]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'drm-intel-next-2013-07-12' of git://people.freedesktop.org/~danvet/drm...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92         int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95                    i915_terminally_wedged(error))
96         if (EXIT_COND)
97                 return 0;
98
99         /*
100          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101          * userspace. If it takes that long something really bad is going on and
102          * we should simply try to bail out and fail as gracefully as possible.
103          */
104         ret = wait_event_interruptible_timeout(error->reset_queue,
105                                                EXIT_COND,
106                                                10*HZ);
107         if (ret == 0) {
108                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109                 return -EIO;
110         } else if (ret < 0) {
111                 return ret;
112         }
113 #undef EXIT_COND
114
115         return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         int ret;
122
123         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124         if (ret)
125                 return ret;
126
127         ret = mutex_lock_interruptible(&dev->struct_mutex);
128         if (ret)
129                 return ret;
130
131         WARN_ON(i915_verify_lists(dev));
132         return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138         return i915_gem_obj_ggtt_bound(obj) && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143                     struct drm_file *file)
144 {
145         struct drm_i915_private *dev_priv = dev->dev_private;
146         struct drm_i915_gem_init *args = data;
147
148         if (drm_core_check_feature(dev, DRIVER_MODESET))
149                 return -ENODEV;
150
151         if (args->gtt_start >= args->gtt_end ||
152             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153                 return -EINVAL;
154
155         /* GEM with user mode setting was never supported on ilk and later. */
156         if (INTEL_INFO(dev)->gen >= 5)
157                 return -ENODEV;
158
159         mutex_lock(&dev->struct_mutex);
160         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161                                   args->gtt_end);
162         dev_priv->gtt.mappable_end = args->gtt_end;
163         mutex_unlock(&dev->struct_mutex);
164
165         return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170                             struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_get_aperture *args = data;
174         struct drm_i915_gem_object *obj;
175         size_t pinned;
176
177         pinned = 0;
178         mutex_lock(&dev->struct_mutex);
179         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
180                 if (obj->pin_count)
181                         pinned += i915_gem_obj_ggtt_size(obj);
182         mutex_unlock(&dev->struct_mutex);
183
184         args->aper_size = dev_priv->gtt.total;
185         args->aper_available_size = args->aper_size - pinned;
186
187         return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192         struct drm_i915_private *dev_priv = dev->dev_private;
193         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199         kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204                 struct drm_device *dev,
205                 uint64_t size,
206                 uint32_t *handle_p)
207 {
208         struct drm_i915_gem_object *obj;
209         int ret;
210         u32 handle;
211
212         size = roundup(size, PAGE_SIZE);
213         if (size == 0)
214                 return -EINVAL;
215
216         /* Allocate the new object */
217         obj = i915_gem_alloc_object(dev, size);
218         if (obj == NULL)
219                 return -ENOMEM;
220
221         ret = drm_gem_handle_create(file, &obj->base, &handle);
222         if (ret) {
223                 drm_gem_object_release(&obj->base);
224                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225                 i915_gem_object_free(obj);
226                 return ret;
227         }
228
229         /* drop reference from allocate - handle holds it now */
230         drm_gem_object_unreference(&obj->base);
231         trace_i915_gem_object_create(obj);
232
233         *handle_p = handle;
234         return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239                      struct drm_device *dev,
240                      struct drm_mode_create_dumb *args)
241 {
242         /* have to work out size/pitch and return them */
243         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244         args->size = args->pitch * args->height;
245         return i915_gem_create(file, dev,
246                                args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250                           struct drm_device *dev,
251                           uint32_t handle)
252 {
253         return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257  * Creates a new mm object and returns a handle to it.
258  */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261                       struct drm_file *file)
262 {
263         struct drm_i915_gem_create *args = data;
264
265         return i915_gem_create(file, dev,
266                                args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271                         const char *gpu_vaddr, int gpu_offset,
272                         int length)
273 {
274         int ret, cpu_offset = 0;
275
276         while (length > 0) {
277                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278                 int this_length = min(cacheline_end - gpu_offset, length);
279                 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282                                      gpu_vaddr + swizzled_gpu_offset,
283                                      this_length);
284                 if (ret)
285                         return ret + length;
286
287                 cpu_offset += this_length;
288                 gpu_offset += this_length;
289                 length -= this_length;
290         }
291
292         return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297                           const char __user *cpu_vaddr,
298                           int length)
299 {
300         int ret, cpu_offset = 0;
301
302         while (length > 0) {
303                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304                 int this_length = min(cacheline_end - gpu_offset, length);
305                 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308                                        cpu_vaddr + cpu_offset,
309                                        this_length);
310                 if (ret)
311                         return ret + length;
312
313                 cpu_offset += this_length;
314                 gpu_offset += this_length;
315                 length -= this_length;
316         }
317
318         return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326                  char __user *user_data,
327                  bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329         char *vaddr;
330         int ret;
331
332         if (unlikely(page_do_bit17_swizzling))
333                 return -EINVAL;
334
335         vaddr = kmap_atomic(page);
336         if (needs_clflush)
337                 drm_clflush_virt_range(vaddr + shmem_page_offset,
338                                        page_length);
339         ret = __copy_to_user_inatomic(user_data,
340                                       vaddr + shmem_page_offset,
341                                       page_length);
342         kunmap_atomic(vaddr);
343
344         return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349                              bool swizzled)
350 {
351         if (unlikely(swizzled)) {
352                 unsigned long start = (unsigned long) addr;
353                 unsigned long end = (unsigned long) addr + length;
354
355                 /* For swizzling simply ensure that we always flush both
356                  * channels. Lame, but simple and it works. Swizzled
357                  * pwrite/pread is far from a hotpath - current userspace
358                  * doesn't use it at all. */
359                 start = round_down(start, 128);
360                 end = round_up(end, 128);
361
362                 drm_clflush_virt_range((void *)start, end - start);
363         } else {
364                 drm_clflush_virt_range(addr, length);
365         }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373                  char __user *user_data,
374                  bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376         char *vaddr;
377         int ret;
378
379         vaddr = kmap(page);
380         if (needs_clflush)
381                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382                                              page_length,
383                                              page_do_bit17_swizzling);
384
385         if (page_do_bit17_swizzling)
386                 ret = __copy_to_user_swizzled(user_data,
387                                               vaddr, shmem_page_offset,
388                                               page_length);
389         else
390                 ret = __copy_to_user(user_data,
391                                      vaddr + shmem_page_offset,
392                                      page_length);
393         kunmap(page);
394
395         return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400                      struct drm_i915_gem_object *obj,
401                      struct drm_i915_gem_pread *args,
402                      struct drm_file *file)
403 {
404         char __user *user_data;
405         ssize_t remain;
406         loff_t offset;
407         int shmem_page_offset, page_length, ret = 0;
408         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409         int prefaulted = 0;
410         int needs_clflush = 0;
411         struct sg_page_iter sg_iter;
412
413         user_data = to_user_ptr(args->data_ptr);
414         remain = args->size;
415
416         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419                 /* If we're not in the cpu read domain, set ourself into the gtt
420                  * read domain and manually flush cachelines (if required). This
421                  * optimizes for the case when the gpu will dirty the data
422                  * anyway again before the next pread happens. */
423                 if (obj->cache_level == I915_CACHE_NONE)
424                         needs_clflush = 1;
425                 if (i915_gem_obj_ggtt_bound(obj)) {
426                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
427                         if (ret)
428                                 return ret;
429                 }
430         }
431
432         ret = i915_gem_object_get_pages(obj);
433         if (ret)
434                 return ret;
435
436         i915_gem_object_pin_pages(obj);
437
438         offset = args->offset;
439
440         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441                          offset >> PAGE_SHIFT) {
442                 struct page *page = sg_page_iter_page(&sg_iter);
443
444                 if (remain <= 0)
445                         break;
446
447                 /* Operation in this page
448                  *
449                  * shmem_page_offset = offset within page in shmem file
450                  * page_length = bytes to copy for this page
451                  */
452                 shmem_page_offset = offset_in_page(offset);
453                 page_length = remain;
454                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455                         page_length = PAGE_SIZE - shmem_page_offset;
456
457                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458                         (page_to_phys(page) & (1 << 17)) != 0;
459
460                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461                                        user_data, page_do_bit17_swizzling,
462                                        needs_clflush);
463                 if (ret == 0)
464                         goto next_page;
465
466                 mutex_unlock(&dev->struct_mutex);
467
468                 if (!prefaulted) {
469                         ret = fault_in_multipages_writeable(user_data, remain);
470                         /* Userspace is tricking us, but we've already clobbered
471                          * its pages with the prefault and promised to write the
472                          * data up to the first fault. Hence ignore any errors
473                          * and just continue. */
474                         (void)ret;
475                         prefaulted = 1;
476                 }
477
478                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479                                        user_data, page_do_bit17_swizzling,
480                                        needs_clflush);
481
482                 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485                 mark_page_accessed(page);
486
487                 if (ret)
488                         goto out;
489
490                 remain -= page_length;
491                 user_data += page_length;
492                 offset += page_length;
493         }
494
495 out:
496         i915_gem_object_unpin_pages(obj);
497
498         return ret;
499 }
500
501 /**
502  * Reads data from the object referenced by handle.
503  *
504  * On error, the contents of *data are undefined.
505  */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508                      struct drm_file *file)
509 {
510         struct drm_i915_gem_pread *args = data;
511         struct drm_i915_gem_object *obj;
512         int ret = 0;
513
514         if (args->size == 0)
515                 return 0;
516
517         if (!access_ok(VERIFY_WRITE,
518                        to_user_ptr(args->data_ptr),
519                        args->size))
520                 return -EFAULT;
521
522         ret = i915_mutex_lock_interruptible(dev);
523         if (ret)
524                 return ret;
525
526         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527         if (&obj->base == NULL) {
528                 ret = -ENOENT;
529                 goto unlock;
530         }
531
532         /* Bounds check source.  */
533         if (args->offset > obj->base.size ||
534             args->size > obj->base.size - args->offset) {
535                 ret = -EINVAL;
536                 goto out;
537         }
538
539         /* prime objects have no backing filp to GEM pread/pwrite
540          * pages from.
541          */
542         if (!obj->base.filp) {
543                 ret = -EINVAL;
544                 goto out;
545         }
546
547         trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549         ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552         drm_gem_object_unreference(&obj->base);
553 unlock:
554         mutex_unlock(&dev->struct_mutex);
555         return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559  * page faults in the source data
560  */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564                 loff_t page_base, int page_offset,
565                 char __user *user_data,
566                 int length)
567 {
568         void __iomem *vaddr_atomic;
569         void *vaddr;
570         unsigned long unwritten;
571
572         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573         /* We can use the cpu mem copy function because this is X86. */
574         vaddr = (void __force*)vaddr_atomic + page_offset;
575         unwritten = __copy_from_user_inatomic_nocache(vaddr,
576                                                       user_data, length);
577         io_mapping_unmap_atomic(vaddr_atomic);
578         return unwritten;
579 }
580
581 /**
582  * This is the fast pwrite path, where we copy the data directly from the
583  * user into the GTT, uncached.
584  */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587                          struct drm_i915_gem_object *obj,
588                          struct drm_i915_gem_pwrite *args,
589                          struct drm_file *file)
590 {
591         drm_i915_private_t *dev_priv = dev->dev_private;
592         ssize_t remain;
593         loff_t offset, page_base;
594         char __user *user_data;
595         int page_offset, page_length, ret;
596
597         ret = i915_gem_object_pin(obj, 0, true, true);
598         if (ret)
599                 goto out;
600
601         ret = i915_gem_object_set_to_gtt_domain(obj, true);
602         if (ret)
603                 goto out_unpin;
604
605         ret = i915_gem_object_put_fence(obj);
606         if (ret)
607                 goto out_unpin;
608
609         user_data = to_user_ptr(args->data_ptr);
610         remain = args->size;
611
612         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
613
614         while (remain > 0) {
615                 /* Operation in this page
616                  *
617                  * page_base = page offset within aperture
618                  * page_offset = offset within page
619                  * page_length = bytes to copy for this page
620                  */
621                 page_base = offset & PAGE_MASK;
622                 page_offset = offset_in_page(offset);
623                 page_length = remain;
624                 if ((page_offset + remain) > PAGE_SIZE)
625                         page_length = PAGE_SIZE - page_offset;
626
627                 /* If we get a fault while copying data, then (presumably) our
628                  * source page isn't available.  Return the error and we'll
629                  * retry in the slow path.
630                  */
631                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632                                     page_offset, user_data, page_length)) {
633                         ret = -EFAULT;
634                         goto out_unpin;
635                 }
636
637                 remain -= page_length;
638                 user_data += page_length;
639                 offset += page_length;
640         }
641
642 out_unpin:
643         i915_gem_object_unpin(obj);
644 out:
645         return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649  * Flushes invalid cachelines before writing to the target if
650  * needs_clflush_before is set and flushes out any written cachelines after
651  * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654                   char __user *user_data,
655                   bool page_do_bit17_swizzling,
656                   bool needs_clflush_before,
657                   bool needs_clflush_after)
658 {
659         char *vaddr;
660         int ret;
661
662         if (unlikely(page_do_bit17_swizzling))
663                 return -EINVAL;
664
665         vaddr = kmap_atomic(page);
666         if (needs_clflush_before)
667                 drm_clflush_virt_range(vaddr + shmem_page_offset,
668                                        page_length);
669         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670                                                 user_data,
671                                                 page_length);
672         if (needs_clflush_after)
673                 drm_clflush_virt_range(vaddr + shmem_page_offset,
674                                        page_length);
675         kunmap_atomic(vaddr);
676
677         return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681  * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684                   char __user *user_data,
685                   bool page_do_bit17_swizzling,
686                   bool needs_clflush_before,
687                   bool needs_clflush_after)
688 {
689         char *vaddr;
690         int ret;
691
692         vaddr = kmap(page);
693         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695                                              page_length,
696                                              page_do_bit17_swizzling);
697         if (page_do_bit17_swizzling)
698                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699                                                 user_data,
700                                                 page_length);
701         else
702                 ret = __copy_from_user(vaddr + shmem_page_offset,
703                                        user_data,
704                                        page_length);
705         if (needs_clflush_after)
706                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707                                              page_length,
708                                              page_do_bit17_swizzling);
709         kunmap(page);
710
711         return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716                       struct drm_i915_gem_object *obj,
717                       struct drm_i915_gem_pwrite *args,
718                       struct drm_file *file)
719 {
720         ssize_t remain;
721         loff_t offset;
722         char __user *user_data;
723         int shmem_page_offset, page_length, ret = 0;
724         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725         int hit_slowpath = 0;
726         int needs_clflush_after = 0;
727         int needs_clflush_before = 0;
728         struct sg_page_iter sg_iter;
729
730         user_data = to_user_ptr(args->data_ptr);
731         remain = args->size;
732
733         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736                 /* If we're not in the cpu write domain, set ourself into the gtt
737                  * write domain and manually flush cachelines (if required). This
738                  * optimizes for the case when the gpu will use the data
739                  * right away and we therefore have to clflush anyway. */
740                 if (obj->cache_level == I915_CACHE_NONE)
741                         needs_clflush_after = 1;
742                 if (i915_gem_obj_ggtt_bound(obj)) {
743                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
744                         if (ret)
745                                 return ret;
746                 }
747         }
748         /* Same trick applies for invalidate partially written cachelines before
749          * writing.  */
750         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751             && obj->cache_level == I915_CACHE_NONE)
752                 needs_clflush_before = 1;
753
754         ret = i915_gem_object_get_pages(obj);
755         if (ret)
756                 return ret;
757
758         i915_gem_object_pin_pages(obj);
759
760         offset = args->offset;
761         obj->dirty = 1;
762
763         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764                          offset >> PAGE_SHIFT) {
765                 struct page *page = sg_page_iter_page(&sg_iter);
766                 int partial_cacheline_write;
767
768                 if (remain <= 0)
769                         break;
770
771                 /* Operation in this page
772                  *
773                  * shmem_page_offset = offset within page in shmem file
774                  * page_length = bytes to copy for this page
775                  */
776                 shmem_page_offset = offset_in_page(offset);
777
778                 page_length = remain;
779                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780                         page_length = PAGE_SIZE - shmem_page_offset;
781
782                 /* If we don't overwrite a cacheline completely we need to be
783                  * careful to have up-to-date data by first clflushing. Don't
784                  * overcomplicate things and flush the entire patch. */
785                 partial_cacheline_write = needs_clflush_before &&
786                         ((shmem_page_offset | page_length)
787                                 & (boot_cpu_data.x86_clflush_size - 1));
788
789                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790                         (page_to_phys(page) & (1 << 17)) != 0;
791
792                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793                                         user_data, page_do_bit17_swizzling,
794                                         partial_cacheline_write,
795                                         needs_clflush_after);
796                 if (ret == 0)
797                         goto next_page;
798
799                 hit_slowpath = 1;
800                 mutex_unlock(&dev->struct_mutex);
801                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802                                         user_data, page_do_bit17_swizzling,
803                                         partial_cacheline_write,
804                                         needs_clflush_after);
805
806                 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809                 set_page_dirty(page);
810                 mark_page_accessed(page);
811
812                 if (ret)
813                         goto out;
814
815                 remain -= page_length;
816                 user_data += page_length;
817                 offset += page_length;
818         }
819
820 out:
821         i915_gem_object_unpin_pages(obj);
822
823         if (hit_slowpath) {
824                 /*
825                  * Fixup: Flush cpu caches in case we didn't flush the dirty
826                  * cachelines in-line while writing and the object moved
827                  * out of the cpu write domain while we've dropped the lock.
828                  */
829                 if (!needs_clflush_after &&
830                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831                         i915_gem_clflush_object(obj);
832                         i915_gem_chipset_flush(dev);
833                 }
834         }
835
836         if (needs_clflush_after)
837                 i915_gem_chipset_flush(dev);
838
839         return ret;
840 }
841
842 /**
843  * Writes data to the object referenced by handle.
844  *
845  * On error, the contents of the buffer that were to be modified are undefined.
846  */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849                       struct drm_file *file)
850 {
851         struct drm_i915_gem_pwrite *args = data;
852         struct drm_i915_gem_object *obj;
853         int ret;
854
855         if (args->size == 0)
856                 return 0;
857
858         if (!access_ok(VERIFY_READ,
859                        to_user_ptr(args->data_ptr),
860                        args->size))
861                 return -EFAULT;
862
863         ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864                                            args->size);
865         if (ret)
866                 return -EFAULT;
867
868         ret = i915_mutex_lock_interruptible(dev);
869         if (ret)
870                 return ret;
871
872         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873         if (&obj->base == NULL) {
874                 ret = -ENOENT;
875                 goto unlock;
876         }
877
878         /* Bounds check destination. */
879         if (args->offset > obj->base.size ||
880             args->size > obj->base.size - args->offset) {
881                 ret = -EINVAL;
882                 goto out;
883         }
884
885         /* prime objects have no backing filp to GEM pread/pwrite
886          * pages from.
887          */
888         if (!obj->base.filp) {
889                 ret = -EINVAL;
890                 goto out;
891         }
892
893         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895         ret = -EFAULT;
896         /* We can only do the GTT pwrite on untiled buffers, as otherwise
897          * it would end up going through the fenced access, and we'll get
898          * different detiling behavior between reading and writing.
899          * pread/pwrite currently are reading and writing from the CPU
900          * perspective, requiring manual detiling by the client.
901          */
902         if (obj->phys_obj) {
903                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904                 goto out;
905         }
906
907         if (obj->cache_level == I915_CACHE_NONE &&
908             obj->tiling_mode == I915_TILING_NONE &&
909             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911                 /* Note that the gtt paths might fail with non-page-backed user
912                  * pointers (e.g. gtt mappings when moving data between
913                  * textures). Fallback to the shmem path in that case. */
914         }
915
916         if (ret == -EFAULT || ret == -ENOSPC)
917                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920         drm_gem_object_unreference(&obj->base);
921 unlock:
922         mutex_unlock(&dev->struct_mutex);
923         return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928                      bool interruptible)
929 {
930         if (i915_reset_in_progress(error)) {
931                 /* Non-interruptible callers can't handle -EAGAIN, hence return
932                  * -EIO unconditionally for these. */
933                 if (!interruptible)
934                         return -EIO;
935
936                 /* Recovery complete, but the reset failed ... */
937                 if (i915_terminally_wedged(error))
938                         return -EIO;
939
940                 return -EAGAIN;
941         }
942
943         return 0;
944 }
945
946 /*
947  * Compare seqno against outstanding lazy request. Emit a request if they are
948  * equal.
949  */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953         int ret;
954
955         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957         ret = 0;
958         if (seqno == ring->outstanding_lazy_request)
959                 ret = i915_add_request(ring, NULL);
960
961         return ret;
962 }
963
964 /**
965  * __wait_seqno - wait until execution of seqno has finished
966  * @ring: the ring expected to report seqno
967  * @seqno: duh!
968  * @reset_counter: reset sequence associated with the given seqno
969  * @interruptible: do an interruptible wait (normally yes)
970  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971  *
972  * Note: It is of utmost importance that the passed in seqno and reset_counter
973  * values have been read by the caller in an smp safe manner. Where read-side
974  * locks are involved, it is sufficient to read the reset_counter before
975  * unlocking the lock that protects the seqno. For lockless tricks, the
976  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977  * inserted.
978  *
979  * Returns 0 if the seqno was found within the alloted time. Else returns the
980  * errno with remaining time filled in timeout argument.
981  */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983                         unsigned reset_counter,
984                         bool interruptible, struct timespec *timeout)
985 {
986         drm_i915_private_t *dev_priv = ring->dev->dev_private;
987         struct timespec before, now, wait_time={1,0};
988         unsigned long timeout_jiffies;
989         long end;
990         bool wait_forever = true;
991         int ret;
992
993         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994                 return 0;
995
996         trace_i915_gem_request_wait_begin(ring, seqno);
997
998         if (timeout != NULL) {
999                 wait_time = *timeout;
1000                 wait_forever = false;
1001         }
1002
1003         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005         if (WARN_ON(!ring->irq_get(ring)))
1006                 return -ENODEV;
1007
1008         /* Record current time in case interrupted by signal, or wedged * */
1009         getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013          i915_reset_in_progress(&dev_priv->gpu_error) || \
1014          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015         do {
1016                 if (interruptible)
1017                         end = wait_event_interruptible_timeout(ring->irq_queue,
1018                                                                EXIT_COND,
1019                                                                timeout_jiffies);
1020                 else
1021                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022                                                  timeout_jiffies);
1023
1024                 /* We need to check whether any gpu reset happened in between
1025                  * the caller grabbing the seqno and now ... */
1026                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027                         end = -EAGAIN;
1028
1029                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030                  * gone. */
1031                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032                 if (ret)
1033                         end = ret;
1034         } while (end == 0 && wait_forever);
1035
1036         getrawmonotonic(&now);
1037
1038         ring->irq_put(ring);
1039         trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042         if (timeout) {
1043                 struct timespec sleep_time = timespec_sub(now, before);
1044                 *timeout = timespec_sub(*timeout, sleep_time);
1045                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046                         set_normalized_timespec(timeout, 0, 0);
1047         }
1048
1049         switch (end) {
1050         case -EIO:
1051         case -EAGAIN: /* Wedged */
1052         case -ERESTARTSYS: /* Signal */
1053                 return (int)end;
1054         case 0: /* Timeout */
1055                 return -ETIME;
1056         default: /* Completed */
1057                 WARN_ON(end < 0); /* We're not aware of other errors */
1058                 return 0;
1059         }
1060 }
1061
1062 /**
1063  * Waits for a sequence number to be signaled, and cleans up the
1064  * request and object lists appropriately for that event.
1065  */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069         struct drm_device *dev = ring->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         bool interruptible = dev_priv->mm.interruptible;
1072         int ret;
1073
1074         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075         BUG_ON(seqno == 0);
1076
1077         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078         if (ret)
1079                 return ret;
1080
1081         ret = i915_gem_check_olr(ring, seqno);
1082         if (ret)
1083                 return ret;
1084
1085         return __wait_seqno(ring, seqno,
1086                             atomic_read(&dev_priv->gpu_error.reset_counter),
1087                             interruptible, NULL);
1088 }
1089
1090 static int
1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092                                      struct intel_ring_buffer *ring)
1093 {
1094         i915_gem_retire_requests_ring(ring);
1095
1096         /* Manually manage the write flush as we may have not yet
1097          * retired the buffer.
1098          *
1099          * Note that the last_write_seqno is always the earlier of
1100          * the two (read/write) seqno, so if we haved successfully waited,
1101          * we know we have passed the last write.
1102          */
1103         obj->last_write_seqno = 0;
1104         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106         return 0;
1107 }
1108
1109 /**
1110  * Ensures that all rendering to the object has completed and the object is
1111  * safe to unbind from the GTT or access from the CPU.
1112  */
1113 static __must_check int
1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115                                bool readonly)
1116 {
1117         struct intel_ring_buffer *ring = obj->ring;
1118         u32 seqno;
1119         int ret;
1120
1121         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122         if (seqno == 0)
1123                 return 0;
1124
1125         ret = i915_wait_seqno(ring, seqno);
1126         if (ret)
1127                 return ret;
1128
1129         return i915_gem_object_wait_rendering__tail(obj, ring);
1130 }
1131
1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1133  * as the object state may change during this call.
1134  */
1135 static __must_check int
1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137                                             bool readonly)
1138 {
1139         struct drm_device *dev = obj->base.dev;
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141         struct intel_ring_buffer *ring = obj->ring;
1142         unsigned reset_counter;
1143         u32 seqno;
1144         int ret;
1145
1146         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147         BUG_ON(!dev_priv->mm.interruptible);
1148
1149         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150         if (seqno == 0)
1151                 return 0;
1152
1153         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1154         if (ret)
1155                 return ret;
1156
1157         ret = i915_gem_check_olr(ring, seqno);
1158         if (ret)
1159                 return ret;
1160
1161         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1162         mutex_unlock(&dev->struct_mutex);
1163         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1164         mutex_lock(&dev->struct_mutex);
1165         if (ret)
1166                 return ret;
1167
1168         return i915_gem_object_wait_rendering__tail(obj, ring);
1169 }
1170
1171 /**
1172  * Called when user space prepares to use an object with the CPU, either
1173  * through the mmap ioctl's mapping or a GTT mapping.
1174  */
1175 int
1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1177                           struct drm_file *file)
1178 {
1179         struct drm_i915_gem_set_domain *args = data;
1180         struct drm_i915_gem_object *obj;
1181         uint32_t read_domains = args->read_domains;
1182         uint32_t write_domain = args->write_domain;
1183         int ret;
1184
1185         /* Only handle setting domains to types used by the CPU. */
1186         if (write_domain & I915_GEM_GPU_DOMAINS)
1187                 return -EINVAL;
1188
1189         if (read_domains & I915_GEM_GPU_DOMAINS)
1190                 return -EINVAL;
1191
1192         /* Having something in the write domain implies it's in the read
1193          * domain, and only that read domain.  Enforce that in the request.
1194          */
1195         if (write_domain != 0 && read_domains != write_domain)
1196                 return -EINVAL;
1197
1198         ret = i915_mutex_lock_interruptible(dev);
1199         if (ret)
1200                 return ret;
1201
1202         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1203         if (&obj->base == NULL) {
1204                 ret = -ENOENT;
1205                 goto unlock;
1206         }
1207
1208         /* Try to flush the object off the GPU without holding the lock.
1209          * We will repeat the flush holding the lock in the normal manner
1210          * to catch cases where we are gazumped.
1211          */
1212         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213         if (ret)
1214                 goto unref;
1215
1216         if (read_domains & I915_GEM_DOMAIN_GTT) {
1217                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1218
1219                 /* Silently promote "you're not bound, there was nothing to do"
1220                  * to success, since the client was just asking us to
1221                  * make sure everything was done.
1222                  */
1223                 if (ret == -EINVAL)
1224                         ret = 0;
1225         } else {
1226                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1227         }
1228
1229 unref:
1230         drm_gem_object_unreference(&obj->base);
1231 unlock:
1232         mutex_unlock(&dev->struct_mutex);
1233         return ret;
1234 }
1235
1236 /**
1237  * Called when user space has done writes to this buffer
1238  */
1239 int
1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1241                          struct drm_file *file)
1242 {
1243         struct drm_i915_gem_sw_finish *args = data;
1244         struct drm_i915_gem_object *obj;
1245         int ret = 0;
1246
1247         ret = i915_mutex_lock_interruptible(dev);
1248         if (ret)
1249                 return ret;
1250
1251         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1252         if (&obj->base == NULL) {
1253                 ret = -ENOENT;
1254                 goto unlock;
1255         }
1256
1257         /* Pinned buffers may be scanout, so flush the cache */
1258         if (obj->pin_count)
1259                 i915_gem_object_flush_cpu_write_domain(obj);
1260
1261         drm_gem_object_unreference(&obj->base);
1262 unlock:
1263         mutex_unlock(&dev->struct_mutex);
1264         return ret;
1265 }
1266
1267 /**
1268  * Maps the contents of an object, returning the address it is mapped
1269  * into.
1270  *
1271  * While the mapping holds a reference on the contents of the object, it doesn't
1272  * imply a ref on the object itself.
1273  */
1274 int
1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1276                     struct drm_file *file)
1277 {
1278         struct drm_i915_gem_mmap *args = data;
1279         struct drm_gem_object *obj;
1280         unsigned long addr;
1281
1282         obj = drm_gem_object_lookup(dev, file, args->handle);
1283         if (obj == NULL)
1284                 return -ENOENT;
1285
1286         /* prime objects have no backing filp to GEM mmap
1287          * pages from.
1288          */
1289         if (!obj->filp) {
1290                 drm_gem_object_unreference_unlocked(obj);
1291                 return -EINVAL;
1292         }
1293
1294         addr = vm_mmap(obj->filp, 0, args->size,
1295                        PROT_READ | PROT_WRITE, MAP_SHARED,
1296                        args->offset);
1297         drm_gem_object_unreference_unlocked(obj);
1298         if (IS_ERR((void *)addr))
1299                 return addr;
1300
1301         args->addr_ptr = (uint64_t) addr;
1302
1303         return 0;
1304 }
1305
1306 /**
1307  * i915_gem_fault - fault a page into the GTT
1308  * vma: VMA in question
1309  * vmf: fault info
1310  *
1311  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312  * from userspace.  The fault handler takes care of binding the object to
1313  * the GTT (if needed), allocating and programming a fence register (again,
1314  * only if needed based on whether the old reg is still valid or the object
1315  * is tiled) and inserting a new PTE into the faulting process.
1316  *
1317  * Note that the faulting process may involve evicting existing objects
1318  * from the GTT and/or fence registers to make room.  So performance may
1319  * suffer if the GTT working set is large or there are few fence registers
1320  * left.
1321  */
1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 {
1324         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325         struct drm_device *dev = obj->base.dev;
1326         drm_i915_private_t *dev_priv = dev->dev_private;
1327         pgoff_t page_offset;
1328         unsigned long pfn;
1329         int ret = 0;
1330         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1331
1332         /* We don't use vmf->pgoff since that has the fake offset */
1333         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334                 PAGE_SHIFT;
1335
1336         ret = i915_mutex_lock_interruptible(dev);
1337         if (ret)
1338                 goto out;
1339
1340         trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
1342         /* Access to snoopable pages through the GTT is incoherent. */
1343         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344                 ret = -EINVAL;
1345                 goto unlock;
1346         }
1347
1348         /* Now bind it into the GTT if needed */
1349         ret = i915_gem_object_pin(obj, 0, true, false);
1350         if (ret)
1351                 goto unlock;
1352
1353         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354         if (ret)
1355                 goto unpin;
1356
1357         ret = i915_gem_object_get_fence(obj);
1358         if (ret)
1359                 goto unpin;
1360
1361         obj->fault_mappable = true;
1362
1363         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1364         pfn >>= PAGE_SHIFT;
1365         pfn += page_offset;
1366
1367         /* Finally, remap it using the new GTT offset */
1368         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370         i915_gem_object_unpin(obj);
1371 unlock:
1372         mutex_unlock(&dev->struct_mutex);
1373 out:
1374         switch (ret) {
1375         case -EIO:
1376                 /* If this -EIO is due to a gpu hang, give the reset code a
1377                  * chance to clean up the mess. Otherwise return the proper
1378                  * SIGBUS. */
1379                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1380                         return VM_FAULT_SIGBUS;
1381         case -EAGAIN:
1382                 /* Give the error handler a chance to run and move the
1383                  * objects off the GPU active list. Next time we service the
1384                  * fault, we should be able to transition the page into the
1385                  * GTT without touching the GPU (and so avoid further
1386                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387                  * with coherency, just lost writes.
1388                  */
1389                 set_need_resched();
1390         case 0:
1391         case -ERESTARTSYS:
1392         case -EINTR:
1393         case -EBUSY:
1394                 /*
1395                  * EBUSY is ok: this just means that another thread
1396                  * already did the job.
1397                  */
1398                 return VM_FAULT_NOPAGE;
1399         case -ENOMEM:
1400                 return VM_FAULT_OOM;
1401         case -ENOSPC:
1402                 return VM_FAULT_SIGBUS;
1403         default:
1404                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405                 return VM_FAULT_SIGBUS;
1406         }
1407 }
1408
1409 /**
1410  * i915_gem_release_mmap - remove physical page mappings
1411  * @obj: obj in question
1412  *
1413  * Preserve the reservation of the mmapping with the DRM core code, but
1414  * relinquish ownership of the pages back to the system.
1415  *
1416  * It is vital that we remove the page mapping if we have mapped a tiled
1417  * object through the GTT and then lose the fence register due to
1418  * resource pressure. Similarly if the object has been moved out of the
1419  * aperture, than pages mapped into userspace must be revoked. Removing the
1420  * mapping will then trigger a page fault on the next user access, allowing
1421  * fixup by i915_gem_fault().
1422  */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426         if (!obj->fault_mappable)
1427                 return;
1428
1429         if (obj->base.dev->dev_mapping)
1430                 unmap_mapping_range(obj->base.dev->dev_mapping,
1431                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432                                     obj->base.size, 1);
1433
1434         obj->fault_mappable = false;
1435 }
1436
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440         uint32_t gtt_size;
1441
1442         if (INTEL_INFO(dev)->gen >= 4 ||
1443             tiling_mode == I915_TILING_NONE)
1444                 return size;
1445
1446         /* Previous chips need a power-of-two fence region when tiling */
1447         if (INTEL_INFO(dev)->gen == 3)
1448                 gtt_size = 1024*1024;
1449         else
1450                 gtt_size = 512*1024;
1451
1452         while (gtt_size < size)
1453                 gtt_size <<= 1;
1454
1455         return gtt_size;
1456 }
1457
1458 /**
1459  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460  * @obj: object to check
1461  *
1462  * Return the required GTT alignment for an object, taking into account
1463  * potential fence register mapping.
1464  */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467                            int tiling_mode, bool fenced)
1468 {
1469         /*
1470          * Minimum alignment is 4k (GTT page size), but might be greater
1471          * if a fence register is needed for the object.
1472          */
1473         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474             tiling_mode == I915_TILING_NONE)
1475                 return 4096;
1476
1477         /*
1478          * Previous chips need to be aligned to the size of the smallest
1479          * fence register that can contain the object.
1480          */
1481         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487         int ret;
1488
1489         if (obj->base.map_list.map)
1490                 return 0;
1491
1492         dev_priv->mm.shrinker_no_lock_stealing = true;
1493
1494         ret = drm_gem_create_mmap_offset(&obj->base);
1495         if (ret != -ENOSPC)
1496                 goto out;
1497
1498         /* Badly fragmented mmap space? The only way we can recover
1499          * space is by destroying unwanted objects. We can't randomly release
1500          * mmap_offsets as userspace expects them to be persistent for the
1501          * lifetime of the objects. The closest we can is to release the
1502          * offsets on purgeable objects by truncating it and marking it purged,
1503          * which prevents userspace from ever using that object again.
1504          */
1505         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506         ret = drm_gem_create_mmap_offset(&obj->base);
1507         if (ret != -ENOSPC)
1508                 goto out;
1509
1510         i915_gem_shrink_all(dev_priv);
1511         ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513         dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515         return ret;
1516 }
1517
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520         if (!obj->base.map_list.map)
1521                 return;
1522
1523         drm_gem_free_mmap_offset(&obj->base);
1524 }
1525
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528                   struct drm_device *dev,
1529                   uint32_t handle,
1530                   uint64_t *offset)
1531 {
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         struct drm_i915_gem_object *obj;
1534         int ret;
1535
1536         ret = i915_mutex_lock_interruptible(dev);
1537         if (ret)
1538                 return ret;
1539
1540         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541         if (&obj->base == NULL) {
1542                 ret = -ENOENT;
1543                 goto unlock;
1544         }
1545
1546         if (obj->base.size > dev_priv->gtt.mappable_end) {
1547                 ret = -E2BIG;
1548                 goto out;
1549         }
1550
1551         if (obj->madv != I915_MADV_WILLNEED) {
1552                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553                 ret = -EINVAL;
1554                 goto out;
1555         }
1556
1557         ret = i915_gem_object_create_mmap_offset(obj);
1558         if (ret)
1559                 goto out;
1560
1561         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562
1563 out:
1564         drm_gem_object_unreference(&obj->base);
1565 unlock:
1566         mutex_unlock(&dev->struct_mutex);
1567         return ret;
1568 }
1569
1570 /**
1571  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572  * @dev: DRM device
1573  * @data: GTT mapping ioctl data
1574  * @file: GEM object info
1575  *
1576  * Simply returns the fake offset to userspace so it can mmap it.
1577  * The mmap call will end up in drm_gem_mmap(), which will set things
1578  * up so we can get faults in the handler above.
1579  *
1580  * The fault handler will take care of binding the object into the GTT
1581  * (since it may have been evicted to make room for something), allocating
1582  * a fence register, and mapping the appropriate aperture address into
1583  * userspace.
1584  */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587                         struct drm_file *file)
1588 {
1589         struct drm_i915_gem_mmap_gtt *args = data;
1590
1591         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598         struct inode *inode;
1599
1600         i915_gem_object_free_mmap_offset(obj);
1601
1602         if (obj->base.filp == NULL)
1603                 return;
1604
1605         /* Our goal here is to return as much of the memory as
1606          * is possible back to the system as we are called from OOM.
1607          * To do this we must instruct the shmfs to drop all of its
1608          * backing pages, *now*.
1609          */
1610         inode = file_inode(obj->base.filp);
1611         shmem_truncate_range(inode, 0, (loff_t)-1);
1612
1613         obj->madv = __I915_MADV_PURGED;
1614 }
1615
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619         return obj->madv == I915_MADV_DONTNEED;
1620 }
1621
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625         struct sg_page_iter sg_iter;
1626         int ret;
1627
1628         BUG_ON(obj->madv == __I915_MADV_PURGED);
1629
1630         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631         if (ret) {
1632                 /* In the event of a disaster, abandon all caches and
1633                  * hope for the best.
1634                  */
1635                 WARN_ON(ret != -EIO);
1636                 i915_gem_clflush_object(obj);
1637                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638         }
1639
1640         if (i915_gem_object_needs_bit17_swizzle(obj))
1641                 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643         if (obj->madv == I915_MADV_DONTNEED)
1644                 obj->dirty = 0;
1645
1646         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647                 struct page *page = sg_page_iter_page(&sg_iter);
1648
1649                 if (obj->dirty)
1650                         set_page_dirty(page);
1651
1652                 if (obj->madv == I915_MADV_WILLNEED)
1653                         mark_page_accessed(page);
1654
1655                 page_cache_release(page);
1656         }
1657         obj->dirty = 0;
1658
1659         sg_free_table(obj->pages);
1660         kfree(obj->pages);
1661 }
1662
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666         const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
1668         if (obj->pages == NULL)
1669                 return 0;
1670
1671         BUG_ON(i915_gem_obj_ggtt_bound(obj));
1672
1673         if (obj->pages_pin_count)
1674                 return -EBUSY;
1675
1676         /* ->put_pages might need to allocate memory for the bit17 swizzle
1677          * array, hence protect them from being reaped by removing them from gtt
1678          * lists early. */
1679         list_del(&obj->global_list);
1680
1681         ops->put_pages(obj);
1682         obj->pages = NULL;
1683
1684         if (i915_gem_object_is_purgeable(obj))
1685                 i915_gem_object_truncate(obj);
1686
1687         return 0;
1688 }
1689
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692                   bool purgeable_only)
1693 {
1694         struct drm_i915_gem_object *obj, *next;
1695         long count = 0;
1696
1697         list_for_each_entry_safe(obj, next,
1698                                  &dev_priv->mm.unbound_list,
1699                                  global_list) {
1700                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1701                     i915_gem_object_put_pages(obj) == 0) {
1702                         count += obj->base.size >> PAGE_SHIFT;
1703                         if (count >= target)
1704                                 return count;
1705                 }
1706         }
1707
1708         list_for_each_entry_safe(obj, next,
1709                                  &dev_priv->mm.inactive_list,
1710                                  mm_list) {
1711                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1712                     i915_gem_object_unbind(obj) == 0 &&
1713                     i915_gem_object_put_pages(obj) == 0) {
1714                         count += obj->base.size >> PAGE_SHIFT;
1715                         if (count >= target)
1716                                 return count;
1717                 }
1718         }
1719
1720         return count;
1721 }
1722
1723 static long
1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725 {
1726         return __i915_gem_shrink(dev_priv, target, true);
1727 }
1728
1729 static void
1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731 {
1732         struct drm_i915_gem_object *obj, *next;
1733
1734         i915_gem_evict_everything(dev_priv->dev);
1735
1736         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1737                                  global_list)
1738                 i915_gem_object_put_pages(obj);
1739 }
1740
1741 static int
1742 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1743 {
1744         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1745         int page_count, i;
1746         struct address_space *mapping;
1747         struct sg_table *st;
1748         struct scatterlist *sg;
1749         struct sg_page_iter sg_iter;
1750         struct page *page;
1751         unsigned long last_pfn = 0;     /* suppress gcc warning */
1752         gfp_t gfp;
1753
1754         /* Assert that the object is not currently in any GPU domain. As it
1755          * wasn't in the GTT, there shouldn't be any way it could have been in
1756          * a GPU cache
1757          */
1758         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1759         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1760
1761         st = kmalloc(sizeof(*st), GFP_KERNEL);
1762         if (st == NULL)
1763                 return -ENOMEM;
1764
1765         page_count = obj->base.size / PAGE_SIZE;
1766         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1767                 sg_free_table(st);
1768                 kfree(st);
1769                 return -ENOMEM;
1770         }
1771
1772         /* Get the list of pages out of our struct file.  They'll be pinned
1773          * at this point until we release them.
1774          *
1775          * Fail silently without starting the shrinker
1776          */
1777         mapping = file_inode(obj->base.filp)->i_mapping;
1778         gfp = mapping_gfp_mask(mapping);
1779         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1780         gfp &= ~(__GFP_IO | __GFP_WAIT);
1781         sg = st->sgl;
1782         st->nents = 0;
1783         for (i = 0; i < page_count; i++) {
1784                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1785                 if (IS_ERR(page)) {
1786                         i915_gem_purge(dev_priv, page_count);
1787                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1788                 }
1789                 if (IS_ERR(page)) {
1790                         /* We've tried hard to allocate the memory by reaping
1791                          * our own buffer, now let the real VM do its job and
1792                          * go down in flames if truly OOM.
1793                          */
1794                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1795                         gfp |= __GFP_IO | __GFP_WAIT;
1796
1797                         i915_gem_shrink_all(dev_priv);
1798                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1799                         if (IS_ERR(page))
1800                                 goto err_pages;
1801
1802                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1803                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1804                 }
1805 #ifdef CONFIG_SWIOTLB
1806                 if (swiotlb_nr_tbl()) {
1807                         st->nents++;
1808                         sg_set_page(sg, page, PAGE_SIZE, 0);
1809                         sg = sg_next(sg);
1810                         continue;
1811                 }
1812 #endif
1813                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1814                         if (i)
1815                                 sg = sg_next(sg);
1816                         st->nents++;
1817                         sg_set_page(sg, page, PAGE_SIZE, 0);
1818                 } else {
1819                         sg->length += PAGE_SIZE;
1820                 }
1821                 last_pfn = page_to_pfn(page);
1822         }
1823 #ifdef CONFIG_SWIOTLB
1824         if (!swiotlb_nr_tbl())
1825 #endif
1826                 sg_mark_end(sg);
1827         obj->pages = st;
1828
1829         if (i915_gem_object_needs_bit17_swizzle(obj))
1830                 i915_gem_object_do_bit_17_swizzle(obj);
1831
1832         return 0;
1833
1834 err_pages:
1835         sg_mark_end(sg);
1836         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1837                 page_cache_release(sg_page_iter_page(&sg_iter));
1838         sg_free_table(st);
1839         kfree(st);
1840         return PTR_ERR(page);
1841 }
1842
1843 /* Ensure that the associated pages are gathered from the backing storage
1844  * and pinned into our object. i915_gem_object_get_pages() may be called
1845  * multiple times before they are released by a single call to
1846  * i915_gem_object_put_pages() - once the pages are no longer referenced
1847  * either as a result of memory pressure (reaping pages under the shrinker)
1848  * or as the object is itself released.
1849  */
1850 int
1851 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1852 {
1853         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1854         const struct drm_i915_gem_object_ops *ops = obj->ops;
1855         int ret;
1856
1857         if (obj->pages)
1858                 return 0;
1859
1860         if (obj->madv != I915_MADV_WILLNEED) {
1861                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1862                 return -EINVAL;
1863         }
1864
1865         BUG_ON(obj->pages_pin_count);
1866
1867         ret = ops->get_pages(obj);
1868         if (ret)
1869                 return ret;
1870
1871         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1872         return 0;
1873 }
1874
1875 void
1876 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1877                                struct intel_ring_buffer *ring)
1878 {
1879         struct drm_device *dev = obj->base.dev;
1880         struct drm_i915_private *dev_priv = dev->dev_private;
1881         u32 seqno = intel_ring_get_seqno(ring);
1882
1883         BUG_ON(ring == NULL);
1884         if (obj->ring != ring && obj->last_write_seqno) {
1885                 /* Keep the seqno relative to the current ring */
1886                 obj->last_write_seqno = seqno;
1887         }
1888         obj->ring = ring;
1889
1890         /* Add a reference if we're newly entering the active list. */
1891         if (!obj->active) {
1892                 drm_gem_object_reference(&obj->base);
1893                 obj->active = 1;
1894         }
1895
1896         /* Move from whatever list we were on to the tail of execution. */
1897         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1898         list_move_tail(&obj->ring_list, &ring->active_list);
1899
1900         obj->last_read_seqno = seqno;
1901
1902         if (obj->fenced_gpu_access) {
1903                 obj->last_fenced_seqno = seqno;
1904
1905                 /* Bump MRU to take account of the delayed flush */
1906                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1907                         struct drm_i915_fence_reg *reg;
1908
1909                         reg = &dev_priv->fence_regs[obj->fence_reg];
1910                         list_move_tail(&reg->lru_list,
1911                                        &dev_priv->mm.fence_list);
1912                 }
1913         }
1914 }
1915
1916 static void
1917 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1918 {
1919         struct drm_device *dev = obj->base.dev;
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921
1922         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1923         BUG_ON(!obj->active);
1924
1925         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1926
1927         list_del_init(&obj->ring_list);
1928         obj->ring = NULL;
1929
1930         obj->last_read_seqno = 0;
1931         obj->last_write_seqno = 0;
1932         obj->base.write_domain = 0;
1933
1934         obj->last_fenced_seqno = 0;
1935         obj->fenced_gpu_access = false;
1936
1937         obj->active = 0;
1938         drm_gem_object_unreference(&obj->base);
1939
1940         WARN_ON(i915_verify_lists(dev));
1941 }
1942
1943 static int
1944 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1945 {
1946         struct drm_i915_private *dev_priv = dev->dev_private;
1947         struct intel_ring_buffer *ring;
1948         int ret, i, j;
1949
1950         /* Carefully retire all requests without writing to the rings */
1951         for_each_ring(ring, dev_priv, i) {
1952                 ret = intel_ring_idle(ring);
1953                 if (ret)
1954                         return ret;
1955         }
1956         i915_gem_retire_requests(dev);
1957
1958         /* Finally reset hw state */
1959         for_each_ring(ring, dev_priv, i) {
1960                 intel_ring_init_seqno(ring, seqno);
1961
1962                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1963                         ring->sync_seqno[j] = 0;
1964         }
1965
1966         return 0;
1967 }
1968
1969 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1970 {
1971         struct drm_i915_private *dev_priv = dev->dev_private;
1972         int ret;
1973
1974         if (seqno == 0)
1975                 return -EINVAL;
1976
1977         /* HWS page needs to be set less than what we
1978          * will inject to ring
1979          */
1980         ret = i915_gem_init_seqno(dev, seqno - 1);
1981         if (ret)
1982                 return ret;
1983
1984         /* Carefully set the last_seqno value so that wrap
1985          * detection still works
1986          */
1987         dev_priv->next_seqno = seqno;
1988         dev_priv->last_seqno = seqno - 1;
1989         if (dev_priv->last_seqno == 0)
1990                 dev_priv->last_seqno--;
1991
1992         return 0;
1993 }
1994
1995 int
1996 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1997 {
1998         struct drm_i915_private *dev_priv = dev->dev_private;
1999
2000         /* reserve 0 for non-seqno */
2001         if (dev_priv->next_seqno == 0) {
2002                 int ret = i915_gem_init_seqno(dev, 0);
2003                 if (ret)
2004                         return ret;
2005
2006                 dev_priv->next_seqno = 1;
2007         }
2008
2009         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2010         return 0;
2011 }
2012
2013 int __i915_add_request(struct intel_ring_buffer *ring,
2014                        struct drm_file *file,
2015                        struct drm_i915_gem_object *obj,
2016                        u32 *out_seqno)
2017 {
2018         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2019         struct drm_i915_gem_request *request;
2020         u32 request_ring_position, request_start;
2021         int was_empty;
2022         int ret;
2023
2024         request_start = intel_ring_get_tail(ring);
2025         /*
2026          * Emit any outstanding flushes - execbuf can fail to emit the flush
2027          * after having emitted the batchbuffer command. Hence we need to fix
2028          * things up similar to emitting the lazy request. The difference here
2029          * is that the flush _must_ happen before the next request, no matter
2030          * what.
2031          */
2032         ret = intel_ring_flush_all_caches(ring);
2033         if (ret)
2034                 return ret;
2035
2036         request = kmalloc(sizeof(*request), GFP_KERNEL);
2037         if (request == NULL)
2038                 return -ENOMEM;
2039
2040
2041         /* Record the position of the start of the request so that
2042          * should we detect the updated seqno part-way through the
2043          * GPU processing the request, we never over-estimate the
2044          * position of the head.
2045          */
2046         request_ring_position = intel_ring_get_tail(ring);
2047
2048         ret = ring->add_request(ring);
2049         if (ret) {
2050                 kfree(request);
2051                 return ret;
2052         }
2053
2054         request->seqno = intel_ring_get_seqno(ring);
2055         request->ring = ring;
2056         request->head = request_start;
2057         request->tail = request_ring_position;
2058         request->ctx = ring->last_context;
2059         request->batch_obj = obj;
2060
2061         /* Whilst this request exists, batch_obj will be on the
2062          * active_list, and so will hold the active reference. Only when this
2063          * request is retired will the the batch_obj be moved onto the
2064          * inactive_list and lose its active reference. Hence we do not need
2065          * to explicitly hold another reference here.
2066          */
2067
2068         if (request->ctx)
2069                 i915_gem_context_reference(request->ctx);
2070
2071         request->emitted_jiffies = jiffies;
2072         was_empty = list_empty(&ring->request_list);
2073         list_add_tail(&request->list, &ring->request_list);
2074         request->file_priv = NULL;
2075
2076         if (file) {
2077                 struct drm_i915_file_private *file_priv = file->driver_priv;
2078
2079                 spin_lock(&file_priv->mm.lock);
2080                 request->file_priv = file_priv;
2081                 list_add_tail(&request->client_list,
2082                               &file_priv->mm.request_list);
2083                 spin_unlock(&file_priv->mm.lock);
2084         }
2085
2086         trace_i915_gem_request_add(ring, request->seqno);
2087         ring->outstanding_lazy_request = 0;
2088
2089         if (!dev_priv->ums.mm_suspended) {
2090                 if (i915_enable_hangcheck) {
2091                         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2092                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2093                 }
2094                 if (was_empty) {
2095                         queue_delayed_work(dev_priv->wq,
2096                                            &dev_priv->mm.retire_work,
2097                                            round_jiffies_up_relative(HZ));
2098                         intel_mark_busy(dev_priv->dev);
2099                 }
2100         }
2101
2102         if (out_seqno)
2103                 *out_seqno = request->seqno;
2104         return 0;
2105 }
2106
2107 static inline void
2108 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2109 {
2110         struct drm_i915_file_private *file_priv = request->file_priv;
2111
2112         if (!file_priv)
2113                 return;
2114
2115         spin_lock(&file_priv->mm.lock);
2116         if (request->file_priv) {
2117                 list_del(&request->client_list);
2118                 request->file_priv = NULL;
2119         }
2120         spin_unlock(&file_priv->mm.lock);
2121 }
2122
2123 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2124 {
2125         if (acthd >= i915_gem_obj_ggtt_offset(obj) &&
2126             acthd < i915_gem_obj_ggtt_offset(obj) + obj->base.size)
2127                 return true;
2128
2129         return false;
2130 }
2131
2132 static bool i915_head_inside_request(const u32 acthd_unmasked,
2133                                      const u32 request_start,
2134                                      const u32 request_end)
2135 {
2136         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2137
2138         if (request_start < request_end) {
2139                 if (acthd >= request_start && acthd < request_end)
2140                         return true;
2141         } else if (request_start > request_end) {
2142                 if (acthd >= request_start || acthd < request_end)
2143                         return true;
2144         }
2145
2146         return false;
2147 }
2148
2149 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2150                                 const u32 acthd, bool *inside)
2151 {
2152         /* There is a possibility that unmasked head address
2153          * pointing inside the ring, matches the batch_obj address range.
2154          * However this is extremely unlikely.
2155          */
2156
2157         if (request->batch_obj) {
2158                 if (i915_head_inside_object(acthd, request->batch_obj)) {
2159                         *inside = true;
2160                         return true;
2161                 }
2162         }
2163
2164         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2165                 *inside = false;
2166                 return true;
2167         }
2168
2169         return false;
2170 }
2171
2172 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2173                                   struct drm_i915_gem_request *request,
2174                                   u32 acthd)
2175 {
2176         struct i915_ctx_hang_stats *hs = NULL;
2177         bool inside, guilty;
2178
2179         /* Innocent until proven guilty */
2180         guilty = false;
2181
2182         if (ring->hangcheck.action != wait &&
2183             i915_request_guilty(request, acthd, &inside)) {
2184                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2185                           ring->name,
2186                           inside ? "inside" : "flushing",
2187                           request->batch_obj ?
2188                           i915_gem_obj_ggtt_offset(request->batch_obj) : 0,
2189                           request->ctx ? request->ctx->id : 0,
2190                           acthd);
2191
2192                 guilty = true;
2193         }
2194
2195         /* If contexts are disabled or this is the default context, use
2196          * file_priv->reset_state
2197          */
2198         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2199                 hs = &request->ctx->hang_stats;
2200         else if (request->file_priv)
2201                 hs = &request->file_priv->hang_stats;
2202
2203         if (hs) {
2204                 if (guilty)
2205                         hs->batch_active++;
2206                 else
2207                         hs->batch_pending++;
2208         }
2209 }
2210
2211 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2212 {
2213         list_del(&request->list);
2214         i915_gem_request_remove_from_client(request);
2215
2216         if (request->ctx)
2217                 i915_gem_context_unreference(request->ctx);
2218
2219         kfree(request);
2220 }
2221
2222 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2223                                       struct intel_ring_buffer *ring)
2224 {
2225         u32 completed_seqno;
2226         u32 acthd;
2227
2228         acthd = intel_ring_get_active_head(ring);
2229         completed_seqno = ring->get_seqno(ring, false);
2230
2231         while (!list_empty(&ring->request_list)) {
2232                 struct drm_i915_gem_request *request;
2233
2234                 request = list_first_entry(&ring->request_list,
2235                                            struct drm_i915_gem_request,
2236                                            list);
2237
2238                 if (request->seqno > completed_seqno)
2239                         i915_set_reset_status(ring, request, acthd);
2240
2241                 i915_gem_free_request(request);
2242         }
2243
2244         while (!list_empty(&ring->active_list)) {
2245                 struct drm_i915_gem_object *obj;
2246
2247                 obj = list_first_entry(&ring->active_list,
2248                                        struct drm_i915_gem_object,
2249                                        ring_list);
2250
2251                 i915_gem_object_move_to_inactive(obj);
2252         }
2253 }
2254
2255 void i915_gem_restore_fences(struct drm_device *dev)
2256 {
2257         struct drm_i915_private *dev_priv = dev->dev_private;
2258         int i;
2259
2260         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2261                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2262                 i915_gem_write_fence(dev, i, reg->obj);
2263         }
2264 }
2265
2266 void i915_gem_reset(struct drm_device *dev)
2267 {
2268         struct drm_i915_private *dev_priv = dev->dev_private;
2269         struct drm_i915_gem_object *obj;
2270         struct intel_ring_buffer *ring;
2271         int i;
2272
2273         for_each_ring(ring, dev_priv, i)
2274                 i915_gem_reset_ring_lists(dev_priv, ring);
2275
2276         /* Move everything out of the GPU domains to ensure we do any
2277          * necessary invalidation upon reuse.
2278          */
2279         list_for_each_entry(obj,
2280                             &dev_priv->mm.inactive_list,
2281                             mm_list)
2282         {
2283                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2284         }
2285
2286         i915_gem_restore_fences(dev);
2287 }
2288
2289 /**
2290  * This function clears the request list as sequence numbers are passed.
2291  */
2292 void
2293 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2294 {
2295         uint32_t seqno;
2296
2297         if (list_empty(&ring->request_list))
2298                 return;
2299
2300         WARN_ON(i915_verify_lists(ring->dev));
2301
2302         seqno = ring->get_seqno(ring, true);
2303
2304         while (!list_empty(&ring->request_list)) {
2305                 struct drm_i915_gem_request *request;
2306
2307                 request = list_first_entry(&ring->request_list,
2308                                            struct drm_i915_gem_request,
2309                                            list);
2310
2311                 if (!i915_seqno_passed(seqno, request->seqno))
2312                         break;
2313
2314                 trace_i915_gem_request_retire(ring, request->seqno);
2315                 /* We know the GPU must have read the request to have
2316                  * sent us the seqno + interrupt, so use the position
2317                  * of tail of the request to update the last known position
2318                  * of the GPU head.
2319                  */
2320                 ring->last_retired_head = request->tail;
2321
2322                 i915_gem_free_request(request);
2323         }
2324
2325         /* Move any buffers on the active list that are no longer referenced
2326          * by the ringbuffer to the flushing/inactive lists as appropriate.
2327          */
2328         while (!list_empty(&ring->active_list)) {
2329                 struct drm_i915_gem_object *obj;
2330
2331                 obj = list_first_entry(&ring->active_list,
2332                                       struct drm_i915_gem_object,
2333                                       ring_list);
2334
2335                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2336                         break;
2337
2338                 i915_gem_object_move_to_inactive(obj);
2339         }
2340
2341         if (unlikely(ring->trace_irq_seqno &&
2342                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2343                 ring->irq_put(ring);
2344                 ring->trace_irq_seqno = 0;
2345         }
2346
2347         WARN_ON(i915_verify_lists(ring->dev));
2348 }
2349
2350 void
2351 i915_gem_retire_requests(struct drm_device *dev)
2352 {
2353         drm_i915_private_t *dev_priv = dev->dev_private;
2354         struct intel_ring_buffer *ring;
2355         int i;
2356
2357         for_each_ring(ring, dev_priv, i)
2358                 i915_gem_retire_requests_ring(ring);
2359 }
2360
2361 static void
2362 i915_gem_retire_work_handler(struct work_struct *work)
2363 {
2364         drm_i915_private_t *dev_priv;
2365         struct drm_device *dev;
2366         struct intel_ring_buffer *ring;
2367         bool idle;
2368         int i;
2369
2370         dev_priv = container_of(work, drm_i915_private_t,
2371                                 mm.retire_work.work);
2372         dev = dev_priv->dev;
2373
2374         /* Come back later if the device is busy... */
2375         if (!mutex_trylock(&dev->struct_mutex)) {
2376                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2377                                    round_jiffies_up_relative(HZ));
2378                 return;
2379         }
2380
2381         i915_gem_retire_requests(dev);
2382
2383         /* Send a periodic flush down the ring so we don't hold onto GEM
2384          * objects indefinitely.
2385          */
2386         idle = true;
2387         for_each_ring(ring, dev_priv, i) {
2388                 if (ring->gpu_caches_dirty)
2389                         i915_add_request(ring, NULL);
2390
2391                 idle &= list_empty(&ring->request_list);
2392         }
2393
2394         if (!dev_priv->ums.mm_suspended && !idle)
2395                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2396                                    round_jiffies_up_relative(HZ));
2397         if (idle)
2398                 intel_mark_idle(dev);
2399
2400         mutex_unlock(&dev->struct_mutex);
2401 }
2402
2403 /**
2404  * Ensures that an object will eventually get non-busy by flushing any required
2405  * write domains, emitting any outstanding lazy request and retiring and
2406  * completed requests.
2407  */
2408 static int
2409 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2410 {
2411         int ret;
2412
2413         if (obj->active) {
2414                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2415                 if (ret)
2416                         return ret;
2417
2418                 i915_gem_retire_requests_ring(obj->ring);
2419         }
2420
2421         return 0;
2422 }
2423
2424 /**
2425  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2426  * @DRM_IOCTL_ARGS: standard ioctl arguments
2427  *
2428  * Returns 0 if successful, else an error is returned with the remaining time in
2429  * the timeout parameter.
2430  *  -ETIME: object is still busy after timeout
2431  *  -ERESTARTSYS: signal interrupted the wait
2432  *  -ENONENT: object doesn't exist
2433  * Also possible, but rare:
2434  *  -EAGAIN: GPU wedged
2435  *  -ENOMEM: damn
2436  *  -ENODEV: Internal IRQ fail
2437  *  -E?: The add request failed
2438  *
2439  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2440  * non-zero timeout parameter the wait ioctl will wait for the given number of
2441  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2442  * without holding struct_mutex the object may become re-busied before this
2443  * function completes. A similar but shorter * race condition exists in the busy
2444  * ioctl
2445  */
2446 int
2447 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2448 {
2449         drm_i915_private_t *dev_priv = dev->dev_private;
2450         struct drm_i915_gem_wait *args = data;
2451         struct drm_i915_gem_object *obj;
2452         struct intel_ring_buffer *ring = NULL;
2453         struct timespec timeout_stack, *timeout = NULL;
2454         unsigned reset_counter;
2455         u32 seqno = 0;
2456         int ret = 0;
2457
2458         if (args->timeout_ns >= 0) {
2459                 timeout_stack = ns_to_timespec(args->timeout_ns);
2460                 timeout = &timeout_stack;
2461         }
2462
2463         ret = i915_mutex_lock_interruptible(dev);
2464         if (ret)
2465                 return ret;
2466
2467         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2468         if (&obj->base == NULL) {
2469                 mutex_unlock(&dev->struct_mutex);
2470                 return -ENOENT;
2471         }
2472
2473         /* Need to make sure the object gets inactive eventually. */
2474         ret = i915_gem_object_flush_active(obj);
2475         if (ret)
2476                 goto out;
2477
2478         if (obj->active) {
2479                 seqno = obj->last_read_seqno;
2480                 ring = obj->ring;
2481         }
2482
2483         if (seqno == 0)
2484                  goto out;
2485
2486         /* Do this after OLR check to make sure we make forward progress polling
2487          * on this IOCTL with a 0 timeout (like busy ioctl)
2488          */
2489         if (!args->timeout_ns) {
2490                 ret = -ETIME;
2491                 goto out;
2492         }
2493
2494         drm_gem_object_unreference(&obj->base);
2495         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2496         mutex_unlock(&dev->struct_mutex);
2497
2498         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2499         if (timeout)
2500                 args->timeout_ns = timespec_to_ns(timeout);
2501         return ret;
2502
2503 out:
2504         drm_gem_object_unreference(&obj->base);
2505         mutex_unlock(&dev->struct_mutex);
2506         return ret;
2507 }
2508
2509 /**
2510  * i915_gem_object_sync - sync an object to a ring.
2511  *
2512  * @obj: object which may be in use on another ring.
2513  * @to: ring we wish to use the object on. May be NULL.
2514  *
2515  * This code is meant to abstract object synchronization with the GPU.
2516  * Calling with NULL implies synchronizing the object with the CPU
2517  * rather than a particular GPU ring.
2518  *
2519  * Returns 0 if successful, else propagates up the lower layer error.
2520  */
2521 int
2522 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2523                      struct intel_ring_buffer *to)
2524 {
2525         struct intel_ring_buffer *from = obj->ring;
2526         u32 seqno;
2527         int ret, idx;
2528
2529         if (from == NULL || to == from)
2530                 return 0;
2531
2532         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2533                 return i915_gem_object_wait_rendering(obj, false);
2534
2535         idx = intel_ring_sync_index(from, to);
2536
2537         seqno = obj->last_read_seqno;
2538         if (seqno <= from->sync_seqno[idx])
2539                 return 0;
2540
2541         ret = i915_gem_check_olr(obj->ring, seqno);
2542         if (ret)
2543                 return ret;
2544
2545         ret = to->sync_to(to, from, seqno);
2546         if (!ret)
2547                 /* We use last_read_seqno because sync_to()
2548                  * might have just caused seqno wrap under
2549                  * the radar.
2550                  */
2551                 from->sync_seqno[idx] = obj->last_read_seqno;
2552
2553         return ret;
2554 }
2555
2556 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2557 {
2558         u32 old_write_domain, old_read_domains;
2559
2560         /* Force a pagefault for domain tracking on next user access */
2561         i915_gem_release_mmap(obj);
2562
2563         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2564                 return;
2565
2566         /* Wait for any direct GTT access to complete */
2567         mb();
2568
2569         old_read_domains = obj->base.read_domains;
2570         old_write_domain = obj->base.write_domain;
2571
2572         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2573         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2574
2575         trace_i915_gem_object_change_domain(obj,
2576                                             old_read_domains,
2577                                             old_write_domain);
2578 }
2579
2580 /**
2581  * Unbinds an object from the GTT aperture.
2582  */
2583 int
2584 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2585 {
2586         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2587         int ret;
2588
2589         if (!i915_gem_obj_ggtt_bound(obj))
2590                 return 0;
2591
2592         if (obj->pin_count)
2593                 return -EBUSY;
2594
2595         BUG_ON(obj->pages == NULL);
2596
2597         ret = i915_gem_object_finish_gpu(obj);
2598         if (ret)
2599                 return ret;
2600         /* Continue on if we fail due to EIO, the GPU is hung so we
2601          * should be safe and we need to cleanup or else we might
2602          * cause memory corruption through use-after-free.
2603          */
2604
2605         i915_gem_object_finish_gtt(obj);
2606
2607         /* release the fence reg _after_ flushing */
2608         ret = i915_gem_object_put_fence(obj);
2609         if (ret)
2610                 return ret;
2611
2612         trace_i915_gem_object_unbind(obj);
2613
2614         if (obj->has_global_gtt_mapping)
2615                 i915_gem_gtt_unbind_object(obj);
2616         if (obj->has_aliasing_ppgtt_mapping) {
2617                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2618                 obj->has_aliasing_ppgtt_mapping = 0;
2619         }
2620         i915_gem_gtt_finish_object(obj);
2621         i915_gem_object_unpin_pages(obj);
2622
2623         list_del(&obj->mm_list);
2624         list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2625         /* Avoid an unnecessary call to unbind on rebind. */
2626         obj->map_and_fenceable = true;
2627
2628         drm_mm_remove_node(&obj->gtt_space);
2629
2630         return 0;
2631 }
2632
2633 int i915_gpu_idle(struct drm_device *dev)
2634 {
2635         drm_i915_private_t *dev_priv = dev->dev_private;
2636         struct intel_ring_buffer *ring;
2637         int ret, i;
2638
2639         /* Flush everything onto the inactive list. */
2640         for_each_ring(ring, dev_priv, i) {
2641                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2642                 if (ret)
2643                         return ret;
2644
2645                 ret = intel_ring_idle(ring);
2646                 if (ret)
2647                         return ret;
2648         }
2649
2650         return 0;
2651 }
2652
2653 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2654                                  struct drm_i915_gem_object *obj)
2655 {
2656         drm_i915_private_t *dev_priv = dev->dev_private;
2657         int fence_reg;
2658         int fence_pitch_shift;
2659
2660         if (INTEL_INFO(dev)->gen >= 6) {
2661                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2662                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2663         } else {
2664                 fence_reg = FENCE_REG_965_0;
2665                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2666         }
2667
2668         fence_reg += reg * 8;
2669
2670         /* To w/a incoherency with non-atomic 64-bit register updates,
2671          * we split the 64-bit update into two 32-bit writes. In order
2672          * for a partial fence not to be evaluated between writes, we
2673          * precede the update with write to turn off the fence register,
2674          * and only enable the fence as the last step.
2675          *
2676          * For extra levels of paranoia, we make sure each step lands
2677          * before applying the next step.
2678          */
2679         I915_WRITE(fence_reg, 0);
2680         POSTING_READ(fence_reg);
2681
2682         if (obj) {
2683                 u32 size = i915_gem_obj_ggtt_size(obj);
2684                 uint64_t val;
2685
2686                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2687                                  0xfffff000) << 32;
2688                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2689                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2690                 if (obj->tiling_mode == I915_TILING_Y)
2691                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2692                 val |= I965_FENCE_REG_VALID;
2693
2694                 I915_WRITE(fence_reg + 4, val >> 32);
2695                 POSTING_READ(fence_reg + 4);
2696
2697                 I915_WRITE(fence_reg + 0, val);
2698                 POSTING_READ(fence_reg);
2699         } else {
2700                 I915_WRITE(fence_reg + 4, 0);
2701                 POSTING_READ(fence_reg + 4);
2702         }
2703 }
2704
2705 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2706                                  struct drm_i915_gem_object *obj)
2707 {
2708         drm_i915_private_t *dev_priv = dev->dev_private;
2709         u32 val;
2710
2711         if (obj) {
2712                 u32 size = i915_gem_obj_ggtt_size(obj);
2713                 int pitch_val;
2714                 int tile_width;
2715
2716                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2717                      (size & -size) != size ||
2718                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2719                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2720                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2721
2722                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2723                         tile_width = 128;
2724                 else
2725                         tile_width = 512;
2726
2727                 /* Note: pitch better be a power of two tile widths */
2728                 pitch_val = obj->stride / tile_width;
2729                 pitch_val = ffs(pitch_val) - 1;
2730
2731                 val = i915_gem_obj_ggtt_offset(obj);
2732                 if (obj->tiling_mode == I915_TILING_Y)
2733                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2734                 val |= I915_FENCE_SIZE_BITS(size);
2735                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2736                 val |= I830_FENCE_REG_VALID;
2737         } else
2738                 val = 0;
2739
2740         if (reg < 8)
2741                 reg = FENCE_REG_830_0 + reg * 4;
2742         else
2743                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2744
2745         I915_WRITE(reg, val);
2746         POSTING_READ(reg);
2747 }
2748
2749 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2750                                 struct drm_i915_gem_object *obj)
2751 {
2752         drm_i915_private_t *dev_priv = dev->dev_private;
2753         uint32_t val;
2754
2755         if (obj) {
2756                 u32 size = i915_gem_obj_ggtt_size(obj);
2757                 uint32_t pitch_val;
2758
2759                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2760                      (size & -size) != size ||
2761                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2762                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2763                      i915_gem_obj_ggtt_offset(obj), size);
2764
2765                 pitch_val = obj->stride / 128;
2766                 pitch_val = ffs(pitch_val) - 1;
2767
2768                 val = i915_gem_obj_ggtt_offset(obj);
2769                 if (obj->tiling_mode == I915_TILING_Y)
2770                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2771                 val |= I830_FENCE_SIZE_BITS(size);
2772                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2773                 val |= I830_FENCE_REG_VALID;
2774         } else
2775                 val = 0;
2776
2777         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2778         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2779 }
2780
2781 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2782 {
2783         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2784 }
2785
2786 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2787                                  struct drm_i915_gem_object *obj)
2788 {
2789         struct drm_i915_private *dev_priv = dev->dev_private;
2790
2791         /* Ensure that all CPU reads are completed before installing a fence
2792          * and all writes before removing the fence.
2793          */
2794         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2795                 mb();
2796
2797         switch (INTEL_INFO(dev)->gen) {
2798         case 7:
2799         case 6:
2800         case 5:
2801         case 4: i965_write_fence_reg(dev, reg, obj); break;
2802         case 3: i915_write_fence_reg(dev, reg, obj); break;
2803         case 2: i830_write_fence_reg(dev, reg, obj); break;
2804         default: BUG();
2805         }
2806
2807         /* And similarly be paranoid that no direct access to this region
2808          * is reordered to before the fence is installed.
2809          */
2810         if (i915_gem_object_needs_mb(obj))
2811                 mb();
2812 }
2813
2814 static inline int fence_number(struct drm_i915_private *dev_priv,
2815                                struct drm_i915_fence_reg *fence)
2816 {
2817         return fence - dev_priv->fence_regs;
2818 }
2819
2820 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2821                                          struct drm_i915_fence_reg *fence,
2822                                          bool enable)
2823 {
2824         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2825         int reg = fence_number(dev_priv, fence);
2826
2827         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2828
2829         if (enable) {
2830                 obj->fence_reg = reg;
2831                 fence->obj = obj;
2832                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2833         } else {
2834                 obj->fence_reg = I915_FENCE_REG_NONE;
2835                 fence->obj = NULL;
2836                 list_del_init(&fence->lru_list);
2837         }
2838 }
2839
2840 static int
2841 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2842 {
2843         if (obj->last_fenced_seqno) {
2844                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2845                 if (ret)
2846                         return ret;
2847
2848                 obj->last_fenced_seqno = 0;
2849         }
2850
2851         obj->fenced_gpu_access = false;
2852         return 0;
2853 }
2854
2855 int
2856 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2857 {
2858         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2859         struct drm_i915_fence_reg *fence;
2860         int ret;
2861
2862         ret = i915_gem_object_wait_fence(obj);
2863         if (ret)
2864                 return ret;
2865
2866         if (obj->fence_reg == I915_FENCE_REG_NONE)
2867                 return 0;
2868
2869         fence = &dev_priv->fence_regs[obj->fence_reg];
2870
2871         i915_gem_object_fence_lost(obj);
2872         i915_gem_object_update_fence(obj, fence, false);
2873
2874         return 0;
2875 }
2876
2877 static struct drm_i915_fence_reg *
2878 i915_find_fence_reg(struct drm_device *dev)
2879 {
2880         struct drm_i915_private *dev_priv = dev->dev_private;
2881         struct drm_i915_fence_reg *reg, *avail;
2882         int i;
2883
2884         /* First try to find a free reg */
2885         avail = NULL;
2886         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2887                 reg = &dev_priv->fence_regs[i];
2888                 if (!reg->obj)
2889                         return reg;
2890
2891                 if (!reg->pin_count)
2892                         avail = reg;
2893         }
2894
2895         if (avail == NULL)
2896                 return NULL;
2897
2898         /* None available, try to steal one or wait for a user to finish */
2899         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2900                 if (reg->pin_count)
2901                         continue;
2902
2903                 return reg;
2904         }
2905
2906         return NULL;
2907 }
2908
2909 /**
2910  * i915_gem_object_get_fence - set up fencing for an object
2911  * @obj: object to map through a fence reg
2912  *
2913  * When mapping objects through the GTT, userspace wants to be able to write
2914  * to them without having to worry about swizzling if the object is tiled.
2915  * This function walks the fence regs looking for a free one for @obj,
2916  * stealing one if it can't find any.
2917  *
2918  * It then sets up the reg based on the object's properties: address, pitch
2919  * and tiling format.
2920  *
2921  * For an untiled surface, this removes any existing fence.
2922  */
2923 int
2924 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2925 {
2926         struct drm_device *dev = obj->base.dev;
2927         struct drm_i915_private *dev_priv = dev->dev_private;
2928         bool enable = obj->tiling_mode != I915_TILING_NONE;
2929         struct drm_i915_fence_reg *reg;
2930         int ret;
2931
2932         /* Have we updated the tiling parameters upon the object and so
2933          * will need to serialise the write to the associated fence register?
2934          */
2935         if (obj->fence_dirty) {
2936                 ret = i915_gem_object_wait_fence(obj);
2937                 if (ret)
2938                         return ret;
2939         }
2940
2941         /* Just update our place in the LRU if our fence is getting reused. */
2942         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2943                 reg = &dev_priv->fence_regs[obj->fence_reg];
2944                 if (!obj->fence_dirty) {
2945                         list_move_tail(&reg->lru_list,
2946                                        &dev_priv->mm.fence_list);
2947                         return 0;
2948                 }
2949         } else if (enable) {
2950                 reg = i915_find_fence_reg(dev);
2951                 if (reg == NULL)
2952                         return -EDEADLK;
2953
2954                 if (reg->obj) {
2955                         struct drm_i915_gem_object *old = reg->obj;
2956
2957                         ret = i915_gem_object_wait_fence(old);
2958                         if (ret)
2959                                 return ret;
2960
2961                         i915_gem_object_fence_lost(old);
2962                 }
2963         } else
2964                 return 0;
2965
2966         i915_gem_object_update_fence(obj, reg, enable);
2967         obj->fence_dirty = false;
2968
2969         return 0;
2970 }
2971
2972 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2973                                      struct drm_mm_node *gtt_space,
2974                                      unsigned long cache_level)
2975 {
2976         struct drm_mm_node *other;
2977
2978         /* On non-LLC machines we have to be careful when putting differing
2979          * types of snoopable memory together to avoid the prefetcher
2980          * crossing memory domains and dying.
2981          */
2982         if (HAS_LLC(dev))
2983                 return true;
2984
2985         if (!drm_mm_node_allocated(gtt_space))
2986                 return true;
2987
2988         if (list_empty(&gtt_space->node_list))
2989                 return true;
2990
2991         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2992         if (other->allocated && !other->hole_follows && other->color != cache_level)
2993                 return false;
2994
2995         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2996         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2997                 return false;
2998
2999         return true;
3000 }
3001
3002 static void i915_gem_verify_gtt(struct drm_device *dev)
3003 {
3004 #if WATCH_GTT
3005         struct drm_i915_private *dev_priv = dev->dev_private;
3006         struct drm_i915_gem_object *obj;
3007         int err = 0;
3008
3009         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3010                 if (obj->gtt_space == NULL) {
3011                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3012                         err++;
3013                         continue;
3014                 }
3015
3016                 if (obj->cache_level != obj->gtt_space->color) {
3017                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3018                                i915_gem_obj_ggtt_offset(obj),
3019                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3020                                obj->cache_level,
3021                                obj->gtt_space->color);
3022                         err++;
3023                         continue;
3024                 }
3025
3026                 if (!i915_gem_valid_gtt_space(dev,
3027                                               obj->gtt_space,
3028                                               obj->cache_level)) {
3029                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3030                                i915_gem_obj_ggtt_offset(obj),
3031                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3032                                obj->cache_level);
3033                         err++;
3034                         continue;
3035                 }
3036         }
3037
3038         WARN_ON(err);
3039 #endif
3040 }
3041
3042 /**
3043  * Finds free space in the GTT aperture and binds the object there.
3044  */
3045 static int
3046 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3047                             unsigned alignment,
3048                             bool map_and_fenceable,
3049                             bool nonblocking)
3050 {
3051         struct drm_device *dev = obj->base.dev;
3052         drm_i915_private_t *dev_priv = dev->dev_private;
3053         u32 size, fence_size, fence_alignment, unfenced_alignment;
3054         bool mappable, fenceable;
3055         size_t gtt_max = map_and_fenceable ?
3056                 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
3057         int ret;
3058
3059         fence_size = i915_gem_get_gtt_size(dev,
3060                                            obj->base.size,
3061                                            obj->tiling_mode);
3062         fence_alignment = i915_gem_get_gtt_alignment(dev,
3063                                                      obj->base.size,
3064                                                      obj->tiling_mode, true);
3065         unfenced_alignment =
3066                 i915_gem_get_gtt_alignment(dev,
3067                                                     obj->base.size,
3068                                                     obj->tiling_mode, false);
3069
3070         if (alignment == 0)
3071                 alignment = map_and_fenceable ? fence_alignment :
3072                                                 unfenced_alignment;
3073         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3074                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3075                 return -EINVAL;
3076         }
3077
3078         size = map_and_fenceable ? fence_size : obj->base.size;
3079
3080         /* If the object is bigger than the entire aperture, reject it early
3081          * before evicting everything in a vain attempt to find space.
3082          */
3083         if (obj->base.size > gtt_max) {
3084                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3085                           obj->base.size,
3086                           map_and_fenceable ? "mappable" : "total",
3087                           gtt_max);
3088                 return -E2BIG;
3089         }
3090
3091         ret = i915_gem_object_get_pages(obj);
3092         if (ret)
3093                 return ret;
3094
3095         i915_gem_object_pin_pages(obj);
3096
3097 search_free:
3098         ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space,
3099                                                   &obj->gtt_space,
3100                                                   size, alignment,
3101                                                   obj->cache_level, 0, gtt_max);
3102         if (ret) {
3103                 ret = i915_gem_evict_something(dev, size, alignment,
3104                                                obj->cache_level,
3105                                                map_and_fenceable,
3106                                                nonblocking);
3107                 if (ret == 0)
3108                         goto search_free;
3109
3110                 i915_gem_object_unpin_pages(obj);
3111                 return ret;
3112         }
3113         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &obj->gtt_space,
3114                                               obj->cache_level))) {
3115                 i915_gem_object_unpin_pages(obj);
3116                 drm_mm_remove_node(&obj->gtt_space);
3117                 return -EINVAL;
3118         }
3119
3120         ret = i915_gem_gtt_prepare_object(obj);
3121         if (ret) {
3122                 i915_gem_object_unpin_pages(obj);
3123                 drm_mm_remove_node(&obj->gtt_space);
3124                 return ret;
3125         }
3126
3127         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3128         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3129
3130         fenceable =
3131                 i915_gem_obj_ggtt_size(obj) == fence_size &&
3132                 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
3133
3134         mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
3135                 dev_priv->gtt.mappable_end;
3136
3137         obj->map_and_fenceable = mappable && fenceable;
3138
3139         trace_i915_gem_object_bind(obj, map_and_fenceable);
3140         i915_gem_verify_gtt(dev);
3141         return 0;
3142 }
3143
3144 void
3145 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3146 {
3147         /* If we don't have a page list set up, then we're not pinned
3148          * to GPU, and we can ignore the cache flush because it'll happen
3149          * again at bind time.
3150          */
3151         if (obj->pages == NULL)
3152                 return;
3153
3154         /*
3155          * Stolen memory is always coherent with the GPU as it is explicitly
3156          * marked as wc by the system, or the system is cache-coherent.
3157          */
3158         if (obj->stolen)
3159                 return;
3160
3161         /* If the GPU is snooping the contents of the CPU cache,
3162          * we do not need to manually clear the CPU cache lines.  However,
3163          * the caches are only snooped when the render cache is
3164          * flushed/invalidated.  As we always have to emit invalidations
3165          * and flushes when moving into and out of the RENDER domain, correct
3166          * snooping behaviour occurs naturally as the result of our domain
3167          * tracking.
3168          */
3169         if (obj->cache_level != I915_CACHE_NONE)
3170                 return;
3171
3172         trace_i915_gem_object_clflush(obj);
3173
3174         drm_clflush_sg(obj->pages);
3175 }
3176
3177 /** Flushes the GTT write domain for the object if it's dirty. */
3178 static void
3179 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3180 {
3181         uint32_t old_write_domain;
3182
3183         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3184                 return;
3185
3186         /* No actual flushing is required for the GTT write domain.  Writes
3187          * to it immediately go to main memory as far as we know, so there's
3188          * no chipset flush.  It also doesn't land in render cache.
3189          *
3190          * However, we do have to enforce the order so that all writes through
3191          * the GTT land before any writes to the device, such as updates to
3192          * the GATT itself.
3193          */
3194         wmb();
3195
3196         old_write_domain = obj->base.write_domain;
3197         obj->base.write_domain = 0;
3198
3199         trace_i915_gem_object_change_domain(obj,
3200                                             obj->base.read_domains,
3201                                             old_write_domain);
3202 }
3203
3204 /** Flushes the CPU write domain for the object if it's dirty. */
3205 static void
3206 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3207 {
3208         uint32_t old_write_domain;
3209
3210         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3211                 return;
3212
3213         i915_gem_clflush_object(obj);
3214         i915_gem_chipset_flush(obj->base.dev);
3215         old_write_domain = obj->base.write_domain;
3216         obj->base.write_domain = 0;
3217
3218         trace_i915_gem_object_change_domain(obj,
3219                                             obj->base.read_domains,
3220                                             old_write_domain);
3221 }
3222
3223 /**
3224  * Moves a single object to the GTT read, and possibly write domain.
3225  *
3226  * This function returns when the move is complete, including waiting on
3227  * flushes to occur.
3228  */
3229 int
3230 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3231 {
3232         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3233         uint32_t old_write_domain, old_read_domains;
3234         int ret;
3235
3236         /* Not valid to be called on unbound objects. */
3237         if (!i915_gem_obj_ggtt_bound(obj))
3238                 return -EINVAL;
3239
3240         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3241                 return 0;
3242
3243         ret = i915_gem_object_wait_rendering(obj, !write);
3244         if (ret)
3245                 return ret;
3246
3247         i915_gem_object_flush_cpu_write_domain(obj);
3248
3249         /* Serialise direct access to this object with the barriers for
3250          * coherent writes from the GPU, by effectively invalidating the
3251          * GTT domain upon first access.
3252          */
3253         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3254                 mb();
3255
3256         old_write_domain = obj->base.write_domain;
3257         old_read_domains = obj->base.read_domains;
3258
3259         /* It should now be out of any other write domains, and we can update
3260          * the domain values for our changes.
3261          */
3262         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3263         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3264         if (write) {
3265                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3266                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3267                 obj->dirty = 1;
3268         }
3269
3270         trace_i915_gem_object_change_domain(obj,
3271                                             old_read_domains,
3272                                             old_write_domain);
3273
3274         /* And bump the LRU for this access */
3275         if (i915_gem_object_is_inactive(obj))
3276                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3277
3278         return 0;
3279 }
3280
3281 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3282                                     enum i915_cache_level cache_level)
3283 {
3284         struct drm_device *dev = obj->base.dev;
3285         drm_i915_private_t *dev_priv = dev->dev_private;
3286         int ret;
3287
3288         if (obj->cache_level == cache_level)
3289                 return 0;
3290
3291         if (obj->pin_count) {
3292                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3293                 return -EBUSY;
3294         }
3295
3296         if (!i915_gem_valid_gtt_space(dev, &obj->gtt_space, cache_level)) {
3297                 ret = i915_gem_object_unbind(obj);
3298                 if (ret)
3299                         return ret;
3300         }
3301
3302         if (i915_gem_obj_ggtt_bound(obj)) {
3303                 ret = i915_gem_object_finish_gpu(obj);
3304                 if (ret)
3305                         return ret;
3306
3307                 i915_gem_object_finish_gtt(obj);
3308
3309                 /* Before SandyBridge, you could not use tiling or fence
3310                  * registers with snooped memory, so relinquish any fences
3311                  * currently pointing to our region in the aperture.
3312                  */
3313                 if (INTEL_INFO(dev)->gen < 6) {
3314                         ret = i915_gem_object_put_fence(obj);
3315                         if (ret)
3316                                 return ret;
3317                 }
3318
3319                 if (obj->has_global_gtt_mapping)
3320                         i915_gem_gtt_bind_object(obj, cache_level);
3321                 if (obj->has_aliasing_ppgtt_mapping)
3322                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3323                                                obj, cache_level);
3324
3325                 i915_gem_obj_ggtt_set_color(obj, cache_level);
3326         }
3327
3328         if (cache_level == I915_CACHE_NONE) {
3329                 u32 old_read_domains, old_write_domain;
3330
3331                 /* If we're coming from LLC cached, then we haven't
3332                  * actually been tracking whether the data is in the
3333                  * CPU cache or not, since we only allow one bit set
3334                  * in obj->write_domain and have been skipping the clflushes.
3335                  * Just set it to the CPU cache for now.
3336                  */
3337                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3338                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3339
3340                 old_read_domains = obj->base.read_domains;
3341                 old_write_domain = obj->base.write_domain;
3342
3343                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3344                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3345
3346                 trace_i915_gem_object_change_domain(obj,
3347                                                     old_read_domains,
3348                                                     old_write_domain);
3349         }
3350
3351         obj->cache_level = cache_level;
3352         i915_gem_verify_gtt(dev);
3353         return 0;
3354 }
3355
3356 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3357                                struct drm_file *file)
3358 {
3359         struct drm_i915_gem_caching *args = data;
3360         struct drm_i915_gem_object *obj;
3361         int ret;
3362
3363         ret = i915_mutex_lock_interruptible(dev);
3364         if (ret)
3365                 return ret;
3366
3367         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3368         if (&obj->base == NULL) {
3369                 ret = -ENOENT;
3370                 goto unlock;
3371         }
3372
3373         args->caching = obj->cache_level != I915_CACHE_NONE;
3374
3375         drm_gem_object_unreference(&obj->base);
3376 unlock:
3377         mutex_unlock(&dev->struct_mutex);
3378         return ret;
3379 }
3380
3381 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3382                                struct drm_file *file)
3383 {
3384         struct drm_i915_gem_caching *args = data;
3385         struct drm_i915_gem_object *obj;
3386         enum i915_cache_level level;
3387         int ret;
3388
3389         switch (args->caching) {
3390         case I915_CACHING_NONE:
3391                 level = I915_CACHE_NONE;
3392                 break;
3393         case I915_CACHING_CACHED:
3394                 level = I915_CACHE_LLC;
3395                 break;
3396         default:
3397                 return -EINVAL;
3398         }
3399
3400         ret = i915_mutex_lock_interruptible(dev);
3401         if (ret)
3402                 return ret;
3403
3404         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3405         if (&obj->base == NULL) {
3406                 ret = -ENOENT;
3407                 goto unlock;
3408         }
3409
3410         ret = i915_gem_object_set_cache_level(obj, level);
3411
3412         drm_gem_object_unreference(&obj->base);
3413 unlock:
3414         mutex_unlock(&dev->struct_mutex);
3415         return ret;
3416 }
3417
3418 /*
3419  * Prepare buffer for display plane (scanout, cursors, etc).
3420  * Can be called from an uninterruptible phase (modesetting) and allows
3421  * any flushes to be pipelined (for pageflips).
3422  */
3423 int
3424 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3425                                      u32 alignment,
3426                                      struct intel_ring_buffer *pipelined)
3427 {
3428         u32 old_read_domains, old_write_domain;
3429         int ret;
3430
3431         if (pipelined != obj->ring) {
3432                 ret = i915_gem_object_sync(obj, pipelined);
3433                 if (ret)
3434                         return ret;
3435         }
3436
3437         /* The display engine is not coherent with the LLC cache on gen6.  As
3438          * a result, we make sure that the pinning that is about to occur is
3439          * done with uncached PTEs. This is lowest common denominator for all
3440          * chipsets.
3441          *
3442          * However for gen6+, we could do better by using the GFDT bit instead
3443          * of uncaching, which would allow us to flush all the LLC-cached data
3444          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3445          */
3446         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3447         if (ret)
3448                 return ret;
3449
3450         /* As the user may map the buffer once pinned in the display plane
3451          * (e.g. libkms for the bootup splash), we have to ensure that we
3452          * always use map_and_fenceable for all scanout buffers.
3453          */
3454         ret = i915_gem_object_pin(obj, alignment, true, false);
3455         if (ret)
3456                 return ret;
3457
3458         i915_gem_object_flush_cpu_write_domain(obj);
3459
3460         old_write_domain = obj->base.write_domain;
3461         old_read_domains = obj->base.read_domains;
3462
3463         /* It should now be out of any other write domains, and we can update
3464          * the domain values for our changes.
3465          */
3466         obj->base.write_domain = 0;
3467         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3468
3469         trace_i915_gem_object_change_domain(obj,
3470                                             old_read_domains,
3471                                             old_write_domain);
3472
3473         return 0;
3474 }
3475
3476 int
3477 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3478 {
3479         int ret;
3480
3481         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3482                 return 0;
3483
3484         ret = i915_gem_object_wait_rendering(obj, false);
3485         if (ret)
3486                 return ret;
3487
3488         /* Ensure that we invalidate the GPU's caches and TLBs. */
3489         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3490         return 0;
3491 }
3492
3493 /**
3494  * Moves a single object to the CPU read, and possibly write domain.
3495  *
3496  * This function returns when the move is complete, including waiting on
3497  * flushes to occur.
3498  */
3499 int
3500 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3501 {
3502         uint32_t old_write_domain, old_read_domains;
3503         int ret;
3504
3505         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3506                 return 0;
3507
3508         ret = i915_gem_object_wait_rendering(obj, !write);
3509         if (ret)
3510                 return ret;
3511
3512         i915_gem_object_flush_gtt_write_domain(obj);
3513
3514         old_write_domain = obj->base.write_domain;
3515         old_read_domains = obj->base.read_domains;
3516
3517         /* Flush the CPU cache if it's still invalid. */
3518         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3519                 i915_gem_clflush_object(obj);
3520
3521                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3522         }
3523
3524         /* It should now be out of any other write domains, and we can update
3525          * the domain values for our changes.
3526          */
3527         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3528
3529         /* If we're writing through the CPU, then the GPU read domains will
3530          * need to be invalidated at next use.
3531          */
3532         if (write) {
3533                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3534                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3535         }
3536
3537         trace_i915_gem_object_change_domain(obj,
3538                                             old_read_domains,
3539                                             old_write_domain);
3540
3541         return 0;
3542 }
3543
3544 /* Throttle our rendering by waiting until the ring has completed our requests
3545  * emitted over 20 msec ago.
3546  *
3547  * Note that if we were to use the current jiffies each time around the loop,
3548  * we wouldn't escape the function with any frames outstanding if the time to
3549  * render a frame was over 20ms.
3550  *
3551  * This should get us reasonable parallelism between CPU and GPU but also
3552  * relatively low latency when blocking on a particular request to finish.
3553  */
3554 static int
3555 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3556 {
3557         struct drm_i915_private *dev_priv = dev->dev_private;
3558         struct drm_i915_file_private *file_priv = file->driver_priv;
3559         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3560         struct drm_i915_gem_request *request;
3561         struct intel_ring_buffer *ring = NULL;
3562         unsigned reset_counter;
3563         u32 seqno = 0;
3564         int ret;
3565
3566         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3567         if (ret)
3568                 return ret;
3569
3570         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3571         if (ret)
3572                 return ret;
3573
3574         spin_lock(&file_priv->mm.lock);
3575         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3576                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3577                         break;
3578
3579                 ring = request->ring;
3580                 seqno = request->seqno;
3581         }
3582         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3583         spin_unlock(&file_priv->mm.lock);
3584
3585         if (seqno == 0)
3586                 return 0;
3587
3588         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3589         if (ret == 0)
3590                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3591
3592         return ret;
3593 }
3594
3595 int
3596 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3597                     uint32_t alignment,
3598                     bool map_and_fenceable,
3599                     bool nonblocking)
3600 {
3601         int ret;
3602
3603         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3604                 return -EBUSY;
3605
3606         if (i915_gem_obj_ggtt_bound(obj)) {
3607                 if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
3608                     (map_and_fenceable && !obj->map_and_fenceable)) {
3609                         WARN(obj->pin_count,
3610                              "bo is already pinned with incorrect alignment:"
3611                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3612                              " obj->map_and_fenceable=%d\n",
3613                              i915_gem_obj_ggtt_offset(obj), alignment,
3614                              map_and_fenceable,
3615                              obj->map_and_fenceable);
3616                         ret = i915_gem_object_unbind(obj);
3617                         if (ret)
3618                                 return ret;
3619                 }
3620         }
3621
3622         if (!i915_gem_obj_ggtt_bound(obj)) {
3623                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3624
3625                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3626                                                   map_and_fenceable,
3627                                                   nonblocking);
3628                 if (ret)
3629                         return ret;
3630
3631                 if (!dev_priv->mm.aliasing_ppgtt)
3632                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3633         }
3634
3635         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3636                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3637
3638         obj->pin_count++;
3639         obj->pin_mappable |= map_and_fenceable;
3640
3641         return 0;
3642 }
3643
3644 void
3645 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3646 {
3647         BUG_ON(obj->pin_count == 0);
3648         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3649
3650         if (--obj->pin_count == 0)
3651                 obj->pin_mappable = false;
3652 }
3653
3654 int
3655 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3656                    struct drm_file *file)
3657 {
3658         struct drm_i915_gem_pin *args = data;
3659         struct drm_i915_gem_object *obj;
3660         int ret;
3661
3662         ret = i915_mutex_lock_interruptible(dev);
3663         if (ret)
3664                 return ret;
3665
3666         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3667         if (&obj->base == NULL) {
3668                 ret = -ENOENT;
3669                 goto unlock;
3670         }
3671
3672         if (obj->madv != I915_MADV_WILLNEED) {
3673                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3674                 ret = -EINVAL;
3675                 goto out;
3676         }
3677
3678         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3679                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3680                           args->handle);
3681                 ret = -EINVAL;
3682                 goto out;
3683         }
3684
3685         if (obj->user_pin_count == 0) {
3686                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3687                 if (ret)
3688                         goto out;
3689         }
3690
3691         obj->user_pin_count++;
3692         obj->pin_filp = file;
3693
3694         /* XXX - flush the CPU caches for pinned objects
3695          * as the X server doesn't manage domains yet
3696          */
3697         i915_gem_object_flush_cpu_write_domain(obj);
3698         args->offset = i915_gem_obj_ggtt_offset(obj);
3699 out:
3700         drm_gem_object_unreference(&obj->base);
3701 unlock:
3702         mutex_unlock(&dev->struct_mutex);
3703         return ret;
3704 }
3705
3706 int
3707 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3708                      struct drm_file *file)
3709 {
3710         struct drm_i915_gem_pin *args = data;
3711         struct drm_i915_gem_object *obj;
3712         int ret;
3713
3714         ret = i915_mutex_lock_interruptible(dev);
3715         if (ret)
3716                 return ret;
3717
3718         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3719         if (&obj->base == NULL) {
3720                 ret = -ENOENT;
3721                 goto unlock;
3722         }
3723
3724         if (obj->pin_filp != file) {
3725                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3726                           args->handle);
3727                 ret = -EINVAL;
3728                 goto out;
3729         }
3730         obj->user_pin_count--;
3731         if (obj->user_pin_count == 0) {
3732                 obj->pin_filp = NULL;
3733                 i915_gem_object_unpin(obj);
3734         }
3735
3736 out:
3737         drm_gem_object_unreference(&obj->base);
3738 unlock:
3739         mutex_unlock(&dev->struct_mutex);
3740         return ret;
3741 }
3742
3743 int
3744 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3745                     struct drm_file *file)
3746 {
3747         struct drm_i915_gem_busy *args = data;
3748         struct drm_i915_gem_object *obj;
3749         int ret;
3750
3751         ret = i915_mutex_lock_interruptible(dev);
3752         if (ret)
3753                 return ret;
3754
3755         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3756         if (&obj->base == NULL) {
3757                 ret = -ENOENT;
3758                 goto unlock;
3759         }
3760
3761         /* Count all active objects as busy, even if they are currently not used
3762          * by the gpu. Users of this interface expect objects to eventually
3763          * become non-busy without any further actions, therefore emit any
3764          * necessary flushes here.
3765          */
3766         ret = i915_gem_object_flush_active(obj);
3767
3768         args->busy = obj->active;
3769         if (obj->ring) {
3770                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3771                 args->busy |= intel_ring_flag(obj->ring) << 16;
3772         }
3773
3774         drm_gem_object_unreference(&obj->base);
3775 unlock:
3776         mutex_unlock(&dev->struct_mutex);
3777         return ret;
3778 }
3779
3780 int
3781 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3782                         struct drm_file *file_priv)
3783 {
3784         return i915_gem_ring_throttle(dev, file_priv);
3785 }
3786
3787 int
3788 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3789                        struct drm_file *file_priv)
3790 {
3791         struct drm_i915_gem_madvise *args = data;
3792         struct drm_i915_gem_object *obj;
3793         int ret;
3794
3795         switch (args->madv) {
3796         case I915_MADV_DONTNEED:
3797         case I915_MADV_WILLNEED:
3798             break;
3799         default:
3800             return -EINVAL;
3801         }
3802
3803         ret = i915_mutex_lock_interruptible(dev);
3804         if (ret)
3805                 return ret;
3806
3807         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3808         if (&obj->base == NULL) {
3809                 ret = -ENOENT;
3810                 goto unlock;
3811         }
3812
3813         if (obj->pin_count) {
3814                 ret = -EINVAL;
3815                 goto out;
3816         }
3817
3818         if (obj->madv != __I915_MADV_PURGED)
3819                 obj->madv = args->madv;
3820
3821         /* if the object is no longer attached, discard its backing storage */
3822         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3823                 i915_gem_object_truncate(obj);
3824
3825         args->retained = obj->madv != __I915_MADV_PURGED;
3826
3827 out:
3828         drm_gem_object_unreference(&obj->base);
3829 unlock:
3830         mutex_unlock(&dev->struct_mutex);
3831         return ret;
3832 }
3833
3834 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3835                           const struct drm_i915_gem_object_ops *ops)
3836 {
3837         INIT_LIST_HEAD(&obj->mm_list);
3838         INIT_LIST_HEAD(&obj->global_list);
3839         INIT_LIST_HEAD(&obj->ring_list);
3840         INIT_LIST_HEAD(&obj->exec_list);
3841
3842         obj->ops = ops;
3843
3844         obj->fence_reg = I915_FENCE_REG_NONE;
3845         obj->madv = I915_MADV_WILLNEED;
3846         /* Avoid an unnecessary call to unbind on the first bind. */
3847         obj->map_and_fenceable = true;
3848
3849         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3850 }
3851
3852 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3853         .get_pages = i915_gem_object_get_pages_gtt,
3854         .put_pages = i915_gem_object_put_pages_gtt,
3855 };
3856
3857 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3858                                                   size_t size)
3859 {
3860         struct drm_i915_gem_object *obj;
3861         struct address_space *mapping;
3862         gfp_t mask;
3863
3864         obj = i915_gem_object_alloc(dev);
3865         if (obj == NULL)
3866                 return NULL;
3867
3868         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3869                 i915_gem_object_free(obj);
3870                 return NULL;
3871         }
3872
3873         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3874         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3875                 /* 965gm cannot relocate objects above 4GiB. */
3876                 mask &= ~__GFP_HIGHMEM;
3877                 mask |= __GFP_DMA32;
3878         }
3879
3880         mapping = file_inode(obj->base.filp)->i_mapping;
3881         mapping_set_gfp_mask(mapping, mask);
3882
3883         i915_gem_object_init(obj, &i915_gem_object_ops);
3884
3885         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3886         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3887
3888         if (HAS_LLC(dev)) {
3889                 /* On some devices, we can have the GPU use the LLC (the CPU
3890                  * cache) for about a 10% performance improvement
3891                  * compared to uncached.  Graphics requests other than
3892                  * display scanout are coherent with the CPU in
3893                  * accessing this cache.  This means in this mode we
3894                  * don't need to clflush on the CPU side, and on the
3895                  * GPU side we only need to flush internal caches to
3896                  * get data visible to the CPU.
3897                  *
3898                  * However, we maintain the display planes as UC, and so
3899                  * need to rebind when first used as such.
3900                  */
3901                 obj->cache_level = I915_CACHE_LLC;
3902         } else
3903                 obj->cache_level = I915_CACHE_NONE;
3904
3905         return obj;
3906 }
3907
3908 int i915_gem_init_object(struct drm_gem_object *obj)
3909 {
3910         BUG();
3911
3912         return 0;
3913 }
3914
3915 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3916 {
3917         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3918         struct drm_device *dev = obj->base.dev;
3919         drm_i915_private_t *dev_priv = dev->dev_private;
3920
3921         trace_i915_gem_object_destroy(obj);
3922
3923         if (obj->phys_obj)
3924                 i915_gem_detach_phys_object(dev, obj);
3925
3926         obj->pin_count = 0;
3927         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3928                 bool was_interruptible;
3929
3930                 was_interruptible = dev_priv->mm.interruptible;
3931                 dev_priv->mm.interruptible = false;
3932
3933                 WARN_ON(i915_gem_object_unbind(obj));
3934
3935                 dev_priv->mm.interruptible = was_interruptible;
3936         }
3937
3938         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3939          * before progressing. */
3940         if (obj->stolen)
3941                 i915_gem_object_unpin_pages(obj);
3942
3943         if (WARN_ON(obj->pages_pin_count))
3944                 obj->pages_pin_count = 0;
3945         i915_gem_object_put_pages(obj);
3946         i915_gem_object_free_mmap_offset(obj);
3947         i915_gem_object_release_stolen(obj);
3948
3949         BUG_ON(obj->pages);
3950
3951         if (obj->base.import_attach)
3952                 drm_prime_gem_destroy(&obj->base, NULL);
3953
3954         drm_gem_object_release(&obj->base);
3955         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3956
3957         kfree(obj->bit_17);
3958         i915_gem_object_free(obj);
3959 }
3960
3961 int
3962 i915_gem_idle(struct drm_device *dev)
3963 {
3964         drm_i915_private_t *dev_priv = dev->dev_private;
3965         int ret;
3966
3967         if (dev_priv->ums.mm_suspended) {
3968                 mutex_unlock(&dev->struct_mutex);
3969                 return 0;
3970         }
3971
3972         ret = i915_gpu_idle(dev);
3973         if (ret) {
3974                 mutex_unlock(&dev->struct_mutex);
3975                 return ret;
3976         }
3977         i915_gem_retire_requests(dev);
3978
3979         /* Under UMS, be paranoid and evict. */
3980         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3981                 i915_gem_evict_everything(dev);
3982
3983         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3984
3985         i915_kernel_lost_context(dev);
3986         i915_gem_cleanup_ringbuffer(dev);
3987
3988         /* Cancel the retire work handler, which should be idle now. */
3989         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3990
3991         return 0;
3992 }
3993
3994 void i915_gem_l3_remap(struct drm_device *dev)
3995 {
3996         drm_i915_private_t *dev_priv = dev->dev_private;
3997         u32 misccpctl;
3998         int i;
3999
4000         if (!HAS_L3_GPU_CACHE(dev))
4001                 return;
4002
4003         if (!dev_priv->l3_parity.remap_info)
4004                 return;
4005
4006         misccpctl = I915_READ(GEN7_MISCCPCTL);
4007         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4008         POSTING_READ(GEN7_MISCCPCTL);
4009
4010         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4011                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4012                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4013                         DRM_DEBUG("0x%x was already programmed to %x\n",
4014                                   GEN7_L3LOG_BASE + i, remap);
4015                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4016                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
4017                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4018         }
4019
4020         /* Make sure all the writes land before disabling dop clock gating */
4021         POSTING_READ(GEN7_L3LOG_BASE);
4022
4023         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4024 }
4025
4026 void i915_gem_init_swizzling(struct drm_device *dev)
4027 {
4028         drm_i915_private_t *dev_priv = dev->dev_private;
4029
4030         if (INTEL_INFO(dev)->gen < 5 ||
4031             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4032                 return;
4033
4034         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4035                                  DISP_TILE_SURFACE_SWIZZLING);
4036
4037         if (IS_GEN5(dev))
4038                 return;
4039
4040         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4041         if (IS_GEN6(dev))
4042                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4043         else if (IS_GEN7(dev))
4044                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4045         else
4046                 BUG();
4047 }
4048
4049 static bool
4050 intel_enable_blt(struct drm_device *dev)
4051 {
4052         if (!HAS_BLT(dev))
4053                 return false;
4054
4055         /* The blitter was dysfunctional on early prototypes */
4056         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4057                 DRM_INFO("BLT not supported on this pre-production hardware;"
4058                          " graphics performance will be degraded.\n");
4059                 return false;
4060         }
4061
4062         return true;
4063 }
4064
4065 static int i915_gem_init_rings(struct drm_device *dev)
4066 {
4067         struct drm_i915_private *dev_priv = dev->dev_private;
4068         int ret;
4069
4070         ret = intel_init_render_ring_buffer(dev);
4071         if (ret)
4072                 return ret;
4073
4074         if (HAS_BSD(dev)) {
4075                 ret = intel_init_bsd_ring_buffer(dev);
4076                 if (ret)
4077                         goto cleanup_render_ring;
4078         }
4079
4080         if (intel_enable_blt(dev)) {
4081                 ret = intel_init_blt_ring_buffer(dev);
4082                 if (ret)
4083                         goto cleanup_bsd_ring;
4084         }
4085
4086         if (HAS_VEBOX(dev)) {
4087                 ret = intel_init_vebox_ring_buffer(dev);
4088                 if (ret)
4089                         goto cleanup_blt_ring;
4090         }
4091
4092
4093         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4094         if (ret)
4095                 goto cleanup_vebox_ring;
4096
4097         return 0;
4098
4099 cleanup_vebox_ring:
4100         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4101 cleanup_blt_ring:
4102         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4103 cleanup_bsd_ring:
4104         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4105 cleanup_render_ring:
4106         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4107
4108         return ret;
4109 }
4110
4111 int
4112 i915_gem_init_hw(struct drm_device *dev)
4113 {
4114         drm_i915_private_t *dev_priv = dev->dev_private;
4115         int ret;
4116
4117         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4118                 return -EIO;
4119
4120         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4121                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4122
4123         if (HAS_PCH_NOP(dev)) {
4124                 u32 temp = I915_READ(GEN7_MSG_CTL);
4125                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4126                 I915_WRITE(GEN7_MSG_CTL, temp);
4127         }
4128
4129         i915_gem_l3_remap(dev);
4130
4131         i915_gem_init_swizzling(dev);
4132
4133         ret = i915_gem_init_rings(dev);
4134         if (ret)
4135                 return ret;
4136
4137         /*
4138          * XXX: There was some w/a described somewhere suggesting loading
4139          * contexts before PPGTT.
4140          */
4141         i915_gem_context_init(dev);
4142         if (dev_priv->mm.aliasing_ppgtt) {
4143                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4144                 if (ret) {
4145                         i915_gem_cleanup_aliasing_ppgtt(dev);
4146                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4147                 }
4148         }
4149
4150         return 0;
4151 }
4152
4153 int i915_gem_init(struct drm_device *dev)
4154 {
4155         struct drm_i915_private *dev_priv = dev->dev_private;
4156         int ret;
4157
4158         mutex_lock(&dev->struct_mutex);
4159
4160         if (IS_VALLEYVIEW(dev)) {
4161                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4162                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4163                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4164                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4165         }
4166
4167         i915_gem_init_global_gtt(dev);
4168
4169         ret = i915_gem_init_hw(dev);
4170         mutex_unlock(&dev->struct_mutex);
4171         if (ret) {
4172                 i915_gem_cleanup_aliasing_ppgtt(dev);
4173                 return ret;
4174         }
4175
4176         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4177         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4178                 dev_priv->dri1.allow_batchbuffer = 1;
4179         return 0;
4180 }
4181
4182 void
4183 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4184 {
4185         drm_i915_private_t *dev_priv = dev->dev_private;
4186         struct intel_ring_buffer *ring;
4187         int i;
4188
4189         for_each_ring(ring, dev_priv, i)
4190                 intel_cleanup_ring_buffer(ring);
4191 }
4192
4193 int
4194 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4195                        struct drm_file *file_priv)
4196 {
4197         struct drm_i915_private *dev_priv = dev->dev_private;
4198         int ret;
4199
4200         if (drm_core_check_feature(dev, DRIVER_MODESET))
4201                 return 0;
4202
4203         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4204                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4205                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4206         }
4207
4208         mutex_lock(&dev->struct_mutex);
4209         dev_priv->ums.mm_suspended = 0;
4210
4211         ret = i915_gem_init_hw(dev);
4212         if (ret != 0) {
4213                 mutex_unlock(&dev->struct_mutex);
4214                 return ret;
4215         }
4216
4217         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4218         mutex_unlock(&dev->struct_mutex);
4219
4220         ret = drm_irq_install(dev);
4221         if (ret)
4222                 goto cleanup_ringbuffer;
4223
4224         return 0;
4225
4226 cleanup_ringbuffer:
4227         mutex_lock(&dev->struct_mutex);
4228         i915_gem_cleanup_ringbuffer(dev);
4229         dev_priv->ums.mm_suspended = 1;
4230         mutex_unlock(&dev->struct_mutex);
4231
4232         return ret;
4233 }
4234
4235 int
4236 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4237                        struct drm_file *file_priv)
4238 {
4239         struct drm_i915_private *dev_priv = dev->dev_private;
4240         int ret;
4241
4242         if (drm_core_check_feature(dev, DRIVER_MODESET))
4243                 return 0;
4244
4245         drm_irq_uninstall(dev);
4246
4247         mutex_lock(&dev->struct_mutex);
4248         ret =  i915_gem_idle(dev);
4249
4250         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4251          * We need to replace this with a semaphore, or something.
4252          * And not confound ums.mm_suspended!
4253          */
4254         if (ret != 0)
4255                 dev_priv->ums.mm_suspended = 1;
4256         mutex_unlock(&dev->struct_mutex);
4257
4258         return ret;
4259 }
4260
4261 void
4262 i915_gem_lastclose(struct drm_device *dev)
4263 {
4264         int ret;
4265
4266         if (drm_core_check_feature(dev, DRIVER_MODESET))
4267                 return;
4268
4269         mutex_lock(&dev->struct_mutex);
4270         ret = i915_gem_idle(dev);
4271         if (ret)
4272                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4273         mutex_unlock(&dev->struct_mutex);
4274 }
4275
4276 static void
4277 init_ring_lists(struct intel_ring_buffer *ring)
4278 {
4279         INIT_LIST_HEAD(&ring->active_list);
4280         INIT_LIST_HEAD(&ring->request_list);
4281 }
4282
4283 void
4284 i915_gem_load(struct drm_device *dev)
4285 {
4286         drm_i915_private_t *dev_priv = dev->dev_private;
4287         int i;
4288
4289         dev_priv->slab =
4290                 kmem_cache_create("i915_gem_object",
4291                                   sizeof(struct drm_i915_gem_object), 0,
4292                                   SLAB_HWCACHE_ALIGN,
4293                                   NULL);
4294
4295         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4296         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4297         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4298         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4299         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4300         for (i = 0; i < I915_NUM_RINGS; i++)
4301                 init_ring_lists(&dev_priv->ring[i]);
4302         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4303                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4304         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4305                           i915_gem_retire_work_handler);
4306         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4307
4308         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4309         if (IS_GEN3(dev)) {
4310                 I915_WRITE(MI_ARB_STATE,
4311                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4312         }
4313
4314         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4315
4316         /* Old X drivers will take 0-2 for front, back, depth buffers */
4317         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4318                 dev_priv->fence_reg_start = 3;
4319
4320         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4321                 dev_priv->num_fence_regs = 32;
4322         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4323                 dev_priv->num_fence_regs = 16;
4324         else
4325                 dev_priv->num_fence_regs = 8;
4326
4327         /* Initialize fence registers to zero */
4328         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4329         i915_gem_restore_fences(dev);
4330
4331         i915_gem_detect_bit_6_swizzle(dev);
4332         init_waitqueue_head(&dev_priv->pending_flip_queue);
4333
4334         dev_priv->mm.interruptible = true;
4335
4336         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4337         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4338         register_shrinker(&dev_priv->mm.inactive_shrinker);
4339 }
4340
4341 /*
4342  * Create a physically contiguous memory object for this object
4343  * e.g. for cursor + overlay regs
4344  */
4345 static int i915_gem_init_phys_object(struct drm_device *dev,
4346                                      int id, int size, int align)
4347 {
4348         drm_i915_private_t *dev_priv = dev->dev_private;
4349         struct drm_i915_gem_phys_object *phys_obj;
4350         int ret;
4351
4352         if (dev_priv->mm.phys_objs[id - 1] || !size)
4353                 return 0;
4354
4355         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4356         if (!phys_obj)
4357                 return -ENOMEM;
4358
4359         phys_obj->id = id;
4360
4361         phys_obj->handle = drm_pci_alloc(dev, size, align);
4362         if (!phys_obj->handle) {
4363                 ret = -ENOMEM;
4364                 goto kfree_obj;
4365         }
4366 #ifdef CONFIG_X86
4367         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4368 #endif
4369
4370         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4371
4372         return 0;
4373 kfree_obj:
4374         kfree(phys_obj);
4375         return ret;
4376 }
4377
4378 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4379 {
4380         drm_i915_private_t *dev_priv = dev->dev_private;
4381         struct drm_i915_gem_phys_object *phys_obj;
4382
4383         if (!dev_priv->mm.phys_objs[id - 1])
4384                 return;
4385
4386         phys_obj = dev_priv->mm.phys_objs[id - 1];
4387         if (phys_obj->cur_obj) {
4388                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4389         }
4390
4391 #ifdef CONFIG_X86
4392         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4393 #endif
4394         drm_pci_free(dev, phys_obj->handle);
4395         kfree(phys_obj);
4396         dev_priv->mm.phys_objs[id - 1] = NULL;
4397 }
4398
4399 void i915_gem_free_all_phys_object(struct drm_device *dev)
4400 {
4401         int i;
4402
4403         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4404                 i915_gem_free_phys_object(dev, i);
4405 }
4406
4407 void i915_gem_detach_phys_object(struct drm_device *dev,
4408                                  struct drm_i915_gem_object *obj)
4409 {
4410         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4411         char *vaddr;
4412         int i;
4413         int page_count;
4414
4415         if (!obj->phys_obj)
4416                 return;
4417         vaddr = obj->phys_obj->handle->vaddr;
4418
4419         page_count = obj->base.size / PAGE_SIZE;
4420         for (i = 0; i < page_count; i++) {
4421                 struct page *page = shmem_read_mapping_page(mapping, i);
4422                 if (!IS_ERR(page)) {
4423                         char *dst = kmap_atomic(page);
4424                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4425                         kunmap_atomic(dst);
4426
4427                         drm_clflush_pages(&page, 1);
4428
4429                         set_page_dirty(page);
4430                         mark_page_accessed(page);
4431                         page_cache_release(page);
4432                 }
4433         }
4434         i915_gem_chipset_flush(dev);
4435
4436         obj->phys_obj->cur_obj = NULL;
4437         obj->phys_obj = NULL;
4438 }
4439
4440 int
4441 i915_gem_attach_phys_object(struct drm_device *dev,
4442                             struct drm_i915_gem_object *obj,
4443                             int id,
4444                             int align)
4445 {
4446         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4447         drm_i915_private_t *dev_priv = dev->dev_private;
4448         int ret = 0;
4449         int page_count;
4450         int i;
4451
4452         if (id > I915_MAX_PHYS_OBJECT)
4453                 return -EINVAL;
4454
4455         if (obj->phys_obj) {
4456                 if (obj->phys_obj->id == id)
4457                         return 0;
4458                 i915_gem_detach_phys_object(dev, obj);
4459         }
4460
4461         /* create a new object */
4462         if (!dev_priv->mm.phys_objs[id - 1]) {
4463                 ret = i915_gem_init_phys_object(dev, id,
4464                                                 obj->base.size, align);
4465                 if (ret) {
4466                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4467                                   id, obj->base.size);
4468                         return ret;
4469                 }
4470         }
4471
4472         /* bind to the object */
4473         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4474         obj->phys_obj->cur_obj = obj;
4475
4476         page_count = obj->base.size / PAGE_SIZE;
4477
4478         for (i = 0; i < page_count; i++) {
4479                 struct page *page;
4480                 char *dst, *src;
4481
4482                 page = shmem_read_mapping_page(mapping, i);
4483                 if (IS_ERR(page))
4484                         return PTR_ERR(page);
4485
4486                 src = kmap_atomic(page);
4487                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4488                 memcpy(dst, src, PAGE_SIZE);
4489                 kunmap_atomic(src);
4490
4491                 mark_page_accessed(page);
4492                 page_cache_release(page);
4493         }
4494
4495         return 0;
4496 }
4497
4498 static int
4499 i915_gem_phys_pwrite(struct drm_device *dev,
4500                      struct drm_i915_gem_object *obj,
4501                      struct drm_i915_gem_pwrite *args,
4502                      struct drm_file *file_priv)
4503 {
4504         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4505         char __user *user_data = to_user_ptr(args->data_ptr);
4506
4507         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4508                 unsigned long unwritten;
4509
4510                 /* The physical object once assigned is fixed for the lifetime
4511                  * of the obj, so we can safely drop the lock and continue
4512                  * to access vaddr.
4513                  */
4514                 mutex_unlock(&dev->struct_mutex);
4515                 unwritten = copy_from_user(vaddr, user_data, args->size);
4516                 mutex_lock(&dev->struct_mutex);
4517                 if (unwritten)
4518                         return -EFAULT;
4519         }
4520
4521         i915_gem_chipset_flush(dev);
4522         return 0;
4523 }
4524
4525 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4526 {
4527         struct drm_i915_file_private *file_priv = file->driver_priv;
4528
4529         /* Clean up our request list when the client is going away, so that
4530          * later retire_requests won't dereference our soon-to-be-gone
4531          * file_priv.
4532          */
4533         spin_lock(&file_priv->mm.lock);
4534         while (!list_empty(&file_priv->mm.request_list)) {
4535                 struct drm_i915_gem_request *request;
4536
4537                 request = list_first_entry(&file_priv->mm.request_list,
4538                                            struct drm_i915_gem_request,
4539                                            client_list);
4540                 list_del(&request->client_list);
4541                 request->file_priv = NULL;
4542         }
4543         spin_unlock(&file_priv->mm.lock);
4544 }
4545
4546 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4547 {
4548         if (!mutex_is_locked(mutex))
4549                 return false;
4550
4551 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4552         return mutex->owner == task;
4553 #else
4554         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4555         return false;
4556 #endif
4557 }
4558
4559 static int
4560 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4561 {
4562         struct drm_i915_private *dev_priv =
4563                 container_of(shrinker,
4564                              struct drm_i915_private,
4565                              mm.inactive_shrinker);
4566         struct drm_device *dev = dev_priv->dev;
4567         struct drm_i915_gem_object *obj;
4568         int nr_to_scan = sc->nr_to_scan;
4569         bool unlock = true;
4570         int cnt;
4571
4572         if (!mutex_trylock(&dev->struct_mutex)) {
4573                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4574                         return 0;
4575
4576                 if (dev_priv->mm.shrinker_no_lock_stealing)
4577                         return 0;
4578
4579                 unlock = false;
4580         }
4581
4582         if (nr_to_scan) {
4583                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4584                 if (nr_to_scan > 0)
4585                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4586                                                         false);
4587                 if (nr_to_scan > 0)
4588                         i915_gem_shrink_all(dev_priv);
4589         }
4590
4591         cnt = 0;
4592         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4593                 if (obj->pages_pin_count == 0)
4594                         cnt += obj->base.size >> PAGE_SHIFT;
4595         list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list)
4596                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4597                         cnt += obj->base.size >> PAGE_SHIFT;
4598
4599         if (unlock)
4600                 mutex_unlock(&dev->struct_mutex);
4601         return cnt;
4602 }