)
1552                 return -ENOMEM;
1553
1554         ret = mutex_lock_interruptible(&dev->struct_mutex);
1555         if (ret)
1556                 goto out;
1557
1558         if (opregion->header) {
1559                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1560                 seq_write(m, data, OPREGION_SIZE);
1561         }
1562
1563         mutex_unlock(&dev->struct_mutex);
1564
1565 out:
1566         kfree(data);
1567         return 0;
1568 }
1569
1570 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1571 {
1572         struct drm_info_node *node = (struct drm_info_node *) m->private;
1573         struct drm_device *dev = node->minor->dev;
1574         struct intel_fbdev *ifbdev = NULL;
1575         struct intel_framebuffer *fb;
1576
1577 #ifdef CONFIG_DRM_I915_FBDEV
1578         struct drm_i915_private *dev_priv = dev->dev_private;
1579         int ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1580         if (ret)
1581                 return ret;
1582
1583         ifbdev = dev_priv->fbdev;
1584         fb = to_intel_framebuffer(ifbdev->helper.fb);
1585
1586         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1587                    fb->base.width,
1588                    fb->base.height,
1589                    fb->base.depth,
1590                    fb->base.bits_per_pixel,
1591                    atomic_read(&fb->base.refcount.refcount));
1592         describe_obj(m, fb->obj);
1593         seq_putc(m, '\n');
1594         mutex_unlock(&dev->mode_config.mutex);
1595 #endif
1596
1597         mutex_lock(&dev->mode_config.fb_lock);
1598         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1599                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1600                         continue;
1601
1602                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1603                            fb->base.width,
1604                            fb->base.height,
1605                            fb->base.depth,
1606                            fb->base.bits_per_pixel,
1607                            atomic_read(&fb->base.refcount.refcount));
1608                 describe_obj(m, fb->obj);
1609                 seq_putc(m, '\n');
1610         }
1611         mutex_unlock(&dev->mode_config.fb_lock);
1612
1613         return 0;
1614 }
1615
1616 static int i915_context_status(struct seq_file *m, void *unused)
1617 {
1618         struct drm_info_node *node = (struct drm_info_node *) m->private;
1619         struct drm_device *dev = node->minor->dev;
1620         drm_i915_private_t *dev_priv = dev->dev_private;
1621         struct intel_ring_buffer *ring;
1622         struct i915_hw_context *ctx;
1623         int ret, i;
1624
1625         ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1626         if (ret)
1627                 return ret;
1628
1629         if (dev_priv->ips.pwrctx) {
1630                 seq_puts(m, "power context ");
1631                 describe_obj(m, dev_priv->ips.pwrctx);
1632                 seq_putc(m, '\n');
1633         }
1634
1635         if (dev_priv->ips.renderctx) {
1636                 seq_puts(m, "render context ");
1637                 describe_obj(m, dev_priv->ips.renderctx);
1638                 seq_putc(m, '\n');
1639         }
1640
1641         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1642                 seq_puts(m, "HW context ");
1643                 describe_ctx(m, ctx);
1644                 for_each_ring(ring, dev_priv, i)
1645                         if (ring->default_context == ctx)
1646                                 seq_printf(m, "(default context %s) ", ring->name);
1647
1648                 describe_obj(m, ctx->obj);
1649                 seq_putc(m, '\n');
1650         }
1651
1652         mutex_unlock(&dev->mode_config.mutex);
1653
1654         return 0;
1655 }
1656
1657 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1658 {
1659         struct drm_info_node *node = (struct drm_info_node *) m->private;
1660         struct drm_device *dev = node->minor->dev;
1661         struct drm_i915_private *dev_priv = dev->dev_private;
1662         unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1663
1664         spin_lock_irq(&dev_priv->uncore.lock);
1665         if (IS_VALLEYVIEW(dev)) {
1666                 fw_rendercount = dev_priv->uncore.fw_rendercount;
1667                 fw_mediacount = dev_priv->uncore.fw_mediacount;
1668         } else
1669                 forcewake_count = dev_priv->uncore.forcewake_count;
1670         spin_unlock_irq(&dev_priv->uncore.lock);
1671
1672         if (IS_VALLEYVIEW(dev)) {
1673                 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1674                 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1675         } else
1676                 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1677
1678         return 0;
1679 }
1680
1681 static const char *swizzle_string(unsigned swizzle)
1682 {
1683         switch (swizzle) {
1684         case I915_BIT_6_SWIZZLE_NONE:
1685                 return "none";
1686         case I915_BIT_6_SWIZZLE_9:
1687                 return "bit9";
1688         case I915_BIT_6_SWIZZLE_9_10:
1689                 return "bit9/bit10";
1690         case I915_BIT_6_SWIZZLE_9_11:
1691                 return "bit9/bit11";
1692         case I915_BIT_6_SWIZZLE_9_10_11:
1693                 return "bit9/bit10/bit11";
1694         case I915_BIT_6_SWIZZLE_9_17:
1695                 return "bit9/bit17";
1696         case I915_BIT_6_SWIZZLE_9_10_17:
1697                 return "bit9/bit10/bit17";
1698         case I915_BIT_6_SWIZZLE_UNKNOWN:
1699                 return "unknown";
1700         }
1701
1702         return "bug";
1703 }
1704
1705 static int i915_swizzle_info(struct seq_file *m, void *data)
1706 {
1707         struct drm_info_node *node = (struct drm_info_node *) m->private;
1708         struct drm_device *dev = node->minor->dev;
1709         struct drm_i915_private *dev_priv = dev->dev_private;
1710         int ret;
1711
1712         ret = mutex_lock_interruptible(&dev->struct_mutex);
1713         if (ret)
1714                 return ret;
1715         intel_runtime_pm_get(dev_priv);
1716
1717         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1718                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1719         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1720                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1721
1722         if (IS_GEN3(dev) || IS_GEN4(dev)) {
1723                 seq_printf(m, "DDC = 0x%08x\n",
1724                            I915_READ(DCC));
1725                 seq_printf(m, "C0DRB3 = 0x%04x\n",
1726                            I915_READ16(C0DRB3));
1727                 seq_printf(m, "C1DRB3 = 0x%04x\n",
1728                            I915_READ16(C1DRB3));
1729         } else if (INTEL_INFO(dev)->gen >= 6) {
1730                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1731                            I915_READ(MAD_DIMM_C0));
1732                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1733                            I915_READ(MAD_DIMM_C1));
1734                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1735                            I915_READ(MAD_DIMM_C2));
1736                 seq_printf(m, "TILECTL = 0x%08x\n",
1737                            I915_READ(TILECTL));
1738                 if (IS_GEN8(dev))
1739                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1740                                    I915_READ(GAMTARBMODE));
1741                 else
1742                         seq_printf(m, "ARB_MODE = 0x%08x\n",
1743                                    I915_READ(ARB_MODE));
1744                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1745                            I915_READ(DISP_ARB_CTL));
1746         }
1747         intel_runtime_pm_put(dev_priv);
1748         mutex_unlock(&dev->struct_mutex);
1749
1750         return 0;
1751 }
1752
1753 static int per_file_ctx(int id, void *ptr, void *data)
1754 {
1755         struct i915_hw_context *ctx = ptr;
1756         struct seq_file *m = data;
1757         struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
1758
1759         ppgtt->debug_dump(ppgtt, m);
1760
1761         return 0;
1762 }
1763
1764 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1765 {
1766         struct drm_i915_private *dev_priv = dev->dev_private;
1767         struct intel_ring_buffer *ring;
1768         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1769         int unused, i;
1770
1771         if (!ppgtt)
1772                 return;
1773
1774         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
1775         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
1776         for_each_ring(ring, dev_priv, unused) {
1777                 seq_printf(m, "%s\n", ring->name);
1778                 for (i = 0; i < 4; i++) {
1779                         u32 offset = 0x270 + i * 8;
1780                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
1781                         pdp <<= 32;
1782                         pdp |= I915_READ(ring->mmio_base + offset);
1783                         for (i = 0; i < 4; i++)
1784                                 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
1785                 }
1786         }
1787 }
1788
1789 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1790 {
1791         struct drm_i915_private *dev_priv = dev->dev_private;
1792         struct intel_ring_buffer *ring;
1793         struct drm_file *file;
1794         int i;
1795
1796         if (INTEL_INFO(dev)->gen == 6)
1797                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1798
1799         for_each_ring(ring, dev_priv, i) {
1800                 seq_printf(m, "%s\n", ring->name);
1801                 if (INTEL_INFO(dev)->gen == 7)
1802                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1803                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1804                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1805                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1806         }
1807         if (dev_priv->mm.aliasing_ppgtt) {
1808                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1809
1810                 seq_puts(m, "aliasing PPGTT:\n");
1811                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1812
1813                 ppgtt->debug_dump(ppgtt, m);
1814         } else
1815                 return;
1816
1817         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
1818                 struct drm_i915_file_private *file_priv = file->driver_priv;
1819                 struct i915_hw_ppgtt *pvt_ppgtt;
1820
1821                 pvt_ppgtt = ctx_to_ppgtt(file_priv->private_default_ctx);
1822                 seq_printf(m, "proc: %s\n",
1823                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
1824                 seq_puts(m, "  default context:\n");
1825                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
1826         }
1827         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1828 }
1829
1830 static int i915_ppgtt_info(struct seq_file *m, void *data)
1831 {
1832         struct drm_info_node *node = (struct drm_info_node *) m->private;
1833         struct drm_device *dev = node->minor->dev;
1834         struct drm_i915_private *dev_priv = dev->dev_private;
1835
1836         int ret = mutex_lock_interruptible(&dev->struct_mutex);
1837         if (ret)
1838                 return ret;
1839         intel_runtime_pm_get(dev_priv);
1840
1841         if (INTEL_INFO(dev)->gen >= 8)
1842                 gen8_ppgtt_info(m, dev);
1843         else if (INTEL_INFO(dev)->gen >= 6)
1844                 gen6_ppgtt_info(m, dev);
1845
1846         intel_runtime_pm_put(dev_priv);
1847         mutex_unlock(&dev->struct_mutex);
1848
1849         return 0;
1850 }
1851
1852 static int i915_dpio_info(struct seq_file *m, void *data)
1853 {
1854         struct drm_info_node *node = (struct drm_info_node *) m->private;
1855         struct drm_device *dev = node->minor->dev;
1856         struct drm_i915_private *dev_priv = dev->dev_private;
1857         int ret;
1858
1859
1860         if (!IS_VALLEYVIEW(dev)) {
1861                 seq_puts(m, "unsupported\n");
1862                 return 0;
1863         }
1864
1865         ret = mutex_lock_interruptible(&dev_priv->dpio_lock);
1866         if (ret)
1867                 return ret;
1868
1869         seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
1870
1871         seq_printf(m, "DPIO PLL DW3 CH0 : 0x%08x\n",
1872                    vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW3(0)));
1873         seq_printf(m, "DPIO PLL DW3 CH1: 0x%08x\n",
1874                    vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW3(1)));
1875
1876         seq_printf(m, "DPIO PLL DW5 CH0: 0x%08x\n",
1877                    vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW5(0)));
1878         seq_printf(m, "DPIO PLL DW5 CH1: 0x%08x\n",
1879                    vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW5(1)));
1880
1881         seq_printf(m, "DPIO PLL DW7 CH0: 0x%08x\n",
1882                    vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW7(0)));
1883         seq_printf(m, "DPIO PLL DW7 CH1: 0x%08x\n",
1884                    vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW7(1)));
1885
1886         seq_printf(m, "DPIO PLL DW10 CH0: 0x%08x\n",
1887                    vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW10(0)));
1888         seq_printf(m, "DPIO PLL DW10 CH1: 0x%08x\n",
1889                    vlv_dpio_read(dev_priv, PIPE_A, VLV_PLL_DW10(1)));
1890
1891         seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
1892                    vlv_dpio_read(dev_priv, PIPE_A, VLV_CMN_DW0));
1893
1894         mutex_unlock(&dev_priv->dpio_lock);
1895
1896         return 0;
1897 }
1898
1899 static int i915_llc(struct seq_file *m, void *data)
1900 {
1901         struct drm_info_node *node = (struct drm_info_node *) m->private;
1902         struct drm_device *dev = node->minor->dev;
1903         struct drm_i915_private *dev_priv = dev->dev_private;
1904
1905         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
1906         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
1907         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
1908
1909         return 0;
1910 }
1911
1912 static int i915_edp_psr_status(struct seq_file *m, void *data)
1913 {
1914         struct drm_info_node *node = m->private;
1915         struct drm_device *dev = node->minor->dev;
1916         struct drm_i915_private *dev_priv = dev->dev_private;
1917         u32 psrperf = 0;
1918         bool enabled = false;
1919
1920         intel_runtime_pm_get(dev_priv);
1921
1922         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
1923         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
1924
1925         enabled = HAS_PSR(dev) &&
1926                 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1927         seq_printf(m, "Enabled: %s\n", yesno(enabled));
1928
1929         if (HAS_PSR(dev))
1930                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
1931                         EDP_PSR_PERF_CNT_MASK;
1932         seq_printf(m, "Performance_Counter: %u\n", psrperf);
1933
1934         intel_runtime_pm_put(dev_priv);
1935         return 0;
1936 }
1937
1938 static int i915_sink_crc(struct seq_file *m, void *data)
1939 {
1940         struct drm_info_node *node = m->private;
1941         struct drm_device *dev = node->minor->dev;
1942         struct intel_encoder *encoder;
1943         struct intel_connector *connector;
1944         struct intel_dp *intel_dp = NULL;
1945         int ret;
1946         u8 crc[6];
1947
1948         drm_modeset_lock_all(dev);
1949         list_for_each_entry(connector, &dev->mode_config.connector_list,
1950                             base.head) {
1951
1952                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
1953                         continue;
1954
1955                 if (!connector->base.encoder)
1956                         continue;
1957
1958                 encoder = to_intel_encoder(connector->base.encoder);
1959                 if (encoder->type != INTEL_OUTPUT_EDP)
1960                         continue;
1961
1962                 intel_dp = enc_to_intel_dp(&encoder->base);
1963
1964                 ret = intel_dp_sink_crc(intel_dp, crc);
1965                 if (ret)
1966                         goto out;
1967
1968                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
1969                            crc[0], crc[1], crc[2],
1970                            crc[3], crc[4], crc[5]);
1971                 goto out;
1972         }
1973         ret = -ENODEV;
1974 out:
1975         drm_modeset_unlock_all(dev);
1976         return ret;
1977 }
1978
1979 static int i915_energy_uJ(struct seq_file *m, void *data)
1980 {
1981         struct drm_info_node *node = m->private;
1982         struct drm_device *dev = node->minor->dev;
1983         struct drm_i915_private *dev_priv = dev->dev_private;
1984         u64 power;
1985         u32 units;
1986
1987         if (INTEL_INFO(dev)->gen < 6)
1988                 return -ENODEV;
1989
1990         intel_runtime_pm_get(dev_priv);
1991
1992         rdmsrl(MSR_RAPL_POWER_UNIT, power);
1993         power = (power & 0x1f00) >> 8;
1994         units = 1000000 / (1 << power); /* convert to uJ */
1995         power = I915_READ(MCH_SECP_NRG_STTS);
1996         power *= units;
1997
1998         intel_runtime_pm_put(dev_priv);
1999
2000         seq_printf(m, "%llu", (long long unsigned)power);
2001
2002         return 0;
2003 }
2004
2005 static int i915_pc8_status(struct seq_file *m, void *unused)
2006 {
2007         struct drm_info_node *node = (struct drm_info_node *) m->private;
2008         struct drm_device *dev = node->minor->dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010
2011         if (!IS_HASWELL(dev)) {
2012                 seq_puts(m, "not supported\n");
2013                 return 0;
2014         }
2015
2016         mutex_lock(&dev_priv->pc8.lock);
2017         seq_printf(m, "Requirements met: %s\n",
2018                    yesno(dev_priv->pc8.requirements_met));
2019         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2020         seq_printf(m, "Disable count: %d\n", dev_priv->pc8.disable_count);
2021         seq_printf(m, "IRQs disabled: %s\n",
2022                    yesno(dev_priv->pc8.irqs_disabled));
2023         seq_printf(m, "Enabled: %s\n", yesno(dev_priv->pc8.enabled));
2024         mutex_unlock(&dev_priv->pc8.lock);
2025
2026         return 0;
2027 }
2028
2029 static const char *power_domain_str(enum intel_display_power_domain domain)
2030 {
2031         switch (domain) {
2032         case POWER_DOMAIN_PIPE_A:
2033                 return "PIPE_A";
2034         case POWER_DOMAIN_PIPE_B:
2035                 return "PIPE_B";
2036         case POWER_DOMAIN_PIPE_C:
2037                 return "PIPE_C";
2038         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2039                 return "PIPE_A_PANEL_FITTER";
2040         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2041                 return "PIPE_B_PANEL_FITTER";
2042         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2043                 return "PIPE_C_PANEL_FITTER";
2044         case POWER_DOMAIN_TRANSCODER_A:
2045                 return "TRANSCODER_A";
2046         case POWER_DOMAIN_TRANSCODER_B:
2047                 return "TRANSCODER_B";
2048         case POWER_DOMAIN_TRANSCODER_C:
2049                 return "TRANSCODER_C";
2050         case POWER_DOMAIN_TRANSCODER_EDP:
2051                 return "TRANSCODER_EDP";
2052         case POWER_DOMAIN_VGA:
2053                 return "VGA";
2054         case POWER_DOMAIN_AUDIO:
2055                 return "AUDIO";
2056         case POWER_DOMAIN_INIT:
2057                 return "INIT";
2058         default:
2059                 WARN_ON(1);
2060                 return "?";
2061         }
2062 }
2063
2064 static int i915_power_domain_info(struct seq_file *m, void *unused)
2065 {
2066         struct drm_info_node *node = (struct drm_info_node *) m->private;
2067         struct drm_device *dev = node->minor->dev;
2068         struct drm_i915_private *dev_priv = dev->dev_private;
2069         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2070         int i;
2071
2072         mutex_lock(&power_domains->lock);
2073
2074         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2075         for (i = 0; i < power_domains->power_well_count; i++) {
2076                 struct i915_power_well *power_well;
2077                 enum intel_display_power_domain power_domain;
2078
2079                 power_well = &power_domains->power_wells[i];
2080                 seq_printf(m, "%-25s %d\n", power_well->name,
2081                            power_well->count);
2082
2083                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2084                      power_domain++) {
2085                         if (!(BIT(power_domain) & power_well->domains))
2086                                 continue;
2087
2088                         seq_printf(m, "  %-23s %d\n",
2089                                  power_domain_str(power_domain),
2090                                  power_domains->domain_use_count[power_domain]);
2091                 }
2092         }
2093
2094         mutex_unlock(&power_domains->lock);
2095
2096         return 0;
2097 }
2098
2099 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2100                                  struct drm_display_mode *mode)
2101 {
2102         int i;
2103
2104         for (i = 0; i < tabs; i++)
2105                 seq_putc(m, '\t');
2106
2107         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2108                    mode->base.id, mode->name,
2109                    mode->vrefresh, mode->clock,
2110                    mode->hdisplay, mode->hsync_start,
2111                    mode->hsync_end, mode->htotal,
2112                    mode->vdisplay, mode->vsync_start,
2113                    mode->vsync_end, mode->vtotal,
2114                    mode->type, mode->flags);
2115 }
2116
2117 static void intel_encoder_info(struct seq_file *m,
2118                                struct intel_crtc *intel_crtc,
2119                                struct intel_encoder *intel_encoder)
2120 {
2121         struct drm_info_node *node = (struct drm_info_node *) m->private;
2122         struct drm_device *dev = node->minor->dev;
2123         struct drm_crtc *crtc = &intel_crtc->base;
2124         struct intel_connector *intel_connector;
2125         struct drm_encoder *encoder;
2126
2127         encoder = &intel_encoder->base;
2128         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2129                    encoder->base.id, drm_get_encoder_name(encoder));
2130         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2131                 struct drm_connector *connector = &intel_connector->base;
2132                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2133                            connector->base.id,
2134                            drm_get_connector_name(connector),
2135                            drm_get_connector_status_name(connector->status));
2136                 if (connector->status == connector_status_connected) {
2137                         struct drm_display_mode *mode = &crtc->mode;
2138                         seq_printf(m, ", mode:\n");
2139                         intel_seq_print_mode(m, 2, mode);
2140                 } else {
2141                         seq_putc(m, '\n');
2142                 }
2143         }
2144 }
2145
2146 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2147 {
2148         struct drm_info_node *node = (struct drm_info_node *) m->private;
2149         struct drm_device *dev = node->minor->dev;
2150         struct drm_crtc *crtc = &intel_crtc->base;
2151         struct intel_encoder *intel_encoder;
2152
2153         seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2154                    crtc->fb->base.id, crtc->x, crtc->y,
2155                    crtc->fb->width, crtc->fb->height);
2156         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2157                 intel_encoder_info(m, intel_crtc, intel_encoder);
2158 }
2159
2160 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2161 {
2162         struct drm_display_mode *mode = panel->fixed_mode;
2163
2164         seq_printf(m, "\tfixed mode:\n");
2165         intel_seq_print_mode(m, 2, mode);
2166 }
2167
2168 static void intel_dp_info(struct seq_file *m,
2169                           struct intel_connector *intel_connector)
2170 {
2171         struct intel_encoder *intel_encoder = intel_connector->encoder;
2172         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2173
2174         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2175         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2176                    "no");
2177         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2178                 intel_panel_info(m, &intel_connector->panel);
2179 }
2180
2181 static void intel_hdmi_info(struct seq_file *m,
2182                             struct intel_connector *intel_connector)
2183 {
2184         struct intel_encoder *intel_encoder = intel_connector->encoder;
2185         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2186
2187         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2188                    "no");
2189 }
2190
2191 static void intel_lvds_info(struct seq_file *m,
2192                             struct intel_connector *intel_connector)
2193 {
2194         intel_panel_info(m, &intel_connector->panel);
2195 }
2196
2197 static void intel_connector_info(struct seq_file *m,
2198                                  struct drm_connector *connector)
2199 {
2200         struct intel_connector *intel_connector = to_intel_connector(connector);
2201         struct intel_encoder *intel_encoder = intel_connector->encoder;
2202         struct drm_display_mode *mode;
2203
2204         seq_printf(m, "connector %d: type %s, status: %s\n",
2205                    connector->base.id, drm_get_connector_name(connector),
2206                    drm_get_connector_status_name(connector->status));
2207         if (connector->status == connector_status_connected) {
2208                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2209                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2210                            connector->display_info.width_mm,
2211                            connector->display_info.height_mm);
2212                 seq_printf(m, "\tsubpixel order: %s\n",
2213                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2214                 seq_printf(m, "\tCEA rev: %d\n",
2215                            connector->display_info.cea_rev);
2216         }
2217         if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2218             intel_encoder->type == INTEL_OUTPUT_EDP)
2219                 intel_dp_info(m, intel_connector);
2220         else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2221                 intel_hdmi_info(m, intel_connector);
2222         else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2223                 intel_lvds_info(m, intel_connector);
2224
2225         seq_printf(m, "\tmodes:\n");
2226         list_for_each_entry(mode, &connector->modes, head)
2227                 intel_seq_print_mode(m, 2, mode);
2228 }
2229
2230 static int i915_display_info(struct seq_file *m, void *unused)
2231 {
2232         struct drm_info_node *node = (struct drm_info_node *) m->private;
2233         struct drm_device *dev = node->minor->dev;
2234         struct drm_crtc *crtc;
2235         struct drm_connector *connector;
2236
2237         drm_modeset_lock_all(dev);
2238         seq_printf(m, "CRTC info\n");
2239         seq_printf(m, "---------\n");
2240         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2241                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2242
2243                 seq_printf(m, "CRTC %d: pipe: %c, active: %s\n",
2244                            crtc->base.id, pipe_name(intel_crtc->pipe),
2245                            intel_crtc->active ? "yes" : "no");
2246                 if (intel_crtc->active)
2247                         intel_crtc_info(m, intel_crtc);
2248         }
2249
2250         seq_printf(m, "\n");
2251         seq_printf(m, "Connector info\n");
2252         seq_printf(m, "--------------\n");
2253         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2254                 intel_connector_info(m, connector);
2255         }
2256         drm_modeset_unlock_all(dev);
2257
2258         return 0;
2259 }
2260
2261 struct pipe_crc_info {
2262         const char *name;
2263         struct drm_device *dev;
2264         enum pipe pipe;
2265 };
2266
2267 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2268 {
2269         struct pipe_crc_info *info = inode->i_private;
2270         struct drm_i915_private *dev_priv = info->dev->dev_private;
2271         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2272
2273         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2274                 return -ENODEV;
2275
2276         spin_lock_irq(&pipe_crc->lock);
2277
2278         if (pipe_crc->opened) {
2279                 spin_unlock_irq(&pipe_crc->lock);
2280                 return -EBUSY; /* already open */
2281         }
2282
2283         pipe_crc->opened = true;
2284         filep->private_data = inode->i_private;
2285
2286         spin_unlock_irq(&pipe_crc->lock);
2287
2288         return 0;
2289 }
2290
2291 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2292 {
2293         struct pipe_crc_info *info = inode->i_private;
2294         struct drm_i915_private *dev_priv = info->dev->dev_private;
2295         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2296
2297         spin_lock_irq(&pipe_crc->lock);
2298         pipe_crc->opened = false;
2299         spin_unlock_irq(&pipe_crc->lock);
2300
2301         return 0;
2302 }
2303
2304 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2305 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
2306 /* account for \'0' */
2307 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
2308
2309 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2310 {
2311         assert_spin_locked(&pipe_crc->lock);
2312         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2313                         INTEL_PIPE_CRC_ENTRIES_NR);
2314 }
2315
2316 static ssize_t
2317 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2318                    loff_t *pos)
2319 {
2320         struct pipe_crc_info *info = filep->private_data;
2321         struct drm_device *dev = info->dev;
2322         struct drm_i915_private *dev_priv = dev->dev_private;
2323         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2324         char buf[PIPE_CRC_BUFFER_LEN];
2325         int head, tail, n_entries, n;
2326         ssize_t bytes_read;
2327
2328         /*
2329          * Don't allow user space to provide buffers not big enough to hold
2330          * a line of data.
2331          */
2332         if (count < PIPE_CRC_LINE_LEN)
2333                 return -EINVAL;
2334
2335         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2336                 return 0;
2337
2338         /* nothing to read */
2339         spin_lock_irq(&pipe_crc->lock);
2340         while (pipe_crc_data_count(pipe_crc) == 0) {
2341                 int ret;
2342
2343                 if (filep->f_flags & O_NONBLOCK) {
2344                         spin_unlock_irq(&pipe_crc->lock);
2345                         return -EAGAIN;
2346                 }
2347
2348                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2349                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2350                 if (ret) {
2351                         spin_unlock_irq(&pipe_crc->lock);
2352                         return ret;
2353                 }
2354         }
2355
2356         /* We now have one or more entries to read */
2357         head = pipe_crc->head;
2358         tail = pipe_crc->tail;
2359         n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2360                         count / PIPE_CRC_LINE_LEN);
2361         spin_unlock_irq(&pipe_crc->lock);
2362
2363         bytes_read = 0;
2364         n = 0;
2365         do {
2366                 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2367                 int ret;
2368
2369                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2370                                        "%8u %8x %8x %8x %8x %8x\n",
2371                                        entry->frame, entry->crc[0],
2372                                        entry->crc[1], entry->crc[2],
2373                                        entry->crc[3], entry->crc[4]);
2374
2375                 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2376                                    buf, PIPE_CRC_LINE_LEN);
2377                 if (ret == PIPE_CRC_LINE_LEN)
2378                         return -EFAULT;
2379
2380                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2381                 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2382                 n++;
2383         } while (--n_entries);
2384
2385         spin_lock_irq(&pipe_crc->lock);
2386         pipe_crc->tail = tail;
2387         spin_unlock_irq(&pipe_crc->lock);
2388
2389         return bytes_read;
2390 }
2391
2392 static const struct file_operations i915_pipe_crc_fops = {
2393         .owner = THIS_MODULE,
2394         .open = i915_pipe_crc_open,
2395         .read = i915_pipe_crc_read,
2396         .release = i915_pipe_crc_release,
2397 };
2398
2399 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2400         {
2401                 .name = "i915_pipe_A_crc",
2402                 .pipe = PIPE_A,
2403         },
2404         {
2405                 .name = "i915_pipe_B_crc",
2406                 .pipe = PIPE_B,
2407         },
2408         {
2409                 .name = "i915_pipe_C_crc",
2410                 .pipe = PIPE_C,
2411         },
2412 };
2413
2414 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2415                                 enum pipe pipe)
2416 {
2417         struct drm_device *dev = minor->dev;
2418         struct dentry *ent;
2419         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2420
2421         info->dev = dev;
2422         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2423                                   &i915_pipe_crc_fops);
2424         if (!ent)
2425                 return -ENOMEM;
2426
2427         return drm_add_fake_info_node(minor, ent, info);
2428 }
2429
2430 static const char * const pipe_crc_sources[] = {
2431         "none",
2432         "plane1",
2433         "plane2",
2434         "pf",
2435         "pipe",
2436         "TV",
2437         "DP-B",
2438         "DP-C",
2439         "DP-D",
2440         "auto",
2441 };
2442
2443 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2444 {
2445         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2446         return pipe_crc_sources[source];
2447 }
2448
2449 static int display_crc_ctl_show(struct seq_file *m, void *data)
2450 {
2451         struct drm_device *dev = m->private;
2452         struct drm_i915_private *dev_priv = dev->dev_private;
2453         int i;
2454
2455         for (i = 0; i < I915_MAX_PIPES; i++)
2456                 seq_printf(m, "%c %s\n", pipe_name(i),
2457                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2458
2459         return 0;
2460 }
2461
2462 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2463 {
2464         struct drm_device *dev = inode->i_private;
2465
2466         return single_open(file, display_crc_ctl_show, dev);
2467 }
2468
2469 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2470                                  uint32_t *val)
2471 {
2472         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2473                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2474
2475         switch (*source) {
2476         case INTEL_PIPE_CRC_SOURCE_PIPE:
2477                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2478                 break;
2479         case INTEL_PIPE_CRC_SOURCE_NONE:
2480                 *val = 0;
2481                 break;
2482         default:
2483                 return -EINVAL;
2484         }
2485
2486         return 0;
2487 }
2488
2489 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2490                                      enum intel_pipe_crc_source *source)
2491 {
2492         struct intel_encoder *encoder;
2493         struct intel_crtc *crtc;
2494         struct intel_digital_port *dig_port;
2495         int ret = 0;
2496
2497         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2498
2499         mutex_lock(&dev->mode_config.mutex);
2500         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2501                             base.head) {
2502                 if (!encoder->base.crtc)
2503                         continue;
2504
2505                 crtc = to_intel_crtc(encoder->base.crtc);
2506
2507                 if (crtc->pipe != pipe)
2508                         continue;
2509
2510                 switch (encoder->type) {
2511                 case INTEL_OUTPUT_TVOUT:
2512                         *source = INTEL_PIPE_CRC_SOURCE_TV;
2513                         break;
2514                 case INTEL_OUTPUT_DISPLAYPORT:
2515                 case INTEL_OUTPUT_EDP:
2516                         dig_port = enc_to_dig_port(&encoder->base);
2517                         switch (dig_port->port) {
2518                         case PORT_B:
2519                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
2520                                 break;
2521                         case PORT_C:
2522                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
2523                                 break;
2524                         case PORT_D:
2525                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
2526                                 break;
2527                         default:
2528                                 WARN(1, "nonexisting DP port %c\n",
2529                                      port_name(dig_port->port));
2530                                 break;
2531                         }
2532                         break;
2533                 }
2534         }
2535         mutex_unlock(&dev->mode_config.mutex);
2536
2537         return ret;
2538 }
2539
2540 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2541                                 enum pipe pipe,
2542                                 enum intel_pipe_crc_source *source,
2543                                 uint32_t *val)
2544 {
2545         struct drm_i915_private *dev_priv = dev->dev_private;
2546         bool need_stable_symbols = false;
2547
2548         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2549                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2550                 if (ret)
2551                         return ret;
2552         }
2553
2554         switch (*source) {
2555         case INTEL_PIPE_CRC_SOURCE_PIPE:
2556                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2557                 break;
2558         case INTEL_PIPE_CRC_SOURCE_DP_B:
2559                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2560                 need_stable_symbols = true;
2561                 break;
2562         case INTEL_PIPE_CRC_SOURCE_DP_C:
2563                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
2564                 need_stable_symbols = true;
2565                 break;
2566         case INTEL_PIPE_CRC_SOURCE_NONE:
2567                 *val = 0;
2568                 break;
2569         default:
2570                 return -EINVAL;
2571         }
2572
2573         /*
2574          * When the pipe CRC tap point is after the transcoders we need
2575          * to tweak symbol-level features to produce a deterministic series of
2576          * symbols for a given frame. We need to reset those features only once
2577          * a frame (instead of every nth symbol):
2578          *   - DC-balance: used to ensure a better clock recovery from the data
2579          *     link (SDVO)
2580          *   - DisplayPort scrambling: used for EMI reduction
2581          */
2582         if (need_stable_symbols) {
2583                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2584
2585                 WARN_ON(!IS_G4X(dev));
2586
2587                 tmp |= DC_BALANCE_RESET_VLV;
2588                 if (pipe == PIPE_A)
2589                         tmp |= PIPE_A_SCRAMBLE_RESET;
2590                 else
2591                         tmp |= PIPE_B_SCRAMBLE_RESET;
2592
2593                 I915_WRITE(PORT_DFT2_G4X, tmp);
2594         }
2595
2596         return 0;
2597 }
2598
2599 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
2600                                  enum pipe pipe,
2601                                  enum intel_pipe_crc_source *source,
2602                                  uint32_t *val)
2603 {
2604         struct drm_i915_private *dev_priv = dev->dev_private;
2605         bool need_stable_symbols = false;
2606
2607         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2608                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2609                 if (ret)
2610                         return ret;
2611         }
2612
2613         switch (*source) {
2614         case INTEL_PIPE_CRC_SOURCE_PIPE:
2615                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
2616                 break;
2617         case INTEL_PIPE_CRC_SOURCE_TV:
2618                 if (!SUPPORTS_TV(dev))
2619                         return -EINVAL;
2620                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
2621                 break;
2622         case INTEL_PIPE_CRC_SOURCE_DP_B:
2623                 if (!IS_G4X(dev))
2624                         return -EINVAL;
2625                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
2626                 need_stable_symbols = true;
2627                 break;
2628         case INTEL_PIPE_CRC_SOURCE_DP_C:
2629                 if (!IS_G4X(dev))
2630                         return -EINVAL;
2631                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
2632                 need_stable_symbols = true;
2633                 break;
2634         case INTEL_PIPE_CRC_SOURCE_DP_D:
2635                 if (!IS_G4X(dev))
2636                         return -EINVAL;
2637                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
2638                 need_stable_symbols = true;
2639                 break;
2640         case INTEL_PIPE_CRC_SOURCE_NONE:
2641                 *val = 0;
2642                 break;
2643         default:
2644                 return -EINVAL;
2645         }
2646
2647         /*
2648          * When the pipe CRC tap point is after the transcoders we need
2649          * to tweak symbol-level features to produce a deterministic series of
2650          * symbols for a given frame. We need to reset those features only once
2651          * a frame (instead of every nth symbol):
2652          *   - DC-balance: used to ensure a better clock recovery from the data
2653          *     link (SDVO)
2654          *   - DisplayPort scrambling: used for EMI reduction
2655          */
2656         if (need_stable_symbols) {
2657                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2658
2659                 WARN_ON(!IS_G4X(dev));
2660
2661                 I915_WRITE(PORT_DFT_I9XX,
2662                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
2663
2664                 if (pipe == PIPE_A)
2665                         tmp |= PIPE_A_SCRAMBLE_RESET;
2666                 else
2667                         tmp |= PIPE_B_SCRAMBLE_RESET;
2668
2669                 I915_WRITE(PORT_DFT2_G4X, tmp);
2670         }
2671
2672         return 0;
2673 }
2674
2675 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
2676                                          enum pipe pipe)
2677 {
2678         struct drm_i915_private *dev_priv = dev->dev_private;
2679         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2680
2681         if (pipe == PIPE_A)
2682                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2683         else
2684                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2685         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
2686                 tmp &= ~DC_BALANCE_RESET_VLV;
2687         I915_WRITE(PORT_DFT2_G4X, tmp);
2688
2689 }
2690
2691 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
2692                                          enum pipe pipe)
2693 {
2694         struct drm_i915_private *dev_priv = dev->dev_private;
2695         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2696
2697         if (pipe == PIPE_A)
2698                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2699         else
2700                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2701         I915_WRITE(PORT_DFT2_G4X, tmp);
2702
2703         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
2704                 I915_WRITE(PORT_DFT_I9XX,
2705                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
2706         }
2707 }
2708
2709 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2710                                 uint32_t *val)
2711 {
2712         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2713                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2714
2715         switch (*source) {
2716         case INTEL_PIPE_CRC_SOURCE_PLANE1:
2717                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
2718                 break;
2719         case INTEL_PIPE_CRC_SOURCE_PLANE2:
2720                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
2721                 break;
2722         case INTEL_PIPE_CRC_SOURCE_PIPE:
2723                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
2724                 break;
2725         case INTEL_PIPE_CRC_SOURCE_NONE:
2726                 *val = 0;
2727                 break;
2728         default:
2729                 return -EINVAL;
2730         }
2731
2732         return 0;
2733 }
2734
2735 static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2736                                 uint32_t *val)
2737 {
2738         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2739                 *source = INTEL_PIPE_CRC_SOURCE_PF;
2740
2741         switch (*source) {
2742         case INTEL_PIPE_CRC_SOURCE_PLANE1:
2743                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
2744                 break;
2745         case INTEL_PIPE_CRC_SOURCE_PLANE2:
2746                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
2747                 break;
2748         case INTEL_PIPE_CRC_SOURCE_PF:
2749                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
2750                 break;
2751         case INTEL_PIPE_CRC_SOURCE_NONE:
2752                 *val = 0;
2753                 break;
2754         default:
2755                 return -EINVAL;
2756         }
2757
2758         return 0;
2759 }
2760
2761 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
2762                                enum intel_pipe_crc_source source)
2763 {
2764         struct drm_i915_private *dev_priv = dev->dev_private;
2765         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
2766         u32 val = 0; /* shut up gcc */
2767         int ret;
2768
2769         if (pipe_crc->source == source)
2770                 return 0;
2771
2772         /* forbid changing the source without going back to 'none' */
2773         if (pipe_crc->source && source)
2774                 return -EINVAL;
2775
2776         if (IS_GEN2(dev))
2777                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
2778         else if (INTEL_INFO(dev)->gen < 5)
2779                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
2780         else if (IS_VALLEYVIEW(dev))
2781                 ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val);
2782         else if (IS_GEN5(dev) || IS_GEN6(dev))
2783                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
2784         else
2785                 ret = ivb_pipe_crc_ctl_reg(&source, &val);
2786
2787         if (ret != 0)
2788                 return ret;
2789
2790         /* none -> real source transition */
2791         if (source) {
2792                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
2793                                  pipe_name(pipe), pipe_crc_source_name(source));
2794
2795                 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
2796                                             INTEL_PIPE_CRC_ENTRIES_NR,
2797                                             GFP_KERNEL);
2798                 if (!pipe_crc->entries)
2799                         return -ENOMEM;
2800
2801                 spin_lock_irq(&pipe_crc->lock);
2802                 pipe_crc->head = 0;
2803                 pipe_crc->tail = 0;
2804                 spin_unlock_irq(&pipe_crc->lock);
2805         }
2806
2807         pipe_crc->source = source;
2808
2809         I915_WRITE(PIPE_CRC_CTL(pipe), val);
2810         POSTING_READ(PIPE_CRC_CTL(pipe));
2811
2812         /* real source -> none transition */
2813         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
2814                 struct intel_pipe_crc_entry *entries;
2815
2816                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
2817                                  pipe_name(pipe));
2818
2819                 intel_wait_for_vblank(dev, pipe);
2820
2821                 spin_lock_irq(&pipe_crc->lock);
2822                 entries = pipe_crc->entries;
2823                 pipe_crc->entries = NULL;
2824                 spin_unlock_irq(&pipe_crc->lock);
2825
2826                 kfree(entries);
2827
2828                 if (IS_G4X(dev))
2829                         g4x_undo_pipe_scramble_reset(dev, pipe);
2830                 else if (IS_VALLEYVIEW(dev))
2831                         vlv_undo_pipe_scramble_reset(dev, pipe);
2832         }
2833
2834         return 0;
2835 }
2836
2837 /*
2838  * Parse pipe CRC command strings:
2839  *   command: wsp* object wsp+ name wsp+ source wsp*
2840  *   object: 'pipe'
2841  *   name: (A | B | C)
2842  *   source: (none | plane1 | plane2 | pf)
2843  *   wsp: (#0x20 | #0x9 | #0xA)+
2844  *
2845  * eg.:
2846  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
2847  *  "pipe A none"    ->  Stop CRC
2848  */
2849 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
2850 {
2851         int n_words = 0;
2852
2853         while (*buf) {
2854                 char *end;
2855
2856                 /* skip leading white space */
2857                 buf = skip_spaces(buf);
2858                 if (!*buf)
2859                         break;  /* end of buffer */
2860
2861                 /* find end of word */
2862                 for (end = buf; *end && !isspace(*end); end++)
2863                         ;
2864
2865                 if (n_words == max_words) {
2866                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
2867                                          max_words);
2868                         return -EINVAL; /* ran out of words[] before bytes */
2869                 }
2870
2871                 if (*end)
2872                         *end++ = '\0';
2873                 words[n_words++] = buf;
2874                 buf = end;
2875         }
2876
2877         return n_words;
2878 }
2879
2880 enum intel_pipe_crc_object {
2881         PIPE_CRC_OBJECT_PIPE,
2882 };
2883
2884 static const char * const pipe_crc_objects[] = {
2885         "pipe",
2886 };
2887
2888 static int
2889 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
2890 {
2891         int i;
2892
2893         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
2894                 if (!strcmp(buf, pipe_crc_objects[i])) {
2895                         *o = i;
2896                         return 0;
2897                     }
2898
2899         return -EINVAL;
2900 }
2901
2902 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
2903 {
2904         const char name = buf[0];
2905
2906         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
2907                 return -EINVAL;
2908
2909         *pipe = name - 'A';
2910
2911         return 0;
2912 }
2913
2914 static int
2915 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
2916 {
2917         int i;
2918
2919         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
2920                 if (!strcmp(buf, pipe_crc_sources[i])) {
2921                         *s = i;
2922                         return 0;
2923                     }
2924
2925         return -EINVAL;
2926 }
2927
2928 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
2929 {
2930 #define N_WORDS 3
2931         int n_words;
2932         char *words[N_WORDS];
2933         enum pipe pipe;
2934         enum intel_pipe_crc_object object;
2935         enum intel_pipe_crc_source source;
2936
2937         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
2938         if (n_words != N_WORDS) {
2939                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
2940                                  N_WORDS);
2941                 return -EINVAL;
2942         }
2943
2944         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
2945                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
2946                 return -EINVAL;
2947         }
2948
2949         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
2950                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
2951                 return -EINVAL;
2952         }
2953
2954         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
2955                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
2956                 return -EINVAL;
2957         }
2958
2959         return pipe_crc_set_source(dev, pipe, source);
2960 }
2961
2962 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
2963                                      size_t len, loff_t *offp)
2964 {
2965         struct seq_file *m = file->private_data;
2966         struct drm_device *dev = m->private;
2967         char *tmpbuf;
2968         int ret;
2969
2970         if (len == 0)
2971                 return 0;
2972
2973         if (len > PAGE_SIZE - 1) {
2974                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
2975                                  PAGE_SIZE);
2976                 return -E2BIG;
2977         }
2978
2979         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
2980         if (!tmpbuf)
2981                 return -ENOMEM;
2982
2983         if (copy_from_user(tmpbuf, ubuf, len)) {
2984                 ret = -EFAULT;
2985                 goto out;
2986         }
2987         tmpbuf[len] = '\0';
2988
2989         ret = display_crc_ctl_parse(dev, tmpbuf, len);
2990
2991 out:
2992         kfree(tmpbuf);
2993         if (ret < 0)
2994                 return ret;
2995
2996         *offp += len;
2997         return len;
2998 }
2999
3000 static const struct file_operations i915_display_crc_ctl_fops = {
3001         .owner = THIS_MODULE,
3002         .open = display_crc_ctl_open,
3003         .read = seq_read,
3004         .llseek = seq_lseek,
3005         .release = single_release,
3006         .write = display_crc_ctl_write
3007 };
3008
3009 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3010 {
3011         struct drm_device *dev = m->private;
3012         int num_levels = IS_HASWELL(dev) || IS_BROADWELL(dev) ? 5 : 4;
3013         int level;
3014
3015         drm_modeset_lock_all(dev);
3016
3017         for (level = 0; level < num_levels; level++) {
3018                 unsigned int latency = wm[level];
3019
3020                 /* WM1+ latency values in 0.5us units */
3021                 if (level > 0)
3022                         latency *= 5;
3023
3024                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3025                            level, wm[level],
3026                            latency / 10, latency % 10);
3027         }
3028
3029         drm_modeset_unlock_all(dev);
3030 }
3031
3032 static int pri_wm_latency_show(struct seq_file *m, void *data)
3033 {
3034         struct drm_device *dev = m->private;
3035
3036         wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3037
3038         return 0;
3039 }
3040
3041 static int spr_wm_latency_show(struct seq_file *m, void *data)
3042 {
3043         struct drm_device *dev = m->private;
3044
3045         wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3046
3047         return 0;
3048 }
3049
3050 static int cur_wm_latency_show(struct seq_file *m, void *data)
3051 {
3052         struct drm_device *dev = m->private;
3053
3054         wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3055
3056         return 0;
3057 }
3058
3059 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3060 {
3061         struct drm_device *dev = inode->i_private;
3062
3063         if (!HAS_PCH_SPLIT(dev))
3064                 return -ENODEV;
3065
3066         return single_open(file, pri_wm_latency_show, dev);
3067 }
3068
3069 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3070 {
3071         struct drm_device *dev = inode->i_private;
3072
3073         if (!HAS_PCH_SPLIT(dev))
3074                 return -ENODEV;
3075
3076         return single_open(file, spr_wm_latency_show, dev);
3077 }
3078
3079 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3080 {
3081         struct drm_device *dev = inode->i_private;
3082
3083         if (!HAS_PCH_SPLIT(dev))
3084                 return -ENODEV;
3085
3086         return single_open(file, cur_wm_latency_show, dev);
3087 }
3088
3089 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3090                                 size_t len, loff_t *offp, uint16_t wm[5])
3091 {
3092         struct seq_file *m = file->private_data;
3093         struct drm_device *dev = m->private;
3094         uint16_t new[5] = { 0 };
3095         int num_levels = IS_HASWELL(dev) || IS_BROADWELL(dev) ? 5 : 4;
3096         int level;
3097         int ret;
3098         char tmp[32];
3099
3100         if (len >= sizeof(tmp))
3101                 return -EINVAL;
3102
3103         if (copy_from_user(tmp, ubuf, len))
3104                 return -EFAULT;
3105
3106         tmp[len] = '\0';
3107
3108         ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3109         if (ret != num_levels)
3110                 return -EINVAL;
3111
3112         drm_modeset_lock_all(dev);
3113
3114         for (level = 0; level < num_levels; level++)
3115                 wm[level] = new[level];
3116
3117         drm_modeset_unlock_all(dev);
3118
3119         return len;
3120 }
3121
3122
3123 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3124                                     size_t len, loff_t *offp)
3125 {
3126         struct seq_file *m = file->private_data;
3127         struct drm_device *dev = m->private;
3128
3129         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3130 }
3131
3132 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3133                                     size_t len, loff_t *offp)
3134 {
3135         struct seq_file *m = file->private_data;
3136         struct drm_device *dev = m->private;
3137
3138         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3139 }
3140
3141 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3142                                     size_t len, loff_t *offp)
3143 {
3144         struct seq_file *m = file->private_data;
3145         struct drm_device *dev = m->private;
3146
3147         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3148 }
3149
3150 static const struct file_operations i915_pri_wm_latency_fops = {
3151         .owner = THIS_MODULE,
3152         .open = pri_wm_latency_open,
3153         .read = seq_read,
3154         .llseek = seq_lseek,
3155         .release = single_release,
3156         .write = pri_wm_latency_write
3157 };
3158
3159 static const struct file_operations i915_spr_wm_latency_fops = {
3160         .owner = THIS_MODULE,
3161         .open = spr_wm_latency_open,
3162         .read = seq_read,
3163         .llseek = seq_lseek,
3164         .release = single_release,
3165         .write = spr_wm_latency_write
3166 };
3167
3168 static const struct file_operations i915_cur_wm_latency_fops = {
3169         .owner = THIS_MODULE,
3170         .open = cur_wm_latency_open,
3171         .read = seq_read,
3172         .llseek = seq_lseek,
3173         .release = single_release,
3174         .write = cur_wm_latency_write
3175 };
3176
3177 static int
3178 i915_wedged_get(void *data, u64 *val)
3179 {
3180         struct drm_device *dev = data;
3181         drm_i915_private_t *dev_priv = dev->dev_private;
3182
3183         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3184
3185         return 0;
3186 }
3187
3188 static int
3189 i915_wedged_set(void *data, u64 val)
3190 {
3191         struct drm_device *dev = data;
3192
3193         DRM_INFO("Manually setting wedged to %llu\n", val);
3194         i915_handle_error(dev, val);
3195
3196         return 0;
3197 }
3198
3199 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3200                         i915_wedged_get, i915_wedged_set,
3201                         "%llu\n");
3202
3203 static int
3204 i915_ring_stop_get(void *data, u64 *val)
3205 {
3206         struct drm_device *dev = data;
3207         drm_i915_private_t *dev_priv = dev->dev_private;
3208
3209         *val = dev_priv->gpu_error.stop_rings;
3210
3211         return 0;
3212 }
3213
3214 static int
3215 i915_ring_stop_set(void *data, u64 val)
3216 {
3217         struct drm_device *dev = data;
3218         struct drm_i915_private *dev_priv = dev->dev_private;
3219         int ret;
3220
3221         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3222
3223         ret = mutex_lock_interruptible(&dev->struct_mutex);
3224         if (ret)
3225                 return ret;
3226
3227         dev_priv->gpu_error.stop_rings = val;
3228         mutex_unlock(&dev->struct_mutex);
3229
3230         return 0;
3231 }
3232
3233 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3234                         i915_ring_stop_get, i915_ring_stop_set,
3235                         "0x%08llx\n");
3236
3237 static int
3238 i915_ring_missed_irq_get(void *data, u64 *val)
3239 {
3240         struct drm_device *dev = data;
3241         struct drm_i915_private *dev_priv = dev->dev_private;
3242
3243         *val = dev_priv->gpu_error.missed_irq_rings;
3244         return 0;
3245 }
3246
3247 static int
3248 i915_ring_missed_irq_set(void *data, u64 val)
3249 {
3250         struct drm_device *dev = data;
3251         struct drm_i915_private *dev_priv = dev->dev_private;
3252         int ret;
3253
3254         /* Lock against concurrent debugfs callers */
3255         ret = mutex_lock_interruptible(&dev->struct_mutex);
3256         if (ret)
3257                 return ret;
3258         dev_priv->gpu_error.missed_irq_rings = val;
3259         mutex_unlock(&dev->struct_mutex);
3260
3261         return 0;
3262 }
3263
3264 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3265                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3266                         "0x%08llx\n");
3267
3268 static int
3269 i915_ring_test_irq_get(void *data, u64 *val)
3270 {
3271         struct drm_device *dev = data;
3272         struct drm_i915_private *dev_priv = dev->dev_private;
3273
3274         *val = dev_priv->gpu_error.test_irq_rings;
3275
3276         return 0;
3277 }
3278
3279 static int
3280 i915_ring_test_irq_set(void *data, u64 val)
3281 {
3282         struct drm_device *dev = data;
3283         struct drm_i915_private *dev_priv = dev->dev_private;
3284         int ret;
3285
3286         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3287
3288         /* Lock against concurrent debugfs callers */
3289         ret = mutex_lock_interruptible(&dev->struct_mutex);
3290         if (ret)
3291                 return ret;
3292
3293         dev_priv->gpu_error.test_irq_rings = val;
3294         mutex_unlock(&dev->struct_mutex);
3295
3296         return 0;
3297 }
3298
3299 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3300                         i915_ring_test_irq_get, i915_ring_test_irq_set,
3301                         "0x%08llx\n");
3302
3303 #define DROP_UNBOUND 0x1
3304 #define DROP_BOUND 0x2
3305 #define DROP_RETIRE 0x4
3306 #define DROP_ACTIVE 0x8
3307 #define DROP_ALL (DROP_UNBOUND | \
3308                   DROP_BOUND | \
3309                   DROP_RETIRE | \
3310                   DROP_ACTIVE)
3311 static int
3312 i915_drop_caches_get(void *data, u64 *val)
3313 {
3314         *val = DROP_ALL;
3315
3316         return 0;
3317 }
3318
3319 static int
3320 i915_drop_caches_set(void *data, u64 val)
3321 {
3322         struct drm_device *dev = data;
3323         struct drm_i915_private *dev_priv = dev->dev_private;
3324         struct drm_i915_gem_object *obj, *next;
3325         struct i915_address_space *vm;
3326         struct i915_vma *vma, *x;
3327         int ret;
3328
3329         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3330
3331         /* No need to check and wait for gpu resets, only libdrm auto-restarts
3332          * on ioctls on -EAGAIN. */
3333         ret = mutex_lock_interruptible(&dev->struct_mutex);
3334         if (ret)
3335                 return ret;
3336
3337         if (val & DROP_ACTIVE) {
3338                 ret = i915_gpu_idle(dev);
3339                 if (ret)
3340                         goto unlock;
3341         }
3342
3343         if (val & (DROP_RETIRE | DROP_ACTIVE))
3344                 i915_gem_retire_requests(dev);
3345
3346         if (val & DROP_BOUND) {
3347                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3348                         list_for_each_entry_safe(vma, x, &vm->inactive_list,
3349                                                  mm_list) {
3350                                 if (vma->pin_count)
3351                                         continue;
3352
3353                                 ret = i915_vma_unbind(vma);
3354                                 if (ret)
3355                                         goto unlock;
3356                         }
3357                 }
3358         }
3359
3360         if (val & DROP_UNBOUND) {
3361                 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
3362                                          global_list)
3363                         if (obj->pages_pin_count == 0) {
3364                                 ret = i915_gem_object_put_pages(obj);
3365                                 if (ret)
3366                                         goto unlock;
3367                         }
3368         }
3369
3370 unlock:
3371         mutex_unlock(&dev->struct_mutex);
3372
3373         return ret;
3374 }
3375
3376 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3377                         i915_drop_caches_get, i915_drop_caches_set,
3378                         "0x%08llx\n");
3379
3380 static int
3381 i915_max_freq_get(void *data, u64 *val)
3382 {
3383         struct drm_device *dev = data;
3384         drm_i915_private_t *dev_priv = dev->dev_private;
3385         int ret;
3386
3387         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3388                 return -ENODEV;
3389
3390         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3391
3392         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3393         if (ret)
3394                 return ret;
3395
3396         if (IS_VALLEYVIEW(dev))
3397                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay);
3398         else
3399                 *val = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
3400         mutex_unlock(&dev_priv->rps.hw_lock);
3401
3402         return 0;
3403 }
3404
3405 static int
3406 i915_max_freq_set(void *data, u64 val)
3407 {
3408         struct drm_device *dev = data;
3409         struct drm_i915_private *dev_priv = dev->dev_private;
3410         u32 rp_state_cap, hw_max, hw_min;
3411         int ret;
3412
3413         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3414                 return -ENODEV;
3415
3416         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3417
3418         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3419
3420         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3421         if (ret)
3422                 return ret;
3423
3424         /*
3425          * Turbo will still be enabled, but won't go above the set value.
3426          */
3427         if (IS_VALLEYVIEW(dev)) {
3428                 val = vlv_freq_opcode(dev_priv, val);
3429
3430                 hw_max = valleyview_rps_max_freq(dev_priv);
3431                 hw_min = valleyview_rps_min_freq(dev_priv);
3432         } else {
3433                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3434
3435                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3436                 hw_max = dev_priv->rps.hw_max;
3437                 hw_min = (rp_state_cap >> 16) & 0xff;
3438         }
3439
3440         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_delay) {
3441                 mutex_unlock(&dev_priv->rps.hw_lock);
3442                 return -EINVAL;
3443         }
3444
3445         dev_priv->rps.max_delay = val;
3446
3447         if (IS_VALLEYVIEW(dev))
3448                 valleyview_set_rps(dev, val);
3449         else
3450                 gen6_set_rps(dev, val);
3451
3452         mutex_unlock(&dev_priv->rps.hw_lock);
3453
3454         return 0;
3455 }
3456
3457 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3458                         i915_max_freq_get, i915_max_freq_set,
3459                         "%llu\n");
3460
3461 static int
3462 i915_min_freq_get(void *data, u64 *val)
3463 {
3464         struct drm_device *dev = data;
3465         drm_i915_private_t *dev_priv = dev->dev_private;
3466         int ret;
3467
3468         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3469                 return -ENODEV;
3470
3471         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3472
3473         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3474         if (ret)
3475                 return ret;
3476
3477         if (IS_VALLEYVIEW(dev))
3478                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay);
3479         else
3480                 *val = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
3481         mutex_unlock(&dev_priv->rps.hw_lock);
3482
3483         return 0;
3484 }
3485
3486 static int
3487 i915_min_freq_set(void *data, u64 val)
3488 {
3489         struct drm_device *dev = data;
3490         struct drm_i915_private *dev_priv = dev->dev_private;
3491         u32 rp_state_cap, hw_max, hw_min;
3492         int ret;
3493
3494         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3495                 return -ENODEV;
3496
3497         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3498
3499         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3500
3501         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3502         if (ret)
3503                 return ret;
3504
3505         /*
3506          * Turbo will still be enabled, but won't go below the set value.
3507          */
3508         if (IS_VALLEYVIEW(dev)) {
3509                 val = vlv_freq_opcode(dev_priv, val);
3510
3511                 hw_max = valleyview_rps_max_freq(dev_priv);
3512                 hw_min = valleyview_rps_min_freq(dev_priv);
3513         } else {
3514                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3515
3516                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3517                 hw_max = dev_priv->rps.hw_max;
3518                 hw_min = (rp_state_cap >> 16) & 0xff;
3519         }
3520
3521         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) {
3522                 mutex_unlock(&dev_priv->rps.hw_lock);
3523                 return -EINVAL;
3524         }
3525
3526         dev_priv->rps.min_delay = val;
3527
3528         if (IS_VALLEYVIEW(dev))
3529                 valleyview_set_rps(dev, val);
3530         else
3531                 gen6_set_rps(dev, val);
3532
3533         mutex_unlock(&dev_priv->rps.hw_lock);
3534
3535         return 0;
3536 }
3537
3538 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
3539                         i915_min_freq_get, i915_min_freq_set,
3540                         "%llu\n");
3541
3542 static int
3543 i915_cache_sharing_get(void *data, u64 *val)
3544 {
3545         struct drm_device *dev = data;
3546         drm_i915_private_t *dev_priv = dev->dev_private;
3547         u32 snpcr;
3548         int ret;
3549
3550         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3551                 return -ENODEV;
3552
3553         ret = mutex_lock_interruptible(&dev->struct_mutex);
3554         if (ret)
3555                 return ret;
3556         intel_runtime_pm_get(dev_priv);
3557
3558         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3559
3560         intel_runtime_pm_put(dev_priv);
3561         mutex_unlock(&dev_priv->dev->struct_mutex);
3562
3563         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
3564
3565         return 0;
3566 }
3567
3568 static int
3569 i915_cache_sharing_set(void *data, u64 val)
3570 {
3571         struct drm_device *dev = data;
3572         struct drm_i915_private *dev_priv = dev->dev_private;
3573         u32 snpcr;
3574
3575         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3576                 return -ENODEV;
3577
3578         if (val > 3)
3579                 return -EINVAL;
3580
3581         intel_runtime_pm_get(dev_priv);
3582         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
3583
3584         /* Update the cache sharing policy here as well */
3585         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3586         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3587         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
3588         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3589
3590         intel_runtime_pm_put(dev_priv);
3591         return 0;
3592 }
3593
3594 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
3595                         i915_cache_sharing_get, i915_cache_sharing_set,
3596                         "%llu\n");
3597
3598 static int i915_forcewake_open(struct inode *inode, struct file *file)
3599 {
3600         struct drm_device *dev = inode->i_private;
3601         struct drm_i915_private *dev_priv = dev->dev_private;
3602
3603         if (INTEL_INFO(dev)->gen < 6)
3604                 return 0;
3605
3606         intel_runtime_pm_get(dev_priv);
3607         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3608
3609         return 0;
3610 }
3611
3612 static int i915_forcewake_release(struct inode *inode, struct file *file)
3613 {
3614         struct drm_device *dev = inode->i_private;
3615         struct drm_i915_private *dev_priv = dev->dev_private;
3616
3617         if (INTEL_INFO(dev)->gen < 6)
3618                 return 0;
3619
3620         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3621         intel_runtime_pm_put(dev_priv);
3622
3623         return 0;
3624 }
3625
3626 static const struct file_operations i915_forcewake_fops = {
3627         .owner = THIS_MODULE,
3628         .open = i915_forcewake_open,
3629         .release = i915_forcewake_release,
3630 };
3631
3632 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
3633 {
3634         struct drm_device *dev = minor->dev;
3635         struct dentry *ent;
3636
3637         ent = debugfs_create_file("i915_forcewake_user",
3638                                   S_IRUSR,
3639                                   root, dev,
3640                                   &i915_forcewake_fops);
3641         if (!ent)
3642                 return -ENOMEM;
3643
3644         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
3645 }
3646
3647 static int i915_debugfs_create(struct dentry *root,
3648                                struct drm_minor *minor,
3649                                const char *name,
3650                                const struct file_operations *fops)
3651 {
3652         struct drm_device *dev = minor->dev;
3653         struct dentry *ent;
3654
3655         ent = debugfs_create_file(name,
3656                                   S_IRUGO | S_IWUSR,
3657                                   root, dev,
3658                                   fops);
3659         if (!ent)
3660                 return -ENOMEM;
3661
3662         return drm_add_fake_info_node(minor, ent, fops);
3663 }
3664
3665 static const struct drm_info_list i915_debugfs_list[] = {
3666         {"i915_capabilities", i915_capabilities, 0},
3667         {"i915_gem_objects", i915_gem_object_info, 0},
3668         {"i915_gem_gtt", i915_gem_gtt_info, 0},
3669         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
3670         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
3671         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
3672         {"i915_gem_stolen", i915_gem_stolen_list_info },
3673         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
3674         {"i915_gem_request", i915_gem_request_info, 0},
3675         {"i915_gem_seqno", i915_gem_seqno_info, 0},
3676         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
3677         {"i915_gem_interrupt", i915_interrupt_info, 0},
3678         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
3679         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
3680         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
3681         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
3682         {"i915_rstdby_delays", i915_rstdby_delays, 0},
3683         {"i915_cur_delayinfo", i915_cur_delayinfo, 0},
3684         {"i915_delayfreq_table", i915_delayfreq_table, 0},
3685         {"i915_inttoext_table", i915_inttoext_table, 0},
3686         {"i915_drpc_info", i915_drpc_info, 0},
3687         {"i915_emon_status", i915_emon_status, 0},
3688         {"i915_ring_freq_table", i915_ring_freq_table, 0},
3689         {"i915_gfxec", i915_gfxec, 0},
3690         {"i915_fbc_status", i915_fbc_status, 0},
3691         {"i915_ips_status", i915_ips_status, 0},
3692         {"i915_sr_status", i915_sr_status, 0},
3693         {"i915_opregion", i915_opregion, 0},
3694         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
3695         {"i915_context_status", i915_context_status, 0},
3696         {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
3697         {"i915_swizzle_info", i915_swizzle_info, 0},
3698         {"i915_ppgtt_info", i915_ppgtt_info, 0},
3699         {"i915_dpio", i915_dpio_info, 0},
3700         {"i915_llc", i915_llc, 0},
3701         {"i915_edp_psr_status", i915_edp_psr_status, 0},
3702         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
3703         {"i915_energy_uJ", i915_energy_uJ, 0},
3704         {"i915_pc8_status", i915_pc8_status, 0},
3705         {"i915_power_domain_info", i915_power_domain_info, 0},
3706         {"i915_display_info", i915_display_info, 0},
3707 };
3708 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
3709
3710 static const struct i915_debugfs_files {
3711         const char *name;
3712         const struct file_operations *fops;
3713 } i915_debugfs_files[] = {
3714         {"i915_wedged", &i915_wedged_fops},
3715         {"i915_max_freq", &i915_max_freq_fops},
3716         {"i915_min_freq", &i915_min_freq_fops},
3717         {"i915_cache_sharing", &i915_cache_sharing_fops},
3718         {"i915_ring_stop", &i915_ring_stop_fops},
3719         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
3720         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
3721         {"i915_gem_drop_caches", &i915_drop_caches_fops},
3722         {"i915_error_state", &i915_error_state_fops},
3723         {"i915_next_seqno", &i915_next_seqno_fops},
3724         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
3725         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
3726         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
3727         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
3728 };
3729
3730 void intel_display_crc_init(struct drm_device *dev)
3731 {
3732         struct drm_i915_private *dev_priv = dev->dev_private;
3733         enum pipe pipe;
3734
3735         for_each_pipe(pipe) {
3736                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3737
3738                 pipe_crc->opened = false;
3739                 spin_lock_init(&pipe_crc->lock);
3740                 init_waitqueue_head(&pipe_crc->wq);
3741         }
3742 }
3743
3744 int i915_debugfs_init(struct drm_minor *minor)
3745 {
3746         int ret, i;
3747
3748         ret = i915_forcewake_create(minor->debugfs_root, minor);
3749         if (ret)
3750                 return ret;
3751
3752         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3753                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
3754                 if (ret)
3755                         return ret;
3756         }
3757
3758         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3759                 ret = i915_debugfs_create(minor->debugfs_root, minor,
3760                                           i915_debugfs_files[i].name,
3761                                           i915_debugfs_files[i].fops);
3762                 if (ret)
3763                         return ret;
3764         }
3765
3766         return drm_debugfs_create_files(i915_debugfs_list,
3767                                         I915_DEBUGFS_ENTRIES,
3768                                         minor->debugfs_root, minor);
3769 }
3770
3771 void i915_debugfs_cleanup(struct drm_minor *minor)
3772 {
3773         int i;
3774
3775         drm_debugfs_remove_files(i915_debugfs_list,
3776                                  I915_DEBUGFS_ENTRIES, minor);
3777
3778         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
3779                                  1, minor);
3780
3781         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3782                 struct drm_info_list *info_list =
3783                         (struct drm_info_list *)&i915_pipe_crc_data[i];
3784
3785                 drm_debugfs_remove_files(info_list, 1, minor);
3786         }
3787
3788         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3789                 struct drm_info_list *info_list =
3790                         (struct drm_info_list *) i915_debugfs_files[i].fops;
3791
3792                 drm_debugfs_remove_files(info_list, 1, minor);
3793         }
3794 }