]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
53de95c05b16679e1d55ea4ab2e3a7615036d999
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43                                                     unsigned alignment,
44                                                     bool map_and_fenceable,
45                                                     bool nonblocking);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47                                 struct drm_i915_gem_object *obj,
48                                 struct drm_i915_gem_pwrite *args,
49                                 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52                                  struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54                                          struct drm_i915_fence_reg *fence,
55                                          bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58                                     struct shrink_control *sc);
59 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62
63 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64 {
65         if (obj->tiling_mode)
66                 i915_gem_release_mmap(obj);
67
68         /* As we do not have an associated fence register, we will force
69          * a tiling change if we ever need to acquire one.
70          */
71         obj->fence_dirty = false;
72         obj->fence_reg = I915_FENCE_REG_NONE;
73 }
74
75 /* some bookkeeping */
76 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77                                   size_t size)
78 {
79         dev_priv->mm.object_count++;
80         dev_priv->mm.object_memory += size;
81 }
82
83 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84                                      size_t size)
85 {
86         dev_priv->mm.object_count--;
87         dev_priv->mm.object_memory -= size;
88 }
89
90 static int
91 i915_gem_wait_for_error(struct drm_device *dev)
92 {
93         struct drm_i915_private *dev_priv = dev->dev_private;
94         struct completion *x = &dev_priv->error_completion;
95         unsigned long flags;
96         int ret;
97
98         if (!atomic_read(&dev_priv->mm.wedged))
99                 return 0;
100
101         /*
102          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
103          * userspace. If it takes that long something really bad is going on and
104          * we should simply try to bail out and fail as gracefully as possible.
105          */
106         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
107         if (ret == 0) {
108                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109                 return -EIO;
110         } else if (ret < 0) {
111                 return ret;
112         }
113
114         if (atomic_read(&dev_priv->mm.wedged)) {
115                 /* GPU is hung, bump the completion count to account for
116                  * the token we just consumed so that we never hit zero and
117                  * end up waiting upon a subsequent completion event that
118                  * will never happen.
119                  */
120                 spin_lock_irqsave(&x->wait.lock, flags);
121                 x->done++;
122                 spin_unlock_irqrestore(&x->wait.lock, flags);
123         }
124         return 0;
125 }
126
127 int i915_mutex_lock_interruptible(struct drm_device *dev)
128 {
129         int ret;
130
131         ret = i915_gem_wait_for_error(dev);
132         if (ret)
133                 return ret;
134
135         ret = mutex_lock_interruptible(&dev->struct_mutex);
136         if (ret)
137                 return ret;
138
139         WARN_ON(i915_verify_lists(dev));
140         return 0;
141 }
142
143 static inline bool
144 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
145 {
146         return obj->gtt_space && !obj->active;
147 }
148
149 int
150 i915_gem_init_ioctl(struct drm_device *dev, void *data,
151                     struct drm_file *file)
152 {
153         struct drm_i915_gem_init *args = data;
154
155         if (drm_core_check_feature(dev, DRIVER_MODESET))
156                 return -ENODEV;
157
158         if (args->gtt_start >= args->gtt_end ||
159             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
160                 return -EINVAL;
161
162         /* GEM with user mode setting was never supported on ilk and later. */
163         if (INTEL_INFO(dev)->gen >= 5)
164                 return -ENODEV;
165
166         mutex_lock(&dev->struct_mutex);
167         i915_gem_init_global_gtt(dev, args->gtt_start,
168                                  args->gtt_end, args->gtt_end);
169         mutex_unlock(&dev->struct_mutex);
170
171         return 0;
172 }
173
174 int
175 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176                             struct drm_file *file)
177 {
178         struct drm_i915_private *dev_priv = dev->dev_private;
179         struct drm_i915_gem_get_aperture *args = data;
180         struct drm_i915_gem_object *obj;
181         size_t pinned;
182
183         pinned = 0;
184         mutex_lock(&dev->struct_mutex);
185         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
186                 if (obj->pin_count)
187                         pinned += obj->gtt_space->size;
188         mutex_unlock(&dev->struct_mutex);
189
190         args->aper_size = dev_priv->mm.gtt_total;
191         args->aper_available_size = args->aper_size - pinned;
192
193         return 0;
194 }
195
196 static int
197 i915_gem_create(struct drm_file *file,
198                 struct drm_device *dev,
199                 uint64_t size,
200                 uint32_t *handle_p)
201 {
202         struct drm_i915_gem_object *obj;
203         int ret;
204         u32 handle;
205
206         size = roundup(size, PAGE_SIZE);
207         if (size == 0)
208                 return -EINVAL;
209
210         /* Allocate the new object */
211         obj = i915_gem_alloc_object(dev, size);
212         if (obj == NULL)
213                 return -ENOMEM;
214
215         ret = drm_gem_handle_create(file, &obj->base, &handle);
216         if (ret) {
217                 drm_gem_object_release(&obj->base);
218                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219                 kfree(obj);
220                 return ret;
221         }
222
223         /* drop reference from allocate - handle holds it now */
224         drm_gem_object_unreference(&obj->base);
225         trace_i915_gem_object_create(obj);
226
227         *handle_p = handle;
228         return 0;
229 }
230
231 int
232 i915_gem_dumb_create(struct drm_file *file,
233                      struct drm_device *dev,
234                      struct drm_mode_create_dumb *args)
235 {
236         /* have to work out size/pitch and return them */
237         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
238         args->size = args->pitch * args->height;
239         return i915_gem_create(file, dev,
240                                args->size, &args->handle);
241 }
242
243 int i915_gem_dumb_destroy(struct drm_file *file,
244                           struct drm_device *dev,
245                           uint32_t handle)
246 {
247         return drm_gem_handle_delete(file, handle);
248 }
249
250 /**
251  * Creates a new mm object and returns a handle to it.
252  */
253 int
254 i915_gem_create_ioctl(struct drm_device *dev, void *data,
255                       struct drm_file *file)
256 {
257         struct drm_i915_gem_create *args = data;
258
259         return i915_gem_create(file, dev,
260                                args->size, &args->handle);
261 }
262
263 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
264 {
265         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
266
267         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
268                 obj->tiling_mode != I915_TILING_NONE;
269 }
270
271 static inline int
272 __copy_to_user_swizzled(char __user *cpu_vaddr,
273                         const char *gpu_vaddr, int gpu_offset,
274                         int length)
275 {
276         int ret, cpu_offset = 0;
277
278         while (length > 0) {
279                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
280                 int this_length = min(cacheline_end - gpu_offset, length);
281                 int swizzled_gpu_offset = gpu_offset ^ 64;
282
283                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
284                                      gpu_vaddr + swizzled_gpu_offset,
285                                      this_length);
286                 if (ret)
287                         return ret + length;
288
289                 cpu_offset += this_length;
290                 gpu_offset += this_length;
291                 length -= this_length;
292         }
293
294         return 0;
295 }
296
297 static inline int
298 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
299                           const char __user *cpu_vaddr,
300                           int length)
301 {
302         int ret, cpu_offset = 0;
303
304         while (length > 0) {
305                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306                 int this_length = min(cacheline_end - gpu_offset, length);
307                 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
310                                        cpu_vaddr + cpu_offset,
311                                        this_length);
312                 if (ret)
313                         return ret + length;
314
315                 cpu_offset += this_length;
316                 gpu_offset += this_length;
317                 length -= this_length;
318         }
319
320         return 0;
321 }
322
323 /* Per-page copy function for the shmem pread fastpath.
324  * Flushes invalid cachelines before reading the target if
325  * needs_clflush is set. */
326 static int
327 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
328                  char __user *user_data,
329                  bool page_do_bit17_swizzling, bool needs_clflush)
330 {
331         char *vaddr;
332         int ret;
333
334         if (unlikely(page_do_bit17_swizzling))
335                 return -EINVAL;
336
337         vaddr = kmap_atomic(page);
338         if (needs_clflush)
339                 drm_clflush_virt_range(vaddr + shmem_page_offset,
340                                        page_length);
341         ret = __copy_to_user_inatomic(user_data,
342                                       vaddr + shmem_page_offset,
343                                       page_length);
344         kunmap_atomic(vaddr);
345
346         return ret ? -EFAULT : 0;
347 }
348
349 static void
350 shmem_clflush_swizzled_range(char *addr, unsigned long length,
351                              bool swizzled)
352 {
353         if (unlikely(swizzled)) {
354                 unsigned long start = (unsigned long) addr;
355                 unsigned long end = (unsigned long) addr + length;
356
357                 /* For swizzling simply ensure that we always flush both
358                  * channels. Lame, but simple and it works. Swizzled
359                  * pwrite/pread is far from a hotpath - current userspace
360                  * doesn't use it at all. */
361                 start = round_down(start, 128);
362                 end = round_up(end, 128);
363
364                 drm_clflush_virt_range((void *)start, end - start);
365         } else {
366                 drm_clflush_virt_range(addr, length);
367         }
368
369 }
370
371 /* Only difference to the fast-path function is that this can handle bit17
372  * and uses non-atomic copy and kmap functions. */
373 static int
374 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
375                  char __user *user_data,
376                  bool page_do_bit17_swizzling, bool needs_clflush)
377 {
378         char *vaddr;
379         int ret;
380
381         vaddr = kmap(page);
382         if (needs_clflush)
383                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
384                                              page_length,
385                                              page_do_bit17_swizzling);
386
387         if (page_do_bit17_swizzling)
388                 ret = __copy_to_user_swizzled(user_data,
389                                               vaddr, shmem_page_offset,
390                                               page_length);
391         else
392                 ret = __copy_to_user(user_data,
393                                      vaddr + shmem_page_offset,
394                                      page_length);
395         kunmap(page);
396
397         return ret ? - EFAULT : 0;
398 }
399
400 static int
401 i915_gem_shmem_pread(struct drm_device *dev,
402                      struct drm_i915_gem_object *obj,
403                      struct drm_i915_gem_pread *args,
404                      struct drm_file *file)
405 {
406         char __user *user_data;
407         ssize_t remain;
408         loff_t offset;
409         int shmem_page_offset, page_length, ret = 0;
410         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
411         int hit_slowpath = 0;
412         int prefaulted = 0;
413         int needs_clflush = 0;
414         struct scatterlist *sg;
415         int i;
416
417         user_data = (char __user *) (uintptr_t) args->data_ptr;
418         remain = args->size;
419
420         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421
422         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423                 /* If we're not in the cpu read domain, set ourself into the gtt
424                  * read domain and manually flush cachelines (if required). This
425                  * optimizes for the case when the gpu will dirty the data
426                  * anyway again before the next pread happens. */
427                 if (obj->cache_level == I915_CACHE_NONE)
428                         needs_clflush = 1;
429                 if (obj->gtt_space) {
430                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
431                         if (ret)
432                                 return ret;
433                 }
434         }
435
436         ret = i915_gem_object_get_pages(obj);
437         if (ret)
438                 return ret;
439
440         i915_gem_object_pin_pages(obj);
441
442         offset = args->offset;
443
444         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
445                 struct page *page;
446
447                 if (i < offset >> PAGE_SHIFT)
448                         continue;
449
450                 if (remain <= 0)
451                         break;
452
453                 /* Operation in this page
454                  *
455                  * shmem_page_offset = offset within page in shmem file
456                  * page_length = bytes to copy for this page
457                  */
458                 shmem_page_offset = offset_in_page(offset);
459                 page_length = remain;
460                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
461                         page_length = PAGE_SIZE - shmem_page_offset;
462
463                 page = sg_page(sg);
464                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
465                         (page_to_phys(page) & (1 << 17)) != 0;
466
467                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
468                                        user_data, page_do_bit17_swizzling,
469                                        needs_clflush);
470                 if (ret == 0)
471                         goto next_page;
472
473                 hit_slowpath = 1;
474                 mutex_unlock(&dev->struct_mutex);
475
476                 if (!prefaulted) {
477                         ret = fault_in_multipages_writeable(user_data, remain);
478                         /* Userspace is tricking us, but we've already clobbered
479                          * its pages with the prefault and promised to write the
480                          * data up to the first fault. Hence ignore any errors
481                          * and just continue. */
482                         (void)ret;
483                         prefaulted = 1;
484                 }
485
486                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487                                        user_data, page_do_bit17_swizzling,
488                                        needs_clflush);
489
490                 mutex_lock(&dev->struct_mutex);
491
492 next_page:
493                 mark_page_accessed(page);
494
495                 if (ret)
496                         goto out;
497
498                 remain -= page_length;
499                 user_data += page_length;
500                 offset += page_length;
501         }
502
503 out:
504         i915_gem_object_unpin_pages(obj);
505
506         if (hit_slowpath) {
507                 /* Fixup: Kill any reinstated backing storage pages */
508                 if (obj->madv == __I915_MADV_PURGED)
509                         i915_gem_object_truncate(obj);
510         }
511
512         return ret;
513 }
514
515 /**
516  * Reads data from the object referenced by handle.
517  *
518  * On error, the contents of *data are undefined.
519  */
520 int
521 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
522                      struct drm_file *file)
523 {
524         struct drm_i915_gem_pread *args = data;
525         struct drm_i915_gem_object *obj;
526         int ret = 0;
527
528         if (args->size == 0)
529                 return 0;
530
531         if (!access_ok(VERIFY_WRITE,
532                        (char __user *)(uintptr_t)args->data_ptr,
533                        args->size))
534                 return -EFAULT;
535
536         ret = i915_mutex_lock_interruptible(dev);
537         if (ret)
538                 return ret;
539
540         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
541         if (&obj->base == NULL) {
542                 ret = -ENOENT;
543                 goto unlock;
544         }
545
546         /* Bounds check source.  */
547         if (args->offset > obj->base.size ||
548             args->size > obj->base.size - args->offset) {
549                 ret = -EINVAL;
550                 goto out;
551         }
552
553         /* prime objects have no backing filp to GEM pread/pwrite
554          * pages from.
555          */
556         if (!obj->base.filp) {
557                 ret = -EINVAL;
558                 goto out;
559         }
560
561         trace_i915_gem_object_pread(obj, args->offset, args->size);
562
563         ret = i915_gem_shmem_pread(dev, obj, args, file);
564
565 out:
566         drm_gem_object_unreference(&obj->base);
567 unlock:
568         mutex_unlock(&dev->struct_mutex);
569         return ret;
570 }
571
572 /* This is the fast write path which cannot handle
573  * page faults in the source data
574  */
575
576 static inline int
577 fast_user_write(struct io_mapping *mapping,
578                 loff_t page_base, int page_offset,
579                 char __user *user_data,
580                 int length)
581 {
582         void __iomem *vaddr_atomic;
583         void *vaddr;
584         unsigned long unwritten;
585
586         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
587         /* We can use the cpu mem copy function because this is X86. */
588         vaddr = (void __force*)vaddr_atomic + page_offset;
589         unwritten = __copy_from_user_inatomic_nocache(vaddr,
590                                                       user_data, length);
591         io_mapping_unmap_atomic(vaddr_atomic);
592         return unwritten;
593 }
594
595 /**
596  * This is the fast pwrite path, where we copy the data directly from the
597  * user into the GTT, uncached.
598  */
599 static int
600 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
601                          struct drm_i915_gem_object *obj,
602                          struct drm_i915_gem_pwrite *args,
603                          struct drm_file *file)
604 {
605         drm_i915_private_t *dev_priv = dev->dev_private;
606         ssize_t remain;
607         loff_t offset, page_base;
608         char __user *user_data;
609         int page_offset, page_length, ret;
610
611         ret = i915_gem_object_pin(obj, 0, true, true);
612         if (ret)
613                 goto out;
614
615         ret = i915_gem_object_set_to_gtt_domain(obj, true);
616         if (ret)
617                 goto out_unpin;
618
619         ret = i915_gem_object_put_fence(obj);
620         if (ret)
621                 goto out_unpin;
622
623         user_data = (char __user *) (uintptr_t) args->data_ptr;
624         remain = args->size;
625
626         offset = obj->gtt_offset + args->offset;
627
628         while (remain > 0) {
629                 /* Operation in this page
630                  *
631                  * page_base = page offset within aperture
632                  * page_offset = offset within page
633                  * page_length = bytes to copy for this page
634                  */
635                 page_base = offset & PAGE_MASK;
636                 page_offset = offset_in_page(offset);
637                 page_length = remain;
638                 if ((page_offset + remain) > PAGE_SIZE)
639                         page_length = PAGE_SIZE - page_offset;
640
641                 /* If we get a fault while copying data, then (presumably) our
642                  * source page isn't available.  Return the error and we'll
643                  * retry in the slow path.
644                  */
645                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
646                                     page_offset, user_data, page_length)) {
647                         ret = -EFAULT;
648                         goto out_unpin;
649                 }
650
651                 remain -= page_length;
652                 user_data += page_length;
653                 offset += page_length;
654         }
655
656 out_unpin:
657         i915_gem_object_unpin(obj);
658 out:
659         return ret;
660 }
661
662 /* Per-page copy function for the shmem pwrite fastpath.
663  * Flushes invalid cachelines before writing to the target if
664  * needs_clflush_before is set and flushes out any written cachelines after
665  * writing if needs_clflush is set. */
666 static int
667 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
668                   char __user *user_data,
669                   bool page_do_bit17_swizzling,
670                   bool needs_clflush_before,
671                   bool needs_clflush_after)
672 {
673         char *vaddr;
674         int ret;
675
676         if (unlikely(page_do_bit17_swizzling))
677                 return -EINVAL;
678
679         vaddr = kmap_atomic(page);
680         if (needs_clflush_before)
681                 drm_clflush_virt_range(vaddr + shmem_page_offset,
682                                        page_length);
683         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
684                                                 user_data,
685                                                 page_length);
686         if (needs_clflush_after)
687                 drm_clflush_virt_range(vaddr + shmem_page_offset,
688                                        page_length);
689         kunmap_atomic(vaddr);
690
691         return ret ? -EFAULT : 0;
692 }
693
694 /* Only difference to the fast-path function is that this can handle bit17
695  * and uses non-atomic copy and kmap functions. */
696 static int
697 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
698                   char __user *user_data,
699                   bool page_do_bit17_swizzling,
700                   bool needs_clflush_before,
701                   bool needs_clflush_after)
702 {
703         char *vaddr;
704         int ret;
705
706         vaddr = kmap(page);
707         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
708                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
709                                              page_length,
710                                              page_do_bit17_swizzling);
711         if (page_do_bit17_swizzling)
712                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
713                                                 user_data,
714                                                 page_length);
715         else
716                 ret = __copy_from_user(vaddr + shmem_page_offset,
717                                        user_data,
718                                        page_length);
719         if (needs_clflush_after)
720                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721                                              page_length,
722                                              page_do_bit17_swizzling);
723         kunmap(page);
724
725         return ret ? -EFAULT : 0;
726 }
727
728 static int
729 i915_gem_shmem_pwrite(struct drm_device *dev,
730                       struct drm_i915_gem_object *obj,
731                       struct drm_i915_gem_pwrite *args,
732                       struct drm_file *file)
733 {
734         ssize_t remain;
735         loff_t offset;
736         char __user *user_data;
737         int shmem_page_offset, page_length, ret = 0;
738         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
739         int hit_slowpath = 0;
740         int needs_clflush_after = 0;
741         int needs_clflush_before = 0;
742         int i;
743         struct scatterlist *sg;
744
745         user_data = (char __user *) (uintptr_t) args->data_ptr;
746         remain = args->size;
747
748         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
749
750         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
751                 /* If we're not in the cpu write domain, set ourself into the gtt
752                  * write domain and manually flush cachelines (if required). This
753                  * optimizes for the case when the gpu will use the data
754                  * right away and we therefore have to clflush anyway. */
755                 if (obj->cache_level == I915_CACHE_NONE)
756                         needs_clflush_after = 1;
757                 if (obj->gtt_space) {
758                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
759                         if (ret)
760                                 return ret;
761                 }
762         }
763         /* Same trick applies for invalidate partially written cachelines before
764          * writing.  */
765         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
766             && obj->cache_level == I915_CACHE_NONE)
767                 needs_clflush_before = 1;
768
769         ret = i915_gem_object_get_pages(obj);
770         if (ret)
771                 return ret;
772
773         i915_gem_object_pin_pages(obj);
774
775         offset = args->offset;
776         obj->dirty = 1;
777
778         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
779                 struct page *page;
780                 int partial_cacheline_write;
781
782                 if (i < offset >> PAGE_SHIFT)
783                         continue;
784
785                 if (remain <= 0)
786                         break;
787
788                 /* Operation in this page
789                  *
790                  * shmem_page_offset = offset within page in shmem file
791                  * page_length = bytes to copy for this page
792                  */
793                 shmem_page_offset = offset_in_page(offset);
794
795                 page_length = remain;
796                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
797                         page_length = PAGE_SIZE - shmem_page_offset;
798
799                 /* If we don't overwrite a cacheline completely we need to be
800                  * careful to have up-to-date data by first clflushing. Don't
801                  * overcomplicate things and flush the entire patch. */
802                 partial_cacheline_write = needs_clflush_before &&
803                         ((shmem_page_offset | page_length)
804                                 & (boot_cpu_data.x86_clflush_size - 1));
805
806                 page = sg_page(sg);
807                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
808                         (page_to_phys(page) & (1 << 17)) != 0;
809
810                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
811                                         user_data, page_do_bit17_swizzling,
812                                         partial_cacheline_write,
813                                         needs_clflush_after);
814                 if (ret == 0)
815                         goto next_page;
816
817                 hit_slowpath = 1;
818                 mutex_unlock(&dev->struct_mutex);
819                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
820                                         user_data, page_do_bit17_swizzling,
821                                         partial_cacheline_write,
822                                         needs_clflush_after);
823
824                 mutex_lock(&dev->struct_mutex);
825
826 next_page:
827                 set_page_dirty(page);
828                 mark_page_accessed(page);
829
830                 if (ret)
831                         goto out;
832
833                 remain -= page_length;
834                 user_data += page_length;
835                 offset += page_length;
836         }
837
838 out:
839         i915_gem_object_unpin_pages(obj);
840
841         if (hit_slowpath) {
842                 /* Fixup: Kill any reinstated backing storage pages */
843                 if (obj->madv == __I915_MADV_PURGED)
844                         i915_gem_object_truncate(obj);
845                 /* and flush dirty cachelines in case the object isn't in the cpu write
846                  * domain anymore. */
847                 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
848                         i915_gem_clflush_object(obj);
849                         intel_gtt_chipset_flush();
850                 }
851         }
852
853         if (needs_clflush_after)
854                 intel_gtt_chipset_flush();
855
856         return ret;
857 }
858
859 /**
860  * Writes data to the object referenced by handle.
861  *
862  * On error, the contents of the buffer that were to be modified are undefined.
863  */
864 int
865 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
866                       struct drm_file *file)
867 {
868         struct drm_i915_gem_pwrite *args = data;
869         struct drm_i915_gem_object *obj;
870         int ret;
871
872         if (args->size == 0)
873                 return 0;
874
875         if (!access_ok(VERIFY_READ,
876                        (char __user *)(uintptr_t)args->data_ptr,
877                        args->size))
878                 return -EFAULT;
879
880         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
881                                            args->size);
882         if (ret)
883                 return -EFAULT;
884
885         ret = i915_mutex_lock_interruptible(dev);
886         if (ret)
887                 return ret;
888
889         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
890         if (&obj->base == NULL) {
891                 ret = -ENOENT;
892                 goto unlock;
893         }
894
895         /* Bounds check destination. */
896         if (args->offset > obj->base.size ||
897             args->size > obj->base.size - args->offset) {
898                 ret = -EINVAL;
899                 goto out;
900         }
901
902         /* prime objects have no backing filp to GEM pread/pwrite
903          * pages from.
904          */
905         if (!obj->base.filp) {
906                 ret = -EINVAL;
907                 goto out;
908         }
909
910         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
911
912         ret = -EFAULT;
913         /* We can only do the GTT pwrite on untiled buffers, as otherwise
914          * it would end up going through the fenced access, and we'll get
915          * different detiling behavior between reading and writing.
916          * pread/pwrite currently are reading and writing from the CPU
917          * perspective, requiring manual detiling by the client.
918          */
919         if (obj->phys_obj) {
920                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
921                 goto out;
922         }
923
924         if (obj->cache_level == I915_CACHE_NONE &&
925             obj->tiling_mode == I915_TILING_NONE &&
926             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
927                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
928                 /* Note that the gtt paths might fail with non-page-backed user
929                  * pointers (e.g. gtt mappings when moving data between
930                  * textures). Fallback to the shmem path in that case. */
931         }
932
933         if (ret == -EFAULT || ret == -ENOSPC)
934                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
935
936 out:
937         drm_gem_object_unreference(&obj->base);
938 unlock:
939         mutex_unlock(&dev->struct_mutex);
940         return ret;
941 }
942
943 int
944 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
945                      bool interruptible)
946 {
947         if (atomic_read(&dev_priv->mm.wedged)) {
948                 struct completion *x = &dev_priv->error_completion;
949                 bool recovery_complete;
950                 unsigned long flags;
951
952                 /* Give the error handler a chance to run. */
953                 spin_lock_irqsave(&x->wait.lock, flags);
954                 recovery_complete = x->done > 0;
955                 spin_unlock_irqrestore(&x->wait.lock, flags);
956
957                 /* Non-interruptible callers can't handle -EAGAIN, hence return
958                  * -EIO unconditionally for these. */
959                 if (!interruptible)
960                         return -EIO;
961
962                 /* Recovery complete, but still wedged means reset failure. */
963                 if (recovery_complete)
964                         return -EIO;
965
966                 return -EAGAIN;
967         }
968
969         return 0;
970 }
971
972 /*
973  * Compare seqno against outstanding lazy request. Emit a request if they are
974  * equal.
975  */
976 static int
977 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
978 {
979         int ret;
980
981         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
982
983         ret = 0;
984         if (seqno == ring->outstanding_lazy_request)
985                 ret = i915_add_request(ring, NULL, NULL);
986
987         return ret;
988 }
989
990 /**
991  * __wait_seqno - wait until execution of seqno has finished
992  * @ring: the ring expected to report seqno
993  * @seqno: duh!
994  * @interruptible: do an interruptible wait (normally yes)
995  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
996  *
997  * Returns 0 if the seqno was found within the alloted time. Else returns the
998  * errno with remaining time filled in timeout argument.
999  */
1000 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1001                         bool interruptible, struct timespec *timeout)
1002 {
1003         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1004         struct timespec before, now, wait_time={1,0};
1005         unsigned long timeout_jiffies;
1006         long end;
1007         bool wait_forever = true;
1008         int ret;
1009
1010         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1011                 return 0;
1012
1013         trace_i915_gem_request_wait_begin(ring, seqno);
1014
1015         if (timeout != NULL) {
1016                 wait_time = *timeout;
1017                 wait_forever = false;
1018         }
1019
1020         timeout_jiffies = timespec_to_jiffies(&wait_time);
1021
1022         if (WARN_ON(!ring->irq_get(ring)))
1023                 return -ENODEV;
1024
1025         /* Record current time in case interrupted by signal, or wedged * */
1026         getrawmonotonic(&before);
1027
1028 #define EXIT_COND \
1029         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1030         atomic_read(&dev_priv->mm.wedged))
1031         do {
1032                 if (interruptible)
1033                         end = wait_event_interruptible_timeout(ring->irq_queue,
1034                                                                EXIT_COND,
1035                                                                timeout_jiffies);
1036                 else
1037                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1038                                                  timeout_jiffies);
1039
1040                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1041                 if (ret)
1042                         end = ret;
1043         } while (end == 0 && wait_forever);
1044
1045         getrawmonotonic(&now);
1046
1047         ring->irq_put(ring);
1048         trace_i915_gem_request_wait_end(ring, seqno);
1049 #undef EXIT_COND
1050
1051         if (timeout) {
1052                 struct timespec sleep_time = timespec_sub(now, before);
1053                 *timeout = timespec_sub(*timeout, sleep_time);
1054         }
1055
1056         switch (end) {
1057         case -EIO:
1058         case -EAGAIN: /* Wedged */
1059         case -ERESTARTSYS: /* Signal */
1060                 return (int)end;
1061         case 0: /* Timeout */
1062                 if (timeout)
1063                         set_normalized_timespec(timeout, 0, 0);
1064                 return -ETIME;
1065         default: /* Completed */
1066                 WARN_ON(end < 0); /* We're not aware of other errors */
1067                 return 0;
1068         }
1069 }
1070
1071 /**
1072  * Waits for a sequence number to be signaled, and cleans up the
1073  * request and object lists appropriately for that event.
1074  */
1075 int
1076 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1077 {
1078         struct drm_device *dev = ring->dev;
1079         struct drm_i915_private *dev_priv = dev->dev_private;
1080         bool interruptible = dev_priv->mm.interruptible;
1081         int ret;
1082
1083         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1084         BUG_ON(seqno == 0);
1085
1086         ret = i915_gem_check_wedge(dev_priv, interruptible);
1087         if (ret)
1088                 return ret;
1089
1090         ret = i915_gem_check_olr(ring, seqno);
1091         if (ret)
1092                 return ret;
1093
1094         return __wait_seqno(ring, seqno, interruptible, NULL);
1095 }
1096
1097 /**
1098  * Ensures that all rendering to the object has completed and the object is
1099  * safe to unbind from the GTT or access from the CPU.
1100  */
1101 static __must_check int
1102 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1103                                bool readonly)
1104 {
1105         struct intel_ring_buffer *ring = obj->ring;
1106         u32 seqno;
1107         int ret;
1108
1109         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1110         if (seqno == 0)
1111                 return 0;
1112
1113         ret = i915_wait_seqno(ring, seqno);
1114         if (ret)
1115                 return ret;
1116
1117         i915_gem_retire_requests_ring(ring);
1118
1119         /* Manually manage the write flush as we may have not yet
1120          * retired the buffer.
1121          */
1122         if (obj->last_write_seqno &&
1123             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1124                 obj->last_write_seqno = 0;
1125                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1126         }
1127
1128         return 0;
1129 }
1130
1131 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1132  * as the object state may change during this call.
1133  */
1134 static __must_check int
1135 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1136                                             bool readonly)
1137 {
1138         struct drm_device *dev = obj->base.dev;
1139         struct drm_i915_private *dev_priv = dev->dev_private;
1140         struct intel_ring_buffer *ring = obj->ring;
1141         u32 seqno;
1142         int ret;
1143
1144         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1145         BUG_ON(!dev_priv->mm.interruptible);
1146
1147         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1148         if (seqno == 0)
1149                 return 0;
1150
1151         ret = i915_gem_check_wedge(dev_priv, true);
1152         if (ret)
1153                 return ret;
1154
1155         ret = i915_gem_check_olr(ring, seqno);
1156         if (ret)
1157                 return ret;
1158
1159         mutex_unlock(&dev->struct_mutex);
1160         ret = __wait_seqno(ring, seqno, true, NULL);
1161         mutex_lock(&dev->struct_mutex);
1162
1163         i915_gem_retire_requests_ring(ring);
1164
1165         /* Manually manage the write flush as we may have not yet
1166          * retired the buffer.
1167          */
1168         if (obj->last_write_seqno &&
1169             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1170                 obj->last_write_seqno = 0;
1171                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1172         }
1173
1174         return ret;
1175 }
1176
1177 /**
1178  * Called when user space prepares to use an object with the CPU, either
1179  * through the mmap ioctl's mapping or a GTT mapping.
1180  */
1181 int
1182 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1183                           struct drm_file *file)
1184 {
1185         struct drm_i915_gem_set_domain *args = data;
1186         struct drm_i915_gem_object *obj;
1187         uint32_t read_domains = args->read_domains;
1188         uint32_t write_domain = args->write_domain;
1189         int ret;
1190
1191         /* Only handle setting domains to types used by the CPU. */
1192         if (write_domain & I915_GEM_GPU_DOMAINS)
1193                 return -EINVAL;
1194
1195         if (read_domains & I915_GEM_GPU_DOMAINS)
1196                 return -EINVAL;
1197
1198         /* Having something in the write domain implies it's in the read
1199          * domain, and only that read domain.  Enforce that in the request.
1200          */
1201         if (write_domain != 0 && read_domains != write_domain)
1202                 return -EINVAL;
1203
1204         ret = i915_mutex_lock_interruptible(dev);
1205         if (ret)
1206                 return ret;
1207
1208         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1209         if (&obj->base == NULL) {
1210                 ret = -ENOENT;
1211                 goto unlock;
1212         }
1213
1214         /* Try to flush the object off the GPU without holding the lock.
1215          * We will repeat the flush holding the lock in the normal manner
1216          * to catch cases where we are gazumped.
1217          */
1218         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1219         if (ret)
1220                 goto unref;
1221
1222         if (read_domains & I915_GEM_DOMAIN_GTT) {
1223                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1224
1225                 /* Silently promote "you're not bound, there was nothing to do"
1226                  * to success, since the client was just asking us to
1227                  * make sure everything was done.
1228                  */
1229                 if (ret == -EINVAL)
1230                         ret = 0;
1231         } else {
1232                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1233         }
1234
1235 unref:
1236         drm_gem_object_unreference(&obj->base);
1237 unlock:
1238         mutex_unlock(&dev->struct_mutex);
1239         return ret;
1240 }
1241
1242 /**
1243  * Called when user space has done writes to this buffer
1244  */
1245 int
1246 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1247                          struct drm_file *file)
1248 {
1249         struct drm_i915_gem_sw_finish *args = data;
1250         struct drm_i915_gem_object *obj;
1251         int ret = 0;
1252
1253         ret = i915_mutex_lock_interruptible(dev);
1254         if (ret)
1255                 return ret;
1256
1257         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1258         if (&obj->base == NULL) {
1259                 ret = -ENOENT;
1260                 goto unlock;
1261         }
1262
1263         /* Pinned buffers may be scanout, so flush the cache */
1264         if (obj->pin_count)
1265                 i915_gem_object_flush_cpu_write_domain(obj);
1266
1267         drm_gem_object_unreference(&obj->base);
1268 unlock:
1269         mutex_unlock(&dev->struct_mutex);
1270         return ret;
1271 }
1272
1273 /**
1274  * Maps the contents of an object, returning the address it is mapped
1275  * into.
1276  *
1277  * While the mapping holds a reference on the contents of the object, it doesn't
1278  * imply a ref on the object itself.
1279  */
1280 int
1281 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1282                     struct drm_file *file)
1283 {
1284         struct drm_i915_gem_mmap *args = data;
1285         struct drm_gem_object *obj;
1286         unsigned long addr;
1287
1288         obj = drm_gem_object_lookup(dev, file, args->handle);
1289         if (obj == NULL)
1290                 return -ENOENT;
1291
1292         /* prime objects have no backing filp to GEM mmap
1293          * pages from.
1294          */
1295         if (!obj->filp) {
1296                 drm_gem_object_unreference_unlocked(obj);
1297                 return -EINVAL;
1298         }
1299
1300         addr = vm_mmap(obj->filp, 0, args->size,
1301                        PROT_READ | PROT_WRITE, MAP_SHARED,
1302                        args->offset);
1303         drm_gem_object_unreference_unlocked(obj);
1304         if (IS_ERR((void *)addr))
1305                 return addr;
1306
1307         args->addr_ptr = (uint64_t) addr;
1308
1309         return 0;
1310 }
1311
1312 /**
1313  * i915_gem_fault - fault a page into the GTT
1314  * vma: VMA in question
1315  * vmf: fault info
1316  *
1317  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1318  * from userspace.  The fault handler takes care of binding the object to
1319  * the GTT (if needed), allocating and programming a fence register (again,
1320  * only if needed based on whether the old reg is still valid or the object
1321  * is tiled) and inserting a new PTE into the faulting process.
1322  *
1323  * Note that the faulting process may involve evicting existing objects
1324  * from the GTT and/or fence registers to make room.  So performance may
1325  * suffer if the GTT working set is large or there are few fence registers
1326  * left.
1327  */
1328 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1329 {
1330         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1331         struct drm_device *dev = obj->base.dev;
1332         drm_i915_private_t *dev_priv = dev->dev_private;
1333         pgoff_t page_offset;
1334         unsigned long pfn;
1335         int ret = 0;
1336         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1337
1338         /* We don't use vmf->pgoff since that has the fake offset */
1339         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1340                 PAGE_SHIFT;
1341
1342         ret = i915_mutex_lock_interruptible(dev);
1343         if (ret)
1344                 goto out;
1345
1346         trace_i915_gem_object_fault(obj, page_offset, true, write);
1347
1348         /* Now bind it into the GTT if needed */
1349         if (!obj->map_and_fenceable) {
1350                 ret = i915_gem_object_unbind(obj);
1351                 if (ret)
1352                         goto unlock;
1353         }
1354         if (!obj->gtt_space) {
1355                 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1356                 if (ret)
1357                         goto unlock;
1358
1359                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1360                 if (ret)
1361                         goto unlock;
1362         }
1363
1364         if (!obj->has_global_gtt_mapping)
1365                 i915_gem_gtt_bind_object(obj, obj->cache_level);
1366
1367         ret = i915_gem_object_get_fence(obj);
1368         if (ret)
1369                 goto unlock;
1370
1371         if (i915_gem_object_is_inactive(obj))
1372                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1373
1374         obj->fault_mappable = true;
1375
1376         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1377                 page_offset;
1378
1379         /* Finally, remap it using the new GTT offset */
1380         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1381 unlock:
1382         mutex_unlock(&dev->struct_mutex);
1383 out:
1384         switch (ret) {
1385         case -EIO:
1386                 /* If this -EIO is due to a gpu hang, give the reset code a
1387                  * chance to clean up the mess. Otherwise return the proper
1388                  * SIGBUS. */
1389                 if (!atomic_read(&dev_priv->mm.wedged))
1390                         return VM_FAULT_SIGBUS;
1391         case -EAGAIN:
1392                 /* Give the error handler a chance to run and move the
1393                  * objects off the GPU active list. Next time we service the
1394                  * fault, we should be able to transition the page into the
1395                  * GTT without touching the GPU (and so avoid further
1396                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1397                  * with coherency, just lost writes.
1398                  */
1399                 set_need_resched();
1400         case 0:
1401         case -ERESTARTSYS:
1402         case -EINTR:
1403         case -EBUSY:
1404                 /*
1405                  * EBUSY is ok: this just means that another thread
1406                  * already did the job.
1407                  */
1408                 return VM_FAULT_NOPAGE;
1409         case -ENOMEM:
1410                 return VM_FAULT_OOM;
1411         default:
1412                 WARN_ON_ONCE(ret);
1413                 return VM_FAULT_SIGBUS;
1414         }
1415 }
1416
1417 /**
1418  * i915_gem_release_mmap - remove physical page mappings
1419  * @obj: obj in question
1420  *
1421  * Preserve the reservation of the mmapping with the DRM core code, but
1422  * relinquish ownership of the pages back to the system.
1423  *
1424  * It is vital that we remove the page mapping if we have mapped a tiled
1425  * object through the GTT and then lose the fence register due to
1426  * resource pressure. Similarly if the object has been moved out of the
1427  * aperture, than pages mapped into userspace must be revoked. Removing the
1428  * mapping will then trigger a page fault on the next user access, allowing
1429  * fixup by i915_gem_fault().
1430  */
1431 void
1432 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1433 {
1434         if (!obj->fault_mappable)
1435                 return;
1436
1437         if (obj->base.dev->dev_mapping)
1438                 unmap_mapping_range(obj->base.dev->dev_mapping,
1439                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1440                                     obj->base.size, 1);
1441
1442         obj->fault_mappable = false;
1443 }
1444
1445 static uint32_t
1446 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1447 {
1448         uint32_t gtt_size;
1449
1450         if (INTEL_INFO(dev)->gen >= 4 ||
1451             tiling_mode == I915_TILING_NONE)
1452                 return size;
1453
1454         /* Previous chips need a power-of-two fence region when tiling */
1455         if (INTEL_INFO(dev)->gen == 3)
1456                 gtt_size = 1024*1024;
1457         else
1458                 gtt_size = 512*1024;
1459
1460         while (gtt_size < size)
1461                 gtt_size <<= 1;
1462
1463         return gtt_size;
1464 }
1465
1466 /**
1467  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1468  * @obj: object to check
1469  *
1470  * Return the required GTT alignment for an object, taking into account
1471  * potential fence register mapping.
1472  */
1473 static uint32_t
1474 i915_gem_get_gtt_alignment(struct drm_device *dev,
1475                            uint32_t size,
1476                            int tiling_mode)
1477 {
1478         /*
1479          * Minimum alignment is 4k (GTT page size), but might be greater
1480          * if a fence register is needed for the object.
1481          */
1482         if (INTEL_INFO(dev)->gen >= 4 ||
1483             tiling_mode == I915_TILING_NONE)
1484                 return 4096;
1485
1486         /*
1487          * Previous chips need to be aligned to the size of the smallest
1488          * fence register that can contain the object.
1489          */
1490         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1491 }
1492
1493 /**
1494  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1495  *                                       unfenced object
1496  * @dev: the device
1497  * @size: size of the object
1498  * @tiling_mode: tiling mode of the object
1499  *
1500  * Return the required GTT alignment for an object, only taking into account
1501  * unfenced tiled surface requirements.
1502  */
1503 uint32_t
1504 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1505                                     uint32_t size,
1506                                     int tiling_mode)
1507 {
1508         /*
1509          * Minimum alignment is 4k (GTT page size) for sane hw.
1510          */
1511         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1512             tiling_mode == I915_TILING_NONE)
1513                 return 4096;
1514
1515         /* Previous hardware however needs to be aligned to a power-of-two
1516          * tile height. The simplest method for determining this is to reuse
1517          * the power-of-tile object size.
1518          */
1519         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1520 }
1521
1522 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1523 {
1524         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1525         int ret;
1526
1527         if (obj->base.map_list.map)
1528                 return 0;
1529
1530         ret = drm_gem_create_mmap_offset(&obj->base);
1531         if (ret != -ENOSPC)
1532                 return ret;
1533
1534         /* Badly fragmented mmap space? The only way we can recover
1535          * space is by destroying unwanted objects. We can't randomly release
1536          * mmap_offsets as userspace expects them to be persistent for the
1537          * lifetime of the objects. The closest we can is to release the
1538          * offsets on purgeable objects by truncating it and marking it purged,
1539          * which prevents userspace from ever using that object again.
1540          */
1541         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1542         ret = drm_gem_create_mmap_offset(&obj->base);
1543         if (ret != -ENOSPC)
1544                 return ret;
1545
1546         i915_gem_shrink_all(dev_priv);
1547         return drm_gem_create_mmap_offset(&obj->base);
1548 }
1549
1550 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1551 {
1552         if (!obj->base.map_list.map)
1553                 return;
1554
1555         drm_gem_free_mmap_offset(&obj->base);
1556 }
1557
1558 int
1559 i915_gem_mmap_gtt(struct drm_file *file,
1560                   struct drm_device *dev,
1561                   uint32_t handle,
1562                   uint64_t *offset)
1563 {
1564         struct drm_i915_private *dev_priv = dev->dev_private;
1565         struct drm_i915_gem_object *obj;
1566         int ret;
1567
1568         ret = i915_mutex_lock_interruptible(dev);
1569         if (ret)
1570                 return ret;
1571
1572         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1573         if (&obj->base == NULL) {
1574                 ret = -ENOENT;
1575                 goto unlock;
1576         }
1577
1578         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1579                 ret = -E2BIG;
1580                 goto out;
1581         }
1582
1583         if (obj->madv != I915_MADV_WILLNEED) {
1584                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1585                 ret = -EINVAL;
1586                 goto out;
1587         }
1588
1589         ret = i915_gem_object_create_mmap_offset(obj);
1590         if (ret)
1591                 goto out;
1592
1593         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1594
1595 out:
1596         drm_gem_object_unreference(&obj->base);
1597 unlock:
1598         mutex_unlock(&dev->struct_mutex);
1599         return ret;
1600 }
1601
1602 /**
1603  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1604  * @dev: DRM device
1605  * @data: GTT mapping ioctl data
1606  * @file: GEM object info
1607  *
1608  * Simply returns the fake offset to userspace so it can mmap it.
1609  * The mmap call will end up in drm_gem_mmap(), which will set things
1610  * up so we can get faults in the handler above.
1611  *
1612  * The fault handler will take care of binding the object into the GTT
1613  * (since it may have been evicted to make room for something), allocating
1614  * a fence register, and mapping the appropriate aperture address into
1615  * userspace.
1616  */
1617 int
1618 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1619                         struct drm_file *file)
1620 {
1621         struct drm_i915_gem_mmap_gtt *args = data;
1622
1623         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1624 }
1625
1626 /* Immediately discard the backing storage */
1627 static void
1628 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1629 {
1630         struct inode *inode;
1631
1632         i915_gem_object_free_mmap_offset(obj);
1633
1634         if (obj->base.filp == NULL)
1635                 return;
1636
1637         /* Our goal here is to return as much of the memory as
1638          * is possible back to the system as we are called from OOM.
1639          * To do this we must instruct the shmfs to drop all of its
1640          * backing pages, *now*.
1641          */
1642         inode = obj->base.filp->f_path.dentry->d_inode;
1643         shmem_truncate_range(inode, 0, (loff_t)-1);
1644
1645         obj->madv = __I915_MADV_PURGED;
1646 }
1647
1648 static inline int
1649 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1650 {
1651         return obj->madv == I915_MADV_DONTNEED;
1652 }
1653
1654 static void
1655 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1656 {
1657         int page_count = obj->base.size / PAGE_SIZE;
1658         struct scatterlist *sg;
1659         int ret, i;
1660
1661         BUG_ON(obj->madv == __I915_MADV_PURGED);
1662
1663         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1664         if (ret) {
1665                 /* In the event of a disaster, abandon all caches and
1666                  * hope for the best.
1667                  */
1668                 WARN_ON(ret != -EIO);
1669                 i915_gem_clflush_object(obj);
1670                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1671         }
1672
1673         if (i915_gem_object_needs_bit17_swizzle(obj))
1674                 i915_gem_object_save_bit_17_swizzle(obj);
1675
1676         if (obj->madv == I915_MADV_DONTNEED)
1677                 obj->dirty = 0;
1678
1679         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1680                 struct page *page = sg_page(sg);
1681
1682                 if (obj->dirty)
1683                         set_page_dirty(page);
1684
1685                 if (obj->madv == I915_MADV_WILLNEED)
1686                         mark_page_accessed(page);
1687
1688                 page_cache_release(page);
1689         }
1690         obj->dirty = 0;
1691
1692         sg_free_table(obj->pages);
1693         kfree(obj->pages);
1694 }
1695
1696 static int
1697 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1698 {
1699         const struct drm_i915_gem_object_ops *ops = obj->ops;
1700
1701         if (obj->pages == NULL)
1702                 return 0;
1703
1704         BUG_ON(obj->gtt_space);
1705
1706         if (obj->pages_pin_count)
1707                 return -EBUSY;
1708
1709         ops->put_pages(obj);
1710         obj->pages = NULL;
1711
1712         list_del(&obj->gtt_list);
1713         if (i915_gem_object_is_purgeable(obj))
1714                 i915_gem_object_truncate(obj);
1715
1716         return 0;
1717 }
1718
1719 static long
1720 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1721 {
1722         struct drm_i915_gem_object *obj, *next;
1723         long count = 0;
1724
1725         list_for_each_entry_safe(obj, next,
1726                                  &dev_priv->mm.unbound_list,
1727                                  gtt_list) {
1728                 if (i915_gem_object_is_purgeable(obj) &&
1729                     i915_gem_object_put_pages(obj) == 0) {
1730                         count += obj->base.size >> PAGE_SHIFT;
1731                         if (count >= target)
1732                                 return count;
1733                 }
1734         }
1735
1736         list_for_each_entry_safe(obj, next,
1737                                  &dev_priv->mm.inactive_list,
1738                                  mm_list) {
1739                 if (i915_gem_object_is_purgeable(obj) &&
1740                     i915_gem_object_unbind(obj) == 0 &&
1741                     i915_gem_object_put_pages(obj) == 0) {
1742                         count += obj->base.size >> PAGE_SHIFT;
1743                         if (count >= target)
1744                                 return count;
1745                 }
1746         }
1747
1748         return count;
1749 }
1750
1751 static void
1752 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1753 {
1754         struct drm_i915_gem_object *obj, *next;
1755
1756         i915_gem_evict_everything(dev_priv->dev);
1757
1758         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1759                 i915_gem_object_put_pages(obj);
1760 }
1761
1762 static int
1763 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1764 {
1765         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1766         int page_count, i;
1767         struct address_space *mapping;
1768         struct sg_table *st;
1769         struct scatterlist *sg;
1770         struct page *page;
1771         gfp_t gfp;
1772
1773         /* Assert that the object is not currently in any GPU domain. As it
1774          * wasn't in the GTT, there shouldn't be any way it could have been in
1775          * a GPU cache
1776          */
1777         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1778         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1779
1780         st = kmalloc(sizeof(*st), GFP_KERNEL);
1781         if (st == NULL)
1782                 return -ENOMEM;
1783
1784         page_count = obj->base.size / PAGE_SIZE;
1785         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1786                 sg_free_table(st);
1787                 kfree(st);
1788                 return -ENOMEM;
1789         }
1790
1791         /* Get the list of pages out of our struct file.  They'll be pinned
1792          * at this point until we release them.
1793          *
1794          * Fail silently without starting the shrinker
1795          */
1796         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1797         gfp = mapping_gfp_mask(mapping);
1798         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1799         gfp &= ~(__GFP_IO | __GFP_WAIT);
1800         for_each_sg(st->sgl, sg, page_count, i) {
1801                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1802                 if (IS_ERR(page)) {
1803                         i915_gem_purge(dev_priv, page_count);
1804                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1805                 }
1806                 if (IS_ERR(page)) {
1807                         /* We've tried hard to allocate the memory by reaping
1808                          * our own buffer, now let the real VM do its job and
1809                          * go down in flames if truly OOM.
1810                          */
1811                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1812                         gfp |= __GFP_IO | __GFP_WAIT;
1813
1814                         i915_gem_shrink_all(dev_priv);
1815                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1816                         if (IS_ERR(page))
1817                                 goto err_pages;
1818
1819                         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1820                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1821                 }
1822
1823                 sg_set_page(sg, page, PAGE_SIZE, 0);
1824         }
1825
1826         if (i915_gem_object_needs_bit17_swizzle(obj))
1827                 i915_gem_object_do_bit_17_swizzle(obj);
1828
1829         obj->pages = st;
1830         return 0;
1831
1832 err_pages:
1833         for_each_sg(st->sgl, sg, i, page_count)
1834                 page_cache_release(sg_page(sg));
1835         sg_free_table(st);
1836         kfree(st);
1837         return PTR_ERR(page);
1838 }
1839
1840 /* Ensure that the associated pages are gathered from the backing storage
1841  * and pinned into our object. i915_gem_object_get_pages() may be called
1842  * multiple times before they are released by a single call to
1843  * i915_gem_object_put_pages() - once the pages are no longer referenced
1844  * either as a result of memory pressure (reaping pages under the shrinker)
1845  * or as the object is itself released.
1846  */
1847 int
1848 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1849 {
1850         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1851         const struct drm_i915_gem_object_ops *ops = obj->ops;
1852         int ret;
1853
1854         if (obj->pages)
1855                 return 0;
1856
1857         BUG_ON(obj->pages_pin_count);
1858
1859         ret = ops->get_pages(obj);
1860         if (ret)
1861                 return ret;
1862
1863         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1864         return 0;
1865 }
1866
1867 void
1868 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1869                                struct intel_ring_buffer *ring,
1870                                u32 seqno)
1871 {
1872         struct drm_device *dev = obj->base.dev;
1873         struct drm_i915_private *dev_priv = dev->dev_private;
1874
1875         BUG_ON(ring == NULL);
1876         obj->ring = ring;
1877
1878         /* Add a reference if we're newly entering the active list. */
1879         if (!obj->active) {
1880                 drm_gem_object_reference(&obj->base);
1881                 obj->active = 1;
1882         }
1883
1884         /* Move from whatever list we were on to the tail of execution. */
1885         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1886         list_move_tail(&obj->ring_list, &ring->active_list);
1887
1888         obj->last_read_seqno = seqno;
1889
1890         if (obj->fenced_gpu_access) {
1891                 obj->last_fenced_seqno = seqno;
1892
1893                 /* Bump MRU to take account of the delayed flush */
1894                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1895                         struct drm_i915_fence_reg *reg;
1896
1897                         reg = &dev_priv->fence_regs[obj->fence_reg];
1898                         list_move_tail(&reg->lru_list,
1899                                        &dev_priv->mm.fence_list);
1900                 }
1901         }
1902 }
1903
1904 static void
1905 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1906 {
1907         struct drm_device *dev = obj->base.dev;
1908         struct drm_i915_private *dev_priv = dev->dev_private;
1909
1910         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1911         BUG_ON(!obj->active);
1912
1913         if (obj->pin_count) /* are we a framebuffer? */
1914                 intel_mark_fb_idle(obj);
1915
1916         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1917
1918         list_del_init(&obj->ring_list);
1919         obj->ring = NULL;
1920
1921         obj->last_read_seqno = 0;
1922         obj->last_write_seqno = 0;
1923         obj->base.write_domain = 0;
1924
1925         obj->last_fenced_seqno = 0;
1926         obj->fenced_gpu_access = false;
1927
1928         obj->active = 0;
1929         drm_gem_object_unreference(&obj->base);
1930
1931         WARN_ON(i915_verify_lists(dev));
1932 }
1933
1934 static u32
1935 i915_gem_get_seqno(struct drm_device *dev)
1936 {
1937         drm_i915_private_t *dev_priv = dev->dev_private;
1938         u32 seqno = dev_priv->next_seqno;
1939
1940         /* reserve 0 for non-seqno */
1941         if (++dev_priv->next_seqno == 0)
1942                 dev_priv->next_seqno = 1;
1943
1944         return seqno;
1945 }
1946
1947 u32
1948 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1949 {
1950         if (ring->outstanding_lazy_request == 0)
1951                 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1952
1953         return ring->outstanding_lazy_request;
1954 }
1955
1956 int
1957 i915_add_request(struct intel_ring_buffer *ring,
1958                  struct drm_file *file,
1959                  struct drm_i915_gem_request *request)
1960 {
1961         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1962         uint32_t seqno;
1963         u32 request_ring_position;
1964         int was_empty;
1965         int ret;
1966
1967         /*
1968          * Emit any outstanding flushes - execbuf can fail to emit the flush
1969          * after having emitted the batchbuffer command. Hence we need to fix
1970          * things up similar to emitting the lazy request. The difference here
1971          * is that the flush _must_ happen before the next request, no matter
1972          * what.
1973          */
1974         ret = intel_ring_flush_all_caches(ring);
1975         if (ret)
1976                 return ret;
1977
1978         if (request == NULL) {
1979                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1980                 if (request == NULL)
1981                         return -ENOMEM;
1982         }
1983
1984         seqno = i915_gem_next_request_seqno(ring);
1985
1986         /* Record the position of the start of the request so that
1987          * should we detect the updated seqno part-way through the
1988          * GPU processing the request, we never over-estimate the
1989          * position of the head.
1990          */
1991         request_ring_position = intel_ring_get_tail(ring);
1992
1993         ret = ring->add_request(ring, &seqno);
1994         if (ret) {
1995                 kfree(request);
1996                 return ret;
1997         }
1998
1999         trace_i915_gem_request_add(ring, seqno);
2000
2001         request->seqno = seqno;
2002         request->ring = ring;
2003         request->tail = request_ring_position;
2004         request->emitted_jiffies = jiffies;
2005         was_empty = list_empty(&ring->request_list);
2006         list_add_tail(&request->list, &ring->request_list);
2007         request->file_priv = NULL;
2008
2009         if (file) {
2010                 struct drm_i915_file_private *file_priv = file->driver_priv;
2011
2012                 spin_lock(&file_priv->mm.lock);
2013                 request->file_priv = file_priv;
2014                 list_add_tail(&request->client_list,
2015                               &file_priv->mm.request_list);
2016                 spin_unlock(&file_priv->mm.lock);
2017         }
2018
2019         ring->outstanding_lazy_request = 0;
2020
2021         if (!dev_priv->mm.suspended) {
2022                 if (i915_enable_hangcheck) {
2023                         mod_timer(&dev_priv->hangcheck_timer,
2024                                   jiffies +
2025                                   msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2026                 }
2027                 if (was_empty) {
2028                         queue_delayed_work(dev_priv->wq,
2029                                            &dev_priv->mm.retire_work, HZ);
2030                         intel_mark_busy(dev_priv->dev);
2031                 }
2032         }
2033
2034         return 0;
2035 }
2036
2037 static inline void
2038 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2039 {
2040         struct drm_i915_file_private *file_priv = request->file_priv;
2041
2042         if (!file_priv)
2043                 return;
2044
2045         spin_lock(&file_priv->mm.lock);
2046         if (request->file_priv) {
2047                 list_del(&request->client_list);
2048                 request->file_priv = NULL;
2049         }
2050         spin_unlock(&file_priv->mm.lock);
2051 }
2052
2053 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2054                                       struct intel_ring_buffer *ring)
2055 {
2056         while (!list_empty(&ring->request_list)) {
2057                 struct drm_i915_gem_request *request;
2058
2059                 request = list_first_entry(&ring->request_list,
2060                                            struct drm_i915_gem_request,
2061                                            list);
2062
2063                 list_del(&request->list);
2064                 i915_gem_request_remove_from_client(request);
2065                 kfree(request);
2066         }
2067
2068         while (!list_empty(&ring->active_list)) {
2069                 struct drm_i915_gem_object *obj;
2070
2071                 obj = list_first_entry(&ring->active_list,
2072                                        struct drm_i915_gem_object,
2073                                        ring_list);
2074
2075                 i915_gem_object_move_to_inactive(obj);
2076         }
2077 }
2078
2079 static void i915_gem_reset_fences(struct drm_device *dev)
2080 {
2081         struct drm_i915_private *dev_priv = dev->dev_private;
2082         int i;
2083
2084         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2085                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2086
2087                 i915_gem_write_fence(dev, i, NULL);
2088
2089                 if (reg->obj)
2090                         i915_gem_object_fence_lost(reg->obj);
2091
2092                 reg->pin_count = 0;
2093                 reg->obj = NULL;
2094                 INIT_LIST_HEAD(&reg->lru_list);
2095         }
2096
2097         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2098 }
2099
2100 void i915_gem_reset(struct drm_device *dev)
2101 {
2102         struct drm_i915_private *dev_priv = dev->dev_private;
2103         struct drm_i915_gem_object *obj;
2104         struct intel_ring_buffer *ring;
2105         int i;
2106
2107         for_each_ring(ring, dev_priv, i)
2108                 i915_gem_reset_ring_lists(dev_priv, ring);
2109
2110         /* Move everything out of the GPU domains to ensure we do any
2111          * necessary invalidation upon reuse.
2112          */
2113         list_for_each_entry(obj,
2114                             &dev_priv->mm.inactive_list,
2115                             mm_list)
2116         {
2117                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2118         }
2119
2120         /* The fence registers are invalidated so clear them out */
2121         i915_gem_reset_fences(dev);
2122 }
2123
2124 /**
2125  * This function clears the request list as sequence numbers are passed.
2126  */
2127 void
2128 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2129 {
2130         uint32_t seqno;
2131         int i;
2132
2133         if (list_empty(&ring->request_list))
2134                 return;
2135
2136         WARN_ON(i915_verify_lists(ring->dev));
2137
2138         seqno = ring->get_seqno(ring, true);
2139
2140         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2141                 if (seqno >= ring->sync_seqno[i])
2142                         ring->sync_seqno[i] = 0;
2143
2144         while (!list_empty(&ring->request_list)) {
2145                 struct drm_i915_gem_request *request;
2146
2147                 request = list_first_entry(&ring->request_list,
2148                                            struct drm_i915_gem_request,
2149                                            list);
2150
2151                 if (!i915_seqno_passed(seqno, request->seqno))
2152                         break;
2153
2154                 trace_i915_gem_request_retire(ring, request->seqno);
2155                 /* We know the GPU must have read the request to have
2156                  * sent us the seqno + interrupt, so use the position
2157                  * of tail of the request to update the last known position
2158                  * of the GPU head.
2159                  */
2160                 ring->last_retired_head = request->tail;
2161
2162                 list_del(&request->list);
2163                 i915_gem_request_remove_from_client(request);
2164                 kfree(request);
2165         }
2166
2167         /* Move any buffers on the active list that are no longer referenced
2168          * by the ringbuffer to the flushing/inactive lists as appropriate.
2169          */
2170         while (!list_empty(&ring->active_list)) {
2171                 struct drm_i915_gem_object *obj;
2172
2173                 obj = list_first_entry(&ring->active_list,
2174                                       struct drm_i915_gem_object,
2175                                       ring_list);
2176
2177                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2178                         break;
2179
2180                 i915_gem_object_move_to_inactive(obj);
2181         }
2182
2183         if (unlikely(ring->trace_irq_seqno &&
2184                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2185                 ring->irq_put(ring);
2186                 ring->trace_irq_seqno = 0;
2187         }
2188
2189         WARN_ON(i915_verify_lists(ring->dev));
2190 }
2191
2192 void
2193 i915_gem_retire_requests(struct drm_device *dev)
2194 {
2195         drm_i915_private_t *dev_priv = dev->dev_private;
2196         struct intel_ring_buffer *ring;
2197         int i;
2198
2199         for_each_ring(ring, dev_priv, i)
2200                 i915_gem_retire_requests_ring(ring);
2201 }
2202
2203 static void
2204 i915_gem_retire_work_handler(struct work_struct *work)
2205 {
2206         drm_i915_private_t *dev_priv;
2207         struct drm_device *dev;
2208         struct intel_ring_buffer *ring;
2209         bool idle;
2210         int i;
2211
2212         dev_priv = container_of(work, drm_i915_private_t,
2213                                 mm.retire_work.work);
2214         dev = dev_priv->dev;
2215
2216         /* Come back later if the device is busy... */
2217         if (!mutex_trylock(&dev->struct_mutex)) {
2218                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2219                 return;
2220         }
2221
2222         i915_gem_retire_requests(dev);
2223
2224         /* Send a periodic flush down the ring so we don't hold onto GEM
2225          * objects indefinitely.
2226          */
2227         idle = true;
2228         for_each_ring(ring, dev_priv, i) {
2229                 if (ring->gpu_caches_dirty)
2230                         i915_add_request(ring, NULL, NULL);
2231
2232                 idle &= list_empty(&ring->request_list);
2233         }
2234
2235         if (!dev_priv->mm.suspended && !idle)
2236                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2237         if (idle)
2238                 intel_mark_idle(dev);
2239
2240         mutex_unlock(&dev->struct_mutex);
2241 }
2242
2243 /**
2244  * Ensures that an object will eventually get non-busy by flushing any required
2245  * write domains, emitting any outstanding lazy request and retiring and
2246  * completed requests.
2247  */
2248 static int
2249 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2250 {
2251         int ret;
2252
2253         if (obj->active) {
2254                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2255                 if (ret)
2256                         return ret;
2257
2258                 i915_gem_retire_requests_ring(obj->ring);
2259         }
2260
2261         return 0;
2262 }
2263
2264 /**
2265  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2266  * @DRM_IOCTL_ARGS: standard ioctl arguments
2267  *
2268  * Returns 0 if successful, else an error is returned with the remaining time in
2269  * the timeout parameter.
2270  *  -ETIME: object is still busy after timeout
2271  *  -ERESTARTSYS: signal interrupted the wait
2272  *  -ENONENT: object doesn't exist
2273  * Also possible, but rare:
2274  *  -EAGAIN: GPU wedged
2275  *  -ENOMEM: damn
2276  *  -ENODEV: Internal IRQ fail
2277  *  -E?: The add request failed
2278  *
2279  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2280  * non-zero timeout parameter the wait ioctl will wait for the given number of
2281  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2282  * without holding struct_mutex the object may become re-busied before this
2283  * function completes. A similar but shorter * race condition exists in the busy
2284  * ioctl
2285  */
2286 int
2287 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2288 {
2289         struct drm_i915_gem_wait *args = data;
2290         struct drm_i915_gem_object *obj;
2291         struct intel_ring_buffer *ring = NULL;
2292         struct timespec timeout_stack, *timeout = NULL;
2293         u32 seqno = 0;
2294         int ret = 0;
2295
2296         if (args->timeout_ns >= 0) {
2297                 timeout_stack = ns_to_timespec(args->timeout_ns);
2298                 timeout = &timeout_stack;
2299         }
2300
2301         ret = i915_mutex_lock_interruptible(dev);
2302         if (ret)
2303                 return ret;
2304
2305         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2306         if (&obj->base == NULL) {
2307                 mutex_unlock(&dev->struct_mutex);
2308                 return -ENOENT;
2309         }
2310
2311         /* Need to make sure the object gets inactive eventually. */
2312         ret = i915_gem_object_flush_active(obj);
2313         if (ret)
2314                 goto out;
2315
2316         if (obj->active) {
2317                 seqno = obj->last_read_seqno;
2318                 ring = obj->ring;
2319         }
2320
2321         if (seqno == 0)
2322                  goto out;
2323
2324         /* Do this after OLR check to make sure we make forward progress polling
2325          * on this IOCTL with a 0 timeout (like busy ioctl)
2326          */
2327         if (!args->timeout_ns) {
2328                 ret = -ETIME;
2329                 goto out;
2330         }
2331
2332         drm_gem_object_unreference(&obj->base);
2333         mutex_unlock(&dev->struct_mutex);
2334
2335         ret = __wait_seqno(ring, seqno, true, timeout);
2336         if (timeout) {
2337                 WARN_ON(!timespec_valid(timeout));
2338                 args->timeout_ns = timespec_to_ns(timeout);
2339         }
2340         return ret;
2341
2342 out:
2343         drm_gem_object_unreference(&obj->base);
2344         mutex_unlock(&dev->struct_mutex);
2345         return ret;
2346 }
2347
2348 /**
2349  * i915_gem_object_sync - sync an object to a ring.
2350  *
2351  * @obj: object which may be in use on another ring.
2352  * @to: ring we wish to use the object on. May be NULL.
2353  *
2354  * This code is meant to abstract object synchronization with the GPU.
2355  * Calling with NULL implies synchronizing the object with the CPU
2356  * rather than a particular GPU ring.
2357  *
2358  * Returns 0 if successful, else propagates up the lower layer error.
2359  */
2360 int
2361 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2362                      struct intel_ring_buffer *to)
2363 {
2364         struct intel_ring_buffer *from = obj->ring;
2365         u32 seqno;
2366         int ret, idx;
2367
2368         if (from == NULL || to == from)
2369                 return 0;
2370
2371         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2372                 return i915_gem_object_wait_rendering(obj, false);
2373
2374         idx = intel_ring_sync_index(from, to);
2375
2376         seqno = obj->last_read_seqno;
2377         if (seqno <= from->sync_seqno[idx])
2378                 return 0;
2379
2380         ret = i915_gem_check_olr(obj->ring, seqno);
2381         if (ret)
2382                 return ret;
2383
2384         ret = to->sync_to(to, from, seqno);
2385         if (!ret)
2386                 from->sync_seqno[idx] = seqno;
2387
2388         return ret;
2389 }
2390
2391 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2392 {
2393         u32 old_write_domain, old_read_domains;
2394
2395         /* Act a barrier for all accesses through the GTT */
2396         mb();
2397
2398         /* Force a pagefault for domain tracking on next user access */
2399         i915_gem_release_mmap(obj);
2400
2401         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2402                 return;
2403
2404         old_read_domains = obj->base.read_domains;
2405         old_write_domain = obj->base.write_domain;
2406
2407         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2408         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2409
2410         trace_i915_gem_object_change_domain(obj,
2411                                             old_read_domains,
2412                                             old_write_domain);
2413 }
2414
2415 /**
2416  * Unbinds an object from the GTT aperture.
2417  */
2418 int
2419 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2420 {
2421         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2422         int ret = 0;
2423
2424         if (obj->gtt_space == NULL)
2425                 return 0;
2426
2427         if (obj->pin_count)
2428                 return -EBUSY;
2429
2430         BUG_ON(obj->pages == NULL);
2431
2432         ret = i915_gem_object_finish_gpu(obj);
2433         if (ret)
2434                 return ret;
2435         /* Continue on if we fail due to EIO, the GPU is hung so we
2436          * should be safe and we need to cleanup or else we might
2437          * cause memory corruption through use-after-free.
2438          */
2439
2440         i915_gem_object_finish_gtt(obj);
2441
2442         /* release the fence reg _after_ flushing */
2443         ret = i915_gem_object_put_fence(obj);
2444         if (ret)
2445                 return ret;
2446
2447         trace_i915_gem_object_unbind(obj);
2448
2449         if (obj->has_global_gtt_mapping)
2450                 i915_gem_gtt_unbind_object(obj);
2451         if (obj->has_aliasing_ppgtt_mapping) {
2452                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2453                 obj->has_aliasing_ppgtt_mapping = 0;
2454         }
2455         i915_gem_gtt_finish_object(obj);
2456
2457         list_del(&obj->mm_list);
2458         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2459         /* Avoid an unnecessary call to unbind on rebind. */
2460         obj->map_and_fenceable = true;
2461
2462         drm_mm_put_block(obj->gtt_space);
2463         obj->gtt_space = NULL;
2464         obj->gtt_offset = 0;
2465
2466         return 0;
2467 }
2468
2469 static int i915_ring_idle(struct intel_ring_buffer *ring)
2470 {
2471         if (list_empty(&ring->active_list))
2472                 return 0;
2473
2474         return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2475 }
2476
2477 int i915_gpu_idle(struct drm_device *dev)
2478 {
2479         drm_i915_private_t *dev_priv = dev->dev_private;
2480         struct intel_ring_buffer *ring;
2481         int ret, i;
2482
2483         /* Flush everything onto the inactive list. */
2484         for_each_ring(ring, dev_priv, i) {
2485                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2486                 if (ret)
2487                         return ret;
2488
2489                 ret = i915_ring_idle(ring);
2490                 if (ret)
2491                         return ret;
2492         }
2493
2494         return 0;
2495 }
2496
2497 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2498                                         struct drm_i915_gem_object *obj)
2499 {
2500         drm_i915_private_t *dev_priv = dev->dev_private;
2501         uint64_t val;
2502
2503         if (obj) {
2504                 u32 size = obj->gtt_space->size;
2505
2506                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2507                                  0xfffff000) << 32;
2508                 val |= obj->gtt_offset & 0xfffff000;
2509                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2510                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2511
2512                 if (obj->tiling_mode == I915_TILING_Y)
2513                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2514                 val |= I965_FENCE_REG_VALID;
2515         } else
2516                 val = 0;
2517
2518         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2519         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2520 }
2521
2522 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2523                                  struct drm_i915_gem_object *obj)
2524 {
2525         drm_i915_private_t *dev_priv = dev->dev_private;
2526         uint64_t val;
2527
2528         if (obj) {
2529                 u32 size = obj->gtt_space->size;
2530
2531                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2532                                  0xfffff000) << 32;
2533                 val |= obj->gtt_offset & 0xfffff000;
2534                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2535                 if (obj->tiling_mode == I915_TILING_Y)
2536                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2537                 val |= I965_FENCE_REG_VALID;
2538         } else
2539                 val = 0;
2540
2541         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2542         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2543 }
2544
2545 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2546                                  struct drm_i915_gem_object *obj)
2547 {
2548         drm_i915_private_t *dev_priv = dev->dev_private;
2549         u32 val;
2550
2551         if (obj) {
2552                 u32 size = obj->gtt_space->size;
2553                 int pitch_val;
2554                 int tile_width;
2555
2556                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2557                      (size & -size) != size ||
2558                      (obj->gtt_offset & (size - 1)),
2559                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2560                      obj->gtt_offset, obj->map_and_fenceable, size);
2561
2562                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2563                         tile_width = 128;
2564                 else
2565                         tile_width = 512;
2566
2567                 /* Note: pitch better be a power of two tile widths */
2568                 pitch_val = obj->stride / tile_width;
2569                 pitch_val = ffs(pitch_val) - 1;
2570
2571                 val = obj->gtt_offset;
2572                 if (obj->tiling_mode == I915_TILING_Y)
2573                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2574                 val |= I915_FENCE_SIZE_BITS(size);
2575                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2576                 val |= I830_FENCE_REG_VALID;
2577         } else
2578                 val = 0;
2579
2580         if (reg < 8)
2581                 reg = FENCE_REG_830_0 + reg * 4;
2582         else
2583                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2584
2585         I915_WRITE(reg, val);
2586         POSTING_READ(reg);
2587 }
2588
2589 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2590                                 struct drm_i915_gem_object *obj)
2591 {
2592         drm_i915_private_t *dev_priv = dev->dev_private;
2593         uint32_t val;
2594
2595         if (obj) {
2596                 u32 size = obj->gtt_space->size;
2597                 uint32_t pitch_val;
2598
2599                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2600                      (size & -size) != size ||
2601                      (obj->gtt_offset & (size - 1)),
2602                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2603                      obj->gtt_offset, size);
2604
2605                 pitch_val = obj->stride / 128;
2606                 pitch_val = ffs(pitch_val) - 1;
2607
2608                 val = obj->gtt_offset;
2609                 if (obj->tiling_mode == I915_TILING_Y)
2610                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2611                 val |= I830_FENCE_SIZE_BITS(size);
2612                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2613                 val |= I830_FENCE_REG_VALID;
2614         } else
2615                 val = 0;
2616
2617         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2618         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2619 }
2620
2621 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2622                                  struct drm_i915_gem_object *obj)
2623 {
2624         switch (INTEL_INFO(dev)->gen) {
2625         case 7:
2626         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2627         case 5:
2628         case 4: i965_write_fence_reg(dev, reg, obj); break;
2629         case 3: i915_write_fence_reg(dev, reg, obj); break;
2630         case 2: i830_write_fence_reg(dev, reg, obj); break;
2631         default: break;
2632         }
2633 }
2634
2635 static inline int fence_number(struct drm_i915_private *dev_priv,
2636                                struct drm_i915_fence_reg *fence)
2637 {
2638         return fence - dev_priv->fence_regs;
2639 }
2640
2641 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2642                                          struct drm_i915_fence_reg *fence,
2643                                          bool enable)
2644 {
2645         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2646         int reg = fence_number(dev_priv, fence);
2647
2648         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2649
2650         if (enable) {
2651                 obj->fence_reg = reg;
2652                 fence->obj = obj;
2653                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2654         } else {
2655                 obj->fence_reg = I915_FENCE_REG_NONE;
2656                 fence->obj = NULL;
2657                 list_del_init(&fence->lru_list);
2658         }
2659 }
2660
2661 static int
2662 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2663 {
2664         if (obj->last_fenced_seqno) {
2665                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2666                 if (ret)
2667                         return ret;
2668
2669                 obj->last_fenced_seqno = 0;
2670         }
2671
2672         /* Ensure that all CPU reads are completed before installing a fence
2673          * and all writes before removing the fence.
2674          */
2675         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2676                 mb();
2677
2678         obj->fenced_gpu_access = false;
2679         return 0;
2680 }
2681
2682 int
2683 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2684 {
2685         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2686         int ret;
2687
2688         ret = i915_gem_object_flush_fence(obj);
2689         if (ret)
2690                 return ret;
2691
2692         if (obj->fence_reg == I915_FENCE_REG_NONE)
2693                 return 0;
2694
2695         i915_gem_object_update_fence(obj,
2696                                      &dev_priv->fence_regs[obj->fence_reg],
2697                                      false);
2698         i915_gem_object_fence_lost(obj);
2699
2700         return 0;
2701 }
2702
2703 static struct drm_i915_fence_reg *
2704 i915_find_fence_reg(struct drm_device *dev)
2705 {
2706         struct drm_i915_private *dev_priv = dev->dev_private;
2707         struct drm_i915_fence_reg *reg, *avail;
2708         int i;
2709
2710         /* First try to find a free reg */
2711         avail = NULL;
2712         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2713                 reg = &dev_priv->fence_regs[i];
2714                 if (!reg->obj)
2715                         return reg;
2716
2717                 if (!reg->pin_count)
2718                         avail = reg;
2719         }
2720
2721         if (avail == NULL)
2722                 return NULL;
2723
2724         /* None available, try to steal one or wait for a user to finish */
2725         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2726                 if (reg->pin_count)
2727                         continue;
2728
2729                 return reg;
2730         }
2731
2732         return NULL;
2733 }
2734
2735 /**
2736  * i915_gem_object_get_fence - set up fencing for an object
2737  * @obj: object to map through a fence reg
2738  *
2739  * When mapping objects through the GTT, userspace wants to be able to write
2740  * to them without having to worry about swizzling if the object is tiled.
2741  * This function walks the fence regs looking for a free one for @obj,
2742  * stealing one if it can't find any.
2743  *
2744  * It then sets up the reg based on the object's properties: address, pitch
2745  * and tiling format.
2746  *
2747  * For an untiled surface, this removes any existing fence.
2748  */
2749 int
2750 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2751 {
2752         struct drm_device *dev = obj->base.dev;
2753         struct drm_i915_private *dev_priv = dev->dev_private;
2754         bool enable = obj->tiling_mode != I915_TILING_NONE;
2755         struct drm_i915_fence_reg *reg;
2756         int ret;
2757
2758         /* Have we updated the tiling parameters upon the object and so
2759          * will need to serialise the write to the associated fence register?
2760          */
2761         if (obj->fence_dirty) {
2762                 ret = i915_gem_object_flush_fence(obj);
2763                 if (ret)
2764                         return ret;
2765         }
2766
2767         /* Just update our place in the LRU if our fence is getting reused. */
2768         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2769                 reg = &dev_priv->fence_regs[obj->fence_reg];
2770                 if (!obj->fence_dirty) {
2771                         list_move_tail(&reg->lru_list,
2772                                        &dev_priv->mm.fence_list);
2773                         return 0;
2774                 }
2775         } else if (enable) {
2776                 reg = i915_find_fence_reg(dev);
2777                 if (reg == NULL)
2778                         return -EDEADLK;
2779
2780                 if (reg->obj) {
2781                         struct drm_i915_gem_object *old = reg->obj;
2782
2783                         ret = i915_gem_object_flush_fence(old);
2784                         if (ret)
2785                                 return ret;
2786
2787                         i915_gem_object_fence_lost(old);
2788                 }
2789         } else
2790                 return 0;
2791
2792         i915_gem_object_update_fence(obj, reg, enable);
2793         obj->fence_dirty = false;
2794
2795         return 0;
2796 }
2797
2798 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2799                                      struct drm_mm_node *gtt_space,
2800                                      unsigned long cache_level)
2801 {
2802         struct drm_mm_node *other;
2803
2804         /* On non-LLC machines we have to be careful when putting differing
2805          * types of snoopable memory together to avoid the prefetcher
2806          * crossing memory domains and dieing.
2807          */
2808         if (HAS_LLC(dev))
2809                 return true;
2810
2811         if (gtt_space == NULL)
2812                 return true;
2813
2814         if (list_empty(&gtt_space->node_list))
2815                 return true;
2816
2817         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2818         if (other->allocated && !other->hole_follows && other->color != cache_level)
2819                 return false;
2820
2821         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2822         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2823                 return false;
2824
2825         return true;
2826 }
2827
2828 static void i915_gem_verify_gtt(struct drm_device *dev)
2829 {
2830 #if WATCH_GTT
2831         struct drm_i915_private *dev_priv = dev->dev_private;
2832         struct drm_i915_gem_object *obj;
2833         int err = 0;
2834
2835         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2836                 if (obj->gtt_space == NULL) {
2837                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2838                         err++;
2839                         continue;
2840                 }
2841
2842                 if (obj->cache_level != obj->gtt_space->color) {
2843                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2844                                obj->gtt_space->start,
2845                                obj->gtt_space->start + obj->gtt_space->size,
2846                                obj->cache_level,
2847                                obj->gtt_space->color);
2848                         err++;
2849                         continue;
2850                 }
2851
2852                 if (!i915_gem_valid_gtt_space(dev,
2853                                               obj->gtt_space,
2854                                               obj->cache_level)) {
2855                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2856                                obj->gtt_space->start,
2857                                obj->gtt_space->start + obj->gtt_space->size,
2858                                obj->cache_level);
2859                         err++;
2860                         continue;
2861                 }
2862         }
2863
2864         WARN_ON(err);
2865 #endif
2866 }
2867
2868 /**
2869  * Finds free space in the GTT aperture and binds the object there.
2870  */
2871 static int
2872 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2873                             unsigned alignment,
2874                             bool map_and_fenceable,
2875                             bool nonblocking)
2876 {
2877         struct drm_device *dev = obj->base.dev;
2878         drm_i915_private_t *dev_priv = dev->dev_private;
2879         struct drm_mm_node *free_space;
2880         u32 size, fence_size, fence_alignment, unfenced_alignment;
2881         bool mappable, fenceable;
2882         int ret;
2883
2884         if (obj->madv != I915_MADV_WILLNEED) {
2885                 DRM_ERROR("Attempting to bind a purgeable object\n");
2886                 return -EINVAL;
2887         }
2888
2889         fence_size = i915_gem_get_gtt_size(dev,
2890                                            obj->base.size,
2891                                            obj->tiling_mode);
2892         fence_alignment = i915_gem_get_gtt_alignment(dev,
2893                                                      obj->base.size,
2894                                                      obj->tiling_mode);
2895         unfenced_alignment =
2896                 i915_gem_get_unfenced_gtt_alignment(dev,
2897                                                     obj->base.size,
2898                                                     obj->tiling_mode);
2899
2900         if (alignment == 0)
2901                 alignment = map_and_fenceable ? fence_alignment :
2902                                                 unfenced_alignment;
2903         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2904                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2905                 return -EINVAL;
2906         }
2907
2908         size = map_and_fenceable ? fence_size : obj->base.size;
2909
2910         /* If the object is bigger than the entire aperture, reject it early
2911          * before evicting everything in a vain attempt to find space.
2912          */
2913         if (obj->base.size >
2914             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2915                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2916                 return -E2BIG;
2917         }
2918
2919         ret = i915_gem_object_get_pages(obj);
2920         if (ret)
2921                 return ret;
2922
2923  search_free:
2924         if (map_and_fenceable)
2925                 free_space =
2926                         drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2927                                                           size, alignment, obj->cache_level,
2928                                                           0, dev_priv->mm.gtt_mappable_end,
2929                                                           false);
2930         else
2931                 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2932                                                       size, alignment, obj->cache_level,
2933                                                       false);
2934
2935         if (free_space != NULL) {
2936                 if (map_and_fenceable)
2937                         obj->gtt_space =
2938                                 drm_mm_get_block_range_generic(free_space,
2939                                                                size, alignment, obj->cache_level,
2940                                                                0, dev_priv->mm.gtt_mappable_end,
2941                                                                false);
2942                 else
2943                         obj->gtt_space =
2944                                 drm_mm_get_block_generic(free_space,
2945                                                          size, alignment, obj->cache_level,
2946                                                          false);
2947         }
2948         if (obj->gtt_space == NULL) {
2949                 ret = i915_gem_evict_something(dev, size, alignment,
2950                                                obj->cache_level,
2951                                                map_and_fenceable,
2952                                                nonblocking);
2953                 if (ret)
2954                         return ret;
2955
2956                 goto search_free;
2957         }
2958         if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2959                                               obj->gtt_space,
2960                                               obj->cache_level))) {
2961                 drm_mm_put_block(obj->gtt_space);
2962                 obj->gtt_space = NULL;
2963                 return -EINVAL;
2964         }
2965
2966
2967         ret = i915_gem_gtt_prepare_object(obj);
2968         if (ret) {
2969                 drm_mm_put_block(obj->gtt_space);
2970                 obj->gtt_space = NULL;
2971                 return ret;
2972         }
2973
2974         if (!dev_priv->mm.aliasing_ppgtt)
2975                 i915_gem_gtt_bind_object(obj, obj->cache_level);
2976
2977         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2978         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2979
2980         obj->gtt_offset = obj->gtt_space->start;
2981
2982         fenceable =
2983                 obj->gtt_space->size == fence_size &&
2984                 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2985
2986         mappable =
2987                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2988
2989         obj->map_and_fenceable = mappable && fenceable;
2990
2991         trace_i915_gem_object_bind(obj, map_and_fenceable);
2992         i915_gem_verify_gtt(dev);
2993         return 0;
2994 }
2995
2996 void
2997 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2998 {
2999         /* If we don't have a page list set up, then we're not pinned
3000          * to GPU, and we can ignore the cache flush because it'll happen
3001          * again at bind time.
3002          */
3003         if (obj->pages == NULL)
3004                 return;
3005
3006         /* If the GPU is snooping the contents of the CPU cache,
3007          * we do not need to manually clear the CPU cache lines.  However,
3008          * the caches are only snooped when the render cache is
3009          * flushed/invalidated.  As we always have to emit invalidations
3010          * and flushes when moving into and out of the RENDER domain, correct
3011          * snooping behaviour occurs naturally as the result of our domain
3012          * tracking.
3013          */
3014         if (obj->cache_level != I915_CACHE_NONE)
3015                 return;
3016
3017         trace_i915_gem_object_clflush(obj);
3018
3019         drm_clflush_sg(obj->pages);
3020 }
3021
3022 /** Flushes the GTT write domain for the object if it's dirty. */
3023 static void
3024 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3025 {
3026         uint32_t old_write_domain;
3027
3028         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3029                 return;
3030
3031         /* No actual flushing is required for the GTT write domain.  Writes
3032          * to it immediately go to main memory as far as we know, so there's
3033          * no chipset flush.  It also doesn't land in render cache.
3034          *
3035          * However, we do have to enforce the order so that all writes through
3036          * the GTT land before any writes to the device, such as updates to
3037          * the GATT itself.
3038          */
3039         wmb();
3040
3041         old_write_domain = obj->base.write_domain;
3042         obj->base.write_domain = 0;
3043
3044         trace_i915_gem_object_change_domain(obj,
3045                                             obj->base.read_domains,
3046                                             old_write_domain);
3047 }
3048
3049 /** Flushes the CPU write domain for the object if it's dirty. */
3050 static void
3051 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3052 {
3053         uint32_t old_write_domain;
3054
3055         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3056                 return;
3057
3058         i915_gem_clflush_object(obj);
3059         intel_gtt_chipset_flush();
3060         old_write_domain = obj->base.write_domain;
3061         obj->base.write_domain = 0;
3062
3063         trace_i915_gem_object_change_domain(obj,
3064                                             obj->base.read_domains,
3065                                             old_write_domain);
3066 }
3067
3068 /**
3069  * Moves a single object to the GTT read, and possibly write domain.
3070  *
3071  * This function returns when the move is complete, including waiting on
3072  * flushes to occur.
3073  */
3074 int
3075 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3076 {
3077         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3078         uint32_t old_write_domain, old_read_domains;
3079         int ret;
3080
3081         /* Not valid to be called on unbound objects. */
3082         if (obj->gtt_space == NULL)
3083                 return -EINVAL;
3084
3085         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3086                 return 0;
3087
3088         ret = i915_gem_object_wait_rendering(obj, !write);
3089         if (ret)
3090                 return ret;
3091
3092         i915_gem_object_flush_cpu_write_domain(obj);
3093
3094         old_write_domain = obj->base.write_domain;
3095         old_read_domains = obj->base.read_domains;
3096
3097         /* It should now be out of any other write domains, and we can update
3098          * the domain values for our changes.
3099          */
3100         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3101         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3102         if (write) {
3103                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3104                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3105                 obj->dirty = 1;
3106         }
3107
3108         trace_i915_gem_object_change_domain(obj,
3109                                             old_read_domains,
3110                                             old_write_domain);
3111
3112         /* And bump the LRU for this access */
3113         if (i915_gem_object_is_inactive(obj))
3114                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3115
3116         return 0;
3117 }
3118
3119 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3120                                     enum i915_cache_level cache_level)
3121 {
3122         struct drm_device *dev = obj->base.dev;
3123         drm_i915_private_t *dev_priv = dev->dev_private;
3124         int ret;
3125
3126         if (obj->cache_level == cache_level)
3127                 return 0;
3128
3129         if (obj->pin_count) {
3130                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3131                 return -EBUSY;
3132         }
3133
3134         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3135                 ret = i915_gem_object_unbind(obj);
3136                 if (ret)
3137                         return ret;
3138         }
3139
3140         if (obj->gtt_space) {
3141                 ret = i915_gem_object_finish_gpu(obj);
3142                 if (ret)
3143                         return ret;
3144
3145                 i915_gem_object_finish_gtt(obj);
3146
3147                 /* Before SandyBridge, you could not use tiling or fence
3148                  * registers with snooped memory, so relinquish any fences
3149                  * currently pointing to our region in the aperture.
3150                  */
3151                 if (INTEL_INFO(dev)->gen < 6) {
3152                         ret = i915_gem_object_put_fence(obj);
3153                         if (ret)
3154                                 return ret;
3155                 }
3156
3157                 if (obj->has_global_gtt_mapping)
3158                         i915_gem_gtt_bind_object(obj, cache_level);
3159                 if (obj->has_aliasing_ppgtt_mapping)
3160                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3161                                                obj, cache_level);
3162
3163                 obj->gtt_space->color = cache_level;
3164         }
3165
3166         if (cache_level == I915_CACHE_NONE) {
3167                 u32 old_read_domains, old_write_domain;
3168
3169                 /* If we're coming from LLC cached, then we haven't
3170                  * actually been tracking whether the data is in the
3171                  * CPU cache or not, since we only allow one bit set
3172                  * in obj->write_domain and have been skipping the clflushes.
3173                  * Just set it to the CPU cache for now.
3174                  */
3175                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3176                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3177
3178                 old_read_domains = obj->base.read_domains;
3179                 old_write_domain = obj->base.write_domain;
3180
3181                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3182                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3183
3184                 trace_i915_gem_object_change_domain(obj,
3185                                                     old_read_domains,
3186                                                     old_write_domain);
3187         }
3188
3189         obj->cache_level = cache_level;
3190         i915_gem_verify_gtt(dev);
3191         return 0;
3192 }
3193
3194 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3195                                struct drm_file *file)
3196 {
3197         struct drm_i915_gem_caching *args = data;
3198         struct drm_i915_gem_object *obj;
3199         int ret;
3200
3201         ret = i915_mutex_lock_interruptible(dev);
3202         if (ret)
3203                 return ret;
3204
3205         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3206         if (&obj->base == NULL) {
3207                 ret = -ENOENT;
3208                 goto unlock;
3209         }
3210
3211         args->caching = obj->cache_level != I915_CACHE_NONE;
3212
3213         drm_gem_object_unreference(&obj->base);
3214 unlock:
3215         mutex_unlock(&dev->struct_mutex);
3216         return ret;
3217 }
3218
3219 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3220                                struct drm_file *file)
3221 {
3222         struct drm_i915_gem_caching *args = data;
3223         struct drm_i915_gem_object *obj;
3224         enum i915_cache_level level;
3225         int ret;
3226
3227         switch (args->caching) {
3228         case I915_CACHING_NONE:
3229                 level = I915_CACHE_NONE;
3230                 break;
3231         case I915_CACHING_CACHED:
3232                 level = I915_CACHE_LLC;
3233                 break;
3234         default:
3235                 return -EINVAL;
3236         }
3237
3238         ret = i915_mutex_lock_interruptible(dev);
3239         if (ret)
3240                 return ret;
3241
3242         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3243         if (&obj->base == NULL) {
3244                 ret = -ENOENT;
3245                 goto unlock;
3246         }
3247
3248         ret = i915_gem_object_set_cache_level(obj, level);
3249
3250         drm_gem_object_unreference(&obj->base);
3251 unlock:
3252         mutex_unlock(&dev->struct_mutex);
3253         return ret;
3254 }
3255
3256 /*
3257  * Prepare buffer for display plane (scanout, cursors, etc).
3258  * Can be called from an uninterruptible phase (modesetting) and allows
3259  * any flushes to be pipelined (for pageflips).
3260  */
3261 int
3262 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3263                                      u32 alignment,
3264                                      struct intel_ring_buffer *pipelined)
3265 {
3266         u32 old_read_domains, old_write_domain;
3267         int ret;
3268
3269         if (pipelined != obj->ring) {
3270                 ret = i915_gem_object_sync(obj, pipelined);
3271                 if (ret)
3272                         return ret;
3273         }
3274
3275         /* The display engine is not coherent with the LLC cache on gen6.  As
3276          * a result, we make sure that the pinning that is about to occur is
3277          * done with uncached PTEs. This is lowest common denominator for all
3278          * chipsets.
3279          *
3280          * However for gen6+, we could do better by using the GFDT bit instead
3281          * of uncaching, which would allow us to flush all the LLC-cached data
3282          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3283          */
3284         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3285         if (ret)
3286                 return ret;
3287
3288         /* As the user may map the buffer once pinned in the display plane
3289          * (e.g. libkms for the bootup splash), we have to ensure that we
3290          * always use map_and_fenceable for all scanout buffers.
3291          */
3292         ret = i915_gem_object_pin(obj, alignment, true, false);
3293         if (ret)
3294                 return ret;
3295
3296         i915_gem_object_flush_cpu_write_domain(obj);
3297
3298         old_write_domain = obj->base.write_domain;
3299         old_read_domains = obj->base.read_domains;
3300
3301         /* It should now be out of any other write domains, and we can update
3302          * the domain values for our changes.
3303          */
3304         obj->base.write_domain = 0;
3305         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3306
3307         trace_i915_gem_object_change_domain(obj,
3308                                             old_read_domains,
3309                                             old_write_domain);
3310
3311         return 0;
3312 }
3313
3314 int
3315 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3316 {
3317         int ret;
3318
3319         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3320                 return 0;
3321
3322         ret = i915_gem_object_wait_rendering(obj, false);
3323         if (ret)
3324                 return ret;
3325
3326         /* Ensure that we invalidate the GPU's caches and TLBs. */
3327         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3328         return 0;
3329 }
3330
3331 /**
3332  * Moves a single object to the CPU read, and possibly write domain.
3333  *
3334  * This function returns when the move is complete, including waiting on
3335  * flushes to occur.
3336  */
3337 int
3338 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3339 {
3340         uint32_t old_write_domain, old_read_domains;
3341         int ret;
3342
3343         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3344                 return 0;
3345
3346         ret = i915_gem_object_wait_rendering(obj, !write);
3347         if (ret)
3348                 return ret;
3349
3350         i915_gem_object_flush_gtt_write_domain(obj);
3351
3352         old_write_domain = obj->base.write_domain;
3353         old_read_domains = obj->base.read_domains;
3354
3355         /* Flush the CPU cache if it's still invalid. */
3356         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3357                 i915_gem_clflush_object(obj);
3358
3359                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3360         }
3361
3362         /* It should now be out of any other write domains, and we can update
3363          * the domain values for our changes.
3364          */
3365         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3366
3367         /* If we're writing through the CPU, then the GPU read domains will
3368          * need to be invalidated at next use.
3369          */
3370         if (write) {
3371                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3372                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3373         }
3374
3375         trace_i915_gem_object_change_domain(obj,
3376                                             old_read_domains,
3377                                             old_write_domain);
3378
3379         return 0;
3380 }
3381
3382 /* Throttle our rendering by waiting until the ring has completed our requests
3383  * emitted over 20 msec ago.
3384  *
3385  * Note that if we were to use the current jiffies each time around the loop,
3386  * we wouldn't escape the function with any frames outstanding if the time to
3387  * render a frame was over 20ms.
3388  *
3389  * This should get us reasonable parallelism between CPU and GPU but also
3390  * relatively low latency when blocking on a particular request to finish.
3391  */
3392 static int
3393 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3394 {
3395         struct drm_i915_private *dev_priv = dev->dev_private;
3396         struct drm_i915_file_private *file_priv = file->driver_priv;
3397         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3398         struct drm_i915_gem_request *request;
3399         struct intel_ring_buffer *ring = NULL;
3400         u32 seqno = 0;
3401         int ret;
3402
3403         if (atomic_read(&dev_priv->mm.wedged))
3404                 return -EIO;
3405
3406         spin_lock(&file_priv->mm.lock);
3407         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3408                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3409                         break;
3410
3411                 ring = request->ring;
3412                 seqno = request->seqno;
3413         }
3414         spin_unlock(&file_priv->mm.lock);
3415
3416         if (seqno == 0)
3417                 return 0;
3418
3419         ret = __wait_seqno(ring, seqno, true, NULL);
3420         if (ret == 0)
3421                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3422
3423         return ret;
3424 }
3425
3426 int
3427 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3428                     uint32_t alignment,
3429                     bool map_and_fenceable,
3430                     bool nonblocking)
3431 {
3432         int ret;
3433
3434         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3435                 return -EBUSY;
3436
3437         if (obj->gtt_space != NULL) {
3438                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3439                     (map_and_fenceable && !obj->map_and_fenceable)) {
3440                         WARN(obj->pin_count,
3441                              "bo is already pinned with incorrect alignment:"
3442                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3443                              " obj->map_and_fenceable=%d\n",
3444                              obj->gtt_offset, alignment,
3445                              map_and_fenceable,
3446                              obj->map_and_fenceable);
3447                         ret = i915_gem_object_unbind(obj);
3448                         if (ret)
3449                                 return ret;
3450                 }
3451         }
3452
3453         if (obj->gtt_space == NULL) {
3454                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3455                                                   map_and_fenceable,
3456                                                   nonblocking);
3457                 if (ret)
3458                         return ret;
3459         }
3460
3461         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3462                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3463
3464         obj->pin_count++;
3465         obj->pin_mappable |= map_and_fenceable;
3466
3467         return 0;
3468 }
3469
3470 void
3471 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3472 {
3473         BUG_ON(obj->pin_count == 0);
3474         BUG_ON(obj->gtt_space == NULL);
3475
3476         if (--obj->pin_count == 0)
3477                 obj->pin_mappable = false;
3478 }
3479
3480 int
3481 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3482                    struct drm_file *file)
3483 {
3484         struct drm_i915_gem_pin *args = data;
3485         struct drm_i915_gem_object *obj;
3486         int ret;
3487
3488         ret = i915_mutex_lock_interruptible(dev);
3489         if (ret)
3490                 return ret;
3491
3492         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3493         if (&obj->base == NULL) {
3494                 ret = -ENOENT;
3495                 goto unlock;
3496         }
3497
3498         if (obj->madv != I915_MADV_WILLNEED) {
3499                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3500                 ret = -EINVAL;
3501                 goto out;
3502         }
3503
3504         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3505                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3506                           args->handle);
3507                 ret = -EINVAL;
3508                 goto out;
3509         }
3510
3511         obj->user_pin_count++;
3512         obj->pin_filp = file;
3513         if (obj->user_pin_count == 1) {
3514                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3515                 if (ret)
3516                         goto out;
3517         }
3518
3519         /* XXX - flush the CPU caches for pinned objects
3520          * as the X server doesn't manage domains yet
3521          */
3522         i915_gem_object_flush_cpu_write_domain(obj);
3523         args->offset = obj->gtt_offset;
3524 out:
3525         drm_gem_object_unreference(&obj->base);
3526 unlock:
3527         mutex_unlock(&dev->struct_mutex);
3528         return ret;
3529 }
3530
3531 int
3532 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3533                      struct drm_file *file)
3534 {
3535         struct drm_i915_gem_pin *args = data;
3536         struct drm_i915_gem_object *obj;
3537         int ret;
3538
3539         ret = i915_mutex_lock_interruptible(dev);
3540         if (ret)
3541                 return ret;
3542
3543         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3544         if (&obj->base == NULL) {
3545                 ret = -ENOENT;
3546                 goto unlock;
3547         }
3548
3549         if (obj->pin_filp != file) {
3550                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3551                           args->handle);
3552                 ret = -EINVAL;
3553                 goto out;
3554         }
3555         obj->user_pin_count--;
3556         if (obj->user_pin_count == 0) {
3557                 obj->pin_filp = NULL;
3558                 i915_gem_object_unpin(obj);
3559         }
3560
3561 out:
3562         drm_gem_object_unreference(&obj->base);
3563 unlock:
3564         mutex_unlock(&dev->struct_mutex);
3565         return ret;
3566 }
3567
3568 int
3569 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3570                     struct drm_file *file)
3571 {
3572         struct drm_i915_gem_busy *args = data;
3573         struct drm_i915_gem_object *obj;
3574         int ret;
3575
3576         ret = i915_mutex_lock_interruptible(dev);
3577         if (ret)
3578                 return ret;
3579
3580         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3581         if (&obj->base == NULL) {
3582                 ret = -ENOENT;
3583                 goto unlock;
3584         }
3585
3586         /* Count all active objects as busy, even if they are currently not used
3587          * by the gpu. Users of this interface expect objects to eventually
3588          * become non-busy without any further actions, therefore emit any
3589          * necessary flushes here.
3590          */
3591         ret = i915_gem_object_flush_active(obj);
3592
3593         args->busy = obj->active;
3594         if (obj->ring) {
3595                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3596                 args->busy |= intel_ring_flag(obj->ring) << 16;
3597         }
3598
3599         drm_gem_object_unreference(&obj->base);
3600 unlock:
3601         mutex_unlock(&dev->struct_mutex);
3602         return ret;
3603 }
3604
3605 int
3606 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3607                         struct drm_file *file_priv)
3608 {
3609         return i915_gem_ring_throttle(dev, file_priv);
3610 }
3611
3612 int
3613 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3614                        struct drm_file *file_priv)
3615 {
3616         struct drm_i915_gem_madvise *args = data;
3617         struct drm_i915_gem_object *obj;
3618         int ret;
3619
3620         switch (args->madv) {
3621         case I915_MADV_DONTNEED:
3622         case I915_MADV_WILLNEED:
3623             break;
3624         default:
3625             return -EINVAL;
3626         }
3627
3628         ret = i915_mutex_lock_interruptible(dev);
3629         if (ret)
3630                 return ret;
3631
3632         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3633         if (&obj->base == NULL) {
3634                 ret = -ENOENT;
3635                 goto unlock;
3636         }
3637
3638         if (obj->pin_count) {
3639                 ret = -EINVAL;
3640                 goto out;
3641         }
3642
3643         if (obj->madv != __I915_MADV_PURGED)
3644                 obj->madv = args->madv;
3645
3646         /* if the object is no longer attached, discard its backing storage */
3647         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3648                 i915_gem_object_truncate(obj);
3649
3650         args->retained = obj->madv != __I915_MADV_PURGED;
3651
3652 out:
3653         drm_gem_object_unreference(&obj->base);
3654 unlock:
3655         mutex_unlock(&dev->struct_mutex);
3656         return ret;
3657 }
3658
3659 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3660                           const struct drm_i915_gem_object_ops *ops)
3661 {
3662         INIT_LIST_HEAD(&obj->mm_list);
3663         INIT_LIST_HEAD(&obj->gtt_list);
3664         INIT_LIST_HEAD(&obj->ring_list);
3665         INIT_LIST_HEAD(&obj->exec_list);
3666
3667         obj->ops = ops;
3668
3669         obj->fence_reg = I915_FENCE_REG_NONE;
3670         obj->madv = I915_MADV_WILLNEED;
3671         /* Avoid an unnecessary call to unbind on the first bind. */
3672         obj->map_and_fenceable = true;
3673
3674         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3675 }
3676
3677 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3678         .get_pages = i915_gem_object_get_pages_gtt,
3679         .put_pages = i915_gem_object_put_pages_gtt,
3680 };
3681
3682 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3683                                                   size_t size)
3684 {
3685         struct drm_i915_gem_object *obj;
3686         struct address_space *mapping;
3687         u32 mask;
3688
3689         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3690         if (obj == NULL)
3691                 return NULL;
3692
3693         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3694                 kfree(obj);
3695                 return NULL;
3696         }
3697
3698         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3699         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3700                 /* 965gm cannot relocate objects above 4GiB. */
3701                 mask &= ~__GFP_HIGHMEM;
3702                 mask |= __GFP_DMA32;
3703         }
3704
3705         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3706         mapping_set_gfp_mask(mapping, mask);
3707
3708         i915_gem_object_init(obj, &i915_gem_object_ops);
3709
3710         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3711         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3712
3713         if (HAS_LLC(dev)) {
3714                 /* On some devices, we can have the GPU use the LLC (the CPU
3715                  * cache) for about a 10% performance improvement
3716                  * compared to uncached.  Graphics requests other than
3717                  * display scanout are coherent with the CPU in
3718                  * accessing this cache.  This means in this mode we
3719                  * don't need to clflush on the CPU side, and on the
3720                  * GPU side we only need to flush internal caches to
3721                  * get data visible to the CPU.
3722                  *
3723                  * However, we maintain the display planes as UC, and so
3724                  * need to rebind when first used as such.
3725                  */
3726                 obj->cache_level = I915_CACHE_LLC;
3727         } else
3728                 obj->cache_level = I915_CACHE_NONE;
3729
3730         return obj;
3731 }
3732
3733 int i915_gem_init_object(struct drm_gem_object *obj)
3734 {
3735         BUG();
3736
3737         return 0;
3738 }
3739
3740 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3741 {
3742         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3743         struct drm_device *dev = obj->base.dev;
3744         drm_i915_private_t *dev_priv = dev->dev_private;
3745
3746         trace_i915_gem_object_destroy(obj);
3747
3748         if (obj->phys_obj)
3749                 i915_gem_detach_phys_object(dev, obj);
3750
3751         obj->pin_count = 0;
3752         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3753                 bool was_interruptible;
3754
3755                 was_interruptible = dev_priv->mm.interruptible;
3756                 dev_priv->mm.interruptible = false;
3757
3758                 WARN_ON(i915_gem_object_unbind(obj));
3759
3760                 dev_priv->mm.interruptible = was_interruptible;
3761         }
3762
3763         obj->pages_pin_count = 0;
3764         i915_gem_object_put_pages(obj);
3765         i915_gem_object_free_mmap_offset(obj);
3766
3767         BUG_ON(obj->pages);
3768
3769         if (obj->base.import_attach)
3770                 drm_prime_gem_destroy(&obj->base, NULL);
3771
3772         drm_gem_object_release(&obj->base);
3773         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3774
3775         kfree(obj->bit_17);
3776         kfree(obj);
3777 }
3778
3779 int
3780 i915_gem_idle(struct drm_device *dev)
3781 {
3782         drm_i915_private_t *dev_priv = dev->dev_private;
3783         int ret;
3784
3785         mutex_lock(&dev->struct_mutex);
3786
3787         if (dev_priv->mm.suspended) {
3788                 mutex_unlock(&dev->struct_mutex);
3789                 return 0;
3790         }
3791
3792         ret = i915_gpu_idle(dev);
3793         if (ret) {
3794                 mutex_unlock(&dev->struct_mutex);
3795                 return ret;
3796         }
3797         i915_gem_retire_requests(dev);
3798
3799         /* Under UMS, be paranoid and evict. */
3800         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3801                 i915_gem_evict_everything(dev);
3802
3803         i915_gem_reset_fences(dev);
3804
3805         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3806          * We need to replace this with a semaphore, or something.
3807          * And not confound mm.suspended!
3808          */
3809         dev_priv->mm.suspended = 1;
3810         del_timer_sync(&dev_priv->hangcheck_timer);
3811
3812         i915_kernel_lost_context(dev);
3813         i915_gem_cleanup_ringbuffer(dev);
3814
3815         mutex_unlock(&dev->struct_mutex);
3816
3817         /* Cancel the retire work handler, which should be idle now. */
3818         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3819
3820         return 0;
3821 }
3822
3823 void i915_gem_l3_remap(struct drm_device *dev)
3824 {
3825         drm_i915_private_t *dev_priv = dev->dev_private;
3826         u32 misccpctl;
3827         int i;
3828
3829         if (!IS_IVYBRIDGE(dev))
3830                 return;
3831
3832         if (!dev_priv->mm.l3_remap_info)
3833                 return;
3834
3835         misccpctl = I915_READ(GEN7_MISCCPCTL);
3836         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3837         POSTING_READ(GEN7_MISCCPCTL);
3838
3839         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3840                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3841                 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3842                         DRM_DEBUG("0x%x was already programmed to %x\n",
3843                                   GEN7_L3LOG_BASE + i, remap);
3844                 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3845                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3846                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3847         }
3848
3849         /* Make sure all the writes land before disabling dop clock gating */
3850         POSTING_READ(GEN7_L3LOG_BASE);
3851
3852         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3853 }
3854
3855 void i915_gem_init_swizzling(struct drm_device *dev)
3856 {
3857         drm_i915_private_t *dev_priv = dev->dev_private;
3858
3859         if (INTEL_INFO(dev)->gen < 5 ||
3860             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3861                 return;
3862
3863         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3864                                  DISP_TILE_SURFACE_SWIZZLING);
3865
3866         if (IS_GEN5(dev))
3867                 return;
3868
3869         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3870         if (IS_GEN6(dev))
3871                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3872         else
3873                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3874 }
3875
3876 void i915_gem_init_ppgtt(struct drm_device *dev)
3877 {
3878         drm_i915_private_t *dev_priv = dev->dev_private;
3879         uint32_t pd_offset;
3880         struct intel_ring_buffer *ring;
3881         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3882         uint32_t __iomem *pd_addr;
3883         uint32_t pd_entry;
3884         int i;
3885
3886         if (!dev_priv->mm.aliasing_ppgtt)
3887                 return;
3888
3889
3890         pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3891         for (i = 0; i < ppgtt->num_pd_entries; i++) {
3892                 dma_addr_t pt_addr;
3893
3894                 if (dev_priv->mm.gtt->needs_dmar)
3895                         pt_addr = ppgtt->pt_dma_addr[i];
3896                 else
3897                         pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3898
3899                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3900                 pd_entry |= GEN6_PDE_VALID;
3901
3902                 writel(pd_entry, pd_addr + i);
3903         }
3904         readl(pd_addr);
3905
3906         pd_offset = ppgtt->pd_offset;
3907         pd_offset /= 64; /* in cachelines, */
3908         pd_offset <<= 16;
3909
3910         if (INTEL_INFO(dev)->gen == 6) {
3911                 uint32_t ecochk, gab_ctl, ecobits;
3912
3913                 ecobits = I915_READ(GAC_ECO_BITS); 
3914                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3915
3916                 gab_ctl = I915_READ(GAB_CTL);
3917                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3918
3919                 ecochk = I915_READ(GAM_ECOCHK);
3920                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3921                                        ECOCHK_PPGTT_CACHE64B);
3922                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3923         } else if (INTEL_INFO(dev)->gen >= 7) {
3924                 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3925                 /* GFX_MODE is per-ring on gen7+ */
3926         }
3927
3928         for_each_ring(ring, dev_priv, i) {
3929                 if (INTEL_INFO(dev)->gen >= 7)
3930                         I915_WRITE(RING_MODE_GEN7(ring),
3931                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3932
3933                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3934                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3935         }
3936 }
3937
3938 static bool
3939 intel_enable_blt(struct drm_device *dev)
3940 {
3941         if (!HAS_BLT(dev))
3942                 return false;
3943
3944         /* The blitter was dysfunctional on early prototypes */
3945         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3946                 DRM_INFO("BLT not supported on this pre-production hardware;"
3947                          " graphics performance will be degraded.\n");
3948                 return false;
3949         }
3950
3951         return true;
3952 }
3953
3954 int
3955 i915_gem_init_hw(struct drm_device *dev)
3956 {
3957         drm_i915_private_t *dev_priv = dev->dev_private;
3958         int ret;
3959
3960         if (!intel_enable_gtt())
3961                 return -EIO;
3962
3963         i915_gem_l3_remap(dev);
3964
3965         i915_gem_init_swizzling(dev);
3966
3967         ret = intel_init_render_ring_buffer(dev);
3968         if (ret)
3969                 return ret;
3970
3971         if (HAS_BSD(dev)) {
3972                 ret = intel_init_bsd_ring_buffer(dev);
3973                 if (ret)
3974                         goto cleanup_render_ring;
3975         }
3976
3977         if (intel_enable_blt(dev)) {
3978                 ret = intel_init_blt_ring_buffer(dev);
3979                 if (ret)
3980                         goto cleanup_bsd_ring;
3981         }
3982
3983         dev_priv->next_seqno = 1;
3984
3985         /*
3986          * XXX: There was some w/a described somewhere suggesting loading
3987          * contexts before PPGTT.
3988          */
3989         i915_gem_context_init(dev);
3990         i915_gem_init_ppgtt(dev);
3991
3992         return 0;
3993
3994 cleanup_bsd_ring:
3995         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3996 cleanup_render_ring:
3997         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3998         return ret;
3999 }
4000
4001 static bool
4002 intel_enable_ppgtt(struct drm_device *dev)
4003 {
4004         if (i915_enable_ppgtt >= 0)
4005                 return i915_enable_ppgtt;
4006
4007 #ifdef CONFIG_INTEL_IOMMU
4008         /* Disable ppgtt on SNB if VT-d is on. */
4009         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4010                 return false;
4011 #endif
4012
4013         return true;
4014 }
4015
4016 int i915_gem_init(struct drm_device *dev)
4017 {
4018         struct drm_i915_private *dev_priv = dev->dev_private;
4019         unsigned long gtt_size, mappable_size;
4020         int ret;
4021
4022         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4023         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4024
4025         mutex_lock(&dev->struct_mutex);
4026         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4027                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4028                  * aperture accordingly when using aliasing ppgtt. */
4029                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4030
4031                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4032
4033                 ret = i915_gem_init_aliasing_ppgtt(dev);
4034                 if (ret) {
4035                         mutex_unlock(&dev->struct_mutex);
4036                         return ret;
4037                 }
4038         } else {
4039                 /* Let GEM Manage all of the aperture.
4040                  *
4041                  * However, leave one page at the end still bound to the scratch
4042                  * page.  There are a number of places where the hardware
4043                  * apparently prefetches past the end of the object, and we've
4044                  * seen multiple hangs with the GPU head pointer stuck in a
4045                  * batchbuffer bound at the last page of the aperture.  One page
4046                  * should be enough to keep any prefetching inside of the
4047                  * aperture.
4048                  */
4049                 i915_gem_init_global_gtt(dev, 0, mappable_size,
4050                                          gtt_size);
4051         }
4052
4053         ret = i915_gem_init_hw(dev);
4054         mutex_unlock(&dev->struct_mutex);
4055         if (ret) {
4056                 i915_gem_cleanup_aliasing_ppgtt(dev);
4057                 return ret;
4058         }
4059
4060         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4061         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4062                 dev_priv->dri1.allow_batchbuffer = 1;
4063         return 0;
4064 }
4065
4066 void
4067 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4068 {
4069         drm_i915_private_t *dev_priv = dev->dev_private;
4070         struct intel_ring_buffer *ring;
4071         int i;
4072
4073         for_each_ring(ring, dev_priv, i)
4074                 intel_cleanup_ring_buffer(ring);
4075 }
4076
4077 int
4078 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4079                        struct drm_file *file_priv)
4080 {
4081         drm_i915_private_t *dev_priv = dev->dev_private;
4082         int ret;
4083
4084         if (drm_core_check_feature(dev, DRIVER_MODESET))
4085                 return 0;
4086
4087         if (atomic_read(&dev_priv->mm.wedged)) {
4088                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4089                 atomic_set(&dev_priv->mm.wedged, 0);
4090         }
4091
4092         mutex_lock(&dev->struct_mutex);
4093         dev_priv->mm.suspended = 0;
4094
4095         ret = i915_gem_init_hw(dev);
4096         if (ret != 0) {
4097                 mutex_unlock(&dev->struct_mutex);
4098                 return ret;
4099         }
4100
4101         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4102         mutex_unlock(&dev->struct_mutex);
4103
4104         ret = drm_irq_install(dev);
4105         if (ret)
4106                 goto cleanup_ringbuffer;
4107
4108         return 0;
4109
4110 cleanup_ringbuffer:
4111         mutex_lock(&dev->struct_mutex);
4112         i915_gem_cleanup_ringbuffer(dev);
4113         dev_priv->mm.suspended = 1;
4114         mutex_unlock(&dev->struct_mutex);
4115
4116         return ret;
4117 }
4118
4119 int
4120 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4121                        struct drm_file *file_priv)
4122 {
4123         if (drm_core_check_feature(dev, DRIVER_MODESET))
4124                 return 0;
4125
4126         drm_irq_uninstall(dev);
4127         return i915_gem_idle(dev);
4128 }
4129
4130 void
4131 i915_gem_lastclose(struct drm_device *dev)
4132 {
4133         int ret;
4134
4135         if (drm_core_check_feature(dev, DRIVER_MODESET))
4136                 return;
4137
4138         ret = i915_gem_idle(dev);
4139         if (ret)
4140                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4141 }
4142
4143 static void
4144 init_ring_lists(struct intel_ring_buffer *ring)
4145 {
4146         INIT_LIST_HEAD(&ring->active_list);
4147         INIT_LIST_HEAD(&ring->request_list);
4148 }
4149
4150 void
4151 i915_gem_load(struct drm_device *dev)
4152 {
4153         int i;
4154         drm_i915_private_t *dev_priv = dev->dev_private;
4155
4156         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4157         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4158         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4159         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4160         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4161         for (i = 0; i < I915_NUM_RINGS; i++)
4162                 init_ring_lists(&dev_priv->ring[i]);
4163         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4164                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4165         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4166                           i915_gem_retire_work_handler);
4167         init_completion(&dev_priv->error_completion);
4168
4169         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4170         if (IS_GEN3(dev)) {
4171                 I915_WRITE(MI_ARB_STATE,
4172                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4173         }
4174
4175         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4176
4177         /* Old X drivers will take 0-2 for front, back, depth buffers */
4178         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4179                 dev_priv->fence_reg_start = 3;
4180
4181         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4182                 dev_priv->num_fence_regs = 16;
4183         else
4184                 dev_priv->num_fence_regs = 8;
4185
4186         /* Initialize fence registers to zero */
4187         i915_gem_reset_fences(dev);
4188
4189         i915_gem_detect_bit_6_swizzle(dev);
4190         init_waitqueue_head(&dev_priv->pending_flip_queue);
4191
4192         dev_priv->mm.interruptible = true;
4193
4194         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4195         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4196         register_shrinker(&dev_priv->mm.inactive_shrinker);
4197 }
4198
4199 /*
4200  * Create a physically contiguous memory object for this object
4201  * e.g. for cursor + overlay regs
4202  */
4203 static int i915_gem_init_phys_object(struct drm_device *dev,
4204                                      int id, int size, int align)
4205 {
4206         drm_i915_private_t *dev_priv = dev->dev_private;
4207         struct drm_i915_gem_phys_object *phys_obj;
4208         int ret;
4209
4210         if (dev_priv->mm.phys_objs[id - 1] || !size)
4211                 return 0;
4212
4213         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4214         if (!phys_obj)
4215                 return -ENOMEM;
4216
4217         phys_obj->id = id;
4218
4219         phys_obj->handle = drm_pci_alloc(dev, size, align);
4220         if (!phys_obj->handle) {
4221                 ret = -ENOMEM;
4222                 goto kfree_obj;
4223         }
4224 #ifdef CONFIG_X86
4225         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4226 #endif
4227
4228         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4229
4230         return 0;
4231 kfree_obj:
4232         kfree(phys_obj);
4233         return ret;
4234 }
4235
4236 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4237 {
4238         drm_i915_private_t *dev_priv = dev->dev_private;
4239         struct drm_i915_gem_phys_object *phys_obj;
4240
4241         if (!dev_priv->mm.phys_objs[id - 1])
4242                 return;
4243
4244         phys_obj = dev_priv->mm.phys_objs[id - 1];
4245         if (phys_obj->cur_obj) {
4246                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4247         }
4248
4249 #ifdef CONFIG_X86
4250         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4251 #endif
4252         drm_pci_free(dev, phys_obj->handle);
4253         kfree(phys_obj);
4254         dev_priv->mm.phys_objs[id - 1] = NULL;
4255 }
4256
4257 void i915_gem_free_all_phys_object(struct drm_device *dev)
4258 {
4259         int i;
4260
4261         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4262                 i915_gem_free_phys_object(dev, i);
4263 }
4264
4265 void i915_gem_detach_phys_object(struct drm_device *dev,
4266                                  struct drm_i915_gem_object *obj)
4267 {
4268         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4269         char *vaddr;
4270         int i;
4271         int page_count;
4272
4273         if (!obj->phys_obj)
4274                 return;
4275         vaddr = obj->phys_obj->handle->vaddr;
4276
4277         page_count = obj->base.size / PAGE_SIZE;
4278         for (i = 0; i < page_count; i++) {
4279                 struct page *page = shmem_read_mapping_page(mapping, i);
4280                 if (!IS_ERR(page)) {
4281                         char *dst = kmap_atomic(page);
4282                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4283                         kunmap_atomic(dst);
4284
4285                         drm_clflush_pages(&page, 1);
4286
4287                         set_page_dirty(page);
4288                         mark_page_accessed(page);
4289                         page_cache_release(page);
4290                 }
4291         }
4292         intel_gtt_chipset_flush();
4293
4294         obj->phys_obj->cur_obj = NULL;
4295         obj->phys_obj = NULL;
4296 }
4297
4298 int
4299 i915_gem_attach_phys_object(struct drm_device *dev,
4300                             struct drm_i915_gem_object *obj,
4301                             int id,
4302                             int align)
4303 {
4304         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4305         drm_i915_private_t *dev_priv = dev->dev_private;
4306         int ret = 0;
4307         int page_count;
4308         int i;
4309
4310         if (id > I915_MAX_PHYS_OBJECT)
4311                 return -EINVAL;
4312
4313         if (obj->phys_obj) {
4314                 if (obj->phys_obj->id == id)
4315                         return 0;
4316                 i915_gem_detach_phys_object(dev, obj);
4317         }
4318
4319         /* create a new object */
4320         if (!dev_priv->mm.phys_objs[id - 1]) {
4321                 ret = i915_gem_init_phys_object(dev, id,
4322                                                 obj->base.size, align);
4323                 if (ret) {
4324                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4325                                   id, obj->base.size);
4326                         return ret;
4327                 }
4328         }
4329
4330         /* bind to the object */
4331         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4332         obj->phys_obj->cur_obj = obj;
4333
4334         page_count = obj->base.size / PAGE_SIZE;
4335
4336         for (i = 0; i < page_count; i++) {
4337                 struct page *page;
4338                 char *dst, *src;
4339
4340                 page = shmem_read_mapping_page(mapping, i);
4341                 if (IS_ERR(page))
4342                         return PTR_ERR(page);
4343
4344                 src = kmap_atomic(page);
4345                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4346                 memcpy(dst, src, PAGE_SIZE);
4347                 kunmap_atomic(src);
4348
4349                 mark_page_accessed(page);
4350                 page_cache_release(page);
4351         }
4352
4353         return 0;
4354 }
4355
4356 static int
4357 i915_gem_phys_pwrite(struct drm_device *dev,
4358                      struct drm_i915_gem_object *obj,
4359                      struct drm_i915_gem_pwrite *args,
4360                      struct drm_file *file_priv)
4361 {
4362         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4363         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4364
4365         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4366                 unsigned long unwritten;
4367
4368                 /* The physical object once assigned is fixed for the lifetime
4369                  * of the obj, so we can safely drop the lock and continue
4370                  * to access vaddr.
4371                  */
4372                 mutex_unlock(&dev->struct_mutex);
4373                 unwritten = copy_from_user(vaddr, user_data, args->size);
4374                 mutex_lock(&dev->struct_mutex);
4375                 if (unwritten)
4376                         return -EFAULT;
4377         }
4378
4379         intel_gtt_chipset_flush();
4380         return 0;
4381 }
4382
4383 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4384 {
4385         struct drm_i915_file_private *file_priv = file->driver_priv;
4386
4387         /* Clean up our request list when the client is going away, so that
4388          * later retire_requests won't dereference our soon-to-be-gone
4389          * file_priv.
4390          */
4391         spin_lock(&file_priv->mm.lock);
4392         while (!list_empty(&file_priv->mm.request_list)) {
4393                 struct drm_i915_gem_request *request;
4394
4395                 request = list_first_entry(&file_priv->mm.request_list,
4396                                            struct drm_i915_gem_request,
4397                                            client_list);
4398                 list_del(&request->client_list);
4399                 request->file_priv = NULL;
4400         }
4401         spin_unlock(&file_priv->mm.lock);
4402 }
4403
4404 static int
4405 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4406 {
4407         struct drm_i915_private *dev_priv =
4408                 container_of(shrinker,
4409                              struct drm_i915_private,
4410                              mm.inactive_shrinker);
4411         struct drm_device *dev = dev_priv->dev;
4412         struct drm_i915_gem_object *obj;
4413         int nr_to_scan = sc->nr_to_scan;
4414         int cnt;
4415
4416         if (!mutex_trylock(&dev->struct_mutex))
4417                 return 0;
4418
4419         if (nr_to_scan) {
4420                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4421                 if (nr_to_scan > 0)
4422                         i915_gem_shrink_all(dev_priv);
4423         }
4424
4425         cnt = 0;
4426         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4427                 if (obj->pages_pin_count == 0)
4428                         cnt += obj->base.size >> PAGE_SHIFT;
4429         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4430                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4431                         cnt += obj->base.size >> PAGE_SHIFT;
4432
4433         mutex_unlock(&dev->struct_mutex);
4434         return cnt;
4435 }