]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
Merge branch 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (obj->pin_display)
100                 return "p";
101         else
102                 return " ";
103 }
104
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107         switch (obj->tiling_mode) {
108         default:
109         case I915_TILING_NONE: return " ";
110         case I915_TILING_X: return "X";
111         case I915_TILING_Y: return "Y";
112         }
113 }
114
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119
120 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
121 {
122         u64 size = 0;
123         struct i915_vma *vma;
124
125         list_for_each_entry(vma, &obj->vma_list, vma_link) {
126                 if (i915_is_ggtt(vma->vm) &&
127                     drm_mm_node_allocated(&vma->node))
128                         size += vma->node.size;
129         }
130
131         return size;
132 }
133
134 static void
135 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
136 {
137         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
138         struct intel_engine_cs *ring;
139         struct i915_vma *vma;
140         int pin_count = 0;
141         int i;
142
143         seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
144                    &obj->base,
145                    obj->active ? "*" : " ",
146                    get_pin_flag(obj),
147                    get_tiling_flag(obj),
148                    get_global_flag(obj),
149                    obj->base.size / 1024,
150                    obj->base.read_domains,
151                    obj->base.write_domain);
152         for_each_ring(ring, dev_priv, i)
153                 seq_printf(m, "%x ",
154                                 i915_gem_request_get_seqno(obj->last_read_req[i]));
155         seq_printf(m, "] %x %x%s%s%s",
156                    i915_gem_request_get_seqno(obj->last_write_req),
157                    i915_gem_request_get_seqno(obj->last_fenced_req),
158                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
159                    obj->dirty ? " dirty" : "",
160                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
161         if (obj->base.name)
162                 seq_printf(m, " (name: %d)", obj->base.name);
163         list_for_each_entry(vma, &obj->vma_list, vma_link) {
164                 if (vma->pin_count > 0)
165                         pin_count++;
166         }
167         seq_printf(m, " (pinned x %d)", pin_count);
168         if (obj->pin_display)
169                 seq_printf(m, " (display)");
170         if (obj->fence_reg != I915_FENCE_REG_NONE)
171                 seq_printf(m, " (fence: %d)", obj->fence_reg);
172         list_for_each_entry(vma, &obj->vma_list, vma_link) {
173                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
174                            i915_is_ggtt(vma->vm) ? "g" : "pp",
175                            vma->node.start, vma->node.size);
176                 if (i915_is_ggtt(vma->vm))
177                         seq_printf(m, ", type: %u)", vma->ggtt_view.type);
178                 else
179                         seq_puts(m, ")");
180         }
181         if (obj->stolen)
182                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
183         if (obj->pin_display || obj->fault_mappable) {
184                 char s[3], *t = s;
185                 if (obj->pin_display)
186                         *t++ = 'p';
187                 if (obj->fault_mappable)
188                         *t++ = 'f';
189                 *t = '\0';
190                 seq_printf(m, " (%s mappable)", s);
191         }
192         if (obj->last_write_req != NULL)
193                 seq_printf(m, " (%s)",
194                            i915_gem_request_get_ring(obj->last_write_req)->name);
195         if (obj->frontbuffer_bits)
196                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
197 }
198
199 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
200 {
201         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
202         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
203         seq_putc(m, ' ');
204 }
205
206 static int i915_gem_object_list_info(struct seq_file *m, void *data)
207 {
208         struct drm_info_node *node = m->private;
209         uintptr_t list = (uintptr_t) node->info_ent->data;
210         struct list_head *head;
211         struct drm_device *dev = node->minor->dev;
212         struct drm_i915_private *dev_priv = dev->dev_private;
213         struct i915_address_space *vm = &dev_priv->gtt.base;
214         struct i915_vma *vma;
215         u64 total_obj_size, total_gtt_size;
216         int count, ret;
217
218         ret = mutex_lock_interruptible(&dev->struct_mutex);
219         if (ret)
220                 return ret;
221
222         /* FIXME: the user of this interface might want more than just GGTT */
223         switch (list) {
224         case ACTIVE_LIST:
225                 seq_puts(m, "Active:\n");
226                 head = &vm->active_list;
227                 break;
228         case INACTIVE_LIST:
229                 seq_puts(m, "Inactive:\n");
230                 head = &vm->inactive_list;
231                 break;
232         default:
233                 mutex_unlock(&dev->struct_mutex);
234                 return -EINVAL;
235         }
236
237         total_obj_size = total_gtt_size = count = 0;
238         list_for_each_entry(vma, head, mm_list) {
239                 seq_printf(m, "   ");
240                 describe_obj(m, vma->obj);
241                 seq_printf(m, "\n");
242                 total_obj_size += vma->obj->base.size;
243                 total_gtt_size += vma->node.size;
244                 count++;
245         }
246         mutex_unlock(&dev->struct_mutex);
247
248         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
249                    count, total_obj_size, total_gtt_size);
250         return 0;
251 }
252
253 static int obj_rank_by_stolen(void *priv,
254                               struct list_head *A, struct list_head *B)
255 {
256         struct drm_i915_gem_object *a =
257                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
258         struct drm_i915_gem_object *b =
259                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
260
261         return a->stolen->start - b->stolen->start;
262 }
263
264 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
265 {
266         struct drm_info_node *node = m->private;
267         struct drm_device *dev = node->minor->dev;
268         struct drm_i915_private *dev_priv = dev->dev_private;
269         struct drm_i915_gem_object *obj;
270         u64 total_obj_size, total_gtt_size;
271         LIST_HEAD(stolen);
272         int count, ret;
273
274         ret = mutex_lock_interruptible(&dev->struct_mutex);
275         if (ret)
276                 return ret;
277
278         total_obj_size = total_gtt_size = count = 0;
279         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
280                 if (obj->stolen == NULL)
281                         continue;
282
283                 list_add(&obj->obj_exec_link, &stolen);
284
285                 total_obj_size += obj->base.size;
286                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
287                 count++;
288         }
289         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
290                 if (obj->stolen == NULL)
291                         continue;
292
293                 list_add(&obj->obj_exec_link, &stolen);
294
295                 total_obj_size += obj->base.size;
296                 count++;
297         }
298         list_sort(NULL, &stolen, obj_rank_by_stolen);
299         seq_puts(m, "Stolen:\n");
300         while (!list_empty(&stolen)) {
301                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
302                 seq_puts(m, "   ");
303                 describe_obj(m, obj);
304                 seq_putc(m, '\n');
305                 list_del_init(&obj->obj_exec_link);
306         }
307         mutex_unlock(&dev->struct_mutex);
308
309         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
310                    count, total_obj_size, total_gtt_size);
311         return 0;
312 }
313
314 #define count_objects(list, member) do { \
315         list_for_each_entry(obj, list, member) { \
316                 size += i915_gem_obj_total_ggtt_size(obj); \
317                 ++count; \
318                 if (obj->map_and_fenceable) { \
319                         mappable_size += i915_gem_obj_ggtt_size(obj); \
320                         ++mappable_count; \
321                 } \
322         } \
323 } while (0)
324
325 struct file_stats {
326         struct drm_i915_file_private *file_priv;
327         unsigned long count;
328         u64 total, unbound;
329         u64 global, shared;
330         u64 active, inactive;
331 };
332
333 static int per_file_stats(int id, void *ptr, void *data)
334 {
335         struct drm_i915_gem_object *obj = ptr;
336         struct file_stats *stats = data;
337         struct i915_vma *vma;
338
339         stats->count++;
340         stats->total += obj->base.size;
341
342         if (obj->base.name || obj->base.dma_buf)
343                 stats->shared += obj->base.size;
344
345         if (USES_FULL_PPGTT(obj->base.dev)) {
346                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
347                         struct i915_hw_ppgtt *ppgtt;
348
349                         if (!drm_mm_node_allocated(&vma->node))
350                                 continue;
351
352                         if (i915_is_ggtt(vma->vm)) {
353                                 stats->global += obj->base.size;
354                                 continue;
355                         }
356
357                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
358                         if (ppgtt->file_priv != stats->file_priv)
359                                 continue;
360
361                         if (obj->active) /* XXX per-vma statistic */
362                                 stats->active += obj->base.size;
363                         else
364                                 stats->inactive += obj->base.size;
365
366                         return 0;
367                 }
368         } else {
369                 if (i915_gem_obj_ggtt_bound(obj)) {
370                         stats->global += obj->base.size;
371                         if (obj->active)
372                                 stats->active += obj->base.size;
373                         else
374                                 stats->inactive += obj->base.size;
375                         return 0;
376                 }
377         }
378
379         if (!list_empty(&obj->global_list))
380                 stats->unbound += obj->base.size;
381
382         return 0;
383 }
384
385 #define print_file_stats(m, name, stats) do { \
386         if (stats.count) \
387                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
388                            name, \
389                            stats.count, \
390                            stats.total, \
391                            stats.active, \
392                            stats.inactive, \
393                            stats.global, \
394                            stats.shared, \
395                            stats.unbound); \
396 } while (0)
397
398 static void print_batch_pool_stats(struct seq_file *m,
399                                    struct drm_i915_private *dev_priv)
400 {
401         struct drm_i915_gem_object *obj;
402         struct file_stats stats;
403         struct intel_engine_cs *ring;
404         int i, j;
405
406         memset(&stats, 0, sizeof(stats));
407
408         for_each_ring(ring, dev_priv, i) {
409                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
410                         list_for_each_entry(obj,
411                                             &ring->batch_pool.cache_list[j],
412                                             batch_pool_link)
413                                 per_file_stats(0, obj, &stats);
414                 }
415         }
416
417         print_file_stats(m, "[k]batch pool", stats);
418 }
419
420 #define count_vmas(list, member) do { \
421         list_for_each_entry(vma, list, member) { \
422                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
423                 ++count; \
424                 if (vma->obj->map_and_fenceable) { \
425                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
426                         ++mappable_count; \
427                 } \
428         } \
429 } while (0)
430
431 static int i915_gem_object_info(struct seq_file *m, void* data)
432 {
433         struct drm_info_node *node = m->private;
434         struct drm_device *dev = node->minor->dev;
435         struct drm_i915_private *dev_priv = dev->dev_private;
436         u32 count, mappable_count, purgeable_count;
437         u64 size, mappable_size, purgeable_size;
438         struct drm_i915_gem_object *obj;
439         struct i915_address_space *vm = &dev_priv->gtt.base;
440         struct drm_file *file;
441         struct i915_vma *vma;
442         int ret;
443
444         ret = mutex_lock_interruptible(&dev->struct_mutex);
445         if (ret)
446                 return ret;
447
448         seq_printf(m, "%u objects, %zu bytes\n",
449                    dev_priv->mm.object_count,
450                    dev_priv->mm.object_memory);
451
452         size = count = mappable_size = mappable_count = 0;
453         count_objects(&dev_priv->mm.bound_list, global_list);
454         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
455                    count, mappable_count, size, mappable_size);
456
457         size = count = mappable_size = mappable_count = 0;
458         count_vmas(&vm->active_list, mm_list);
459         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
460                    count, mappable_count, size, mappable_size);
461
462         size = count = mappable_size = mappable_count = 0;
463         count_vmas(&vm->inactive_list, mm_list);
464         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
465                    count, mappable_count, size, mappable_size);
466
467         size = count = purgeable_size = purgeable_count = 0;
468         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
469                 size += obj->base.size, ++count;
470                 if (obj->madv == I915_MADV_DONTNEED)
471                         purgeable_size += obj->base.size, ++purgeable_count;
472         }
473         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
474
475         size = count = mappable_size = mappable_count = 0;
476         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
477                 if (obj->fault_mappable) {
478                         size += i915_gem_obj_ggtt_size(obj);
479                         ++count;
480                 }
481                 if (obj->pin_display) {
482                         mappable_size += i915_gem_obj_ggtt_size(obj);
483                         ++mappable_count;
484                 }
485                 if (obj->madv == I915_MADV_DONTNEED) {
486                         purgeable_size += obj->base.size;
487                         ++purgeable_count;
488                 }
489         }
490         seq_printf(m, "%u purgeable objects, %llu bytes\n",
491                    purgeable_count, purgeable_size);
492         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
493                    mappable_count, mappable_size);
494         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
495                    count, size);
496
497         seq_printf(m, "%llu [%llu] gtt total\n",
498                    dev_priv->gtt.base.total,
499                    (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
500
501         seq_putc(m, '\n');
502         print_batch_pool_stats(m, dev_priv);
503         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
504                 struct file_stats stats;
505                 struct task_struct *task;
506
507                 memset(&stats, 0, sizeof(stats));
508                 stats.file_priv = file->driver_priv;
509                 spin_lock(&file->table_lock);
510                 idr_for_each(&file->object_idr, per_file_stats, &stats);
511                 spin_unlock(&file->table_lock);
512                 /*
513                  * Although we have a valid reference on file->pid, that does
514                  * not guarantee that the task_struct who called get_pid() is
515                  * still alive (e.g. get_pid(current) => fork() => exit()).
516                  * Therefore, we need to protect this ->comm access using RCU.
517                  */
518                 rcu_read_lock();
519                 task = pid_task(file->pid, PIDTYPE_PID);
520                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
521                 rcu_read_unlock();
522         }
523
524         mutex_unlock(&dev->struct_mutex);
525
526         return 0;
527 }
528
529 static int i915_gem_gtt_info(struct seq_file *m, void *data)
530 {
531         struct drm_info_node *node = m->private;
532         struct drm_device *dev = node->minor->dev;
533         uintptr_t list = (uintptr_t) node->info_ent->data;
534         struct drm_i915_private *dev_priv = dev->dev_private;
535         struct drm_i915_gem_object *obj;
536         u64 total_obj_size, total_gtt_size;
537         int count, ret;
538
539         ret = mutex_lock_interruptible(&dev->struct_mutex);
540         if (ret)
541                 return ret;
542
543         total_obj_size = total_gtt_size = count = 0;
544         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
545                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
546                         continue;
547
548                 seq_puts(m, "   ");
549                 describe_obj(m, obj);
550                 seq_putc(m, '\n');
551                 total_obj_size += obj->base.size;
552                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
553                 count++;
554         }
555
556         mutex_unlock(&dev->struct_mutex);
557
558         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
559                    count, total_obj_size, total_gtt_size);
560
561         return 0;
562 }
563
564 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
565 {
566         struct drm_info_node *node = m->private;
567         struct drm_device *dev = node->minor->dev;
568         struct drm_i915_private *dev_priv = dev->dev_private;
569         struct intel_crtc *crtc;
570         int ret;
571
572         ret = mutex_lock_interruptible(&dev->struct_mutex);
573         if (ret)
574                 return ret;
575
576         for_each_intel_crtc(dev, crtc) {
577                 const char pipe = pipe_name(crtc->pipe);
578                 const char plane = plane_name(crtc->plane);
579                 struct intel_unpin_work *work;
580
581                 spin_lock_irq(&dev->event_lock);
582                 work = crtc->unpin_work;
583                 if (work == NULL) {
584                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
585                                    pipe, plane);
586                 } else {
587                         u32 addr;
588
589                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
590                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
591                                            pipe, plane);
592                         } else {
593                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
594                                            pipe, plane);
595                         }
596                         if (work->flip_queued_req) {
597                                 struct intel_engine_cs *ring =
598                                         i915_gem_request_get_ring(work->flip_queued_req);
599
600                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
601                                            ring->name,
602                                            i915_gem_request_get_seqno(work->flip_queued_req),
603                                            dev_priv->next_seqno,
604                                            ring->get_seqno(ring, true),
605                                            i915_gem_request_completed(work->flip_queued_req, true));
606                         } else
607                                 seq_printf(m, "Flip not associated with any ring\n");
608                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
609                                    work->flip_queued_vblank,
610                                    work->flip_ready_vblank,
611                                    drm_crtc_vblank_count(&crtc->base));
612                         if (work->enable_stall_check)
613                                 seq_puts(m, "Stall check enabled, ");
614                         else
615                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
616                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
617
618                         if (INTEL_INFO(dev)->gen >= 4)
619                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
620                         else
621                                 addr = I915_READ(DSPADDR(crtc->plane));
622                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
623
624                         if (work->pending_flip_obj) {
625                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
626                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
627                         }
628                 }
629                 spin_unlock_irq(&dev->event_lock);
630         }
631
632         mutex_unlock(&dev->struct_mutex);
633
634         return 0;
635 }
636
637 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
638 {
639         struct drm_info_node *node = m->private;
640         struct drm_device *dev = node->minor->dev;
641         struct drm_i915_private *dev_priv = dev->dev_private;
642         struct drm_i915_gem_object *obj;
643         struct intel_engine_cs *ring;
644         int total = 0;
645         int ret, i, j;
646
647         ret = mutex_lock_interruptible(&dev->struct_mutex);
648         if (ret)
649                 return ret;
650
651         for_each_ring(ring, dev_priv, i) {
652                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
653                         int count;
654
655                         count = 0;
656                         list_for_each_entry(obj,
657                                             &ring->batch_pool.cache_list[j],
658                                             batch_pool_link)
659                                 count++;
660                         seq_printf(m, "%s cache[%d]: %d objects\n",
661                                    ring->name, j, count);
662
663                         list_for_each_entry(obj,
664                                             &ring->batch_pool.cache_list[j],
665                                             batch_pool_link) {
666                                 seq_puts(m, "   ");
667                                 describe_obj(m, obj);
668                                 seq_putc(m, '\n');
669                         }
670
671                         total += count;
672                 }
673         }
674
675         seq_printf(m, "total: %d\n", total);
676
677         mutex_unlock(&dev->struct_mutex);
678
679         return 0;
680 }
681
682 static int i915_gem_request_info(struct seq_file *m, void *data)
683 {
684         struct drm_info_node *node = m->private;
685         struct drm_device *dev = node->minor->dev;
686         struct drm_i915_private *dev_priv = dev->dev_private;
687         struct intel_engine_cs *ring;
688         struct drm_i915_gem_request *req;
689         int ret, any, i;
690
691         ret = mutex_lock_interruptible(&dev->struct_mutex);
692         if (ret)
693                 return ret;
694
695         any = 0;
696         for_each_ring(ring, dev_priv, i) {
697                 int count;
698
699                 count = 0;
700                 list_for_each_entry(req, &ring->request_list, list)
701                         count++;
702                 if (count == 0)
703                         continue;
704
705                 seq_printf(m, "%s requests: %d\n", ring->name, count);
706                 list_for_each_entry(req, &ring->request_list, list) {
707                         struct task_struct *task;
708
709                         rcu_read_lock();
710                         task = NULL;
711                         if (req->pid)
712                                 task = pid_task(req->pid, PIDTYPE_PID);
713                         seq_printf(m, "    %x @ %d: %s [%d]\n",
714                                    req->seqno,
715                                    (int) (jiffies - req->emitted_jiffies),
716                                    task ? task->comm : "<unknown>",
717                                    task ? task->pid : -1);
718                         rcu_read_unlock();
719                 }
720
721                 any++;
722         }
723         mutex_unlock(&dev->struct_mutex);
724
725         if (any == 0)
726                 seq_puts(m, "No requests\n");
727
728         return 0;
729 }
730
731 static void i915_ring_seqno_info(struct seq_file *m,
732                                  struct intel_engine_cs *ring)
733 {
734         if (ring->get_seqno) {
735                 seq_printf(m, "Current sequence (%s): %x\n",
736                            ring->name, ring->get_seqno(ring, false));
737         }
738 }
739
740 static int i915_gem_seqno_info(struct seq_file *m, void *data)
741 {
742         struct drm_info_node *node = m->private;
743         struct drm_device *dev = node->minor->dev;
744         struct drm_i915_private *dev_priv = dev->dev_private;
745         struct intel_engine_cs *ring;
746         int ret, i;
747
748         ret = mutex_lock_interruptible(&dev->struct_mutex);
749         if (ret)
750                 return ret;
751         intel_runtime_pm_get(dev_priv);
752
753         for_each_ring(ring, dev_priv, i)
754                 i915_ring_seqno_info(m, ring);
755
756         intel_runtime_pm_put(dev_priv);
757         mutex_unlock(&dev->struct_mutex);
758
759         return 0;
760 }
761
762
763 static int i915_interrupt_info(struct seq_file *m, void *data)
764 {
765         struct drm_info_node *node = m->private;
766         struct drm_device *dev = node->minor->dev;
767         struct drm_i915_private *dev_priv = dev->dev_private;
768         struct intel_engine_cs *ring;
769         int ret, i, pipe;
770
771         ret = mutex_lock_interruptible(&dev->struct_mutex);
772         if (ret)
773                 return ret;
774         intel_runtime_pm_get(dev_priv);
775
776         if (IS_CHERRYVIEW(dev)) {
777                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
778                            I915_READ(GEN8_MASTER_IRQ));
779
780                 seq_printf(m, "Display IER:\t%08x\n",
781                            I915_READ(VLV_IER));
782                 seq_printf(m, "Display IIR:\t%08x\n",
783                            I915_READ(VLV_IIR));
784                 seq_printf(m, "Display IIR_RW:\t%08x\n",
785                            I915_READ(VLV_IIR_RW));
786                 seq_printf(m, "Display IMR:\t%08x\n",
787                            I915_READ(VLV_IMR));
788                 for_each_pipe(dev_priv, pipe)
789                         seq_printf(m, "Pipe %c stat:\t%08x\n",
790                                    pipe_name(pipe),
791                                    I915_READ(PIPESTAT(pipe)));
792
793                 seq_printf(m, "Port hotplug:\t%08x\n",
794                            I915_READ(PORT_HOTPLUG_EN));
795                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
796                            I915_READ(VLV_DPFLIPSTAT));
797                 seq_printf(m, "DPINVGTT:\t%08x\n",
798                            I915_READ(DPINVGTT));
799
800                 for (i = 0; i < 4; i++) {
801                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
802                                    i, I915_READ(GEN8_GT_IMR(i)));
803                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
804                                    i, I915_READ(GEN8_GT_IIR(i)));
805                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
806                                    i, I915_READ(GEN8_GT_IER(i)));
807                 }
808
809                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
810                            I915_READ(GEN8_PCU_IMR));
811                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
812                            I915_READ(GEN8_PCU_IIR));
813                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
814                            I915_READ(GEN8_PCU_IER));
815         } else if (INTEL_INFO(dev)->gen >= 8) {
816                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
817                            I915_READ(GEN8_MASTER_IRQ));
818
819                 for (i = 0; i < 4; i++) {
820                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
821                                    i, I915_READ(GEN8_GT_IMR(i)));
822                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
823                                    i, I915_READ(GEN8_GT_IIR(i)));
824                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
825                                    i, I915_READ(GEN8_GT_IER(i)));
826                 }
827
828                 for_each_pipe(dev_priv, pipe) {
829                         if (!intel_display_power_is_enabled(dev_priv,
830                                                 POWER_DOMAIN_PIPE(pipe))) {
831                                 seq_printf(m, "Pipe %c power disabled\n",
832                                            pipe_name(pipe));
833                                 continue;
834                         }
835                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
836                                    pipe_name(pipe),
837                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
838                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
839                                    pipe_name(pipe),
840                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
841                         seq_printf(m, "Pipe %c IER:\t%08x\n",
842                                    pipe_name(pipe),
843                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
844                 }
845
846                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
847                            I915_READ(GEN8_DE_PORT_IMR));
848                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
849                            I915_READ(GEN8_DE_PORT_IIR));
850                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
851                            I915_READ(GEN8_DE_PORT_IER));
852
853                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
854                            I915_READ(GEN8_DE_MISC_IMR));
855                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
856                            I915_READ(GEN8_DE_MISC_IIR));
857                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
858                            I915_READ(GEN8_DE_MISC_IER));
859
860                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
861                            I915_READ(GEN8_PCU_IMR));
862                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
863                            I915_READ(GEN8_PCU_IIR));
864                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
865                            I915_READ(GEN8_PCU_IER));
866         } else if (IS_VALLEYVIEW(dev)) {
867                 seq_printf(m, "Display IER:\t%08x\n",
868                            I915_READ(VLV_IER));
869                 seq_printf(m, "Display IIR:\t%08x\n",
870                            I915_READ(VLV_IIR));
871                 seq_printf(m, "Display IIR_RW:\t%08x\n",
872                            I915_READ(VLV_IIR_RW));
873                 seq_printf(m, "Display IMR:\t%08x\n",
874                            I915_READ(VLV_IMR));
875                 for_each_pipe(dev_priv, pipe)
876                         seq_printf(m, "Pipe %c stat:\t%08x\n",
877                                    pipe_name(pipe),
878                                    I915_READ(PIPESTAT(pipe)));
879
880                 seq_printf(m, "Master IER:\t%08x\n",
881                            I915_READ(VLV_MASTER_IER));
882
883                 seq_printf(m, "Render IER:\t%08x\n",
884                            I915_READ(GTIER));
885                 seq_printf(m, "Render IIR:\t%08x\n",
886                            I915_READ(GTIIR));
887                 seq_printf(m, "Render IMR:\t%08x\n",
888                            I915_READ(GTIMR));
889
890                 seq_printf(m, "PM IER:\t\t%08x\n",
891                            I915_READ(GEN6_PMIER));
892                 seq_printf(m, "PM IIR:\t\t%08x\n",
893                            I915_READ(GEN6_PMIIR));
894                 seq_printf(m, "PM IMR:\t\t%08x\n",
895                            I915_READ(GEN6_PMIMR));
896
897                 seq_printf(m, "Port hotplug:\t%08x\n",
898                            I915_READ(PORT_HOTPLUG_EN));
899                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
900                            I915_READ(VLV_DPFLIPSTAT));
901                 seq_printf(m, "DPINVGTT:\t%08x\n",
902                            I915_READ(DPINVGTT));
903
904         } else if (!HAS_PCH_SPLIT(dev)) {
905                 seq_printf(m, "Interrupt enable:    %08x\n",
906                            I915_READ(IER));
907                 seq_printf(m, "Interrupt identity:  %08x\n",
908                            I915_READ(IIR));
909                 seq_printf(m, "Interrupt mask:      %08x\n",
910                            I915_READ(IMR));
911                 for_each_pipe(dev_priv, pipe)
912                         seq_printf(m, "Pipe %c stat:         %08x\n",
913                                    pipe_name(pipe),
914                                    I915_READ(PIPESTAT(pipe)));
915         } else {
916                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
917                            I915_READ(DEIER));
918                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
919                            I915_READ(DEIIR));
920                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
921                            I915_READ(DEIMR));
922                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
923                            I915_READ(SDEIER));
924                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
925                            I915_READ(SDEIIR));
926                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
927                            I915_READ(SDEIMR));
928                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
929                            I915_READ(GTIER));
930                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
931                            I915_READ(GTIIR));
932                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
933                            I915_READ(GTIMR));
934         }
935         for_each_ring(ring, dev_priv, i) {
936                 if (INTEL_INFO(dev)->gen >= 6) {
937                         seq_printf(m,
938                                    "Graphics Interrupt mask (%s):       %08x\n",
939                                    ring->name, I915_READ_IMR(ring));
940                 }
941                 i915_ring_seqno_info(m, ring);
942         }
943         intel_runtime_pm_put(dev_priv);
944         mutex_unlock(&dev->struct_mutex);
945
946         return 0;
947 }
948
949 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
950 {
951         struct drm_info_node *node = m->private;
952         struct drm_device *dev = node->minor->dev;
953         struct drm_i915_private *dev_priv = dev->dev_private;
954         int i, ret;
955
956         ret = mutex_lock_interruptible(&dev->struct_mutex);
957         if (ret)
958                 return ret;
959
960         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
961         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
962         for (i = 0; i < dev_priv->num_fence_regs; i++) {
963                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
964
965                 seq_printf(m, "Fence %d, pin count = %d, object = ",
966                            i, dev_priv->fence_regs[i].pin_count);
967                 if (obj == NULL)
968                         seq_puts(m, "unused");
969                 else
970                         describe_obj(m, obj);
971                 seq_putc(m, '\n');
972         }
973
974         mutex_unlock(&dev->struct_mutex);
975         return 0;
976 }
977
978 static int i915_hws_info(struct seq_file *m, void *data)
979 {
980         struct drm_info_node *node = m->private;
981         struct drm_device *dev = node->minor->dev;
982         struct drm_i915_private *dev_priv = dev->dev_private;
983         struct intel_engine_cs *ring;
984         const u32 *hws;
985         int i;
986
987         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
988         hws = ring->status_page.page_addr;
989         if (hws == NULL)
990                 return 0;
991
992         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
993                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
994                            i * 4,
995                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
996         }
997         return 0;
998 }
999
1000 static ssize_t
1001 i915_error_state_write(struct file *filp,
1002                        const char __user *ubuf,
1003                        size_t cnt,
1004                        loff_t *ppos)
1005 {
1006         struct i915_error_state_file_priv *error_priv = filp->private_data;
1007         struct drm_device *dev = error_priv->dev;
1008         int ret;
1009
1010         DRM_DEBUG_DRIVER("Resetting error state\n");
1011
1012         ret = mutex_lock_interruptible(&dev->struct_mutex);
1013         if (ret)
1014                 return ret;
1015
1016         i915_destroy_error_state(dev);
1017         mutex_unlock(&dev->struct_mutex);
1018
1019         return cnt;
1020 }
1021
1022 static int i915_error_state_open(struct inode *inode, struct file *file)
1023 {
1024         struct drm_device *dev = inode->i_private;
1025         struct i915_error_state_file_priv *error_priv;
1026
1027         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1028         if (!error_priv)
1029                 return -ENOMEM;
1030
1031         error_priv->dev = dev;
1032
1033         i915_error_state_get(dev, error_priv);
1034
1035         file->private_data = error_priv;
1036
1037         return 0;
1038 }
1039
1040 static int i915_error_state_release(struct inode *inode, struct file *file)
1041 {
1042         struct i915_error_state_file_priv *error_priv = file->private_data;
1043
1044         i915_error_state_put(error_priv);
1045         kfree(error_priv);
1046
1047         return 0;
1048 }
1049
1050 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1051                                      size_t count, loff_t *pos)
1052 {
1053         struct i915_error_state_file_priv *error_priv = file->private_data;
1054         struct drm_i915_error_state_buf error_str;
1055         loff_t tmp_pos = 0;
1056         ssize_t ret_count = 0;
1057         int ret;
1058
1059         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1060         if (ret)
1061                 return ret;
1062
1063         ret = i915_error_state_to_str(&error_str, error_priv);
1064         if (ret)
1065                 goto out;
1066
1067         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1068                                             error_str.buf,
1069                                             error_str.bytes);
1070
1071         if (ret_count < 0)
1072                 ret = ret_count;
1073         else
1074                 *pos = error_str.start + ret_count;
1075 out:
1076         i915_error_state_buf_release(&error_str);
1077         return ret ?: ret_count;
1078 }
1079
1080 static const struct file_operations i915_error_state_fops = {
1081         .owner = THIS_MODULE,
1082         .open = i915_error_state_open,
1083         .read = i915_error_state_read,
1084         .write = i915_error_state_write,
1085         .llseek = default_llseek,
1086         .release = i915_error_state_release,
1087 };
1088
1089 static int
1090 i915_next_seqno_get(void *data, u64 *val)
1091 {
1092         struct drm_device *dev = data;
1093         struct drm_i915_private *dev_priv = dev->dev_private;
1094         int ret;
1095
1096         ret = mutex_lock_interruptible(&dev->struct_mutex);
1097         if (ret)
1098                 return ret;
1099
1100         *val = dev_priv->next_seqno;
1101         mutex_unlock(&dev->struct_mutex);
1102
1103         return 0;
1104 }
1105
1106 static int
1107 i915_next_seqno_set(void *data, u64 val)
1108 {
1109         struct drm_device *dev = data;
1110         int ret;
1111
1112         ret = mutex_lock_interruptible(&dev->struct_mutex);
1113         if (ret)
1114                 return ret;
1115
1116         ret = i915_gem_set_seqno(dev, val);
1117         mutex_unlock(&dev->struct_mutex);
1118
1119         return ret;
1120 }
1121
1122 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1123                         i915_next_seqno_get, i915_next_seqno_set,
1124                         "0x%llx\n");
1125
1126 static int i915_frequency_info(struct seq_file *m, void *unused)
1127 {
1128         struct drm_info_node *node = m->private;
1129         struct drm_device *dev = node->minor->dev;
1130         struct drm_i915_private *dev_priv = dev->dev_private;
1131         int ret = 0;
1132
1133         intel_runtime_pm_get(dev_priv);
1134
1135         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1136
1137         if (IS_GEN5(dev)) {
1138                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1139                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1140
1141                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1142                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1143                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1144                            MEMSTAT_VID_SHIFT);
1145                 seq_printf(m, "Current P-state: %d\n",
1146                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1147         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1148                    IS_BROADWELL(dev) || IS_GEN9(dev)) {
1149                 u32 rp_state_limits;
1150                 u32 gt_perf_status;
1151                 u32 rp_state_cap;
1152                 u32 rpmodectl, rpinclimit, rpdeclimit;
1153                 u32 rpstat, cagf, reqf;
1154                 u32 rpupei, rpcurup, rpprevup;
1155                 u32 rpdownei, rpcurdown, rpprevdown;
1156                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1157                 int max_freq;
1158
1159                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1160                 if (IS_BROXTON(dev)) {
1161                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1162                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1163                 } else {
1164                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1165                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1166                 }
1167
1168                 /* RPSTAT1 is in the GT power well */
1169                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1170                 if (ret)
1171                         goto out;
1172
1173                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1174
1175                 reqf = I915_READ(GEN6_RPNSWREQ);
1176                 if (IS_GEN9(dev))
1177                         reqf >>= 23;
1178                 else {
1179                         reqf &= ~GEN6_TURBO_DISABLE;
1180                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1181                                 reqf >>= 24;
1182                         else
1183                                 reqf >>= 25;
1184                 }
1185                 reqf = intel_gpu_freq(dev_priv, reqf);
1186
1187                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1188                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1189                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1190
1191                 rpstat = I915_READ(GEN6_RPSTAT1);
1192                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1193                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1194                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1195                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1196                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1197                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1198                 if (IS_GEN9(dev))
1199                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1200                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1201                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1202                 else
1203                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1204                 cagf = intel_gpu_freq(dev_priv, cagf);
1205
1206                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1207                 mutex_unlock(&dev->struct_mutex);
1208
1209                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1210                         pm_ier = I915_READ(GEN6_PMIER);
1211                         pm_imr = I915_READ(GEN6_PMIMR);
1212                         pm_isr = I915_READ(GEN6_PMISR);
1213                         pm_iir = I915_READ(GEN6_PMIIR);
1214                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1215                 } else {
1216                         pm_ier = I915_READ(GEN8_GT_IER(2));
1217                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1218                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1219                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1220                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1221                 }
1222                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1223                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1224                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1225                 seq_printf(m, "Render p-state ratio: %d\n",
1226                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1227                 seq_printf(m, "Render p-state VID: %d\n",
1228                            gt_perf_status & 0xff);
1229                 seq_printf(m, "Render p-state limit: %d\n",
1230                            rp_state_limits & 0xff);
1231                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1232                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1233                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1234                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1235                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1236                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1237                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1238                            GEN6_CURICONT_MASK);
1239                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1240                            GEN6_CURBSYTAVG_MASK);
1241                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1242                            GEN6_CURBSYTAVG_MASK);
1243                 seq_printf(m, "Up threshold: %d%%\n",
1244                            dev_priv->rps.up_threshold);
1245
1246                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1247                            GEN6_CURIAVG_MASK);
1248                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1249                            GEN6_CURBSYTAVG_MASK);
1250                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1251                            GEN6_CURBSYTAVG_MASK);
1252                 seq_printf(m, "Down threshold: %d%%\n",
1253                            dev_priv->rps.down_threshold);
1254
1255                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1256                             rp_state_cap >> 16) & 0xff;
1257                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1258                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1259                            intel_gpu_freq(dev_priv, max_freq));
1260
1261                 max_freq = (rp_state_cap & 0xff00) >> 8;
1262                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1263                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1264                            intel_gpu_freq(dev_priv, max_freq));
1265
1266                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1267                             rp_state_cap >> 0) & 0xff;
1268                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1269                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1270                            intel_gpu_freq(dev_priv, max_freq));
1271                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1272                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1273
1274                 seq_printf(m, "Current freq: %d MHz\n",
1275                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1276                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1277                 seq_printf(m, "Idle freq: %d MHz\n",
1278                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1279                 seq_printf(m, "Min freq: %d MHz\n",
1280                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1281                 seq_printf(m, "Max freq: %d MHz\n",
1282                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1283                 seq_printf(m,
1284                            "efficient (RPe) frequency: %d MHz\n",
1285                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1286         } else if (IS_VALLEYVIEW(dev)) {
1287                 u32 freq_sts;
1288
1289                 mutex_lock(&dev_priv->rps.hw_lock);
1290                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1291                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1292                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1293
1294                 seq_printf(m, "actual GPU freq: %d MHz\n",
1295                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1296
1297                 seq_printf(m, "current GPU freq: %d MHz\n",
1298                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1299
1300                 seq_printf(m, "max GPU freq: %d MHz\n",
1301                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1302
1303                 seq_printf(m, "min GPU freq: %d MHz\n",
1304                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1305
1306                 seq_printf(m, "idle GPU freq: %d MHz\n",
1307                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1308
1309                 seq_printf(m,
1310                            "efficient (RPe) frequency: %d MHz\n",
1311                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1312                 mutex_unlock(&dev_priv->rps.hw_lock);
1313         } else {
1314                 seq_puts(m, "no P-state info available\n");
1315         }
1316
1317 out:
1318         intel_runtime_pm_put(dev_priv);
1319         return ret;
1320 }
1321
1322 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1323 {
1324         struct drm_info_node *node = m->private;
1325         struct drm_device *dev = node->minor->dev;
1326         struct drm_i915_private *dev_priv = dev->dev_private;
1327         struct intel_engine_cs *ring;
1328         u64 acthd[I915_NUM_RINGS];
1329         u32 seqno[I915_NUM_RINGS];
1330         int i;
1331
1332         if (!i915.enable_hangcheck) {
1333                 seq_printf(m, "Hangcheck disabled\n");
1334                 return 0;
1335         }
1336
1337         intel_runtime_pm_get(dev_priv);
1338
1339         for_each_ring(ring, dev_priv, i) {
1340                 seqno[i] = ring->get_seqno(ring, false);
1341                 acthd[i] = intel_ring_get_active_head(ring);
1342         }
1343
1344         intel_runtime_pm_put(dev_priv);
1345
1346         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1347                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1348                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1349                                             jiffies));
1350         } else
1351                 seq_printf(m, "Hangcheck inactive\n");
1352
1353         for_each_ring(ring, dev_priv, i) {
1354                 seq_printf(m, "%s:\n", ring->name);
1355                 seq_printf(m, "\tseqno = %x [current %x]\n",
1356                            ring->hangcheck.seqno, seqno[i]);
1357                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1358                            (long long)ring->hangcheck.acthd,
1359                            (long long)acthd[i]);
1360                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1361                            (long long)ring->hangcheck.max_acthd);
1362                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1363                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1364         }
1365
1366         return 0;
1367 }
1368
1369 static int ironlake_drpc_info(struct seq_file *m)
1370 {
1371         struct drm_info_node *node = m->private;
1372         struct drm_device *dev = node->minor->dev;
1373         struct drm_i915_private *dev_priv = dev->dev_private;
1374         u32 rgvmodectl, rstdbyctl;
1375         u16 crstandvid;
1376         int ret;
1377
1378         ret = mutex_lock_interruptible(&dev->struct_mutex);
1379         if (ret)
1380                 return ret;
1381         intel_runtime_pm_get(dev_priv);
1382
1383         rgvmodectl = I915_READ(MEMMODECTL);
1384         rstdbyctl = I915_READ(RSTDBYCTL);
1385         crstandvid = I915_READ16(CRSTANDVID);
1386
1387         intel_runtime_pm_put(dev_priv);
1388         mutex_unlock(&dev->struct_mutex);
1389
1390         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1391                    "yes" : "no");
1392         seq_printf(m, "Boost freq: %d\n",
1393                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1394                    MEMMODE_BOOST_FREQ_SHIFT);
1395         seq_printf(m, "HW control enabled: %s\n",
1396                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1397         seq_printf(m, "SW control enabled: %s\n",
1398                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1399         seq_printf(m, "Gated voltage change: %s\n",
1400                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1401         seq_printf(m, "Starting frequency: P%d\n",
1402                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1403         seq_printf(m, "Max P-state: P%d\n",
1404                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1405         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1406         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1407         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1408         seq_printf(m, "Render standby enabled: %s\n",
1409                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1410         seq_puts(m, "Current RS state: ");
1411         switch (rstdbyctl & RSX_STATUS_MASK) {
1412         case RSX_STATUS_ON:
1413                 seq_puts(m, "on\n");
1414                 break;
1415         case RSX_STATUS_RC1:
1416                 seq_puts(m, "RC1\n");
1417                 break;
1418         case RSX_STATUS_RC1E:
1419                 seq_puts(m, "RC1E\n");
1420                 break;
1421         case RSX_STATUS_RS1:
1422                 seq_puts(m, "RS1\n");
1423                 break;
1424         case RSX_STATUS_RS2:
1425                 seq_puts(m, "RS2 (RC6)\n");
1426                 break;
1427         case RSX_STATUS_RS3:
1428                 seq_puts(m, "RC3 (RC6+)\n");
1429                 break;
1430         default:
1431                 seq_puts(m, "unknown\n");
1432                 break;
1433         }
1434
1435         return 0;
1436 }
1437
1438 static int i915_forcewake_domains(struct seq_file *m, void *data)
1439 {
1440         struct drm_info_node *node = m->private;
1441         struct drm_device *dev = node->minor->dev;
1442         struct drm_i915_private *dev_priv = dev->dev_private;
1443         struct intel_uncore_forcewake_domain *fw_domain;
1444         int i;
1445
1446         spin_lock_irq(&dev_priv->uncore.lock);
1447         for_each_fw_domain(fw_domain, dev_priv, i) {
1448                 seq_printf(m, "%s.wake_count = %u\n",
1449                            intel_uncore_forcewake_domain_to_str(i),
1450                            fw_domain->wake_count);
1451         }
1452         spin_unlock_irq(&dev_priv->uncore.lock);
1453
1454         return 0;
1455 }
1456
1457 static int vlv_drpc_info(struct seq_file *m)
1458 {
1459         struct drm_info_node *node = m->private;
1460         struct drm_device *dev = node->minor->dev;
1461         struct drm_i915_private *dev_priv = dev->dev_private;
1462         u32 rpmodectl1, rcctl1, pw_status;
1463
1464         intel_runtime_pm_get(dev_priv);
1465
1466         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1467         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1468         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1469
1470         intel_runtime_pm_put(dev_priv);
1471
1472         seq_printf(m, "Video Turbo Mode: %s\n",
1473                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1474         seq_printf(m, "Turbo enabled: %s\n",
1475                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1476         seq_printf(m, "HW control enabled: %s\n",
1477                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1478         seq_printf(m, "SW control enabled: %s\n",
1479                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1480                           GEN6_RP_MEDIA_SW_MODE));
1481         seq_printf(m, "RC6 Enabled: %s\n",
1482                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1483                                         GEN6_RC_CTL_EI_MODE(1))));
1484         seq_printf(m, "Render Power Well: %s\n",
1485                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1486         seq_printf(m, "Media Power Well: %s\n",
1487                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1488
1489         seq_printf(m, "Render RC6 residency since boot: %u\n",
1490                    I915_READ(VLV_GT_RENDER_RC6));
1491         seq_printf(m, "Media RC6 residency since boot: %u\n",
1492                    I915_READ(VLV_GT_MEDIA_RC6));
1493
1494         return i915_forcewake_domains(m, NULL);
1495 }
1496
1497 static int gen6_drpc_info(struct seq_file *m)
1498 {
1499         struct drm_info_node *node = m->private;
1500         struct drm_device *dev = node->minor->dev;
1501         struct drm_i915_private *dev_priv = dev->dev_private;
1502         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1503         unsigned forcewake_count;
1504         int count = 0, ret;
1505
1506         ret = mutex_lock_interruptible(&dev->struct_mutex);
1507         if (ret)
1508                 return ret;
1509         intel_runtime_pm_get(dev_priv);
1510
1511         spin_lock_irq(&dev_priv->uncore.lock);
1512         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1513         spin_unlock_irq(&dev_priv->uncore.lock);
1514
1515         if (forcewake_count) {
1516                 seq_puts(m, "RC information inaccurate because somebody "
1517                             "holds a forcewake reference \n");
1518         } else {
1519                 /* NB: we cannot use forcewake, else we read the wrong values */
1520                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1521                         udelay(10);
1522                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1523         }
1524
1525         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1526         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1527
1528         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1529         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1530         mutex_unlock(&dev->struct_mutex);
1531         mutex_lock(&dev_priv->rps.hw_lock);
1532         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1533         mutex_unlock(&dev_priv->rps.hw_lock);
1534
1535         intel_runtime_pm_put(dev_priv);
1536
1537         seq_printf(m, "Video Turbo Mode: %s\n",
1538                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1539         seq_printf(m, "HW control enabled: %s\n",
1540                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1541         seq_printf(m, "SW control enabled: %s\n",
1542                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1543                           GEN6_RP_MEDIA_SW_MODE));
1544         seq_printf(m, "RC1e Enabled: %s\n",
1545                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1546         seq_printf(m, "RC6 Enabled: %s\n",
1547                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1548         seq_printf(m, "Deep RC6 Enabled: %s\n",
1549                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1550         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1551                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1552         seq_puts(m, "Current RC state: ");
1553         switch (gt_core_status & GEN6_RCn_MASK) {
1554         case GEN6_RC0:
1555                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1556                         seq_puts(m, "Core Power Down\n");
1557                 else
1558                         seq_puts(m, "on\n");
1559                 break;
1560         case GEN6_RC3:
1561                 seq_puts(m, "RC3\n");
1562                 break;
1563         case GEN6_RC6:
1564                 seq_puts(m, "RC6\n");
1565                 break;
1566         case GEN6_RC7:
1567                 seq_puts(m, "RC7\n");
1568                 break;
1569         default:
1570                 seq_puts(m, "Unknown\n");
1571                 break;
1572         }
1573
1574         seq_printf(m, "Core Power Down: %s\n",
1575                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1576
1577         /* Not exactly sure what this is */
1578         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1579                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1580         seq_printf(m, "RC6 residency since boot: %u\n",
1581                    I915_READ(GEN6_GT_GFX_RC6));
1582         seq_printf(m, "RC6+ residency since boot: %u\n",
1583                    I915_READ(GEN6_GT_GFX_RC6p));
1584         seq_printf(m, "RC6++ residency since boot: %u\n",
1585                    I915_READ(GEN6_GT_GFX_RC6pp));
1586
1587         seq_printf(m, "RC6   voltage: %dmV\n",
1588                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1589         seq_printf(m, "RC6+  voltage: %dmV\n",
1590                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1591         seq_printf(m, "RC6++ voltage: %dmV\n",
1592                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1593         return 0;
1594 }
1595
1596 static int i915_drpc_info(struct seq_file *m, void *unused)
1597 {
1598         struct drm_info_node *node = m->private;
1599         struct drm_device *dev = node->minor->dev;
1600
1601         if (IS_VALLEYVIEW(dev))
1602                 return vlv_drpc_info(m);
1603         else if (INTEL_INFO(dev)->gen >= 6)
1604                 return gen6_drpc_info(m);
1605         else
1606                 return ironlake_drpc_info(m);
1607 }
1608
1609 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1610 {
1611         struct drm_info_node *node = m->private;
1612         struct drm_device *dev = node->minor->dev;
1613         struct drm_i915_private *dev_priv = dev->dev_private;
1614
1615         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1616                    dev_priv->fb_tracking.busy_bits);
1617
1618         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1619                    dev_priv->fb_tracking.flip_bits);
1620
1621         return 0;
1622 }
1623
1624 static int i915_fbc_status(struct seq_file *m, void *unused)
1625 {
1626         struct drm_info_node *node = m->private;
1627         struct drm_device *dev = node->minor->dev;
1628         struct drm_i915_private *dev_priv = dev->dev_private;
1629
1630         if (!HAS_FBC(dev)) {
1631                 seq_puts(m, "FBC unsupported on this chipset\n");
1632                 return 0;
1633         }
1634
1635         intel_runtime_pm_get(dev_priv);
1636         mutex_lock(&dev_priv->fbc.lock);
1637
1638         if (intel_fbc_enabled(dev_priv))
1639                 seq_puts(m, "FBC enabled\n");
1640         else
1641                 seq_printf(m, "FBC disabled: %s\n",
1642                           intel_no_fbc_reason_str(dev_priv->fbc.no_fbc_reason));
1643
1644         if (INTEL_INFO(dev_priv)->gen >= 7)
1645                 seq_printf(m, "Compressing: %s\n",
1646                            yesno(I915_READ(FBC_STATUS2) &
1647                                  FBC_COMPRESSION_MASK));
1648
1649         mutex_unlock(&dev_priv->fbc.lock);
1650         intel_runtime_pm_put(dev_priv);
1651
1652         return 0;
1653 }
1654
1655 static int i915_fbc_fc_get(void *data, u64 *val)
1656 {
1657         struct drm_device *dev = data;
1658         struct drm_i915_private *dev_priv = dev->dev_private;
1659
1660         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1661                 return -ENODEV;
1662
1663         *val = dev_priv->fbc.false_color;
1664
1665         return 0;
1666 }
1667
1668 static int i915_fbc_fc_set(void *data, u64 val)
1669 {
1670         struct drm_device *dev = data;
1671         struct drm_i915_private *dev_priv = dev->dev_private;
1672         u32 reg;
1673
1674         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1675                 return -ENODEV;
1676
1677         mutex_lock(&dev_priv->fbc.lock);
1678
1679         reg = I915_READ(ILK_DPFC_CONTROL);
1680         dev_priv->fbc.false_color = val;
1681
1682         I915_WRITE(ILK_DPFC_CONTROL, val ?
1683                    (reg | FBC_CTL_FALSE_COLOR) :
1684                    (reg & ~FBC_CTL_FALSE_COLOR));
1685
1686         mutex_unlock(&dev_priv->fbc.lock);
1687         return 0;
1688 }
1689
1690 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1691                         i915_fbc_fc_get, i915_fbc_fc_set,
1692                         "%llu\n");
1693
1694 static int i915_ips_status(struct seq_file *m, void *unused)
1695 {
1696         struct drm_info_node *node = m->private;
1697         struct drm_device *dev = node->minor->dev;
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699
1700         if (!HAS_IPS(dev)) {
1701                 seq_puts(m, "not supported\n");
1702                 return 0;
1703         }
1704
1705         intel_runtime_pm_get(dev_priv);
1706
1707         seq_printf(m, "Enabled by kernel parameter: %s\n",
1708                    yesno(i915.enable_ips));
1709
1710         if (INTEL_INFO(dev)->gen >= 8) {
1711                 seq_puts(m, "Currently: unknown\n");
1712         } else {
1713                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1714                         seq_puts(m, "Currently: enabled\n");
1715                 else
1716                         seq_puts(m, "Currently: disabled\n");
1717         }
1718
1719         intel_runtime_pm_put(dev_priv);
1720
1721         return 0;
1722 }
1723
1724 static int i915_sr_status(struct seq_file *m, void *unused)
1725 {
1726         struct drm_info_node *node = m->private;
1727         struct drm_device *dev = node->minor->dev;
1728         struct drm_i915_private *dev_priv = dev->dev_private;
1729         bool sr_enabled = false;
1730
1731         intel_runtime_pm_get(dev_priv);
1732
1733         if (HAS_PCH_SPLIT(dev))
1734                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1735         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1736                  IS_I945G(dev) || IS_I945GM(dev))
1737                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1738         else if (IS_I915GM(dev))
1739                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1740         else if (IS_PINEVIEW(dev))
1741                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1742         else if (IS_VALLEYVIEW(dev))
1743                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1744
1745         intel_runtime_pm_put(dev_priv);
1746
1747         seq_printf(m, "self-refresh: %s\n",
1748                    sr_enabled ? "enabled" : "disabled");
1749
1750         return 0;
1751 }
1752
1753 static int i915_emon_status(struct seq_file *m, void *unused)
1754 {
1755         struct drm_info_node *node = m->private;
1756         struct drm_device *dev = node->minor->dev;
1757         struct drm_i915_private *dev_priv = dev->dev_private;
1758         unsigned long temp, chipset, gfx;
1759         int ret;
1760
1761         if (!IS_GEN5(dev))
1762                 return -ENODEV;
1763
1764         ret = mutex_lock_interruptible(&dev->struct_mutex);
1765         if (ret)
1766                 return ret;
1767
1768         temp = i915_mch_val(dev_priv);
1769         chipset = i915_chipset_val(dev_priv);
1770         gfx = i915_gfx_val(dev_priv);
1771         mutex_unlock(&dev->struct_mutex);
1772
1773         seq_printf(m, "GMCH temp: %ld\n", temp);
1774         seq_printf(m, "Chipset power: %ld\n", chipset);
1775         seq_printf(m, "GFX power: %ld\n", gfx);
1776         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1777
1778         return 0;
1779 }
1780
1781 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1782 {
1783         struct drm_info_node *node = m->private;
1784         struct drm_device *dev = node->minor->dev;
1785         struct drm_i915_private *dev_priv = dev->dev_private;
1786         int ret = 0;
1787         int gpu_freq, ia_freq;
1788         unsigned int max_gpu_freq, min_gpu_freq;
1789
1790         if (!HAS_CORE_RING_FREQ(dev)) {
1791                 seq_puts(m, "unsupported on this chipset\n");
1792                 return 0;
1793         }
1794
1795         intel_runtime_pm_get(dev_priv);
1796
1797         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1798
1799         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1800         if (ret)
1801                 goto out;
1802
1803         if (IS_SKYLAKE(dev)) {
1804                 /* Convert GT frequency to 50 HZ units */
1805                 min_gpu_freq =
1806                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1807                 max_gpu_freq =
1808                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1809         } else {
1810                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1811                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1812         }
1813
1814         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1815
1816         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1817                 ia_freq = gpu_freq;
1818                 sandybridge_pcode_read(dev_priv,
1819                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1820                                        &ia_freq);
1821                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1822                            intel_gpu_freq(dev_priv, (gpu_freq *
1823                                 (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1))),
1824                            ((ia_freq >> 0) & 0xff) * 100,
1825                            ((ia_freq >> 8) & 0xff) * 100);
1826         }
1827
1828         mutex_unlock(&dev_priv->rps.hw_lock);
1829
1830 out:
1831         intel_runtime_pm_put(dev_priv);
1832         return ret;
1833 }
1834
1835 static int i915_opregion(struct seq_file *m, void *unused)
1836 {
1837         struct drm_info_node *node = m->private;
1838         struct drm_device *dev = node->minor->dev;
1839         struct drm_i915_private *dev_priv = dev->dev_private;
1840         struct intel_opregion *opregion = &dev_priv->opregion;
1841         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1842         int ret;
1843
1844         if (data == NULL)
1845                 return -ENOMEM;
1846
1847         ret = mutex_lock_interruptible(&dev->struct_mutex);
1848         if (ret)
1849                 goto out;
1850
1851         if (opregion->header) {
1852                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1853                 seq_write(m, data, OPREGION_SIZE);
1854         }
1855
1856         mutex_unlock(&dev->struct_mutex);
1857
1858 out:
1859         kfree(data);
1860         return 0;
1861 }
1862
1863 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1864 {
1865         struct drm_info_node *node = m->private;
1866         struct drm_device *dev = node->minor->dev;
1867         struct intel_fbdev *ifbdev = NULL;
1868         struct intel_framebuffer *fb;
1869         struct drm_framebuffer *drm_fb;
1870
1871 #ifdef CONFIG_DRM_FBDEV_EMULATION
1872         struct drm_i915_private *dev_priv = dev->dev_private;
1873
1874         ifbdev = dev_priv->fbdev;
1875         fb = to_intel_framebuffer(ifbdev->helper.fb);
1876
1877         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1878                    fb->base.width,
1879                    fb->base.height,
1880                    fb->base.depth,
1881                    fb->base.bits_per_pixel,
1882                    fb->base.modifier[0],
1883                    atomic_read(&fb->base.refcount.refcount));
1884         describe_obj(m, fb->obj);
1885         seq_putc(m, '\n');
1886 #endif
1887
1888         mutex_lock(&dev->mode_config.fb_lock);
1889         drm_for_each_fb(drm_fb, dev) {
1890                 fb = to_intel_framebuffer(drm_fb);
1891                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1892                         continue;
1893
1894                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1895                            fb->base.width,
1896                            fb->base.height,
1897                            fb->base.depth,
1898                            fb->base.bits_per_pixel,
1899                            fb->base.modifier[0],
1900                            atomic_read(&fb->base.refcount.refcount));
1901                 describe_obj(m, fb->obj);
1902                 seq_putc(m, '\n');
1903         }
1904         mutex_unlock(&dev->mode_config.fb_lock);
1905
1906         return 0;
1907 }
1908
1909 static void describe_ctx_ringbuf(struct seq_file *m,
1910                                  struct intel_ringbuffer *ringbuf)
1911 {
1912         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1913                    ringbuf->space, ringbuf->head, ringbuf->tail,
1914                    ringbuf->last_retired_head);
1915 }
1916
1917 static int i915_context_status(struct seq_file *m, void *unused)
1918 {
1919         struct drm_info_node *node = m->private;
1920         struct drm_device *dev = node->minor->dev;
1921         struct drm_i915_private *dev_priv = dev->dev_private;
1922         struct intel_engine_cs *ring;
1923         struct intel_context *ctx;
1924         int ret, i;
1925
1926         ret = mutex_lock_interruptible(&dev->struct_mutex);
1927         if (ret)
1928                 return ret;
1929
1930         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1931                 if (!i915.enable_execlists &&
1932                     ctx->legacy_hw_ctx.rcs_state == NULL)
1933                         continue;
1934
1935                 seq_puts(m, "HW context ");
1936                 describe_ctx(m, ctx);
1937                 for_each_ring(ring, dev_priv, i) {
1938                         if (ring->default_context == ctx)
1939                                 seq_printf(m, "(default context %s) ",
1940                                            ring->name);
1941                 }
1942
1943                 if (i915.enable_execlists) {
1944                         seq_putc(m, '\n');
1945                         for_each_ring(ring, dev_priv, i) {
1946                                 struct drm_i915_gem_object *ctx_obj =
1947                                         ctx->engine[i].state;
1948                                 struct intel_ringbuffer *ringbuf =
1949                                         ctx->engine[i].ringbuf;
1950
1951                                 seq_printf(m, "%s: ", ring->name);
1952                                 if (ctx_obj)
1953                                         describe_obj(m, ctx_obj);
1954                                 if (ringbuf)
1955                                         describe_ctx_ringbuf(m, ringbuf);
1956                                 seq_putc(m, '\n');
1957                         }
1958                 } else {
1959                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1960                 }
1961
1962                 seq_putc(m, '\n');
1963         }
1964
1965         mutex_unlock(&dev->struct_mutex);
1966
1967         return 0;
1968 }
1969
1970 static void i915_dump_lrc_obj(struct seq_file *m,
1971                               struct intel_engine_cs *ring,
1972                               struct drm_i915_gem_object *ctx_obj)
1973 {
1974         struct page *page;
1975         uint32_t *reg_state;
1976         int j;
1977         unsigned long ggtt_offset = 0;
1978
1979         if (ctx_obj == NULL) {
1980                 seq_printf(m, "Context on %s with no gem object\n",
1981                            ring->name);
1982                 return;
1983         }
1984
1985         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1986                    intel_execlists_ctx_id(ctx_obj));
1987
1988         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1989                 seq_puts(m, "\tNot bound in GGTT\n");
1990         else
1991                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1992
1993         if (i915_gem_object_get_pages(ctx_obj)) {
1994                 seq_puts(m, "\tFailed to get pages for context object\n");
1995                 return;
1996         }
1997
1998         page = i915_gem_object_get_page(ctx_obj, 1);
1999         if (!WARN_ON(page == NULL)) {
2000                 reg_state = kmap_atomic(page);
2001
2002                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2003                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2004                                    ggtt_offset + 4096 + (j * 4),
2005                                    reg_state[j], reg_state[j + 1],
2006                                    reg_state[j + 2], reg_state[j + 3]);
2007                 }
2008                 kunmap_atomic(reg_state);
2009         }
2010
2011         seq_putc(m, '\n');
2012 }
2013
2014 static int i915_dump_lrc(struct seq_file *m, void *unused)
2015 {
2016         struct drm_info_node *node = (struct drm_info_node *) m->private;
2017         struct drm_device *dev = node->minor->dev;
2018         struct drm_i915_private *dev_priv = dev->dev_private;
2019         struct intel_engine_cs *ring;
2020         struct intel_context *ctx;
2021         int ret, i;
2022
2023         if (!i915.enable_execlists) {
2024                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2025                 return 0;
2026         }
2027
2028         ret = mutex_lock_interruptible(&dev->struct_mutex);
2029         if (ret)
2030                 return ret;
2031
2032         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2033                 for_each_ring(ring, dev_priv, i) {
2034                         if (ring->default_context != ctx)
2035                                 i915_dump_lrc_obj(m, ring,
2036                                                   ctx->engine[i].state);
2037                 }
2038         }
2039
2040         mutex_unlock(&dev->struct_mutex);
2041
2042         return 0;
2043 }
2044
2045 static int i915_execlists(struct seq_file *m, void *data)
2046 {
2047         struct drm_info_node *node = (struct drm_info_node *)m->private;
2048         struct drm_device *dev = node->minor->dev;
2049         struct drm_i915_private *dev_priv = dev->dev_private;
2050         struct intel_engine_cs *ring;
2051         u32 status_pointer;
2052         u8 read_pointer;
2053         u8 write_pointer;
2054         u32 status;
2055         u32 ctx_id;
2056         struct list_head *cursor;
2057         int ring_id, i;
2058         int ret;
2059
2060         if (!i915.enable_execlists) {
2061                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2062                 return 0;
2063         }
2064
2065         ret = mutex_lock_interruptible(&dev->struct_mutex);
2066         if (ret)
2067                 return ret;
2068
2069         intel_runtime_pm_get(dev_priv);
2070
2071         for_each_ring(ring, dev_priv, ring_id) {
2072                 struct drm_i915_gem_request *head_req = NULL;
2073                 int count = 0;
2074                 unsigned long flags;
2075
2076                 seq_printf(m, "%s\n", ring->name);
2077
2078                 status = I915_READ(RING_EXECLIST_STATUS(ring));
2079                 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
2080                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2081                            status, ctx_id);
2082
2083                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2084                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2085
2086                 read_pointer = ring->next_context_status_buffer;
2087                 write_pointer = status_pointer & 0x07;
2088                 if (read_pointer > write_pointer)
2089                         write_pointer += 6;
2090                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2091                            read_pointer, write_pointer);
2092
2093                 for (i = 0; i < 6; i++) {
2094                         status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
2095                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
2096
2097                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2098                                    i, status, ctx_id);
2099                 }
2100
2101                 spin_lock_irqsave(&ring->execlist_lock, flags);
2102                 list_for_each(cursor, &ring->execlist_queue)
2103                         count++;
2104                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2105                                 struct drm_i915_gem_request, execlist_link);
2106                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2107
2108                 seq_printf(m, "\t%d requests in queue\n", count);
2109                 if (head_req) {
2110                         struct drm_i915_gem_object *ctx_obj;
2111
2112                         ctx_obj = head_req->ctx->engine[ring_id].state;
2113                         seq_printf(m, "\tHead request id: %u\n",
2114                                    intel_execlists_ctx_id(ctx_obj));
2115                         seq_printf(m, "\tHead request tail: %u\n",
2116                                    head_req->tail);
2117                 }
2118
2119                 seq_putc(m, '\n');
2120         }
2121
2122         intel_runtime_pm_put(dev_priv);
2123         mutex_unlock(&dev->struct_mutex);
2124
2125         return 0;
2126 }
2127
2128 static const char *swizzle_string(unsigned swizzle)
2129 {
2130         switch (swizzle) {
2131         case I915_BIT_6_SWIZZLE_NONE:
2132                 return "none";
2133         case I915_BIT_6_SWIZZLE_9:
2134                 return "bit9";
2135         case I915_BIT_6_SWIZZLE_9_10:
2136                 return "bit9/bit10";
2137         case I915_BIT_6_SWIZZLE_9_11:
2138                 return "bit9/bit11";
2139         case I915_BIT_6_SWIZZLE_9_10_11:
2140                 return "bit9/bit10/bit11";
2141         case I915_BIT_6_SWIZZLE_9_17:
2142                 return "bit9/bit17";
2143         case I915_BIT_6_SWIZZLE_9_10_17:
2144                 return "bit9/bit10/bit17";
2145         case I915_BIT_6_SWIZZLE_UNKNOWN:
2146                 return "unknown";
2147         }
2148
2149         return "bug";
2150 }
2151
2152 static int i915_swizzle_info(struct seq_file *m, void *data)
2153 {
2154         struct drm_info_node *node = m->private;
2155         struct drm_device *dev = node->minor->dev;
2156         struct drm_i915_private *dev_priv = dev->dev_private;
2157         int ret;
2158
2159         ret = mutex_lock_interruptible(&dev->struct_mutex);
2160         if (ret)
2161                 return ret;
2162         intel_runtime_pm_get(dev_priv);
2163
2164         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2165                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2166         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2167                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2168
2169         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2170                 seq_printf(m, "DDC = 0x%08x\n",
2171                            I915_READ(DCC));
2172                 seq_printf(m, "DDC2 = 0x%08x\n",
2173                            I915_READ(DCC2));
2174                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2175                            I915_READ16(C0DRB3));
2176                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2177                            I915_READ16(C1DRB3));
2178         } else if (INTEL_INFO(dev)->gen >= 6) {
2179                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2180                            I915_READ(MAD_DIMM_C0));
2181                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2182                            I915_READ(MAD_DIMM_C1));
2183                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2184                            I915_READ(MAD_DIMM_C2));
2185                 seq_printf(m, "TILECTL = 0x%08x\n",
2186                            I915_READ(TILECTL));
2187                 if (INTEL_INFO(dev)->gen >= 8)
2188                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2189                                    I915_READ(GAMTARBMODE));
2190                 else
2191                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2192                                    I915_READ(ARB_MODE));
2193                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2194                            I915_READ(DISP_ARB_CTL));
2195         }
2196
2197         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2198                 seq_puts(m, "L-shaped memory detected\n");
2199
2200         intel_runtime_pm_put(dev_priv);
2201         mutex_unlock(&dev->struct_mutex);
2202
2203         return 0;
2204 }
2205
2206 static int per_file_ctx(int id, void *ptr, void *data)
2207 {
2208         struct intel_context *ctx = ptr;
2209         struct seq_file *m = data;
2210         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2211
2212         if (!ppgtt) {
2213                 seq_printf(m, "  no ppgtt for context %d\n",
2214                            ctx->user_handle);
2215                 return 0;
2216         }
2217
2218         if (i915_gem_context_is_default(ctx))
2219                 seq_puts(m, "  default context:\n");
2220         else
2221                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2222         ppgtt->debug_dump(ppgtt, m);
2223
2224         return 0;
2225 }
2226
2227 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2228 {
2229         struct drm_i915_private *dev_priv = dev->dev_private;
2230         struct intel_engine_cs *ring;
2231         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2232         int unused, i;
2233
2234         if (!ppgtt)
2235                 return;
2236
2237         for_each_ring(ring, dev_priv, unused) {
2238                 seq_printf(m, "%s\n", ring->name);
2239                 for (i = 0; i < 4; i++) {
2240                         u32 offset = 0x270 + i * 8;
2241                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2242                         pdp <<= 32;
2243                         pdp |= I915_READ(ring->mmio_base + offset);
2244                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2245                 }
2246         }
2247 }
2248
2249 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2250 {
2251         struct drm_i915_private *dev_priv = dev->dev_private;
2252         struct intel_engine_cs *ring;
2253         struct drm_file *file;
2254         int i;
2255
2256         if (INTEL_INFO(dev)->gen == 6)
2257                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2258
2259         for_each_ring(ring, dev_priv, i) {
2260                 seq_printf(m, "%s\n", ring->name);
2261                 if (INTEL_INFO(dev)->gen == 7)
2262                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2263                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2264                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2265                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2266         }
2267         if (dev_priv->mm.aliasing_ppgtt) {
2268                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2269
2270                 seq_puts(m, "aliasing PPGTT:\n");
2271                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2272
2273                 ppgtt->debug_dump(ppgtt, m);
2274         }
2275
2276         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2277                 struct drm_i915_file_private *file_priv = file->driver_priv;
2278
2279                 seq_printf(m, "proc: %s\n",
2280                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
2281                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2282         }
2283         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2284 }
2285
2286 static int i915_ppgtt_info(struct seq_file *m, void *data)
2287 {
2288         struct drm_info_node *node = m->private;
2289         struct drm_device *dev = node->minor->dev;
2290         struct drm_i915_private *dev_priv = dev->dev_private;
2291
2292         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2293         if (ret)
2294                 return ret;
2295         intel_runtime_pm_get(dev_priv);
2296
2297         if (INTEL_INFO(dev)->gen >= 8)
2298                 gen8_ppgtt_info(m, dev);
2299         else if (INTEL_INFO(dev)->gen >= 6)
2300                 gen6_ppgtt_info(m, dev);
2301
2302         intel_runtime_pm_put(dev_priv);
2303         mutex_unlock(&dev->struct_mutex);
2304
2305         return 0;
2306 }
2307
2308 static int count_irq_waiters(struct drm_i915_private *i915)
2309 {
2310         struct intel_engine_cs *ring;
2311         int count = 0;
2312         int i;
2313
2314         for_each_ring(ring, i915, i)
2315                 count += ring->irq_refcount;
2316
2317         return count;
2318 }
2319
2320 static int i915_rps_boost_info(struct seq_file *m, void *data)
2321 {
2322         struct drm_info_node *node = m->private;
2323         struct drm_device *dev = node->minor->dev;
2324         struct drm_i915_private *dev_priv = dev->dev_private;
2325         struct drm_file *file;
2326
2327         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2328         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2329         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2330         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2331                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2332                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2333                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2334                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2335                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2336         spin_lock(&dev_priv->rps.client_lock);
2337         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2338                 struct drm_i915_file_private *file_priv = file->driver_priv;
2339                 struct task_struct *task;
2340
2341                 rcu_read_lock();
2342                 task = pid_task(file->pid, PIDTYPE_PID);
2343                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2344                            task ? task->comm : "<unknown>",
2345                            task ? task->pid : -1,
2346                            file_priv->rps.boosts,
2347                            list_empty(&file_priv->rps.link) ? "" : ", active");
2348                 rcu_read_unlock();
2349         }
2350         seq_printf(m, "Semaphore boosts: %d%s\n",
2351                    dev_priv->rps.semaphores.boosts,
2352                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2353         seq_printf(m, "MMIO flip boosts: %d%s\n",
2354                    dev_priv->rps.mmioflips.boosts,
2355                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2356         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2357         spin_unlock(&dev_priv->rps.client_lock);
2358
2359         return 0;
2360 }
2361
2362 static int i915_llc(struct seq_file *m, void *data)
2363 {
2364         struct drm_info_node *node = m->private;
2365         struct drm_device *dev = node->minor->dev;
2366         struct drm_i915_private *dev_priv = dev->dev_private;
2367
2368         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2369         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2370         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2371
2372         return 0;
2373 }
2374
2375 static int i915_edp_psr_status(struct seq_file *m, void *data)
2376 {
2377         struct drm_info_node *node = m->private;
2378         struct drm_device *dev = node->minor->dev;
2379         struct drm_i915_private *dev_priv = dev->dev_private;
2380         u32 psrperf = 0;
2381         u32 stat[3];
2382         enum pipe pipe;
2383         bool enabled = false;
2384
2385         if (!HAS_PSR(dev)) {
2386                 seq_puts(m, "PSR not supported\n");
2387                 return 0;
2388         }
2389
2390         intel_runtime_pm_get(dev_priv);
2391
2392         mutex_lock(&dev_priv->psr.lock);
2393         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2394         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2395         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2396         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2397         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2398                    dev_priv->psr.busy_frontbuffer_bits);
2399         seq_printf(m, "Re-enable work scheduled: %s\n",
2400                    yesno(work_busy(&dev_priv->psr.work.work)));
2401
2402         if (HAS_DDI(dev))
2403                 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2404         else {
2405                 for_each_pipe(dev_priv, pipe) {
2406                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2407                                 VLV_EDP_PSR_CURR_STATE_MASK;
2408                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2409                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2410                                 enabled = true;
2411                 }
2412         }
2413         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2414
2415         if (!HAS_DDI(dev))
2416                 for_each_pipe(dev_priv, pipe) {
2417                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2418                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2419                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2420                 }
2421         seq_puts(m, "\n");
2422
2423         /* CHV PSR has no kind of performance counter */
2424         if (HAS_DDI(dev)) {
2425                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2426                         EDP_PSR_PERF_CNT_MASK;
2427
2428                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2429         }
2430         mutex_unlock(&dev_priv->psr.lock);
2431
2432         intel_runtime_pm_put(dev_priv);
2433         return 0;
2434 }
2435
2436 static int i915_sink_crc(struct seq_file *m, void *data)
2437 {
2438         struct drm_info_node *node = m->private;
2439         struct drm_device *dev = node->minor->dev;
2440         struct intel_encoder *encoder;
2441         struct intel_connector *connector;
2442         struct intel_dp *intel_dp = NULL;
2443         int ret;
2444         u8 crc[6];
2445
2446         drm_modeset_lock_all(dev);
2447         for_each_intel_connector(dev, connector) {
2448
2449                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2450                         continue;
2451
2452                 if (!connector->base.encoder)
2453                         continue;
2454
2455                 encoder = to_intel_encoder(connector->base.encoder);
2456                 if (encoder->type != INTEL_OUTPUT_EDP)
2457                         continue;
2458
2459                 intel_dp = enc_to_intel_dp(&encoder->base);
2460
2461                 ret = intel_dp_sink_crc(intel_dp, crc);
2462                 if (ret)
2463                         goto out;
2464
2465                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2466                            crc[0], crc[1], crc[2],
2467                            crc[3], crc[4], crc[5]);
2468                 goto out;
2469         }
2470         ret = -ENODEV;
2471 out:
2472         drm_modeset_unlock_all(dev);
2473         return ret;
2474 }
2475
2476 static int i915_energy_uJ(struct seq_file *m, void *data)
2477 {
2478         struct drm_info_node *node = m->private;
2479         struct drm_device *dev = node->minor->dev;
2480         struct drm_i915_private *dev_priv = dev->dev_private;
2481         u64 power;
2482         u32 units;
2483
2484         if (INTEL_INFO(dev)->gen < 6)
2485                 return -ENODEV;
2486
2487         intel_runtime_pm_get(dev_priv);
2488
2489         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2490         power = (power & 0x1f00) >> 8;
2491         units = 1000000 / (1 << power); /* convert to uJ */
2492         power = I915_READ(MCH_SECP_NRG_STTS);
2493         power *= units;
2494
2495         intel_runtime_pm_put(dev_priv);
2496
2497         seq_printf(m, "%llu", (long long unsigned)power);
2498
2499         return 0;
2500 }
2501
2502 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2503 {
2504         struct drm_info_node *node = m->private;
2505         struct drm_device *dev = node->minor->dev;
2506         struct drm_i915_private *dev_priv = dev->dev_private;
2507
2508         if (!HAS_RUNTIME_PM(dev)) {
2509                 seq_puts(m, "not supported\n");
2510                 return 0;
2511         }
2512
2513         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2514         seq_printf(m, "IRQs disabled: %s\n",
2515                    yesno(!intel_irqs_enabled(dev_priv)));
2516 #ifdef CONFIG_PM
2517         seq_printf(m, "Usage count: %d\n",
2518                    atomic_read(&dev->dev->power.usage_count));
2519 #else
2520         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2521 #endif
2522
2523         return 0;
2524 }
2525
2526 static const char *power_domain_str(enum intel_display_power_domain domain)
2527 {
2528         switch (domain) {
2529         case POWER_DOMAIN_PIPE_A:
2530                 return "PIPE_A";
2531         case POWER_DOMAIN_PIPE_B:
2532                 return "PIPE_B";
2533         case POWER_DOMAIN_PIPE_C:
2534                 return "PIPE_C";
2535         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2536                 return "PIPE_A_PANEL_FITTER";
2537         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2538                 return "PIPE_B_PANEL_FITTER";
2539         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2540                 return "PIPE_C_PANEL_FITTER";
2541         case POWER_DOMAIN_TRANSCODER_A:
2542                 return "TRANSCODER_A";
2543         case POWER_DOMAIN_TRANSCODER_B:
2544                 return "TRANSCODER_B";
2545         case POWER_DOMAIN_TRANSCODER_C:
2546                 return "TRANSCODER_C";
2547         case POWER_DOMAIN_TRANSCODER_EDP:
2548                 return "TRANSCODER_EDP";
2549         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2550                 return "PORT_DDI_A_2_LANES";
2551         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2552                 return "PORT_DDI_A_4_LANES";
2553         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2554                 return "PORT_DDI_B_2_LANES";
2555         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2556                 return "PORT_DDI_B_4_LANES";
2557         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2558                 return "PORT_DDI_C_2_LANES";
2559         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2560                 return "PORT_DDI_C_4_LANES";
2561         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2562                 return "PORT_DDI_D_2_LANES";
2563         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2564                 return "PORT_DDI_D_4_LANES";
2565         case POWER_DOMAIN_PORT_DDI_E_2_LANES:
2566                 return "PORT_DDI_E_2_LANES";
2567         case POWER_DOMAIN_PORT_DSI:
2568                 return "PORT_DSI";
2569         case POWER_DOMAIN_PORT_CRT:
2570                 return "PORT_CRT";
2571         case POWER_DOMAIN_PORT_OTHER:
2572                 return "PORT_OTHER";
2573         case POWER_DOMAIN_VGA:
2574                 return "VGA";
2575         case POWER_DOMAIN_AUDIO:
2576                 return "AUDIO";
2577         case POWER_DOMAIN_PLLS:
2578                 return "PLLS";
2579         case POWER_DOMAIN_AUX_A:
2580                 return "AUX_A";
2581         case POWER_DOMAIN_AUX_B:
2582                 return "AUX_B";
2583         case POWER_DOMAIN_AUX_C:
2584                 return "AUX_C";
2585         case POWER_DOMAIN_AUX_D:
2586                 return "AUX_D";
2587         case POWER_DOMAIN_INIT:
2588                 return "INIT";
2589         default:
2590                 MISSING_CASE(domain);
2591                 return "?";
2592         }
2593 }
2594
2595 static int i915_power_domain_info(struct seq_file *m, void *unused)
2596 {
2597         struct drm_info_node *node = m->private;
2598         struct drm_device *dev = node->minor->dev;
2599         struct drm_i915_private *dev_priv = dev->dev_private;
2600         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2601         int i;
2602
2603         mutex_lock(&power_domains->lock);
2604
2605         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2606         for (i = 0; i < power_domains->power_well_count; i++) {
2607                 struct i915_power_well *power_well;
2608                 enum intel_display_power_domain power_domain;
2609
2610                 power_well = &power_domains->power_wells[i];
2611                 seq_printf(m, "%-25s %d\n", power_well->name,
2612                            power_well->count);
2613
2614                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2615                      power_domain++) {
2616                         if (!(BIT(power_domain) & power_well->domains))
2617                                 continue;
2618
2619                         seq_printf(m, "  %-23s %d\n",
2620                                  power_domain_str(power_domain),
2621                                  power_domains->domain_use_count[power_domain]);
2622                 }
2623         }
2624
2625         mutex_unlock(&power_domains->lock);
2626
2627         return 0;
2628 }
2629
2630 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2631                                  struct drm_display_mode *mode)
2632 {
2633         int i;
2634
2635         for (i = 0; i < tabs; i++)
2636                 seq_putc(m, '\t');
2637
2638         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2639                    mode->base.id, mode->name,
2640                    mode->vrefresh, mode->clock,
2641                    mode->hdisplay, mode->hsync_start,
2642                    mode->hsync_end, mode->htotal,
2643                    mode->vdisplay, mode->vsync_start,
2644                    mode->vsync_end, mode->vtotal,
2645                    mode->type, mode->flags);
2646 }
2647
2648 static void intel_encoder_info(struct seq_file *m,
2649                                struct intel_crtc *intel_crtc,
2650                                struct intel_encoder *intel_encoder)
2651 {
2652         struct drm_info_node *node = m->private;
2653         struct drm_device *dev = node->minor->dev;
2654         struct drm_crtc *crtc = &intel_crtc->base;
2655         struct intel_connector *intel_connector;
2656         struct drm_encoder *encoder;
2657
2658         encoder = &intel_encoder->base;
2659         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2660                    encoder->base.id, encoder->name);
2661         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2662                 struct drm_connector *connector = &intel_connector->base;
2663                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2664                            connector->base.id,
2665                            connector->name,
2666                            drm_get_connector_status_name(connector->status));
2667                 if (connector->status == connector_status_connected) {
2668                         struct drm_display_mode *mode = &crtc->mode;
2669                         seq_printf(m, ", mode:\n");
2670                         intel_seq_print_mode(m, 2, mode);
2671                 } else {
2672                         seq_putc(m, '\n');
2673                 }
2674         }
2675 }
2676
2677 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2678 {
2679         struct drm_info_node *node = m->private;
2680         struct drm_device *dev = node->minor->dev;
2681         struct drm_crtc *crtc = &intel_crtc->base;
2682         struct intel_encoder *intel_encoder;
2683
2684         if (crtc->primary->fb)
2685                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2686                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2687                            crtc->primary->fb->width, crtc->primary->fb->height);
2688         else
2689                 seq_puts(m, "\tprimary plane disabled\n");
2690         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2691                 intel_encoder_info(m, intel_crtc, intel_encoder);
2692 }
2693
2694 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2695 {
2696         struct drm_display_mode *mode = panel->fixed_mode;
2697
2698         seq_printf(m, "\tfixed mode:\n");
2699         intel_seq_print_mode(m, 2, mode);
2700 }
2701
2702 static void intel_dp_info(struct seq_file *m,
2703                           struct intel_connector *intel_connector)
2704 {
2705         struct intel_encoder *intel_encoder = intel_connector->encoder;
2706         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2707
2708         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2709         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2710                    "no");
2711         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2712                 intel_panel_info(m, &intel_connector->panel);
2713 }
2714
2715 static void intel_hdmi_info(struct seq_file *m,
2716                             struct intel_connector *intel_connector)
2717 {
2718         struct intel_encoder *intel_encoder = intel_connector->encoder;
2719         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2720
2721         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2722                    "no");
2723 }
2724
2725 static void intel_lvds_info(struct seq_file *m,
2726                             struct intel_connector *intel_connector)
2727 {
2728         intel_panel_info(m, &intel_connector->panel);
2729 }
2730
2731 static void intel_connector_info(struct seq_file *m,
2732                                  struct drm_connector *connector)
2733 {
2734         struct intel_connector *intel_connector = to_intel_connector(connector);
2735         struct intel_encoder *intel_encoder = intel_connector->encoder;
2736         struct drm_display_mode *mode;
2737
2738         seq_printf(m, "connector %d: type %s, status: %s\n",
2739                    connector->base.id, connector->name,
2740                    drm_get_connector_status_name(connector->status));
2741         if (connector->status == connector_status_connected) {
2742                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2743                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2744                            connector->display_info.width_mm,
2745                            connector->display_info.height_mm);
2746                 seq_printf(m, "\tsubpixel order: %s\n",
2747                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2748                 seq_printf(m, "\tCEA rev: %d\n",
2749                            connector->display_info.cea_rev);
2750         }
2751         if (intel_encoder) {
2752                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2753                     intel_encoder->type == INTEL_OUTPUT_EDP)
2754                         intel_dp_info(m, intel_connector);
2755                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2756                         intel_hdmi_info(m, intel_connector);
2757                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2758                         intel_lvds_info(m, intel_connector);
2759         }
2760
2761         seq_printf(m, "\tmodes:\n");
2762         list_for_each_entry(mode, &connector->modes, head)
2763                 intel_seq_print_mode(m, 2, mode);
2764 }
2765
2766 static bool cursor_active(struct drm_device *dev, int pipe)
2767 {
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         u32 state;
2770
2771         if (IS_845G(dev) || IS_I865G(dev))
2772                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2773         else
2774                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2775
2776         return state;
2777 }
2778
2779 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2780 {
2781         struct drm_i915_private *dev_priv = dev->dev_private;
2782         u32 pos;
2783
2784         pos = I915_READ(CURPOS(pipe));
2785
2786         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2787         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2788                 *x = -*x;
2789
2790         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2791         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2792                 *y = -*y;
2793
2794         return cursor_active(dev, pipe);
2795 }
2796
2797 static int i915_display_info(struct seq_file *m, void *unused)
2798 {
2799         struct drm_info_node *node = m->private;
2800         struct drm_device *dev = node->minor->dev;
2801         struct drm_i915_private *dev_priv = dev->dev_private;
2802         struct intel_crtc *crtc;
2803         struct drm_connector *connector;
2804
2805         intel_runtime_pm_get(dev_priv);
2806         drm_modeset_lock_all(dev);
2807         seq_printf(m, "CRTC info\n");
2808         seq_printf(m, "---------\n");
2809         for_each_intel_crtc(dev, crtc) {
2810                 bool active;
2811                 struct intel_crtc_state *pipe_config;
2812                 int x, y;
2813
2814                 pipe_config = to_intel_crtc_state(crtc->base.state);
2815
2816                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2817                            crtc->base.base.id, pipe_name(crtc->pipe),
2818                            yesno(pipe_config->base.active),
2819                            pipe_config->pipe_src_w, pipe_config->pipe_src_h);
2820                 if (pipe_config->base.active) {
2821                         intel_crtc_info(m, crtc);
2822
2823                         active = cursor_position(dev, crtc->pipe, &x, &y);
2824                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2825                                    yesno(crtc->cursor_base),
2826                                    x, y, crtc->base.cursor->state->crtc_w,
2827                                    crtc->base.cursor->state->crtc_h,
2828                                    crtc->cursor_addr, yesno(active));
2829                 }
2830
2831                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2832                            yesno(!crtc->cpu_fifo_underrun_disabled),
2833                            yesno(!crtc->pch_fifo_underrun_disabled));
2834         }
2835
2836         seq_printf(m, "\n");
2837         seq_printf(m, "Connector info\n");
2838         seq_printf(m, "--------------\n");
2839         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2840                 intel_connector_info(m, connector);
2841         }
2842         drm_modeset_unlock_all(dev);
2843         intel_runtime_pm_put(dev_priv);
2844
2845         return 0;
2846 }
2847
2848 static int i915_semaphore_status(struct seq_file *m, void *unused)
2849 {
2850         struct drm_info_node *node = (struct drm_info_node *) m->private;
2851         struct drm_device *dev = node->minor->dev;
2852         struct drm_i915_private *dev_priv = dev->dev_private;
2853         struct intel_engine_cs *ring;
2854         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2855         int i, j, ret;
2856
2857         if (!i915_semaphore_is_enabled(dev)) {
2858                 seq_puts(m, "Semaphores are disabled\n");
2859                 return 0;
2860         }
2861
2862         ret = mutex_lock_interruptible(&dev->struct_mutex);
2863         if (ret)
2864                 return ret;
2865         intel_runtime_pm_get(dev_priv);
2866
2867         if (IS_BROADWELL(dev)) {
2868                 struct page *page;
2869                 uint64_t *seqno;
2870
2871                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2872
2873                 seqno = (uint64_t *)kmap_atomic(page);
2874                 for_each_ring(ring, dev_priv, i) {
2875                         uint64_t offset;
2876
2877                         seq_printf(m, "%s\n", ring->name);
2878
2879                         seq_puts(m, "  Last signal:");
2880                         for (j = 0; j < num_rings; j++) {
2881                                 offset = i * I915_NUM_RINGS + j;
2882                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2883                                            seqno[offset], offset * 8);
2884                         }
2885                         seq_putc(m, '\n');
2886
2887                         seq_puts(m, "  Last wait:  ");
2888                         for (j = 0; j < num_rings; j++) {
2889                                 offset = i + (j * I915_NUM_RINGS);
2890                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2891                                            seqno[offset], offset * 8);
2892                         }
2893                         seq_putc(m, '\n');
2894
2895                 }
2896                 kunmap_atomic(seqno);
2897         } else {
2898                 seq_puts(m, "  Last signal:");
2899                 for_each_ring(ring, dev_priv, i)
2900                         for (j = 0; j < num_rings; j++)
2901                                 seq_printf(m, "0x%08x\n",
2902                                            I915_READ(ring->semaphore.mbox.signal[j]));
2903                 seq_putc(m, '\n');
2904         }
2905
2906         seq_puts(m, "\nSync seqno:\n");
2907         for_each_ring(ring, dev_priv, i) {
2908                 for (j = 0; j < num_rings; j++) {
2909                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2910                 }
2911                 seq_putc(m, '\n');
2912         }
2913         seq_putc(m, '\n');
2914
2915         intel_runtime_pm_put(dev_priv);
2916         mutex_unlock(&dev->struct_mutex);
2917         return 0;
2918 }
2919
2920 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2921 {
2922         struct drm_info_node *node = (struct drm_info_node *) m->private;
2923         struct drm_device *dev = node->minor->dev;
2924         struct drm_i915_private *dev_priv = dev->dev_private;
2925         int i;
2926
2927         drm_modeset_lock_all(dev);
2928         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2929                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2930
2931                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2932                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2933                            pll->config.crtc_mask, pll->active, yesno(pll->on));
2934                 seq_printf(m, " tracked hardware state:\n");
2935                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
2936                 seq_printf(m, " dpll_md: 0x%08x\n",
2937                            pll->config.hw_state.dpll_md);
2938                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
2939                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
2940                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
2941         }
2942         drm_modeset_unlock_all(dev);
2943
2944         return 0;
2945 }
2946
2947 static int i915_wa_registers(struct seq_file *m, void *unused)
2948 {
2949         int i;
2950         int ret;
2951         struct drm_info_node *node = (struct drm_info_node *) m->private;
2952         struct drm_device *dev = node->minor->dev;
2953         struct drm_i915_private *dev_priv = dev->dev_private;
2954
2955         ret = mutex_lock_interruptible(&dev->struct_mutex);
2956         if (ret)
2957                 return ret;
2958
2959         intel_runtime_pm_get(dev_priv);
2960
2961         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2962         for (i = 0; i < dev_priv->workarounds.count; ++i) {
2963                 u32 addr, mask, value, read;
2964                 bool ok;
2965
2966                 addr = dev_priv->workarounds.reg[i].addr;
2967                 mask = dev_priv->workarounds.reg[i].mask;
2968                 value = dev_priv->workarounds.reg[i].value;
2969                 read = I915_READ(addr);
2970                 ok = (value & mask) == (read & mask);
2971                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2972                            addr, value, mask, read, ok ? "OK" : "FAIL");
2973         }
2974
2975         intel_runtime_pm_put(dev_priv);
2976         mutex_unlock(&dev->struct_mutex);
2977
2978         return 0;
2979 }
2980
2981 static int i915_ddb_info(struct seq_file *m, void *unused)
2982 {
2983         struct drm_info_node *node = m->private;
2984         struct drm_device *dev = node->minor->dev;
2985         struct drm_i915_private *dev_priv = dev->dev_private;
2986         struct skl_ddb_allocation *ddb;
2987         struct skl_ddb_entry *entry;
2988         enum pipe pipe;
2989         int plane;
2990
2991         if (INTEL_INFO(dev)->gen < 9)
2992                 return 0;
2993
2994         drm_modeset_lock_all(dev);
2995
2996         ddb = &dev_priv->wm.skl_hw.ddb;
2997
2998         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2999
3000         for_each_pipe(dev_priv, pipe) {
3001                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3002
3003                 for_each_plane(dev_priv, pipe, plane) {
3004                         entry = &ddb->plane[pipe][plane];
3005                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3006                                    entry->start, entry->end,
3007                                    skl_ddb_entry_size(entry));
3008                 }
3009
3010                 entry = &ddb->cursor[pipe];
3011                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3012                            entry->end, skl_ddb_entry_size(entry));
3013         }
3014
3015         drm_modeset_unlock_all(dev);
3016
3017         return 0;
3018 }
3019
3020 static void drrs_status_per_crtc(struct seq_file *m,
3021                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3022 {
3023         struct intel_encoder *intel_encoder;
3024         struct drm_i915_private *dev_priv = dev->dev_private;
3025         struct i915_drrs *drrs = &dev_priv->drrs;
3026         int vrefresh = 0;
3027
3028         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3029                 /* Encoder connected on this CRTC */
3030                 switch (intel_encoder->type) {
3031                 case INTEL_OUTPUT_EDP:
3032                         seq_puts(m, "eDP:\n");
3033                         break;
3034                 case INTEL_OUTPUT_DSI:
3035                         seq_puts(m, "DSI:\n");
3036                         break;
3037                 case INTEL_OUTPUT_HDMI:
3038                         seq_puts(m, "HDMI:\n");
3039                         break;
3040                 case INTEL_OUTPUT_DISPLAYPORT:
3041                         seq_puts(m, "DP:\n");
3042                         break;
3043                 default:
3044                         seq_printf(m, "Other encoder (id=%d).\n",
3045                                                 intel_encoder->type);
3046                         return;
3047                 }
3048         }
3049
3050         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3051                 seq_puts(m, "\tVBT: DRRS_type: Static");
3052         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3053                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3054         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3055                 seq_puts(m, "\tVBT: DRRS_type: None");
3056         else
3057                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3058
3059         seq_puts(m, "\n\n");
3060
3061         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3062                 struct intel_panel *panel;
3063
3064                 mutex_lock(&drrs->mutex);
3065                 /* DRRS Supported */
3066                 seq_puts(m, "\tDRRS Supported: Yes\n");
3067
3068                 /* disable_drrs() will make drrs->dp NULL */
3069                 if (!drrs->dp) {
3070                         seq_puts(m, "Idleness DRRS: Disabled");
3071                         mutex_unlock(&drrs->mutex);
3072                         return;
3073                 }
3074
3075                 panel = &drrs->dp->attached_connector->panel;
3076                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3077                                         drrs->busy_frontbuffer_bits);
3078
3079                 seq_puts(m, "\n\t\t");
3080                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3081                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3082                         vrefresh = panel->fixed_mode->vrefresh;
3083                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3084                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3085                         vrefresh = panel->downclock_mode->vrefresh;
3086                 } else {
3087                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3088                                                 drrs->refresh_rate_type);
3089                         mutex_unlock(&drrs->mutex);
3090                         return;
3091                 }
3092                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3093
3094                 seq_puts(m, "\n\t\t");
3095                 mutex_unlock(&drrs->mutex);
3096         } else {
3097                 /* DRRS not supported. Print the VBT parameter*/
3098                 seq_puts(m, "\tDRRS Supported : No");
3099         }
3100         seq_puts(m, "\n");
3101 }
3102
3103 static int i915_drrs_status(struct seq_file *m, void *unused)
3104 {
3105         struct drm_info_node *node = m->private;
3106         struct drm_device *dev = node->minor->dev;
3107         struct intel_crtc *intel_crtc;
3108         int active_crtc_cnt = 0;
3109
3110         for_each_intel_crtc(dev, intel_crtc) {
3111                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3112
3113                 if (intel_crtc->base.state->active) {
3114                         active_crtc_cnt++;
3115                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3116
3117                         drrs_status_per_crtc(m, dev, intel_crtc);
3118                 }
3119
3120                 drm_modeset_unlock(&intel_crtc->base.mutex);
3121         }
3122
3123         if (!active_crtc_cnt)
3124                 seq_puts(m, "No active crtc found\n");
3125
3126         return 0;
3127 }
3128
3129 struct pipe_crc_info {
3130         const char *name;
3131         struct drm_device *dev;
3132         enum pipe pipe;
3133 };
3134
3135 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3136 {
3137         struct drm_info_node *node = (struct drm_info_node *) m->private;
3138         struct drm_device *dev = node->minor->dev;
3139         struct drm_encoder *encoder;
3140         struct intel_encoder *intel_encoder;
3141         struct intel_digital_port *intel_dig_port;
3142         drm_modeset_lock_all(dev);
3143         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3144                 intel_encoder = to_intel_encoder(encoder);
3145                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3146                         continue;
3147                 intel_dig_port = enc_to_dig_port(encoder);
3148                 if (!intel_dig_port->dp.can_mst)
3149                         continue;
3150
3151                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3152         }
3153         drm_modeset_unlock_all(dev);
3154         return 0;
3155 }
3156
3157 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3158 {
3159         struct pipe_crc_info *info = inode->i_private;
3160         struct drm_i915_private *dev_priv = info->dev->dev_private;
3161         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3162
3163         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3164                 return -ENODEV;
3165
3166         spin_lock_irq(&pipe_crc->lock);
3167
3168         if (pipe_crc->opened) {
3169                 spin_unlock_irq(&pipe_crc->lock);
3170                 return -EBUSY; /* already open */
3171         }
3172
3173         pipe_crc->opened = true;
3174         filep->private_data = inode->i_private;
3175
3176         spin_unlock_irq(&pipe_crc->lock);
3177
3178         return 0;
3179 }
3180
3181 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3182 {
3183         struct pipe_crc_info *info = inode->i_private;
3184         struct drm_i915_private *dev_priv = info->dev->dev_private;
3185         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3186
3187         spin_lock_irq(&pipe_crc->lock);
3188         pipe_crc->opened = false;
3189         spin_unlock_irq(&pipe_crc->lock);
3190
3191         return 0;
3192 }
3193
3194 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3195 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3196 /* account for \'0' */
3197 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3198
3199 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3200 {
3201         assert_spin_locked(&pipe_crc->lock);
3202         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3203                         INTEL_PIPE_CRC_ENTRIES_NR);
3204 }
3205
3206 static ssize_t
3207 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3208                    loff_t *pos)
3209 {
3210         struct pipe_crc_info *info = filep->private_data;
3211         struct drm_device *dev = info->dev;
3212         struct drm_i915_private *dev_priv = dev->dev_private;
3213         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3214         char buf[PIPE_CRC_BUFFER_LEN];
3215         int n_entries;
3216         ssize_t bytes_read;
3217
3218         /*
3219          * Don't allow user space to provide buffers not big enough to hold
3220          * a line of data.
3221          */
3222         if (count < PIPE_CRC_LINE_LEN)
3223                 return -EINVAL;
3224
3225         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3226                 return 0;
3227
3228         /* nothing to read */
3229         spin_lock_irq(&pipe_crc->lock);
3230         while (pipe_crc_data_count(pipe_crc) == 0) {
3231                 int ret;
3232
3233                 if (filep->f_flags & O_NONBLOCK) {
3234                         spin_unlock_irq(&pipe_crc->lock);
3235                         return -EAGAIN;
3236                 }
3237
3238                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3239                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3240                 if (ret) {
3241                         spin_unlock_irq(&pipe_crc->lock);
3242                         return ret;
3243                 }
3244         }
3245
3246         /* We now have one or more entries to read */
3247         n_entries = count / PIPE_CRC_LINE_LEN;
3248
3249         bytes_read = 0;
3250         while (n_entries > 0) {
3251                 struct intel_pipe_crc_entry *entry =
3252                         &pipe_crc->entries[pipe_crc->tail];
3253                 int ret;
3254
3255                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3256                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3257                         break;
3258
3259                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3260                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3261
3262                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3263                                        "%8u %8x %8x %8x %8x %8x\n",
3264                                        entry->frame, entry->crc[0],
3265                                        entry->crc[1], entry->crc[2],
3266                                        entry->crc[3], entry->crc[4]);
3267
3268                 spin_unlock_irq(&pipe_crc->lock);
3269
3270                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3271                 if (ret == PIPE_CRC_LINE_LEN)
3272                         return -EFAULT;
3273
3274                 user_buf += PIPE_CRC_LINE_LEN;
3275                 n_entries--;
3276
3277                 spin_lock_irq(&pipe_crc->lock);
3278         }
3279
3280         spin_unlock_irq(&pipe_crc->lock);
3281
3282         return bytes_read;
3283 }
3284
3285 static const struct file_operations i915_pipe_crc_fops = {
3286         .owner = THIS_MODULE,
3287         .open = i915_pipe_crc_open,
3288         .read = i915_pipe_crc_read,
3289         .release = i915_pipe_crc_release,
3290 };
3291
3292 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3293         {
3294                 .name = "i915_pipe_A_crc",
3295                 .pipe = PIPE_A,
3296         },
3297         {
3298                 .name = "i915_pipe_B_crc",
3299                 .pipe = PIPE_B,
3300         },
3301         {
3302                 .name = "i915_pipe_C_crc",
3303                 .pipe = PIPE_C,
3304         },
3305 };
3306
3307 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3308                                 enum pipe pipe)
3309 {
3310         struct drm_device *dev = minor->dev;
3311         struct dentry *ent;
3312         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3313
3314         info->dev = dev;
3315         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3316                                   &i915_pipe_crc_fops);
3317         if (!ent)
3318                 return -ENOMEM;
3319
3320         return drm_add_fake_info_node(minor, ent, info);
3321 }
3322
3323 static const char * const pipe_crc_sources[] = {
3324         "none",
3325         "plane1",
3326         "plane2",
3327         "pf",
3328         "pipe",
3329         "TV",
3330         "DP-B",
3331         "DP-C",
3332         "DP-D",
3333         "auto",
3334 };
3335
3336 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3337 {
3338         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3339         return pipe_crc_sources[source];
3340 }
3341
3342 static int display_crc_ctl_show(struct seq_file *m, void *data)
3343 {
3344         struct drm_device *dev = m->private;
3345         struct drm_i915_private *dev_priv = dev->dev_private;
3346         int i;
3347
3348         for (i = 0; i < I915_MAX_PIPES; i++)
3349                 seq_printf(m, "%c %s\n", pipe_name(i),
3350                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3351
3352         return 0;
3353 }
3354
3355 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3356 {
3357         struct drm_device *dev = inode->i_private;
3358
3359         return single_open(file, display_crc_ctl_show, dev);
3360 }
3361
3362 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3363                                  uint32_t *val)
3364 {
3365         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3366                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3367
3368         switch (*source) {
3369         case INTEL_PIPE_CRC_SOURCE_PIPE:
3370                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3371                 break;
3372         case INTEL_PIPE_CRC_SOURCE_NONE:
3373                 *val = 0;
3374                 break;
3375         default:
3376                 return -EINVAL;
3377         }
3378
3379         return 0;
3380 }
3381
3382 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3383                                      enum intel_pipe_crc_source *source)
3384 {
3385         struct intel_encoder *encoder;
3386         struct intel_crtc *crtc;
3387         struct intel_digital_port *dig_port;
3388         int ret = 0;
3389
3390         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3391
3392         drm_modeset_lock_all(dev);
3393         for_each_intel_encoder(dev, encoder) {
3394                 if (!encoder->base.crtc)
3395                         continue;
3396
3397                 crtc = to_intel_crtc(encoder->base.crtc);
3398
3399                 if (crtc->pipe != pipe)
3400                         continue;
3401
3402                 switch (encoder->type) {
3403                 case INTEL_OUTPUT_TVOUT:
3404                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3405                         break;
3406                 case INTEL_OUTPUT_DISPLAYPORT:
3407                 case INTEL_OUTPUT_EDP:
3408                         dig_port = enc_to_dig_port(&encoder->base);
3409                         switch (dig_port->port) {
3410                         case PORT_B:
3411                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3412                                 break;
3413                         case PORT_C:
3414                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3415                                 break;
3416                         case PORT_D:
3417                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3418                                 break;
3419                         default:
3420                                 WARN(1, "nonexisting DP port %c\n",
3421                                      port_name(dig_port->port));
3422                                 break;
3423                         }
3424                         break;
3425                 default:
3426                         break;
3427                 }
3428         }
3429         drm_modeset_unlock_all(dev);
3430
3431         return ret;
3432 }
3433
3434 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3435                                 enum pipe pipe,
3436                                 enum intel_pipe_crc_source *source,
3437                                 uint32_t *val)
3438 {
3439         struct drm_i915_private *dev_priv = dev->dev_private;
3440         bool need_stable_symbols = false;
3441
3442         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3443                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3444                 if (ret)
3445                         return ret;
3446         }
3447
3448         switch (*source) {
3449         case INTEL_PIPE_CRC_SOURCE_PIPE:
3450                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3451                 break;
3452         case INTEL_PIPE_CRC_SOURCE_DP_B:
3453                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3454                 need_stable_symbols = true;
3455                 break;
3456         case INTEL_PIPE_CRC_SOURCE_DP_C:
3457                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3458                 need_stable_symbols = true;
3459                 break;
3460         case INTEL_PIPE_CRC_SOURCE_DP_D:
3461                 if (!IS_CHERRYVIEW(dev))
3462                         return -EINVAL;
3463                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3464                 need_stable_symbols = true;
3465                 break;
3466         case INTEL_PIPE_CRC_SOURCE_NONE:
3467                 *val = 0;
3468                 break;
3469         default:
3470                 return -EINVAL;
3471         }
3472
3473         /*
3474          * When the pipe CRC tap point is after the transcoders we need
3475          * to tweak symbol-level features to produce a deterministic series of
3476          * symbols for a given frame. We need to reset those features only once
3477          * a frame (instead of every nth symbol):
3478          *   - DC-balance: used to ensure a better clock recovery from the data
3479          *     link (SDVO)
3480          *   - DisplayPort scrambling: used for EMI reduction
3481          */
3482         if (need_stable_symbols) {
3483                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3484
3485                 tmp |= DC_BALANCE_RESET_VLV;
3486                 switch (pipe) {
3487                 case PIPE_A:
3488                         tmp |= PIPE_A_SCRAMBLE_RESET;
3489                         break;
3490                 case PIPE_B:
3491                         tmp |= PIPE_B_SCRAMBLE_RESET;
3492                         break;
3493                 case PIPE_C:
3494                         tmp |= PIPE_C_SCRAMBLE_RESET;
3495                         break;
3496                 default:
3497                         return -EINVAL;
3498                 }
3499                 I915_WRITE(PORT_DFT2_G4X, tmp);
3500         }
3501
3502         return 0;
3503 }
3504
3505 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3506                                  enum pipe pipe,
3507                                  enum intel_pipe_crc_source *source,
3508                                  uint32_t *val)
3509 {
3510         struct drm_i915_private *dev_priv = dev->dev_private;
3511         bool need_stable_symbols = false;
3512
3513         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3514                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3515                 if (ret)
3516                         return ret;
3517         }
3518
3519         switch (*source) {
3520         case INTEL_PIPE_CRC_SOURCE_PIPE:
3521                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3522                 break;
3523         case INTEL_PIPE_CRC_SOURCE_TV:
3524                 if (!SUPPORTS_TV(dev))
3525                         return -EINVAL;
3526                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3527                 break;
3528         case INTEL_PIPE_CRC_SOURCE_DP_B:
3529                 if (!IS_G4X(dev))
3530                         return -EINVAL;
3531                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3532                 need_stable_symbols = true;
3533                 break;
3534         case INTEL_PIPE_CRC_SOURCE_DP_C:
3535                 if (!IS_G4X(dev))
3536                         return -EINVAL;
3537                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3538                 need_stable_symbols = true;
3539                 break;
3540         case INTEL_PIPE_CRC_SOURCE_DP_D:
3541                 if (!IS_G4X(dev))
3542                         return -EINVAL;
3543                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3544                 need_stable_symbols = true;
3545                 break;
3546         case INTEL_PIPE_CRC_SOURCE_NONE:
3547                 *val = 0;
3548                 break;
3549         default:
3550                 return -EINVAL;
3551         }
3552
3553         /*
3554          * When the pipe CRC tap point is after the transcoders we need
3555          * to tweak symbol-level features to produce a deterministic series of
3556          * symbols for a given frame. We need to reset those features only once
3557          * a frame (instead of every nth symbol):
3558          *   - DC-balance: used to ensure a better clock recovery from the data
3559          *     link (SDVO)
3560          *   - DisplayPort scrambling: used for EMI reduction
3561          */
3562         if (need_stable_symbols) {
3563                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3564
3565                 WARN_ON(!IS_G4X(dev));
3566
3567                 I915_WRITE(PORT_DFT_I9XX,
3568                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3569
3570                 if (pipe == PIPE_A)
3571                         tmp |= PIPE_A_SCRAMBLE_RESET;
3572                 else
3573                         tmp |= PIPE_B_SCRAMBLE_RESET;
3574
3575                 I915_WRITE(PORT_DFT2_G4X, tmp);
3576         }
3577
3578         return 0;
3579 }
3580
3581 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3582                                          enum pipe pipe)
3583 {
3584         struct drm_i915_private *dev_priv = dev->dev_private;
3585         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3586
3587         switch (pipe) {
3588         case PIPE_A:
3589                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3590                 break;
3591         case PIPE_B:
3592                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3593                 break;
3594         case PIPE_C:
3595                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3596                 break;
3597         default:
3598                 return;
3599         }
3600         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3601                 tmp &= ~DC_BALANCE_RESET_VLV;
3602         I915_WRITE(PORT_DFT2_G4X, tmp);
3603
3604 }
3605
3606 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3607                                          enum pipe pipe)
3608 {
3609         struct drm_i915_private *dev_priv = dev->dev_private;
3610         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3611
3612         if (pipe == PIPE_A)
3613                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3614         else
3615                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3616         I915_WRITE(PORT_DFT2_G4X, tmp);
3617
3618         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3619                 I915_WRITE(PORT_DFT_I9XX,
3620                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3621         }
3622 }
3623
3624 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3625                                 uint32_t *val)
3626 {
3627         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3628                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3629
3630         switch (*source) {
3631         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3632                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3633                 break;
3634         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3635                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3636                 break;
3637         case INTEL_PIPE_CRC_SOURCE_PIPE:
3638                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3639                 break;
3640         case INTEL_PIPE_CRC_SOURCE_NONE:
3641                 *val = 0;
3642                 break;
3643         default:
3644                 return -EINVAL;
3645         }
3646
3647         return 0;
3648 }
3649
3650 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3651 {
3652         struct drm_i915_private *dev_priv = dev->dev_private;
3653         struct intel_crtc *crtc =
3654                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3655         struct intel_crtc_state *pipe_config;
3656         struct drm_atomic_state *state;
3657         int ret = 0;
3658
3659         drm_modeset_lock_all(dev);
3660         state = drm_atomic_state_alloc(dev);
3661         if (!state) {
3662                 ret = -ENOMEM;
3663                 goto out;
3664         }
3665
3666         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3667         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3668         if (IS_ERR(pipe_config)) {
3669                 ret = PTR_ERR(pipe_config);
3670                 goto out;
3671         }
3672
3673         pipe_config->pch_pfit.force_thru = enable;
3674         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3675             pipe_config->pch_pfit.enabled != enable)
3676                 pipe_config->base.connectors_changed = true;
3677
3678         ret = drm_atomic_commit(state);
3679 out:
3680         drm_modeset_unlock_all(dev);
3681         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3682         if (ret)
3683                 drm_atomic_state_free(state);
3684 }
3685
3686 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3687                                 enum pipe pipe,
3688                                 enum intel_pipe_crc_source *source,
3689                                 uint32_t *val)
3690 {
3691         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3692                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3693
3694         switch (*source) {
3695         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3696                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3697                 break;
3698         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3699                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3700                 break;
3701         case INTEL_PIPE_CRC_SOURCE_PF:
3702                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3703                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
3704
3705                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3706                 break;
3707         case INTEL_PIPE_CRC_SOURCE_NONE:
3708                 *val = 0;
3709                 break;
3710         default:
3711                 return -EINVAL;
3712         }
3713
3714         return 0;
3715 }
3716
3717 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3718                                enum intel_pipe_crc_source source)
3719 {
3720         struct drm_i915_private *dev_priv = dev->dev_private;
3721         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3722         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3723                                                                         pipe));
3724         u32 val = 0; /* shut up gcc */
3725         int ret;
3726
3727         if (pipe_crc->source == source)
3728                 return 0;
3729
3730         /* forbid changing the source without going back to 'none' */
3731         if (pipe_crc->source && source)
3732                 return -EINVAL;
3733
3734         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3735                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3736                 return -EIO;
3737         }
3738
3739         if (IS_GEN2(dev))
3740                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3741         else if (INTEL_INFO(dev)->gen < 5)
3742                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3743         else if (IS_VALLEYVIEW(dev))
3744                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3745         else if (IS_GEN5(dev) || IS_GEN6(dev))
3746                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3747         else
3748                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3749
3750         if (ret != 0)
3751                 return ret;
3752
3753         /* none -> real source transition */
3754         if (source) {
3755                 struct intel_pipe_crc_entry *entries;
3756
3757                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3758                                  pipe_name(pipe), pipe_crc_source_name(source));
3759
3760                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3761                                   sizeof(pipe_crc->entries[0]),
3762                                   GFP_KERNEL);
3763                 if (!entries)
3764                         return -ENOMEM;
3765
3766                 /*
3767                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3768                  * enabled and disabled dynamically based on package C states,
3769                  * user space can't make reliable use of the CRCs, so let's just
3770                  * completely disable it.
3771                  */
3772                 hsw_disable_ips(crtc);
3773
3774                 spin_lock_irq(&pipe_crc->lock);
3775                 kfree(pipe_crc->entries);
3776                 pipe_crc->entries = entries;
3777                 pipe_crc->head = 0;
3778                 pipe_crc->tail = 0;
3779                 spin_unlock_irq(&pipe_crc->lock);
3780         }
3781
3782         pipe_crc->source = source;
3783
3784         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3785         POSTING_READ(PIPE_CRC_CTL(pipe));
3786
3787         /* real source -> none transition */
3788         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3789                 struct intel_pipe_crc_entry *entries;
3790                 struct intel_crtc *crtc =
3791                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3792
3793                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3794                                  pipe_name(pipe));
3795
3796                 drm_modeset_lock(&crtc->base.mutex, NULL);
3797                 if (crtc->base.state->active)
3798                         intel_wait_for_vblank(dev, pipe);
3799                 drm_modeset_unlock(&crtc->base.mutex);
3800
3801                 spin_lock_irq(&pipe_crc->lock);
3802                 entries = pipe_crc->entries;
3803                 pipe_crc->entries = NULL;
3804                 pipe_crc->head = 0;
3805                 pipe_crc->tail = 0;
3806                 spin_unlock_irq(&pipe_crc->lock);
3807
3808                 kfree(entries);
3809
3810                 if (IS_G4X(dev))
3811                         g4x_undo_pipe_scramble_reset(dev, pipe);
3812                 else if (IS_VALLEYVIEW(dev))
3813                         vlv_undo_pipe_scramble_reset(dev, pipe);
3814                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3815                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
3816
3817                 hsw_enable_ips(crtc);
3818         }
3819
3820         return 0;
3821 }
3822
3823 /*
3824  * Parse pipe CRC command strings:
3825  *   command: wsp* object wsp+ name wsp+ source wsp*
3826  *   object: 'pipe'
3827  *   name: (A | B | C)
3828  *   source: (none | plane1 | plane2 | pf)
3829  *   wsp: (#0x20 | #0x9 | #0xA)+
3830  *
3831  * eg.:
3832  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3833  *  "pipe A none"    ->  Stop CRC
3834  */
3835 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3836 {
3837         int n_words = 0;
3838
3839         while (*buf) {
3840                 char *end;
3841
3842                 /* skip leading white space */
3843                 buf = skip_spaces(buf);
3844                 if (!*buf)
3845                         break;  /* end of buffer */
3846
3847                 /* find end of word */
3848                 for (end = buf; *end && !isspace(*end); end++)
3849                         ;
3850
3851                 if (n_words == max_words) {
3852                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3853                                          max_words);
3854                         return -EINVAL; /* ran out of words[] before bytes */
3855                 }
3856
3857                 if (*end)
3858                         *end++ = '\0';
3859                 words[n_words++] = buf;
3860                 buf = end;
3861         }
3862
3863         return n_words;
3864 }
3865
3866 enum intel_pipe_crc_object {
3867         PIPE_CRC_OBJECT_PIPE,
3868 };
3869
3870 static const char * const pipe_crc_objects[] = {
3871         "pipe",
3872 };
3873
3874 static int
3875 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3876 {
3877         int i;
3878
3879         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3880                 if (!strcmp(buf, pipe_crc_objects[i])) {
3881                         *o = i;
3882                         return 0;
3883                     }
3884
3885         return -EINVAL;
3886 }
3887
3888 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3889 {
3890         const char name = buf[0];
3891
3892         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3893                 return -EINVAL;
3894
3895         *pipe = name - 'A';
3896
3897         return 0;
3898 }
3899
3900 static int
3901 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3902 {
3903         int i;
3904
3905         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3906                 if (!strcmp(buf, pipe_crc_sources[i])) {
3907                         *s = i;
3908                         return 0;
3909                     }
3910
3911         return -EINVAL;
3912 }
3913
3914 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3915 {
3916 #define N_WORDS 3
3917         int n_words;
3918         char *words[N_WORDS];
3919         enum pipe pipe;
3920         enum intel_pipe_crc_object object;
3921         enum intel_pipe_crc_source source;
3922
3923         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3924         if (n_words != N_WORDS) {
3925                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3926                                  N_WORDS);
3927                 return -EINVAL;
3928         }
3929
3930         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3931                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3932                 return -EINVAL;
3933         }
3934
3935         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3936                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3937                 return -EINVAL;
3938         }
3939
3940         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3941                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3942                 return -EINVAL;
3943         }
3944
3945         return pipe_crc_set_source(dev, pipe, source);
3946 }
3947
3948 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3949                                      size_t len, loff_t *offp)
3950 {
3951         struct seq_file *m = file->private_data;
3952         struct drm_device *dev = m->private;
3953         char *tmpbuf;
3954         int ret;
3955
3956         if (len == 0)
3957                 return 0;
3958
3959         if (len > PAGE_SIZE - 1) {
3960                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3961                                  PAGE_SIZE);
3962                 return -E2BIG;
3963         }
3964
3965         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3966         if (!tmpbuf)
3967                 return -ENOMEM;
3968
3969         if (copy_from_user(tmpbuf, ubuf, len)) {
3970                 ret = -EFAULT;
3971                 goto out;
3972         }
3973         tmpbuf[len] = '\0';
3974
3975         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3976
3977 out:
3978         kfree(tmpbuf);
3979         if (ret < 0)
3980                 return ret;
3981
3982         *offp += len;
3983         return len;
3984 }
3985
3986 static const struct file_operations i915_display_crc_ctl_fops = {
3987         .owner = THIS_MODULE,
3988         .open = display_crc_ctl_open,
3989         .read = seq_read,
3990         .llseek = seq_lseek,
3991         .release = single_release,
3992         .write = display_crc_ctl_write
3993 };
3994
3995 static ssize_t i915_displayport_test_active_write(struct file *file,
3996                                             const char __user *ubuf,
3997                                             size_t len, loff_t *offp)
3998 {
3999         char *input_buffer;
4000         int status = 0;
4001         struct drm_device *dev;
4002         struct drm_connector *connector;
4003         struct list_head *connector_list;
4004         struct intel_dp *intel_dp;
4005         int val = 0;
4006
4007         dev = ((struct seq_file *)file->private_data)->private;
4008
4009         connector_list = &dev->mode_config.connector_list;
4010
4011         if (len == 0)
4012                 return 0;
4013
4014         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4015         if (!input_buffer)
4016                 return -ENOMEM;
4017
4018         if (copy_from_user(input_buffer, ubuf, len)) {
4019                 status = -EFAULT;
4020                 goto out;
4021         }
4022
4023         input_buffer[len] = '\0';
4024         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4025
4026         list_for_each_entry(connector, connector_list, head) {
4027
4028                 if (connector->connector_type !=
4029                     DRM_MODE_CONNECTOR_DisplayPort)
4030                         continue;
4031
4032                 if (connector->status == connector_status_connected &&
4033                     connector->encoder != NULL) {
4034                         intel_dp = enc_to_intel_dp(connector->encoder);
4035                         status = kstrtoint(input_buffer, 10, &val);
4036                         if (status < 0)
4037                                 goto out;
4038                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4039                         /* To prevent erroneous activation of the compliance
4040                          * testing code, only accept an actual value of 1 here
4041                          */
4042                         if (val == 1)
4043                                 intel_dp->compliance_test_active = 1;
4044                         else
4045                                 intel_dp->compliance_test_active = 0;
4046                 }
4047         }
4048 out:
4049         kfree(input_buffer);
4050         if (status < 0)
4051                 return status;
4052
4053         *offp += len;
4054         return len;
4055 }
4056
4057 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4058 {
4059         struct drm_device *dev = m->private;
4060         struct drm_connector *connector;
4061         struct list_head *connector_list = &dev->mode_config.connector_list;
4062         struct intel_dp *intel_dp;
4063
4064         list_for_each_entry(connector, connector_list, head) {
4065
4066                 if (connector->connector_type !=
4067                     DRM_MODE_CONNECTOR_DisplayPort)
4068                         continue;
4069
4070                 if (connector->status == connector_status_connected &&
4071                     connector->encoder != NULL) {
4072                         intel_dp = enc_to_intel_dp(connector->encoder);
4073                         if (intel_dp->compliance_test_active)
4074                                 seq_puts(m, "1");
4075                         else
4076                                 seq_puts(m, "0");
4077                 } else
4078                         seq_puts(m, "0");
4079         }
4080
4081         return 0;
4082 }
4083
4084 static int i915_displayport_test_active_open(struct inode *inode,
4085                                        struct file *file)
4086 {
4087         struct drm_device *dev = inode->i_private;
4088
4089         return single_open(file, i915_displayport_test_active_show, dev);
4090 }
4091
4092 static const struct file_operations i915_displayport_test_active_fops = {
4093         .owner = THIS_MODULE,
4094         .open = i915_displayport_test_active_open,
4095         .read = seq_read,
4096         .llseek = seq_lseek,
4097         .release = single_release,
4098         .write = i915_displayport_test_active_write
4099 };
4100
4101 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4102 {
4103         struct drm_device *dev = m->private;
4104         struct drm_connector *connector;
4105         struct list_head *connector_list = &dev->mode_config.connector_list;
4106         struct intel_dp *intel_dp;
4107
4108         list_for_each_entry(connector, connector_list, head) {
4109
4110                 if (connector->connector_type !=
4111                     DRM_MODE_CONNECTOR_DisplayPort)
4112                         continue;
4113
4114                 if (connector->status == connector_status_connected &&
4115                     connector->encoder != NULL) {
4116                         intel_dp = enc_to_intel_dp(connector->encoder);
4117                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4118                 } else
4119                         seq_puts(m, "0");
4120         }
4121
4122         return 0;
4123 }
4124 static int i915_displayport_test_data_open(struct inode *inode,
4125                                        struct file *file)
4126 {
4127         struct drm_device *dev = inode->i_private;
4128
4129         return single_open(file, i915_displayport_test_data_show, dev);
4130 }
4131
4132 static const struct file_operations i915_displayport_test_data_fops = {
4133         .owner = THIS_MODULE,
4134         .open = i915_displayport_test_data_open,
4135         .read = seq_read,
4136         .llseek = seq_lseek,
4137         .release = single_release
4138 };
4139
4140 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4141 {
4142         struct drm_device *dev = m->private;
4143         struct drm_connector *connector;
4144         struct list_head *connector_list = &dev->mode_config.connector_list;
4145         struct intel_dp *intel_dp;
4146
4147         list_for_each_entry(connector, connector_list, head) {
4148
4149                 if (connector->connector_type !=
4150                     DRM_MODE_CONNECTOR_DisplayPort)
4151                         continue;
4152
4153                 if (connector->status == connector_status_connected &&
4154                     connector->encoder != NULL) {
4155                         intel_dp = enc_to_intel_dp(connector->encoder);
4156                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4157                 } else
4158                         seq_puts(m, "0");
4159         }
4160
4161         return 0;
4162 }
4163
4164 static int i915_displayport_test_type_open(struct inode *inode,
4165                                        struct file *file)
4166 {
4167         struct drm_device *dev = inode->i_private;
4168
4169         return single_open(file, i915_displayport_test_type_show, dev);
4170 }
4171
4172 static const struct file_operations i915_displayport_test_type_fops = {
4173         .owner = THIS_MODULE,
4174         .open = i915_displayport_test_type_open,
4175         .read = seq_read,
4176         .llseek = seq_lseek,
4177         .release = single_release
4178 };
4179
4180 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4181 {
4182         struct drm_device *dev = m->private;
4183         int level;
4184         int num_levels;
4185
4186         if (IS_CHERRYVIEW(dev))
4187                 num_levels = 3;
4188         else if (IS_VALLEYVIEW(dev))
4189                 num_levels = 1;
4190         else
4191                 num_levels = ilk_wm_max_level(dev) + 1;
4192
4193         drm_modeset_lock_all(dev);
4194
4195         for (level = 0; level < num_levels; level++) {
4196                 unsigned int latency = wm[level];
4197
4198                 /*
4199                  * - WM1+ latency values in 0.5us units
4200                  * - latencies are in us on gen9/vlv/chv
4201                  */
4202                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev))
4203                         latency *= 10;
4204                 else if (level > 0)
4205                         latency *= 5;
4206
4207                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4208                            level, wm[level], latency / 10, latency % 10);
4209         }
4210
4211         drm_modeset_unlock_all(dev);
4212 }
4213
4214 static int pri_wm_latency_show(struct seq_file *m, void *data)
4215 {
4216         struct drm_device *dev = m->private;
4217         struct drm_i915_private *dev_priv = dev->dev_private;
4218         const uint16_t *latencies;
4219
4220         if (INTEL_INFO(dev)->gen >= 9)
4221                 latencies = dev_priv->wm.skl_latency;
4222         else
4223                 latencies = to_i915(dev)->wm.pri_latency;
4224
4225         wm_latency_show(m, latencies);
4226
4227         return 0;
4228 }
4229
4230 static int spr_wm_latency_show(struct seq_file *m, void *data)
4231 {
4232         struct drm_device *dev = m->private;
4233         struct drm_i915_private *dev_priv = dev->dev_private;
4234         const uint16_t *latencies;
4235
4236         if (INTEL_INFO(dev)->gen >= 9)
4237                 latencies = dev_priv->wm.skl_latency;
4238         else
4239                 latencies = to_i915(dev)->wm.spr_latency;
4240
4241         wm_latency_show(m, latencies);
4242
4243         return 0;
4244 }
4245
4246 static int cur_wm_latency_show(struct seq_file *m, void *data)
4247 {
4248         struct drm_device *dev = m->private;
4249         struct drm_i915_private *dev_priv = dev->dev_private;
4250         const uint16_t *latencies;
4251
4252         if (INTEL_INFO(dev)->gen >= 9)
4253                 latencies = dev_priv->wm.skl_latency;
4254         else
4255                 latencies = to_i915(dev)->wm.cur_latency;
4256
4257         wm_latency_show(m, latencies);
4258
4259         return 0;
4260 }
4261
4262 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4263 {
4264         struct drm_device *dev = inode->i_private;
4265
4266         if (INTEL_INFO(dev)->gen < 5)
4267                 return -ENODEV;
4268
4269         return single_open(file, pri_wm_latency_show, dev);
4270 }
4271
4272 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4273 {
4274         struct drm_device *dev = inode->i_private;
4275
4276         if (HAS_GMCH_DISPLAY(dev))
4277                 return -ENODEV;
4278
4279         return single_open(file, spr_wm_latency_show, dev);
4280 }
4281
4282 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4283 {
4284         struct drm_device *dev = inode->i_private;
4285
4286         if (HAS_GMCH_DISPLAY(dev))
4287                 return -ENODEV;
4288
4289         return single_open(file, cur_wm_latency_show, dev);
4290 }
4291
4292 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4293                                 size_t len, loff_t *offp, uint16_t wm[8])
4294 {
4295         struct seq_file *m = file->private_data;
4296         struct drm_device *dev = m->private;
4297         uint16_t new[8] = { 0 };
4298         int num_levels;
4299         int level;
4300         int ret;
4301         char tmp[32];
4302
4303         if (IS_CHERRYVIEW(dev))
4304                 num_levels = 3;
4305         else if (IS_VALLEYVIEW(dev))
4306                 num_levels = 1;
4307         else
4308                 num_levels = ilk_wm_max_level(dev) + 1;
4309
4310         if (len >= sizeof(tmp))
4311                 return -EINVAL;
4312
4313         if (copy_from_user(tmp, ubuf, len))
4314                 return -EFAULT;
4315
4316         tmp[len] = '\0';
4317
4318         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4319                      &new[0], &new[1], &new[2], &new[3],
4320                      &new[4], &new[5], &new[6], &new[7]);
4321         if (ret != num_levels)
4322                 return -EINVAL;
4323
4324         drm_modeset_lock_all(dev);
4325
4326         for (level = 0; level < num_levels; level++)
4327                 wm[level] = new[level];
4328
4329         drm_modeset_unlock_all(dev);
4330
4331         return len;
4332 }
4333
4334
4335 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4336                                     size_t len, loff_t *offp)
4337 {
4338         struct seq_file *m = file->private_data;
4339         struct drm_device *dev = m->private;
4340         struct drm_i915_private *dev_priv = dev->dev_private;
4341         uint16_t *latencies;
4342
4343         if (INTEL_INFO(dev)->gen >= 9)
4344                 latencies = dev_priv->wm.skl_latency;
4345         else
4346                 latencies = to_i915(dev)->wm.pri_latency;
4347
4348         return wm_latency_write(file, ubuf, len, offp, latencies);
4349 }
4350
4351 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4352                                     size_t len, loff_t *offp)
4353 {
4354         struct seq_file *m = file->private_data;
4355         struct drm_device *dev = m->private;
4356         struct drm_i915_private *dev_priv = dev->dev_private;
4357         uint16_t *latencies;
4358
4359         if (INTEL_INFO(dev)->gen >= 9)
4360                 latencies = dev_priv->wm.skl_latency;
4361         else
4362                 latencies = to_i915(dev)->wm.spr_latency;
4363
4364         return wm_latency_write(file, ubuf, len, offp, latencies);
4365 }
4366
4367 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4368                                     size_t len, loff_t *offp)
4369 {
4370         struct seq_file *m = file->private_data;
4371         struct drm_device *dev = m->private;
4372         struct drm_i915_private *dev_priv = dev->dev_private;
4373         uint16_t *latencies;
4374
4375         if (INTEL_INFO(dev)->gen >= 9)
4376                 latencies = dev_priv->wm.skl_latency;
4377         else
4378                 latencies = to_i915(dev)->wm.cur_latency;
4379
4380         return wm_latency_write(file, ubuf, len, offp, latencies);
4381 }
4382
4383 static const struct file_operations i915_pri_wm_latency_fops = {
4384         .owner = THIS_MODULE,
4385         .open = pri_wm_latency_open,
4386         .read = seq_read,
4387         .llseek = seq_lseek,
4388         .release = single_release,
4389         .write = pri_wm_latency_write
4390 };
4391
4392 static const struct file_operations i915_spr_wm_latency_fops = {
4393         .owner = THIS_MODULE,
4394         .open = spr_wm_latency_open,
4395         .read = seq_read,
4396         .llseek = seq_lseek,
4397         .release = single_release,
4398         .write = spr_wm_latency_write
4399 };
4400
4401 static const struct file_operations i915_cur_wm_latency_fops = {
4402         .owner = THIS_MODULE,
4403         .open = cur_wm_latency_open,
4404         .read = seq_read,
4405         .llseek = seq_lseek,
4406         .release = single_release,
4407         .write = cur_wm_latency_write
4408 };
4409
4410 static int
4411 i915_wedged_get(void *data, u64 *val)
4412 {
4413         struct drm_device *dev = data;
4414         struct drm_i915_private *dev_priv = dev->dev_private;
4415
4416         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4417
4418         return 0;
4419 }
4420
4421 static int
4422 i915_wedged_set(void *data, u64 val)
4423 {
4424         struct drm_device *dev = data;
4425         struct drm_i915_private *dev_priv = dev->dev_private;
4426
4427         /*
4428          * There is no safeguard against this debugfs entry colliding
4429          * with the hangcheck calling same i915_handle_error() in
4430          * parallel, causing an explosion. For now we assume that the
4431          * test harness is responsible enough not to inject gpu hangs
4432          * while it is writing to 'i915_wedged'
4433          */
4434
4435         if (i915_reset_in_progress(&dev_priv->gpu_error))
4436                 return -EAGAIN;
4437
4438         intel_runtime_pm_get(dev_priv);
4439
4440         i915_handle_error(dev, val,
4441                           "Manually setting wedged to %llu", val);
4442
4443         intel_runtime_pm_put(dev_priv);
4444
4445         return 0;
4446 }
4447
4448 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4449                         i915_wedged_get, i915_wedged_set,
4450                         "%llu\n");
4451
4452 static int
4453 i915_ring_stop_get(void *data, u64 *val)
4454 {
4455         struct drm_device *dev = data;
4456         struct drm_i915_private *dev_priv = dev->dev_private;
4457
4458         *val = dev_priv->gpu_error.stop_rings;
4459
4460         return 0;
4461 }
4462
4463 static int
4464 i915_ring_stop_set(void *data, u64 val)
4465 {
4466         struct drm_device *dev = data;
4467         struct drm_i915_private *dev_priv = dev->dev_private;
4468         int ret;
4469
4470         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4471
4472         ret = mutex_lock_interruptible(&dev->struct_mutex);
4473         if (ret)
4474                 return ret;
4475
4476         dev_priv->gpu_error.stop_rings = val;
4477         mutex_unlock(&dev->struct_mutex);
4478
4479         return 0;
4480 }
4481
4482 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4483                         i915_ring_stop_get, i915_ring_stop_set,
4484                         "0x%08llx\n");
4485
4486 static int
4487 i915_ring_missed_irq_get(void *data, u64 *val)
4488 {
4489         struct drm_device *dev = data;
4490         struct drm_i915_private *dev_priv = dev->dev_private;
4491
4492         *val = dev_priv->gpu_error.missed_irq_rings;
4493         return 0;
4494 }
4495
4496 static int
4497 i915_ring_missed_irq_set(void *data, u64 val)
4498 {
4499         struct drm_device *dev = data;
4500         struct drm_i915_private *dev_priv = dev->dev_private;
4501         int ret;
4502
4503         /* Lock against concurrent debugfs callers */
4504         ret = mutex_lock_interruptible(&dev->struct_mutex);
4505         if (ret)
4506                 return ret;
4507         dev_priv->gpu_error.missed_irq_rings = val;
4508         mutex_unlock(&dev->struct_mutex);
4509
4510         return 0;
4511 }
4512
4513 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4514                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4515                         "0x%08llx\n");
4516
4517 static int
4518 i915_ring_test_irq_get(void *data, u64 *val)
4519 {
4520         struct drm_device *dev = data;
4521         struct drm_i915_private *dev_priv = dev->dev_private;
4522
4523         *val = dev_priv->gpu_error.test_irq_rings;
4524
4525         return 0;
4526 }
4527
4528 static int
4529 i915_ring_test_irq_set(void *data, u64 val)
4530 {
4531         struct drm_device *dev = data;
4532         struct drm_i915_private *dev_priv = dev->dev_private;
4533         int ret;
4534
4535         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4536
4537         /* Lock against concurrent debugfs callers */
4538         ret = mutex_lock_interruptible(&dev->struct_mutex);
4539         if (ret)
4540                 return ret;
4541
4542         dev_priv->gpu_error.test_irq_rings = val;
4543         mutex_unlock(&dev->struct_mutex);
4544
4545         return 0;
4546 }
4547
4548 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4549                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4550                         "0x%08llx\n");
4551
4552 #define DROP_UNBOUND 0x1
4553 #define DROP_BOUND 0x2
4554 #define DROP_RETIRE 0x4
4555 #define DROP_ACTIVE 0x8
4556 #define DROP_ALL (DROP_UNBOUND | \
4557                   DROP_BOUND | \
4558                   DROP_RETIRE | \
4559                   DROP_ACTIVE)
4560 static int
4561 i915_drop_caches_get(void *data, u64 *val)
4562 {
4563         *val = DROP_ALL;
4564
4565         return 0;
4566 }
4567
4568 static int
4569 i915_drop_caches_set(void *data, u64 val)
4570 {
4571         struct drm_device *dev = data;
4572         struct drm_i915_private *dev_priv = dev->dev_private;
4573         int ret;
4574
4575         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4576
4577         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4578          * on ioctls on -EAGAIN. */
4579         ret = mutex_lock_interruptible(&dev->struct_mutex);
4580         if (ret)
4581                 return ret;
4582
4583         if (val & DROP_ACTIVE) {
4584                 ret = i915_gpu_idle(dev);
4585                 if (ret)
4586                         goto unlock;
4587         }
4588
4589         if (val & (DROP_RETIRE | DROP_ACTIVE))
4590                 i915_gem_retire_requests(dev);
4591
4592         if (val & DROP_BOUND)
4593                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4594
4595         if (val & DROP_UNBOUND)
4596                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4597
4598 unlock:
4599         mutex_unlock(&dev->struct_mutex);
4600
4601         return ret;
4602 }
4603
4604 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4605                         i915_drop_caches_get, i915_drop_caches_set,
4606                         "0x%08llx\n");
4607
4608 static int
4609 i915_max_freq_get(void *data, u64 *val)
4610 {
4611         struct drm_device *dev = data;
4612         struct drm_i915_private *dev_priv = dev->dev_private;
4613         int ret;
4614
4615         if (INTEL_INFO(dev)->gen < 6)
4616                 return -ENODEV;
4617
4618         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4619
4620         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4621         if (ret)
4622                 return ret;
4623
4624         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4625         mutex_unlock(&dev_priv->rps.hw_lock);
4626
4627         return 0;
4628 }
4629
4630 static int
4631 i915_max_freq_set(void *data, u64 val)
4632 {
4633         struct drm_device *dev = data;
4634         struct drm_i915_private *dev_priv = dev->dev_private;
4635         u32 hw_max, hw_min;
4636         int ret;
4637
4638         if (INTEL_INFO(dev)->gen < 6)
4639                 return -ENODEV;
4640
4641         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4642
4643         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4644
4645         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4646         if (ret)
4647                 return ret;
4648
4649         /*
4650          * Turbo will still be enabled, but won't go above the set value.
4651          */
4652         val = intel_freq_opcode(dev_priv, val);
4653
4654         hw_max = dev_priv->rps.max_freq;
4655         hw_min = dev_priv->rps.min_freq;
4656
4657         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4658                 mutex_unlock(&dev_priv->rps.hw_lock);
4659                 return -EINVAL;
4660         }
4661
4662         dev_priv->rps.max_freq_softlimit = val;
4663
4664         intel_set_rps(dev, val);
4665
4666         mutex_unlock(&dev_priv->rps.hw_lock);
4667
4668         return 0;
4669 }
4670
4671 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4672                         i915_max_freq_get, i915_max_freq_set,
4673                         "%llu\n");
4674
4675 static int
4676 i915_min_freq_get(void *data, u64 *val)
4677 {
4678         struct drm_device *dev = data;
4679         struct drm_i915_private *dev_priv = dev->dev_private;
4680         int ret;
4681
4682         if (INTEL_INFO(dev)->gen < 6)
4683                 return -ENODEV;
4684
4685         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4686
4687         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4688         if (ret)
4689                 return ret;
4690
4691         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4692         mutex_unlock(&dev_priv->rps.hw_lock);
4693
4694         return 0;
4695 }
4696
4697 static int
4698 i915_min_freq_set(void *data, u64 val)
4699 {
4700         struct drm_device *dev = data;
4701         struct drm_i915_private *dev_priv = dev->dev_private;
4702         u32 hw_max, hw_min;
4703         int ret;
4704
4705         if (INTEL_INFO(dev)->gen < 6)
4706                 return -ENODEV;
4707
4708         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4709
4710         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4711
4712         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4713         if (ret)
4714                 return ret;
4715
4716         /*
4717          * Turbo will still be enabled, but won't go below the set value.
4718          */
4719         val = intel_freq_opcode(dev_priv, val);
4720
4721         hw_max = dev_priv->rps.max_freq;
4722         hw_min = dev_priv->rps.min_freq;
4723
4724         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4725                 mutex_unlock(&dev_priv->rps.hw_lock);
4726                 return -EINVAL;
4727         }
4728
4729         dev_priv->rps.min_freq_softlimit = val;
4730
4731         intel_set_rps(dev, val);
4732
4733         mutex_unlock(&dev_priv->rps.hw_lock);
4734
4735         return 0;
4736 }
4737
4738 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4739                         i915_min_freq_get, i915_min_freq_set,
4740                         "%llu\n");
4741
4742 static int
4743 i915_cache_sharing_get(void *data, u64 *val)
4744 {
4745         struct drm_device *dev = data;
4746         struct drm_i915_private *dev_priv = dev->dev_private;
4747         u32 snpcr;
4748         int ret;
4749
4750         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4751                 return -ENODEV;
4752
4753         ret = mutex_lock_interruptible(&dev->struct_mutex);
4754         if (ret)
4755                 return ret;
4756         intel_runtime_pm_get(dev_priv);
4757
4758         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4759
4760         intel_runtime_pm_put(dev_priv);
4761         mutex_unlock(&dev_priv->dev->struct_mutex);
4762
4763         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4764
4765         return 0;
4766 }
4767
4768 static int
4769 i915_cache_sharing_set(void *data, u64 val)
4770 {
4771         struct drm_device *dev = data;
4772         struct drm_i915_private *dev_priv = dev->dev_private;
4773         u32 snpcr;
4774
4775         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4776                 return -ENODEV;
4777
4778         if (val > 3)
4779                 return -EINVAL;
4780
4781         intel_runtime_pm_get(dev_priv);
4782         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4783
4784         /* Update the cache sharing policy here as well */
4785         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4786         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4787         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4788         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4789
4790         intel_runtime_pm_put(dev_priv);
4791         return 0;
4792 }
4793
4794 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4795                         i915_cache_sharing_get, i915_cache_sharing_set,
4796                         "%llu\n");
4797
4798 struct sseu_dev_status {
4799         unsigned int slice_total;
4800         unsigned int subslice_total;
4801         unsigned int subslice_per_slice;
4802         unsigned int eu_total;
4803         unsigned int eu_per_subslice;
4804 };
4805
4806 static void cherryview_sseu_device_status(struct drm_device *dev,
4807                                           struct sseu_dev_status *stat)
4808 {
4809         struct drm_i915_private *dev_priv = dev->dev_private;
4810         const int ss_max = 2;
4811         int ss;
4812         u32 sig1[ss_max], sig2[ss_max];
4813
4814         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4815         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4816         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4817         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4818
4819         for (ss = 0; ss < ss_max; ss++) {
4820                 unsigned int eu_cnt;
4821
4822                 if (sig1[ss] & CHV_SS_PG_ENABLE)
4823                         /* skip disabled subslice */
4824                         continue;
4825
4826                 stat->slice_total = 1;
4827                 stat->subslice_per_slice++;
4828                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4829                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4830                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4831                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4832                 stat->eu_total += eu_cnt;
4833                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
4834         }
4835         stat->subslice_total = stat->subslice_per_slice;
4836 }
4837
4838 static void gen9_sseu_device_status(struct drm_device *dev,
4839                                     struct sseu_dev_status *stat)
4840 {
4841         struct drm_i915_private *dev_priv = dev->dev_private;
4842         int s_max = 3, ss_max = 4;
4843         int s, ss;
4844         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4845
4846         /* BXT has a single slice and at most 3 subslices. */
4847         if (IS_BROXTON(dev)) {
4848                 s_max = 1;
4849                 ss_max = 3;
4850         }
4851
4852         for (s = 0; s < s_max; s++) {
4853                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4854                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4855                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4856         }
4857
4858         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4859                      GEN9_PGCTL_SSA_EU19_ACK |
4860                      GEN9_PGCTL_SSA_EU210_ACK |
4861                      GEN9_PGCTL_SSA_EU311_ACK;
4862         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4863                      GEN9_PGCTL_SSB_EU19_ACK |
4864                      GEN9_PGCTL_SSB_EU210_ACK |
4865                      GEN9_PGCTL_SSB_EU311_ACK;
4866
4867         for (s = 0; s < s_max; s++) {
4868                 unsigned int ss_cnt = 0;
4869
4870                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4871                         /* skip disabled slice */
4872                         continue;
4873
4874                 stat->slice_total++;
4875
4876                 if (IS_SKYLAKE(dev))
4877                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
4878
4879                 for (ss = 0; ss < ss_max; ss++) {
4880                         unsigned int eu_cnt;
4881
4882                         if (IS_BROXTON(dev) &&
4883                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4884                                 /* skip disabled subslice */
4885                                 continue;
4886
4887                         if (IS_BROXTON(dev))
4888                                 ss_cnt++;
4889
4890                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4891                                                eu_mask[ss%2]);
4892                         stat->eu_total += eu_cnt;
4893                         stat->eu_per_subslice = max(stat->eu_per_subslice,
4894                                                     eu_cnt);
4895                 }
4896
4897                 stat->subslice_total += ss_cnt;
4898                 stat->subslice_per_slice = max(stat->subslice_per_slice,
4899                                                ss_cnt);
4900         }
4901 }
4902
4903 static int i915_sseu_status(struct seq_file *m, void *unused)
4904 {
4905         struct drm_info_node *node = (struct drm_info_node *) m->private;
4906         struct drm_device *dev = node->minor->dev;
4907         struct sseu_dev_status stat;
4908
4909         if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev))
4910                 return -ENODEV;
4911
4912         seq_puts(m, "SSEU Device Info\n");
4913         seq_printf(m, "  Available Slice Total: %u\n",
4914                    INTEL_INFO(dev)->slice_total);
4915         seq_printf(m, "  Available Subslice Total: %u\n",
4916                    INTEL_INFO(dev)->subslice_total);
4917         seq_printf(m, "  Available Subslice Per Slice: %u\n",
4918                    INTEL_INFO(dev)->subslice_per_slice);
4919         seq_printf(m, "  Available EU Total: %u\n",
4920                    INTEL_INFO(dev)->eu_total);
4921         seq_printf(m, "  Available EU Per Subslice: %u\n",
4922                    INTEL_INFO(dev)->eu_per_subslice);
4923         seq_printf(m, "  Has Slice Power Gating: %s\n",
4924                    yesno(INTEL_INFO(dev)->has_slice_pg));
4925         seq_printf(m, "  Has Subslice Power Gating: %s\n",
4926                    yesno(INTEL_INFO(dev)->has_subslice_pg));
4927         seq_printf(m, "  Has EU Power Gating: %s\n",
4928                    yesno(INTEL_INFO(dev)->has_eu_pg));
4929
4930         seq_puts(m, "SSEU Device Status\n");
4931         memset(&stat, 0, sizeof(stat));
4932         if (IS_CHERRYVIEW(dev)) {
4933                 cherryview_sseu_device_status(dev, &stat);
4934         } else if (INTEL_INFO(dev)->gen >= 9) {
4935                 gen9_sseu_device_status(dev, &stat);
4936         }
4937         seq_printf(m, "  Enabled Slice Total: %u\n",
4938                    stat.slice_total);
4939         seq_printf(m, "  Enabled Subslice Total: %u\n",
4940                    stat.subslice_total);
4941         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
4942                    stat.subslice_per_slice);
4943         seq_printf(m, "  Enabled EU Total: %u\n",
4944                    stat.eu_total);
4945         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
4946                    stat.eu_per_subslice);
4947
4948         return 0;
4949 }
4950
4951 static int i915_forcewake_open(struct inode *inode, struct file *file)
4952 {
4953         struct drm_device *dev = inode->i_private;
4954         struct drm_i915_private *dev_priv = dev->dev_private;
4955
4956         if (INTEL_INFO(dev)->gen < 6)
4957                 return 0;
4958
4959         intel_runtime_pm_get(dev_priv);
4960         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4961
4962         return 0;
4963 }
4964
4965 static int i915_forcewake_release(struct inode *inode, struct file *file)
4966 {
4967         struct drm_device *dev = inode->i_private;
4968         struct drm_i915_private *dev_priv = dev->dev_private;
4969
4970         if (INTEL_INFO(dev)->gen < 6)
4971                 return 0;
4972
4973         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4974         intel_runtime_pm_put(dev_priv);
4975
4976         return 0;
4977 }
4978
4979 static const struct file_operations i915_forcewake_fops = {
4980         .owner = THIS_MODULE,
4981         .open = i915_forcewake_open,
4982         .release = i915_forcewake_release,
4983 };
4984
4985 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4986 {
4987         struct drm_device *dev = minor->dev;
4988         struct dentry *ent;
4989
4990         ent = debugfs_create_file("i915_forcewake_user",
4991                                   S_IRUSR,
4992                                   root, dev,
4993                                   &i915_forcewake_fops);
4994         if (!ent)
4995                 return -ENOMEM;
4996
4997         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4998 }
4999
5000 static int i915_debugfs_create(struct dentry *root,
5001                                struct drm_minor *minor,
5002                                const char *name,
5003                                const struct file_operations *fops)
5004 {
5005         struct drm_device *dev = minor->dev;
5006         struct dentry *ent;
5007
5008         ent = debugfs_create_file(name,
5009                                   S_IRUGO | S_IWUSR,
5010                                   root, dev,
5011                                   fops);
5012         if (!ent)
5013                 return -ENOMEM;
5014
5015         return drm_add_fake_info_node(minor, ent, fops);
5016 }
5017
5018 static const struct drm_info_list i915_debugfs_list[] = {
5019         {"i915_capabilities", i915_capabilities, 0},
5020         {"i915_gem_objects", i915_gem_object_info, 0},
5021         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5022         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5023         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5024         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5025         {"i915_gem_stolen", i915_gem_stolen_list_info },
5026         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5027         {"i915_gem_request", i915_gem_request_info, 0},
5028         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5029         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5030         {"i915_gem_interrupt", i915_interrupt_info, 0},
5031         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5032         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5033         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5034         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5035         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5036         {"i915_frequency_info", i915_frequency_info, 0},
5037         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5038         {"i915_drpc_info", i915_drpc_info, 0},
5039         {"i915_emon_status", i915_emon_status, 0},
5040         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5041         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5042         {"i915_fbc_status", i915_fbc_status, 0},
5043         {"i915_ips_status", i915_ips_status, 0},
5044         {"i915_sr_status", i915_sr_status, 0},
5045         {"i915_opregion", i915_opregion, 0},
5046         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5047         {"i915_context_status", i915_context_status, 0},
5048         {"i915_dump_lrc", i915_dump_lrc, 0},
5049         {"i915_execlists", i915_execlists, 0},
5050         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5051         {"i915_swizzle_info", i915_swizzle_info, 0},
5052         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5053         {"i915_llc", i915_llc, 0},
5054         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5055         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5056         {"i915_energy_uJ", i915_energy_uJ, 0},
5057         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5058         {"i915_power_domain_info", i915_power_domain_info, 0},
5059         {"i915_display_info", i915_display_info, 0},
5060         {"i915_semaphore_status", i915_semaphore_status, 0},
5061         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5062         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5063         {"i915_wa_registers", i915_wa_registers, 0},
5064         {"i915_ddb_info", i915_ddb_info, 0},
5065         {"i915_sseu_status", i915_sseu_status, 0},
5066         {"i915_drrs_status", i915_drrs_status, 0},
5067         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5068 };
5069 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5070
5071 static const struct i915_debugfs_files {
5072         const char *name;
5073         const struct file_operations *fops;
5074 } i915_debugfs_files[] = {
5075         {"i915_wedged", &i915_wedged_fops},
5076         {"i915_max_freq", &i915_max_freq_fops},
5077         {"i915_min_freq", &i915_min_freq_fops},
5078         {"i915_cache_sharing", &i915_cache_sharing_fops},
5079         {"i915_ring_stop", &i915_ring_stop_fops},
5080         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5081         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5082         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5083         {"i915_error_state", &i915_error_state_fops},
5084         {"i915_next_seqno", &i915_next_seqno_fops},
5085         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5086         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5087         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5088         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5089         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5090         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5091         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5092         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5093 };
5094
5095 void intel_display_crc_init(struct drm_device *dev)
5096 {
5097         struct drm_i915_private *dev_priv = dev->dev_private;
5098         enum pipe pipe;
5099
5100         for_each_pipe(dev_priv, pipe) {
5101                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5102
5103                 pipe_crc->opened = false;
5104                 spin_lock_init(&pipe_crc->lock);
5105                 init_waitqueue_head(&pipe_crc->wq);
5106         }
5107 }
5108
5109 int i915_debugfs_init(struct drm_minor *minor)
5110 {
5111         int ret, i;
5112
5113         ret = i915_forcewake_create(minor->debugfs_root, minor);
5114         if (ret)
5115                 return ret;
5116
5117         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5118                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5119                 if (ret)
5120                         return ret;
5121         }
5122
5123         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5124                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5125                                           i915_debugfs_files[i].name,
5126                                           i915_debugfs_files[i].fops);
5127                 if (ret)
5128                         return ret;
5129         }
5130
5131         return drm_debugfs_create_files(i915_debugfs_list,
5132                                         I915_DEBUGFS_ENTRIES,
5133                                         minor->debugfs_root, minor);
5134 }
5135
5136 void i915_debugfs_cleanup(struct drm_minor *minor)
5137 {
5138         int i;
5139
5140         drm_debugfs_remove_files(i915_debugfs_list,
5141                                  I915_DEBUGFS_ENTRIES, minor);
5142
5143         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5144                                  1, minor);
5145
5146         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5147                 struct drm_info_list *info_list =
5148                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5149
5150                 drm_debugfs_remove_files(info_list, 1, minor);
5151         }
5152
5153         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5154                 struct drm_info_list *info_list =
5155                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5156
5157                 drm_debugfs_remove_files(info_list, 1, minor);
5158         }
5159 }
5160
5161 struct dpcd_block {
5162         /* DPCD dump start address. */
5163         unsigned int offset;
5164         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5165         unsigned int end;
5166         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5167         size_t size;
5168         /* Only valid for eDP. */
5169         bool edp;
5170 };
5171
5172 static const struct dpcd_block i915_dpcd_debug[] = {
5173         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5174         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5175         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5176         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5177         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5178         { .offset = DP_SET_POWER },
5179         { .offset = DP_EDP_DPCD_REV },
5180         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5181         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5182         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5183 };
5184
5185 static int i915_dpcd_show(struct seq_file *m, void *data)
5186 {
5187         struct drm_connector *connector = m->private;
5188         struct intel_dp *intel_dp =
5189                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5190         uint8_t buf[16];
5191         ssize_t err;
5192         int i;
5193
5194         if (connector->status != connector_status_connected)
5195                 return -ENODEV;
5196
5197         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5198                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5199                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5200
5201                 if (b->edp &&
5202                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5203                         continue;
5204
5205                 /* low tech for now */
5206                 if (WARN_ON(size > sizeof(buf)))
5207                         continue;
5208
5209                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5210                 if (err <= 0) {
5211                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5212                                   size, b->offset, err);
5213                         continue;
5214                 }
5215
5216                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5217         }
5218
5219         return 0;
5220 }
5221
5222 static int i915_dpcd_open(struct inode *inode, struct file *file)
5223 {
5224         return single_open(file, i915_dpcd_show, inode->i_private);
5225 }
5226
5227 static const struct file_operations i915_dpcd_fops = {
5228         .owner = THIS_MODULE,
5229         .open = i915_dpcd_open,
5230         .read = seq_read,
5231         .llseek = seq_lseek,
5232         .release = single_release,
5233 };
5234
5235 /**
5236  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5237  * @connector: pointer to a registered drm_connector
5238  *
5239  * Cleanup will be done by drm_connector_unregister() through a call to
5240  * drm_debugfs_connector_remove().
5241  *
5242  * Returns 0 on success, negative error codes on error.
5243  */
5244 int i915_debugfs_connector_add(struct drm_connector *connector)
5245 {
5246         struct dentry *root = connector->debugfs_entry;
5247
5248         /* The connector must have been registered beforehands. */
5249         if (!root)
5250                 return -ENODEV;
5251
5252         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5253             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5254                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5255                                     &i915_dpcd_fops);
5256
5257         return 0;
5258 }