]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: mm_list is per VMA
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int
42 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
43                            struct i915_address_space *vm,
44                            unsigned alignment,
45                            bool map_and_fenceable,
46                            bool nonblocking);
47 static int i915_gem_phys_pwrite(struct drm_device *dev,
48                                 struct drm_i915_gem_object *obj,
49                                 struct drm_i915_gem_pwrite *args,
50                                 struct drm_file *file);
51
52 static void i915_gem_write_fence(struct drm_device *dev, int reg,
53                                  struct drm_i915_gem_object *obj);
54 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
55                                          struct drm_i915_fence_reg *fence,
56                                          bool enable);
57
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59                                     struct shrink_control *sc);
60 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
61 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
62 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
63
64 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
65 {
66         if (obj->tiling_mode)
67                 i915_gem_release_mmap(obj);
68
69         /* As we do not have an associated fence register, we will force
70          * a tiling change if we ever need to acquire one.
71          */
72         obj->fence_dirty = false;
73         obj->fence_reg = I915_FENCE_REG_NONE;
74 }
75
76 /* some bookkeeping */
77 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
78                                   size_t size)
79 {
80         spin_lock(&dev_priv->mm.object_stat_lock);
81         dev_priv->mm.object_count++;
82         dev_priv->mm.object_memory += size;
83         spin_unlock(&dev_priv->mm.object_stat_lock);
84 }
85
86 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
87                                      size_t size)
88 {
89         spin_lock(&dev_priv->mm.object_stat_lock);
90         dev_priv->mm.object_count--;
91         dev_priv->mm.object_memory -= size;
92         spin_unlock(&dev_priv->mm.object_stat_lock);
93 }
94
95 static int
96 i915_gem_wait_for_error(struct i915_gpu_error *error)
97 {
98         int ret;
99
100 #define EXIT_COND (!i915_reset_in_progress(error) || \
101                    i915_terminally_wedged(error))
102         if (EXIT_COND)
103                 return 0;
104
105         /*
106          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107          * userspace. If it takes that long something really bad is going on and
108          * we should simply try to bail out and fail as gracefully as possible.
109          */
110         ret = wait_event_interruptible_timeout(error->reset_queue,
111                                                EXIT_COND,
112                                                10*HZ);
113         if (ret == 0) {
114                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115                 return -EIO;
116         } else if (ret < 0) {
117                 return ret;
118         }
119 #undef EXIT_COND
120
121         return 0;
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126         struct drm_i915_private *dev_priv = dev->dev_private;
127         int ret;
128
129         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130         if (ret)
131                 return ret;
132
133         ret = mutex_lock_interruptible(&dev->struct_mutex);
134         if (ret)
135                 return ret;
136
137         WARN_ON(i915_verify_lists(dev));
138         return 0;
139 }
140
141 static inline bool
142 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
143 {
144         return i915_gem_obj_bound_any(obj) && !obj->active;
145 }
146
147 int
148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149                     struct drm_file *file)
150 {
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         struct drm_i915_gem_init *args = data;
153
154         if (drm_core_check_feature(dev, DRIVER_MODESET))
155                 return -ENODEV;
156
157         if (args->gtt_start >= args->gtt_end ||
158             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159                 return -EINVAL;
160
161         /* GEM with user mode setting was never supported on ilk and later. */
162         if (INTEL_INFO(dev)->gen >= 5)
163                 return -ENODEV;
164
165         mutex_lock(&dev->struct_mutex);
166         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
167                                   args->gtt_end);
168         dev_priv->gtt.mappable_end = args->gtt_end;
169         mutex_unlock(&dev->struct_mutex);
170
171         return 0;
172 }
173
174 int
175 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176                             struct drm_file *file)
177 {
178         struct drm_i915_private *dev_priv = dev->dev_private;
179         struct drm_i915_gem_get_aperture *args = data;
180         struct drm_i915_gem_object *obj;
181         size_t pinned;
182
183         pinned = 0;
184         mutex_lock(&dev->struct_mutex);
185         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
186                 if (obj->pin_count)
187                         pinned += i915_gem_obj_ggtt_size(obj);
188         mutex_unlock(&dev->struct_mutex);
189
190         args->aper_size = dev_priv->gtt.base.total;
191         args->aper_available_size = args->aper_size - pinned;
192
193         return 0;
194 }
195
196 void *i915_gem_object_alloc(struct drm_device *dev)
197 {
198         struct drm_i915_private *dev_priv = dev->dev_private;
199         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
200 }
201
202 void i915_gem_object_free(struct drm_i915_gem_object *obj)
203 {
204         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
205         kmem_cache_free(dev_priv->slab, obj);
206 }
207
208 static int
209 i915_gem_create(struct drm_file *file,
210                 struct drm_device *dev,
211                 uint64_t size,
212                 uint32_t *handle_p)
213 {
214         struct drm_i915_gem_object *obj;
215         int ret;
216         u32 handle;
217
218         size = roundup(size, PAGE_SIZE);
219         if (size == 0)
220                 return -EINVAL;
221
222         /* Allocate the new object */
223         obj = i915_gem_alloc_object(dev, size);
224         if (obj == NULL)
225                 return -ENOMEM;
226
227         ret = drm_gem_handle_create(file, &obj->base, &handle);
228         /* drop reference from allocate - handle holds it now */
229         drm_gem_object_unreference_unlocked(&obj->base);
230         if (ret)
231                 return ret;
232
233         *handle_p = handle;
234         return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239                      struct drm_device *dev,
240                      struct drm_mode_create_dumb *args)
241 {
242         /* have to work out size/pitch and return them */
243         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244         args->size = args->pitch * args->height;
245         return i915_gem_create(file, dev,
246                                args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250                           struct drm_device *dev,
251                           uint32_t handle)
252 {
253         return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257  * Creates a new mm object and returns a handle to it.
258  */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261                       struct drm_file *file)
262 {
263         struct drm_i915_gem_create *args = data;
264
265         return i915_gem_create(file, dev,
266                                args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271                         const char *gpu_vaddr, int gpu_offset,
272                         int length)
273 {
274         int ret, cpu_offset = 0;
275
276         while (length > 0) {
277                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278                 int this_length = min(cacheline_end - gpu_offset, length);
279                 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282                                      gpu_vaddr + swizzled_gpu_offset,
283                                      this_length);
284                 if (ret)
285                         return ret + length;
286
287                 cpu_offset += this_length;
288                 gpu_offset += this_length;
289                 length -= this_length;
290         }
291
292         return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297                           const char __user *cpu_vaddr,
298                           int length)
299 {
300         int ret, cpu_offset = 0;
301
302         while (length > 0) {
303                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304                 int this_length = min(cacheline_end - gpu_offset, length);
305                 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308                                        cpu_vaddr + cpu_offset,
309                                        this_length);
310                 if (ret)
311                         return ret + length;
312
313                 cpu_offset += this_length;
314                 gpu_offset += this_length;
315                 length -= this_length;
316         }
317
318         return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326                  char __user *user_data,
327                  bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329         char *vaddr;
330         int ret;
331
332         if (unlikely(page_do_bit17_swizzling))
333                 return -EINVAL;
334
335         vaddr = kmap_atomic(page);
336         if (needs_clflush)
337                 drm_clflush_virt_range(vaddr + shmem_page_offset,
338                                        page_length);
339         ret = __copy_to_user_inatomic(user_data,
340                                       vaddr + shmem_page_offset,
341                                       page_length);
342         kunmap_atomic(vaddr);
343
344         return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349                              bool swizzled)
350 {
351         if (unlikely(swizzled)) {
352                 unsigned long start = (unsigned long) addr;
353                 unsigned long end = (unsigned long) addr + length;
354
355                 /* For swizzling simply ensure that we always flush both
356                  * channels. Lame, but simple and it works. Swizzled
357                  * pwrite/pread is far from a hotpath - current userspace
358                  * doesn't use it at all. */
359                 start = round_down(start, 128);
360                 end = round_up(end, 128);
361
362                 drm_clflush_virt_range((void *)start, end - start);
363         } else {
364                 drm_clflush_virt_range(addr, length);
365         }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373                  char __user *user_data,
374                  bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376         char *vaddr;
377         int ret;
378
379         vaddr = kmap(page);
380         if (needs_clflush)
381                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382                                              page_length,
383                                              page_do_bit17_swizzling);
384
385         if (page_do_bit17_swizzling)
386                 ret = __copy_to_user_swizzled(user_data,
387                                               vaddr, shmem_page_offset,
388                                               page_length);
389         else
390                 ret = __copy_to_user(user_data,
391                                      vaddr + shmem_page_offset,
392                                      page_length);
393         kunmap(page);
394
395         return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400                      struct drm_i915_gem_object *obj,
401                      struct drm_i915_gem_pread *args,
402                      struct drm_file *file)
403 {
404         char __user *user_data;
405         ssize_t remain;
406         loff_t offset;
407         int shmem_page_offset, page_length, ret = 0;
408         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409         int prefaulted = 0;
410         int needs_clflush = 0;
411         struct sg_page_iter sg_iter;
412
413         user_data = to_user_ptr(args->data_ptr);
414         remain = args->size;
415
416         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419                 /* If we're not in the cpu read domain, set ourself into the gtt
420                  * read domain and manually flush cachelines (if required). This
421                  * optimizes for the case when the gpu will dirty the data
422                  * anyway again before the next pread happens. */
423                 if (obj->cache_level == I915_CACHE_NONE)
424                         needs_clflush = 1;
425                 if (i915_gem_obj_bound_any(obj)) {
426                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
427                         if (ret)
428                                 return ret;
429                 }
430         }
431
432         ret = i915_gem_object_get_pages(obj);
433         if (ret)
434                 return ret;
435
436         i915_gem_object_pin_pages(obj);
437
438         offset = args->offset;
439
440         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441                          offset >> PAGE_SHIFT) {
442                 struct page *page = sg_page_iter_page(&sg_iter);
443
444                 if (remain <= 0)
445                         break;
446
447                 /* Operation in this page
448                  *
449                  * shmem_page_offset = offset within page in shmem file
450                  * page_length = bytes to copy for this page
451                  */
452                 shmem_page_offset = offset_in_page(offset);
453                 page_length = remain;
454                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455                         page_length = PAGE_SIZE - shmem_page_offset;
456
457                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458                         (page_to_phys(page) & (1 << 17)) != 0;
459
460                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461                                        user_data, page_do_bit17_swizzling,
462                                        needs_clflush);
463                 if (ret == 0)
464                         goto next_page;
465
466                 mutex_unlock(&dev->struct_mutex);
467
468                 if (likely(!i915_prefault_disable) && !prefaulted) {
469                         ret = fault_in_multipages_writeable(user_data, remain);
470                         /* Userspace is tricking us, but we've already clobbered
471                          * its pages with the prefault and promised to write the
472                          * data up to the first fault. Hence ignore any errors
473                          * and just continue. */
474                         (void)ret;
475                         prefaulted = 1;
476                 }
477
478                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479                                        user_data, page_do_bit17_swizzling,
480                                        needs_clflush);
481
482                 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485                 mark_page_accessed(page);
486
487                 if (ret)
488                         goto out;
489
490                 remain -= page_length;
491                 user_data += page_length;
492                 offset += page_length;
493         }
494
495 out:
496         i915_gem_object_unpin_pages(obj);
497
498         return ret;
499 }
500
501 /**
502  * Reads data from the object referenced by handle.
503  *
504  * On error, the contents of *data are undefined.
505  */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508                      struct drm_file *file)
509 {
510         struct drm_i915_gem_pread *args = data;
511         struct drm_i915_gem_object *obj;
512         int ret = 0;
513
514         if (args->size == 0)
515                 return 0;
516
517         if (!access_ok(VERIFY_WRITE,
518                        to_user_ptr(args->data_ptr),
519                        args->size))
520                 return -EFAULT;
521
522         ret = i915_mutex_lock_interruptible(dev);
523         if (ret)
524                 return ret;
525
526         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527         if (&obj->base == NULL) {
528                 ret = -ENOENT;
529                 goto unlock;
530         }
531
532         /* Bounds check source.  */
533         if (args->offset > obj->base.size ||
534             args->size > obj->base.size - args->offset) {
535                 ret = -EINVAL;
536                 goto out;
537         }
538
539         /* prime objects have no backing filp to GEM pread/pwrite
540          * pages from.
541          */
542         if (!obj->base.filp) {
543                 ret = -EINVAL;
544                 goto out;
545         }
546
547         trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549         ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552         drm_gem_object_unreference(&obj->base);
553 unlock:
554         mutex_unlock(&dev->struct_mutex);
555         return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559  * page faults in the source data
560  */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564                 loff_t page_base, int page_offset,
565                 char __user *user_data,
566                 int length)
567 {
568         void __iomem *vaddr_atomic;
569         void *vaddr;
570         unsigned long unwritten;
571
572         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573         /* We can use the cpu mem copy function because this is X86. */
574         vaddr = (void __force*)vaddr_atomic + page_offset;
575         unwritten = __copy_from_user_inatomic_nocache(vaddr,
576                                                       user_data, length);
577         io_mapping_unmap_atomic(vaddr_atomic);
578         return unwritten;
579 }
580
581 /**
582  * This is the fast pwrite path, where we copy the data directly from the
583  * user into the GTT, uncached.
584  */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587                          struct drm_i915_gem_object *obj,
588                          struct drm_i915_gem_pwrite *args,
589                          struct drm_file *file)
590 {
591         drm_i915_private_t *dev_priv = dev->dev_private;
592         ssize_t remain;
593         loff_t offset, page_base;
594         char __user *user_data;
595         int page_offset, page_length, ret;
596
597         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
598         if (ret)
599                 goto out;
600
601         ret = i915_gem_object_set_to_gtt_domain(obj, true);
602         if (ret)
603                 goto out_unpin;
604
605         ret = i915_gem_object_put_fence(obj);
606         if (ret)
607                 goto out_unpin;
608
609         user_data = to_user_ptr(args->data_ptr);
610         remain = args->size;
611
612         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
613
614         while (remain > 0) {
615                 /* Operation in this page
616                  *
617                  * page_base = page offset within aperture
618                  * page_offset = offset within page
619                  * page_length = bytes to copy for this page
620                  */
621                 page_base = offset & PAGE_MASK;
622                 page_offset = offset_in_page(offset);
623                 page_length = remain;
624                 if ((page_offset + remain) > PAGE_SIZE)
625                         page_length = PAGE_SIZE - page_offset;
626
627                 /* If we get a fault while copying data, then (presumably) our
628                  * source page isn't available.  Return the error and we'll
629                  * retry in the slow path.
630                  */
631                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632                                     page_offset, user_data, page_length)) {
633                         ret = -EFAULT;
634                         goto out_unpin;
635                 }
636
637                 remain -= page_length;
638                 user_data += page_length;
639                 offset += page_length;
640         }
641
642 out_unpin:
643         i915_gem_object_unpin(obj);
644 out:
645         return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649  * Flushes invalid cachelines before writing to the target if
650  * needs_clflush_before is set and flushes out any written cachelines after
651  * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654                   char __user *user_data,
655                   bool page_do_bit17_swizzling,
656                   bool needs_clflush_before,
657                   bool needs_clflush_after)
658 {
659         char *vaddr;
660         int ret;
661
662         if (unlikely(page_do_bit17_swizzling))
663                 return -EINVAL;
664
665         vaddr = kmap_atomic(page);
666         if (needs_clflush_before)
667                 drm_clflush_virt_range(vaddr + shmem_page_offset,
668                                        page_length);
669         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670                                                 user_data,
671                                                 page_length);
672         if (needs_clflush_after)
673                 drm_clflush_virt_range(vaddr + shmem_page_offset,
674                                        page_length);
675         kunmap_atomic(vaddr);
676
677         return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681  * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684                   char __user *user_data,
685                   bool page_do_bit17_swizzling,
686                   bool needs_clflush_before,
687                   bool needs_clflush_after)
688 {
689         char *vaddr;
690         int ret;
691
692         vaddr = kmap(page);
693         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695                                              page_length,
696                                              page_do_bit17_swizzling);
697         if (page_do_bit17_swizzling)
698                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699                                                 user_data,
700                                                 page_length);
701         else
702                 ret = __copy_from_user(vaddr + shmem_page_offset,
703                                        user_data,
704                                        page_length);
705         if (needs_clflush_after)
706                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707                                              page_length,
708                                              page_do_bit17_swizzling);
709         kunmap(page);
710
711         return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716                       struct drm_i915_gem_object *obj,
717                       struct drm_i915_gem_pwrite *args,
718                       struct drm_file *file)
719 {
720         ssize_t remain;
721         loff_t offset;
722         char __user *user_data;
723         int shmem_page_offset, page_length, ret = 0;
724         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725         int hit_slowpath = 0;
726         int needs_clflush_after = 0;
727         int needs_clflush_before = 0;
728         struct sg_page_iter sg_iter;
729
730         user_data = to_user_ptr(args->data_ptr);
731         remain = args->size;
732
733         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736                 /* If we're not in the cpu write domain, set ourself into the gtt
737                  * write domain and manually flush cachelines (if required). This
738                  * optimizes for the case when the gpu will use the data
739                  * right away and we therefore have to clflush anyway. */
740                 if (obj->cache_level == I915_CACHE_NONE)
741                         needs_clflush_after = 1;
742                 if (i915_gem_obj_bound_any(obj)) {
743                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
744                         if (ret)
745                                 return ret;
746                 }
747         }
748         /* Same trick applies for invalidate partially written cachelines before
749          * writing.  */
750         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751             && obj->cache_level == I915_CACHE_NONE)
752                 needs_clflush_before = 1;
753
754         ret = i915_gem_object_get_pages(obj);
755         if (ret)
756                 return ret;
757
758         i915_gem_object_pin_pages(obj);
759
760         offset = args->offset;
761         obj->dirty = 1;
762
763         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764                          offset >> PAGE_SHIFT) {
765                 struct page *page = sg_page_iter_page(&sg_iter);
766                 int partial_cacheline_write;
767
768                 if (remain <= 0)
769                         break;
770
771                 /* Operation in this page
772                  *
773                  * shmem_page_offset = offset within page in shmem file
774                  * page_length = bytes to copy for this page
775                  */
776                 shmem_page_offset = offset_in_page(offset);
777
778                 page_length = remain;
779                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780                         page_length = PAGE_SIZE - shmem_page_offset;
781
782                 /* If we don't overwrite a cacheline completely we need to be
783                  * careful to have up-to-date data by first clflushing. Don't
784                  * overcomplicate things and flush the entire patch. */
785                 partial_cacheline_write = needs_clflush_before &&
786                         ((shmem_page_offset | page_length)
787                                 & (boot_cpu_data.x86_clflush_size - 1));
788
789                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790                         (page_to_phys(page) & (1 << 17)) != 0;
791
792                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793                                         user_data, page_do_bit17_swizzling,
794                                         partial_cacheline_write,
795                                         needs_clflush_after);
796                 if (ret == 0)
797                         goto next_page;
798
799                 hit_slowpath = 1;
800                 mutex_unlock(&dev->struct_mutex);
801                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802                                         user_data, page_do_bit17_swizzling,
803                                         partial_cacheline_write,
804                                         needs_clflush_after);
805
806                 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809                 set_page_dirty(page);
810                 mark_page_accessed(page);
811
812                 if (ret)
813                         goto out;
814
815                 remain -= page_length;
816                 user_data += page_length;
817                 offset += page_length;
818         }
819
820 out:
821         i915_gem_object_unpin_pages(obj);
822
823         if (hit_slowpath) {
824                 /*
825                  * Fixup: Flush cpu caches in case we didn't flush the dirty
826                  * cachelines in-line while writing and the object moved
827                  * out of the cpu write domain while we've dropped the lock.
828                  */
829                 if (!needs_clflush_after &&
830                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831                         i915_gem_clflush_object(obj);
832                         i915_gem_chipset_flush(dev);
833                 }
834         }
835
836         if (needs_clflush_after)
837                 i915_gem_chipset_flush(dev);
838
839         return ret;
840 }
841
842 /**
843  * Writes data to the object referenced by handle.
844  *
845  * On error, the contents of the buffer that were to be modified are undefined.
846  */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849                       struct drm_file *file)
850 {
851         struct drm_i915_gem_pwrite *args = data;
852         struct drm_i915_gem_object *obj;
853         int ret;
854
855         if (args->size == 0)
856                 return 0;
857
858         if (!access_ok(VERIFY_READ,
859                        to_user_ptr(args->data_ptr),
860                        args->size))
861                 return -EFAULT;
862
863         if (likely(!i915_prefault_disable)) {
864                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
865                                                    args->size);
866                 if (ret)
867                         return -EFAULT;
868         }
869
870         ret = i915_mutex_lock_interruptible(dev);
871         if (ret)
872                 return ret;
873
874         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
875         if (&obj->base == NULL) {
876                 ret = -ENOENT;
877                 goto unlock;
878         }
879
880         /* Bounds check destination. */
881         if (args->offset > obj->base.size ||
882             args->size > obj->base.size - args->offset) {
883                 ret = -EINVAL;
884                 goto out;
885         }
886
887         /* prime objects have no backing filp to GEM pread/pwrite
888          * pages from.
889          */
890         if (!obj->base.filp) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
896
897         ret = -EFAULT;
898         /* We can only do the GTT pwrite on untiled buffers, as otherwise
899          * it would end up going through the fenced access, and we'll get
900          * different detiling behavior between reading and writing.
901          * pread/pwrite currently are reading and writing from the CPU
902          * perspective, requiring manual detiling by the client.
903          */
904         if (obj->phys_obj) {
905                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
906                 goto out;
907         }
908
909         if (obj->cache_level == I915_CACHE_NONE &&
910             obj->tiling_mode == I915_TILING_NONE &&
911             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
913                 /* Note that the gtt paths might fail with non-page-backed user
914                  * pointers (e.g. gtt mappings when moving data between
915                  * textures). Fallback to the shmem path in that case. */
916         }
917
918         if (ret == -EFAULT || ret == -ENOSPC)
919                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
920
921 out:
922         drm_gem_object_unreference(&obj->base);
923 unlock:
924         mutex_unlock(&dev->struct_mutex);
925         return ret;
926 }
927
928 int
929 i915_gem_check_wedge(struct i915_gpu_error *error,
930                      bool interruptible)
931 {
932         if (i915_reset_in_progress(error)) {
933                 /* Non-interruptible callers can't handle -EAGAIN, hence return
934                  * -EIO unconditionally for these. */
935                 if (!interruptible)
936                         return -EIO;
937
938                 /* Recovery complete, but the reset failed ... */
939                 if (i915_terminally_wedged(error))
940                         return -EIO;
941
942                 return -EAGAIN;
943         }
944
945         return 0;
946 }
947
948 /*
949  * Compare seqno against outstanding lazy request. Emit a request if they are
950  * equal.
951  */
952 static int
953 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
954 {
955         int ret;
956
957         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
958
959         ret = 0;
960         if (seqno == ring->outstanding_lazy_request)
961                 ret = i915_add_request(ring, NULL);
962
963         return ret;
964 }
965
966 /**
967  * __wait_seqno - wait until execution of seqno has finished
968  * @ring: the ring expected to report seqno
969  * @seqno: duh!
970  * @reset_counter: reset sequence associated with the given seqno
971  * @interruptible: do an interruptible wait (normally yes)
972  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
973  *
974  * Note: It is of utmost importance that the passed in seqno and reset_counter
975  * values have been read by the caller in an smp safe manner. Where read-side
976  * locks are involved, it is sufficient to read the reset_counter before
977  * unlocking the lock that protects the seqno. For lockless tricks, the
978  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
979  * inserted.
980  *
981  * Returns 0 if the seqno was found within the alloted time. Else returns the
982  * errno with remaining time filled in timeout argument.
983  */
984 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
985                         unsigned reset_counter,
986                         bool interruptible, struct timespec *timeout)
987 {
988         drm_i915_private_t *dev_priv = ring->dev->dev_private;
989         struct timespec before, now, wait_time={1,0};
990         unsigned long timeout_jiffies;
991         long end;
992         bool wait_forever = true;
993         int ret;
994
995         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
996                 return 0;
997
998         trace_i915_gem_request_wait_begin(ring, seqno);
999
1000         if (timeout != NULL) {
1001                 wait_time = *timeout;
1002                 wait_forever = false;
1003         }
1004
1005         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1006
1007         if (WARN_ON(!ring->irq_get(ring)))
1008                 return -ENODEV;
1009
1010         /* Record current time in case interrupted by signal, or wedged * */
1011         getrawmonotonic(&before);
1012
1013 #define EXIT_COND \
1014         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1015          i915_reset_in_progress(&dev_priv->gpu_error) || \
1016          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1017         do {
1018                 if (interruptible)
1019                         end = wait_event_interruptible_timeout(ring->irq_queue,
1020                                                                EXIT_COND,
1021                                                                timeout_jiffies);
1022                 else
1023                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1024                                                  timeout_jiffies);
1025
1026                 /* We need to check whether any gpu reset happened in between
1027                  * the caller grabbing the seqno and now ... */
1028                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1029                         end = -EAGAIN;
1030
1031                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1032                  * gone. */
1033                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1034                 if (ret)
1035                         end = ret;
1036         } while (end == 0 && wait_forever);
1037
1038         getrawmonotonic(&now);
1039
1040         ring->irq_put(ring);
1041         trace_i915_gem_request_wait_end(ring, seqno);
1042 #undef EXIT_COND
1043
1044         if (timeout) {
1045                 struct timespec sleep_time = timespec_sub(now, before);
1046                 *timeout = timespec_sub(*timeout, sleep_time);
1047                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1048                         set_normalized_timespec(timeout, 0, 0);
1049         }
1050
1051         switch (end) {
1052         case -EIO:
1053         case -EAGAIN: /* Wedged */
1054         case -ERESTARTSYS: /* Signal */
1055                 return (int)end;
1056         case 0: /* Timeout */
1057                 return -ETIME;
1058         default: /* Completed */
1059                 WARN_ON(end < 0); /* We're not aware of other errors */
1060                 return 0;
1061         }
1062 }
1063
1064 /**
1065  * Waits for a sequence number to be signaled, and cleans up the
1066  * request and object lists appropriately for that event.
1067  */
1068 int
1069 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1070 {
1071         struct drm_device *dev = ring->dev;
1072         struct drm_i915_private *dev_priv = dev->dev_private;
1073         bool interruptible = dev_priv->mm.interruptible;
1074         int ret;
1075
1076         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1077         BUG_ON(seqno == 0);
1078
1079         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1080         if (ret)
1081                 return ret;
1082
1083         ret = i915_gem_check_olr(ring, seqno);
1084         if (ret)
1085                 return ret;
1086
1087         return __wait_seqno(ring, seqno,
1088                             atomic_read(&dev_priv->gpu_error.reset_counter),
1089                             interruptible, NULL);
1090 }
1091
1092 static int
1093 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1094                                      struct intel_ring_buffer *ring)
1095 {
1096         i915_gem_retire_requests_ring(ring);
1097
1098         /* Manually manage the write flush as we may have not yet
1099          * retired the buffer.
1100          *
1101          * Note that the last_write_seqno is always the earlier of
1102          * the two (read/write) seqno, so if we haved successfully waited,
1103          * we know we have passed the last write.
1104          */
1105         obj->last_write_seqno = 0;
1106         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1107
1108         return 0;
1109 }
1110
1111 /**
1112  * Ensures that all rendering to the object has completed and the object is
1113  * safe to unbind from the GTT or access from the CPU.
1114  */
1115 static __must_check int
1116 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1117                                bool readonly)
1118 {
1119         struct intel_ring_buffer *ring = obj->ring;
1120         u32 seqno;
1121         int ret;
1122
1123         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1124         if (seqno == 0)
1125                 return 0;
1126
1127         ret = i915_wait_seqno(ring, seqno);
1128         if (ret)
1129                 return ret;
1130
1131         return i915_gem_object_wait_rendering__tail(obj, ring);
1132 }
1133
1134 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1135  * as the object state may change during this call.
1136  */
1137 static __must_check int
1138 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1139                                             bool readonly)
1140 {
1141         struct drm_device *dev = obj->base.dev;
1142         struct drm_i915_private *dev_priv = dev->dev_private;
1143         struct intel_ring_buffer *ring = obj->ring;
1144         unsigned reset_counter;
1145         u32 seqno;
1146         int ret;
1147
1148         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1149         BUG_ON(!dev_priv->mm.interruptible);
1150
1151         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1152         if (seqno == 0)
1153                 return 0;
1154
1155         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1156         if (ret)
1157                 return ret;
1158
1159         ret = i915_gem_check_olr(ring, seqno);
1160         if (ret)
1161                 return ret;
1162
1163         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1164         mutex_unlock(&dev->struct_mutex);
1165         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1166         mutex_lock(&dev->struct_mutex);
1167         if (ret)
1168                 return ret;
1169
1170         return i915_gem_object_wait_rendering__tail(obj, ring);
1171 }
1172
1173 /**
1174  * Called when user space prepares to use an object with the CPU, either
1175  * through the mmap ioctl's mapping or a GTT mapping.
1176  */
1177 int
1178 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1179                           struct drm_file *file)
1180 {
1181         struct drm_i915_gem_set_domain *args = data;
1182         struct drm_i915_gem_object *obj;
1183         uint32_t read_domains = args->read_domains;
1184         uint32_t write_domain = args->write_domain;
1185         int ret;
1186
1187         /* Only handle setting domains to types used by the CPU. */
1188         if (write_domain & I915_GEM_GPU_DOMAINS)
1189                 return -EINVAL;
1190
1191         if (read_domains & I915_GEM_GPU_DOMAINS)
1192                 return -EINVAL;
1193
1194         /* Having something in the write domain implies it's in the read
1195          * domain, and only that read domain.  Enforce that in the request.
1196          */
1197         if (write_domain != 0 && read_domains != write_domain)
1198                 return -EINVAL;
1199
1200         ret = i915_mutex_lock_interruptible(dev);
1201         if (ret)
1202                 return ret;
1203
1204         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1205         if (&obj->base == NULL) {
1206                 ret = -ENOENT;
1207                 goto unlock;
1208         }
1209
1210         /* Try to flush the object off the GPU without holding the lock.
1211          * We will repeat the flush holding the lock in the normal manner
1212          * to catch cases where we are gazumped.
1213          */
1214         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215         if (ret)
1216                 goto unref;
1217
1218         if (read_domains & I915_GEM_DOMAIN_GTT) {
1219                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1220
1221                 /* Silently promote "you're not bound, there was nothing to do"
1222                  * to success, since the client was just asking us to
1223                  * make sure everything was done.
1224                  */
1225                 if (ret == -EINVAL)
1226                         ret = 0;
1227         } else {
1228                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1229         }
1230
1231 unref:
1232         drm_gem_object_unreference(&obj->base);
1233 unlock:
1234         mutex_unlock(&dev->struct_mutex);
1235         return ret;
1236 }
1237
1238 /**
1239  * Called when user space has done writes to this buffer
1240  */
1241 int
1242 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1243                          struct drm_file *file)
1244 {
1245         struct drm_i915_gem_sw_finish *args = data;
1246         struct drm_i915_gem_object *obj;
1247         int ret = 0;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Pinned buffers may be scanout, so flush the cache */
1260         if (obj->pin_count)
1261                 i915_gem_object_flush_cpu_write_domain(obj);
1262
1263         drm_gem_object_unreference(&obj->base);
1264 unlock:
1265         mutex_unlock(&dev->struct_mutex);
1266         return ret;
1267 }
1268
1269 /**
1270  * Maps the contents of an object, returning the address it is mapped
1271  * into.
1272  *
1273  * While the mapping holds a reference on the contents of the object, it doesn't
1274  * imply a ref on the object itself.
1275  */
1276 int
1277 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1278                     struct drm_file *file)
1279 {
1280         struct drm_i915_gem_mmap *args = data;
1281         struct drm_gem_object *obj;
1282         unsigned long addr;
1283
1284         obj = drm_gem_object_lookup(dev, file, args->handle);
1285         if (obj == NULL)
1286                 return -ENOENT;
1287
1288         /* prime objects have no backing filp to GEM mmap
1289          * pages from.
1290          */
1291         if (!obj->filp) {
1292                 drm_gem_object_unreference_unlocked(obj);
1293                 return -EINVAL;
1294         }
1295
1296         addr = vm_mmap(obj->filp, 0, args->size,
1297                        PROT_READ | PROT_WRITE, MAP_SHARED,
1298                        args->offset);
1299         drm_gem_object_unreference_unlocked(obj);
1300         if (IS_ERR((void *)addr))
1301                 return addr;
1302
1303         args->addr_ptr = (uint64_t) addr;
1304
1305         return 0;
1306 }
1307
1308 /**
1309  * i915_gem_fault - fault a page into the GTT
1310  * vma: VMA in question
1311  * vmf: fault info
1312  *
1313  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314  * from userspace.  The fault handler takes care of binding the object to
1315  * the GTT (if needed), allocating and programming a fence register (again,
1316  * only if needed based on whether the old reg is still valid or the object
1317  * is tiled) and inserting a new PTE into the faulting process.
1318  *
1319  * Note that the faulting process may involve evicting existing objects
1320  * from the GTT and/or fence registers to make room.  So performance may
1321  * suffer if the GTT working set is large or there are few fence registers
1322  * left.
1323  */
1324 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325 {
1326         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327         struct drm_device *dev = obj->base.dev;
1328         drm_i915_private_t *dev_priv = dev->dev_private;
1329         pgoff_t page_offset;
1330         unsigned long pfn;
1331         int ret = 0;
1332         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1333
1334         /* We don't use vmf->pgoff since that has the fake offset */
1335         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336                 PAGE_SHIFT;
1337
1338         ret = i915_mutex_lock_interruptible(dev);
1339         if (ret)
1340                 goto out;
1341
1342         trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
1344         /* Access to snoopable pages through the GTT is incoherent. */
1345         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1346                 ret = -EINVAL;
1347                 goto unlock;
1348         }
1349
1350         /* Now bind it into the GTT if needed */
1351         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1352         if (ret)
1353                 goto unlock;
1354
1355         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1356         if (ret)
1357                 goto unpin;
1358
1359         ret = i915_gem_object_get_fence(obj);
1360         if (ret)
1361                 goto unpin;
1362
1363         obj->fault_mappable = true;
1364
1365         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1366         pfn >>= PAGE_SHIFT;
1367         pfn += page_offset;
1368
1369         /* Finally, remap it using the new GTT offset */
1370         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1371 unpin:
1372         i915_gem_object_unpin(obj);
1373 unlock:
1374         mutex_unlock(&dev->struct_mutex);
1375 out:
1376         switch (ret) {
1377         case -EIO:
1378                 /* If this -EIO is due to a gpu hang, give the reset code a
1379                  * chance to clean up the mess. Otherwise return the proper
1380                  * SIGBUS. */
1381                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1382                         return VM_FAULT_SIGBUS;
1383         case -EAGAIN:
1384                 /* Give the error handler a chance to run and move the
1385                  * objects off the GPU active list. Next time we service the
1386                  * fault, we should be able to transition the page into the
1387                  * GTT without touching the GPU (and so avoid further
1388                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1389                  * with coherency, just lost writes.
1390                  */
1391                 set_need_resched();
1392         case 0:
1393         case -ERESTARTSYS:
1394         case -EINTR:
1395         case -EBUSY:
1396                 /*
1397                  * EBUSY is ok: this just means that another thread
1398                  * already did the job.
1399                  */
1400                 return VM_FAULT_NOPAGE;
1401         case -ENOMEM:
1402                 return VM_FAULT_OOM;
1403         case -ENOSPC:
1404                 return VM_FAULT_SIGBUS;
1405         default:
1406                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1407                 return VM_FAULT_SIGBUS;
1408         }
1409 }
1410
1411 /**
1412  * i915_gem_release_mmap - remove physical page mappings
1413  * @obj: obj in question
1414  *
1415  * Preserve the reservation of the mmapping with the DRM core code, but
1416  * relinquish ownership of the pages back to the system.
1417  *
1418  * It is vital that we remove the page mapping if we have mapped a tiled
1419  * object through the GTT and then lose the fence register due to
1420  * resource pressure. Similarly if the object has been moved out of the
1421  * aperture, than pages mapped into userspace must be revoked. Removing the
1422  * mapping will then trigger a page fault on the next user access, allowing
1423  * fixup by i915_gem_fault().
1424  */
1425 void
1426 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1427 {
1428         if (!obj->fault_mappable)
1429                 return;
1430
1431         if (obj->base.dev->dev_mapping)
1432                 unmap_mapping_range(obj->base.dev->dev_mapping,
1433                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1434                                     obj->base.size, 1);
1435
1436         obj->fault_mappable = false;
1437 }
1438
1439 uint32_t
1440 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1441 {
1442         uint32_t gtt_size;
1443
1444         if (INTEL_INFO(dev)->gen >= 4 ||
1445             tiling_mode == I915_TILING_NONE)
1446                 return size;
1447
1448         /* Previous chips need a power-of-two fence region when tiling */
1449         if (INTEL_INFO(dev)->gen == 3)
1450                 gtt_size = 1024*1024;
1451         else
1452                 gtt_size = 512*1024;
1453
1454         while (gtt_size < size)
1455                 gtt_size <<= 1;
1456
1457         return gtt_size;
1458 }
1459
1460 /**
1461  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1462  * @obj: object to check
1463  *
1464  * Return the required GTT alignment for an object, taking into account
1465  * potential fence register mapping.
1466  */
1467 uint32_t
1468 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1469                            int tiling_mode, bool fenced)
1470 {
1471         /*
1472          * Minimum alignment is 4k (GTT page size), but might be greater
1473          * if a fence register is needed for the object.
1474          */
1475         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1476             tiling_mode == I915_TILING_NONE)
1477                 return 4096;
1478
1479         /*
1480          * Previous chips need to be aligned to the size of the smallest
1481          * fence register that can contain the object.
1482          */
1483         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1484 }
1485
1486 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1487 {
1488         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1489         int ret;
1490
1491         if (obj->base.map_list.map)
1492                 return 0;
1493
1494         dev_priv->mm.shrinker_no_lock_stealing = true;
1495
1496         ret = drm_gem_create_mmap_offset(&obj->base);
1497         if (ret != -ENOSPC)
1498                 goto out;
1499
1500         /* Badly fragmented mmap space? The only way we can recover
1501          * space is by destroying unwanted objects. We can't randomly release
1502          * mmap_offsets as userspace expects them to be persistent for the
1503          * lifetime of the objects. The closest we can is to release the
1504          * offsets on purgeable objects by truncating it and marking it purged,
1505          * which prevents userspace from ever using that object again.
1506          */
1507         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1508         ret = drm_gem_create_mmap_offset(&obj->base);
1509         if (ret != -ENOSPC)
1510                 goto out;
1511
1512         i915_gem_shrink_all(dev_priv);
1513         ret = drm_gem_create_mmap_offset(&obj->base);
1514 out:
1515         dev_priv->mm.shrinker_no_lock_stealing = false;
1516
1517         return ret;
1518 }
1519
1520 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1521 {
1522         if (!obj->base.map_list.map)
1523                 return;
1524
1525         drm_gem_free_mmap_offset(&obj->base);
1526 }
1527
1528 int
1529 i915_gem_mmap_gtt(struct drm_file *file,
1530                   struct drm_device *dev,
1531                   uint32_t handle,
1532                   uint64_t *offset)
1533 {
1534         struct drm_i915_private *dev_priv = dev->dev_private;
1535         struct drm_i915_gem_object *obj;
1536         int ret;
1537
1538         ret = i915_mutex_lock_interruptible(dev);
1539         if (ret)
1540                 return ret;
1541
1542         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1543         if (&obj->base == NULL) {
1544                 ret = -ENOENT;
1545                 goto unlock;
1546         }
1547
1548         if (obj->base.size > dev_priv->gtt.mappable_end) {
1549                 ret = -E2BIG;
1550                 goto out;
1551         }
1552
1553         if (obj->madv != I915_MADV_WILLNEED) {
1554                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1555                 ret = -EINVAL;
1556                 goto out;
1557         }
1558
1559         ret = i915_gem_object_create_mmap_offset(obj);
1560         if (ret)
1561                 goto out;
1562
1563         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1564
1565 out:
1566         drm_gem_object_unreference(&obj->base);
1567 unlock:
1568         mutex_unlock(&dev->struct_mutex);
1569         return ret;
1570 }
1571
1572 /**
1573  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1574  * @dev: DRM device
1575  * @data: GTT mapping ioctl data
1576  * @file: GEM object info
1577  *
1578  * Simply returns the fake offset to userspace so it can mmap it.
1579  * The mmap call will end up in drm_gem_mmap(), which will set things
1580  * up so we can get faults in the handler above.
1581  *
1582  * The fault handler will take care of binding the object into the GTT
1583  * (since it may have been evicted to make room for something), allocating
1584  * a fence register, and mapping the appropriate aperture address into
1585  * userspace.
1586  */
1587 int
1588 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1589                         struct drm_file *file)
1590 {
1591         struct drm_i915_gem_mmap_gtt *args = data;
1592
1593         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1594 }
1595
1596 /* Immediately discard the backing storage */
1597 static void
1598 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1599 {
1600         struct inode *inode;
1601
1602         i915_gem_object_free_mmap_offset(obj);
1603
1604         if (obj->base.filp == NULL)
1605                 return;
1606
1607         /* Our goal here is to return as much of the memory as
1608          * is possible back to the system as we are called from OOM.
1609          * To do this we must instruct the shmfs to drop all of its
1610          * backing pages, *now*.
1611          */
1612         inode = file_inode(obj->base.filp);
1613         shmem_truncate_range(inode, 0, (loff_t)-1);
1614
1615         obj->madv = __I915_MADV_PURGED;
1616 }
1617
1618 static inline int
1619 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1620 {
1621         return obj->madv == I915_MADV_DONTNEED;
1622 }
1623
1624 static void
1625 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1626 {
1627         struct sg_page_iter sg_iter;
1628         int ret;
1629
1630         BUG_ON(obj->madv == __I915_MADV_PURGED);
1631
1632         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1633         if (ret) {
1634                 /* In the event of a disaster, abandon all caches and
1635                  * hope for the best.
1636                  */
1637                 WARN_ON(ret != -EIO);
1638                 i915_gem_clflush_object(obj);
1639                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1640         }
1641
1642         if (i915_gem_object_needs_bit17_swizzle(obj))
1643                 i915_gem_object_save_bit_17_swizzle(obj);
1644
1645         if (obj->madv == I915_MADV_DONTNEED)
1646                 obj->dirty = 0;
1647
1648         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1649                 struct page *page = sg_page_iter_page(&sg_iter);
1650
1651                 if (obj->dirty)
1652                         set_page_dirty(page);
1653
1654                 if (obj->madv == I915_MADV_WILLNEED)
1655                         mark_page_accessed(page);
1656
1657                 page_cache_release(page);
1658         }
1659         obj->dirty = 0;
1660
1661         sg_free_table(obj->pages);
1662         kfree(obj->pages);
1663 }
1664
1665 int
1666 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1667 {
1668         const struct drm_i915_gem_object_ops *ops = obj->ops;
1669
1670         if (obj->pages == NULL)
1671                 return 0;
1672
1673         if (obj->pages_pin_count)
1674                 return -EBUSY;
1675
1676         BUG_ON(i915_gem_obj_bound_any(obj));
1677
1678         /* ->put_pages might need to allocate memory for the bit17 swizzle
1679          * array, hence protect them from being reaped by removing them from gtt
1680          * lists early. */
1681         list_del(&obj->global_list);
1682
1683         ops->put_pages(obj);
1684         obj->pages = NULL;
1685
1686         if (i915_gem_object_is_purgeable(obj))
1687                 i915_gem_object_truncate(obj);
1688
1689         return 0;
1690 }
1691
1692 static long
1693 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1694                   bool purgeable_only)
1695 {
1696         struct drm_i915_gem_object *obj, *next;
1697         long count = 0;
1698
1699         list_for_each_entry_safe(obj, next,
1700                                  &dev_priv->mm.unbound_list,
1701                                  global_list) {
1702                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1703                     i915_gem_object_put_pages(obj) == 0) {
1704                         count += obj->base.size >> PAGE_SHIFT;
1705                         if (count >= target)
1706                                 return count;
1707                 }
1708         }
1709
1710         list_for_each_entry_safe(obj, next, &dev_priv->mm.bound_list,
1711                                  global_list) {
1712                 struct i915_vma *vma, *v;
1713
1714                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1715                         continue;
1716
1717                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1718                         if (i915_vma_unbind(vma))
1719                                 break;
1720
1721                 if (!i915_gem_object_put_pages(obj)) {
1722                         count += obj->base.size >> PAGE_SHIFT;
1723                         if (count >= target)
1724                                 return count;
1725                 }
1726         }
1727
1728         return count;
1729 }
1730
1731 static long
1732 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1733 {
1734         return __i915_gem_shrink(dev_priv, target, true);
1735 }
1736
1737 static void
1738 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1739 {
1740         struct drm_i915_gem_object *obj, *next;
1741
1742         i915_gem_evict_everything(dev_priv->dev);
1743
1744         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1745                                  global_list)
1746                 i915_gem_object_put_pages(obj);
1747 }
1748
1749 static int
1750 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1751 {
1752         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1753         int page_count, i;
1754         struct address_space *mapping;
1755         struct sg_table *st;
1756         struct scatterlist *sg;
1757         struct sg_page_iter sg_iter;
1758         struct page *page;
1759         unsigned long last_pfn = 0;     /* suppress gcc warning */
1760         gfp_t gfp;
1761
1762         /* Assert that the object is not currently in any GPU domain. As it
1763          * wasn't in the GTT, there shouldn't be any way it could have been in
1764          * a GPU cache
1765          */
1766         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1767         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1768
1769         st = kmalloc(sizeof(*st), GFP_KERNEL);
1770         if (st == NULL)
1771                 return -ENOMEM;
1772
1773         page_count = obj->base.size / PAGE_SIZE;
1774         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1775                 sg_free_table(st);
1776                 kfree(st);
1777                 return -ENOMEM;
1778         }
1779
1780         /* Get the list of pages out of our struct file.  They'll be pinned
1781          * at this point until we release them.
1782          *
1783          * Fail silently without starting the shrinker
1784          */
1785         mapping = file_inode(obj->base.filp)->i_mapping;
1786         gfp = mapping_gfp_mask(mapping);
1787         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1788         gfp &= ~(__GFP_IO | __GFP_WAIT);
1789         sg = st->sgl;
1790         st->nents = 0;
1791         for (i = 0; i < page_count; i++) {
1792                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1793                 if (IS_ERR(page)) {
1794                         i915_gem_purge(dev_priv, page_count);
1795                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1796                 }
1797                 if (IS_ERR(page)) {
1798                         /* We've tried hard to allocate the memory by reaping
1799                          * our own buffer, now let the real VM do its job and
1800                          * go down in flames if truly OOM.
1801                          */
1802                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1803                         gfp |= __GFP_IO | __GFP_WAIT;
1804
1805                         i915_gem_shrink_all(dev_priv);
1806                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1807                         if (IS_ERR(page))
1808                                 goto err_pages;
1809
1810                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1811                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1812                 }
1813 #ifdef CONFIG_SWIOTLB
1814                 if (swiotlb_nr_tbl()) {
1815                         st->nents++;
1816                         sg_set_page(sg, page, PAGE_SIZE, 0);
1817                         sg = sg_next(sg);
1818                         continue;
1819                 }
1820 #endif
1821                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1822                         if (i)
1823                                 sg = sg_next(sg);
1824                         st->nents++;
1825                         sg_set_page(sg, page, PAGE_SIZE, 0);
1826                 } else {
1827                         sg->length += PAGE_SIZE;
1828                 }
1829                 last_pfn = page_to_pfn(page);
1830         }
1831 #ifdef CONFIG_SWIOTLB
1832         if (!swiotlb_nr_tbl())
1833 #endif
1834                 sg_mark_end(sg);
1835         obj->pages = st;
1836
1837         if (i915_gem_object_needs_bit17_swizzle(obj))
1838                 i915_gem_object_do_bit_17_swizzle(obj);
1839
1840         return 0;
1841
1842 err_pages:
1843         sg_mark_end(sg);
1844         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1845                 page_cache_release(sg_page_iter_page(&sg_iter));
1846         sg_free_table(st);
1847         kfree(st);
1848         return PTR_ERR(page);
1849 }
1850
1851 /* Ensure that the associated pages are gathered from the backing storage
1852  * and pinned into our object. i915_gem_object_get_pages() may be called
1853  * multiple times before they are released by a single call to
1854  * i915_gem_object_put_pages() - once the pages are no longer referenced
1855  * either as a result of memory pressure (reaping pages under the shrinker)
1856  * or as the object is itself released.
1857  */
1858 int
1859 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1860 {
1861         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1862         const struct drm_i915_gem_object_ops *ops = obj->ops;
1863         int ret;
1864
1865         if (obj->pages)
1866                 return 0;
1867
1868         if (obj->madv != I915_MADV_WILLNEED) {
1869                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1870                 return -EINVAL;
1871         }
1872
1873         BUG_ON(obj->pages_pin_count);
1874
1875         ret = ops->get_pages(obj);
1876         if (ret)
1877                 return ret;
1878
1879         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1880         return 0;
1881 }
1882
1883 void
1884 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1885                                struct intel_ring_buffer *ring)
1886 {
1887         struct drm_device *dev = obj->base.dev;
1888         struct drm_i915_private *dev_priv = dev->dev_private;
1889         u32 seqno = intel_ring_get_seqno(ring);
1890
1891         BUG_ON(ring == NULL);
1892         if (obj->ring != ring && obj->last_write_seqno) {
1893                 /* Keep the seqno relative to the current ring */
1894                 obj->last_write_seqno = seqno;
1895         }
1896         obj->ring = ring;
1897
1898         /* Add a reference if we're newly entering the active list. */
1899         if (!obj->active) {
1900                 drm_gem_object_reference(&obj->base);
1901                 obj->active = 1;
1902         }
1903
1904         list_move_tail(&obj->ring_list, &ring->active_list);
1905
1906         obj->last_read_seqno = seqno;
1907
1908         if (obj->fenced_gpu_access) {
1909                 obj->last_fenced_seqno = seqno;
1910
1911                 /* Bump MRU to take account of the delayed flush */
1912                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1913                         struct drm_i915_fence_reg *reg;
1914
1915                         reg = &dev_priv->fence_regs[obj->fence_reg];
1916                         list_move_tail(&reg->lru_list,
1917                                        &dev_priv->mm.fence_list);
1918                 }
1919         }
1920 }
1921
1922 static void
1923 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1924 {
1925         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1926         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1927         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1928
1929         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1930         BUG_ON(!obj->active);
1931
1932         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
1933
1934         list_del_init(&obj->ring_list);
1935         obj->ring = NULL;
1936
1937         obj->last_read_seqno = 0;
1938         obj->last_write_seqno = 0;
1939         obj->base.write_domain = 0;
1940
1941         obj->last_fenced_seqno = 0;
1942         obj->fenced_gpu_access = false;
1943
1944         obj->active = 0;
1945         drm_gem_object_unreference(&obj->base);
1946
1947         WARN_ON(i915_verify_lists(dev));
1948 }
1949
1950 static int
1951 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1952 {
1953         struct drm_i915_private *dev_priv = dev->dev_private;
1954         struct intel_ring_buffer *ring;
1955         int ret, i, j;
1956
1957         /* Carefully retire all requests without writing to the rings */
1958         for_each_ring(ring, dev_priv, i) {
1959                 ret = intel_ring_idle(ring);
1960                 if (ret)
1961                         return ret;
1962         }
1963         i915_gem_retire_requests(dev);
1964
1965         /* Finally reset hw state */
1966         for_each_ring(ring, dev_priv, i) {
1967                 intel_ring_init_seqno(ring, seqno);
1968
1969                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1970                         ring->sync_seqno[j] = 0;
1971         }
1972
1973         return 0;
1974 }
1975
1976 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1977 {
1978         struct drm_i915_private *dev_priv = dev->dev_private;
1979         int ret;
1980
1981         if (seqno == 0)
1982                 return -EINVAL;
1983
1984         /* HWS page needs to be set less than what we
1985          * will inject to ring
1986          */
1987         ret = i915_gem_init_seqno(dev, seqno - 1);
1988         if (ret)
1989                 return ret;
1990
1991         /* Carefully set the last_seqno value so that wrap
1992          * detection still works
1993          */
1994         dev_priv->next_seqno = seqno;
1995         dev_priv->last_seqno = seqno - 1;
1996         if (dev_priv->last_seqno == 0)
1997                 dev_priv->last_seqno--;
1998
1999         return 0;
2000 }
2001
2002 int
2003 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2004 {
2005         struct drm_i915_private *dev_priv = dev->dev_private;
2006
2007         /* reserve 0 for non-seqno */
2008         if (dev_priv->next_seqno == 0) {
2009                 int ret = i915_gem_init_seqno(dev, 0);
2010                 if (ret)
2011                         return ret;
2012
2013                 dev_priv->next_seqno = 1;
2014         }
2015
2016         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2017         return 0;
2018 }
2019
2020 int __i915_add_request(struct intel_ring_buffer *ring,
2021                        struct drm_file *file,
2022                        struct drm_i915_gem_object *obj,
2023                        u32 *out_seqno)
2024 {
2025         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2026         struct drm_i915_gem_request *request;
2027         u32 request_ring_position, request_start;
2028         int was_empty;
2029         int ret;
2030
2031         request_start = intel_ring_get_tail(ring);
2032         /*
2033          * Emit any outstanding flushes - execbuf can fail to emit the flush
2034          * after having emitted the batchbuffer command. Hence we need to fix
2035          * things up similar to emitting the lazy request. The difference here
2036          * is that the flush _must_ happen before the next request, no matter
2037          * what.
2038          */
2039         ret = intel_ring_flush_all_caches(ring);
2040         if (ret)
2041                 return ret;
2042
2043         request = kmalloc(sizeof(*request), GFP_KERNEL);
2044         if (request == NULL)
2045                 return -ENOMEM;
2046
2047
2048         /* Record the position of the start of the request so that
2049          * should we detect the updated seqno part-way through the
2050          * GPU processing the request, we never over-estimate the
2051          * position of the head.
2052          */
2053         request_ring_position = intel_ring_get_tail(ring);
2054
2055         ret = ring->add_request(ring);
2056         if (ret) {
2057                 kfree(request);
2058                 return ret;
2059         }
2060
2061         request->seqno = intel_ring_get_seqno(ring);
2062         request->ring = ring;
2063         request->head = request_start;
2064         request->tail = request_ring_position;
2065         request->ctx = ring->last_context;
2066         request->batch_obj = obj;
2067
2068         /* Whilst this request exists, batch_obj will be on the
2069          * active_list, and so will hold the active reference. Only when this
2070          * request is retired will the the batch_obj be moved onto the
2071          * inactive_list and lose its active reference. Hence we do not need
2072          * to explicitly hold another reference here.
2073          */
2074
2075         if (request->ctx)
2076                 i915_gem_context_reference(request->ctx);
2077
2078         request->emitted_jiffies = jiffies;
2079         was_empty = list_empty(&ring->request_list);
2080         list_add_tail(&request->list, &ring->request_list);
2081         request->file_priv = NULL;
2082
2083         if (file) {
2084                 struct drm_i915_file_private *file_priv = file->driver_priv;
2085
2086                 spin_lock(&file_priv->mm.lock);
2087                 request->file_priv = file_priv;
2088                 list_add_tail(&request->client_list,
2089                               &file_priv->mm.request_list);
2090                 spin_unlock(&file_priv->mm.lock);
2091         }
2092
2093         trace_i915_gem_request_add(ring, request->seqno);
2094         ring->outstanding_lazy_request = 0;
2095
2096         if (!dev_priv->ums.mm_suspended) {
2097                 i915_queue_hangcheck(ring->dev);
2098
2099                 if (was_empty) {
2100                         queue_delayed_work(dev_priv->wq,
2101                                            &dev_priv->mm.retire_work,
2102                                            round_jiffies_up_relative(HZ));
2103                         intel_mark_busy(dev_priv->dev);
2104                 }
2105         }
2106
2107         if (out_seqno)
2108                 *out_seqno = request->seqno;
2109         return 0;
2110 }
2111
2112 static inline void
2113 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2114 {
2115         struct drm_i915_file_private *file_priv = request->file_priv;
2116
2117         if (!file_priv)
2118                 return;
2119
2120         spin_lock(&file_priv->mm.lock);
2121         if (request->file_priv) {
2122                 list_del(&request->client_list);
2123                 request->file_priv = NULL;
2124         }
2125         spin_unlock(&file_priv->mm.lock);
2126 }
2127
2128 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2129                                     struct i915_address_space *vm)
2130 {
2131         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2132             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2133                 return true;
2134
2135         return false;
2136 }
2137
2138 static bool i915_head_inside_request(const u32 acthd_unmasked,
2139                                      const u32 request_start,
2140                                      const u32 request_end)
2141 {
2142         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2143
2144         if (request_start < request_end) {
2145                 if (acthd >= request_start && acthd < request_end)
2146                         return true;
2147         } else if (request_start > request_end) {
2148                 if (acthd >= request_start || acthd < request_end)
2149                         return true;
2150         }
2151
2152         return false;
2153 }
2154
2155 static struct i915_address_space *
2156 request_to_vm(struct drm_i915_gem_request *request)
2157 {
2158         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2159         struct i915_address_space *vm;
2160
2161         vm = &dev_priv->gtt.base;
2162
2163         return vm;
2164 }
2165
2166 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2167                                 const u32 acthd, bool *inside)
2168 {
2169         /* There is a possibility that unmasked head address
2170          * pointing inside the ring, matches the batch_obj address range.
2171          * However this is extremely unlikely.
2172          */
2173         if (request->batch_obj) {
2174                 if (i915_head_inside_object(acthd, request->batch_obj,
2175                                             request_to_vm(request))) {
2176                         *inside = true;
2177                         return true;
2178                 }
2179         }
2180
2181         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2182                 *inside = false;
2183                 return true;
2184         }
2185
2186         return false;
2187 }
2188
2189 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2190                                   struct drm_i915_gem_request *request,
2191                                   u32 acthd)
2192 {
2193         struct i915_ctx_hang_stats *hs = NULL;
2194         bool inside, guilty;
2195         unsigned long offset = 0;
2196
2197         /* Innocent until proven guilty */
2198         guilty = false;
2199
2200         if (request->batch_obj)
2201                 offset = i915_gem_obj_offset(request->batch_obj,
2202                                              request_to_vm(request));
2203
2204         if (ring->hangcheck.action != wait &&
2205             i915_request_guilty(request, acthd, &inside)) {
2206                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2207                           ring->name,
2208                           inside ? "inside" : "flushing",
2209                           offset,
2210                           request->ctx ? request->ctx->id : 0,
2211                           acthd);
2212
2213                 guilty = true;
2214         }
2215
2216         /* If contexts are disabled or this is the default context, use
2217          * file_priv->reset_state
2218          */
2219         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2220                 hs = &request->ctx->hang_stats;
2221         else if (request->file_priv)
2222                 hs = &request->file_priv->hang_stats;
2223
2224         if (hs) {
2225                 if (guilty)
2226                         hs->batch_active++;
2227                 else
2228                         hs->batch_pending++;
2229         }
2230 }
2231
2232 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2233 {
2234         list_del(&request->list);
2235         i915_gem_request_remove_from_client(request);
2236
2237         if (request->ctx)
2238                 i915_gem_context_unreference(request->ctx);
2239
2240         kfree(request);
2241 }
2242
2243 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2244                                       struct intel_ring_buffer *ring)
2245 {
2246         u32 completed_seqno;
2247         u32 acthd;
2248
2249         acthd = intel_ring_get_active_head(ring);
2250         completed_seqno = ring->get_seqno(ring, false);
2251
2252         while (!list_empty(&ring->request_list)) {
2253                 struct drm_i915_gem_request *request;
2254
2255                 request = list_first_entry(&ring->request_list,
2256                                            struct drm_i915_gem_request,
2257                                            list);
2258
2259                 if (request->seqno > completed_seqno)
2260                         i915_set_reset_status(ring, request, acthd);
2261
2262                 i915_gem_free_request(request);
2263         }
2264
2265         while (!list_empty(&ring->active_list)) {
2266                 struct drm_i915_gem_object *obj;
2267
2268                 obj = list_first_entry(&ring->active_list,
2269                                        struct drm_i915_gem_object,
2270                                        ring_list);
2271
2272                 i915_gem_object_move_to_inactive(obj);
2273         }
2274 }
2275
2276 void i915_gem_restore_fences(struct drm_device *dev)
2277 {
2278         struct drm_i915_private *dev_priv = dev->dev_private;
2279         int i;
2280
2281         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2282                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2283
2284                 /*
2285                  * Commit delayed tiling changes if we have an object still
2286                  * attached to the fence, otherwise just clear the fence.
2287                  */
2288                 if (reg->obj) {
2289                         i915_gem_object_update_fence(reg->obj, reg,
2290                                                      reg->obj->tiling_mode);
2291                 } else {
2292                         i915_gem_write_fence(dev, i, NULL);
2293                 }
2294         }
2295 }
2296
2297 void i915_gem_reset(struct drm_device *dev)
2298 {
2299         struct drm_i915_private *dev_priv = dev->dev_private;
2300         struct intel_ring_buffer *ring;
2301         int i;
2302
2303         for_each_ring(ring, dev_priv, i)
2304                 i915_gem_reset_ring_lists(dev_priv, ring);
2305
2306         i915_gem_restore_fences(dev);
2307 }
2308
2309 /**
2310  * This function clears the request list as sequence numbers are passed.
2311  */
2312 void
2313 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2314 {
2315         uint32_t seqno;
2316
2317         if (list_empty(&ring->request_list))
2318                 return;
2319
2320         WARN_ON(i915_verify_lists(ring->dev));
2321
2322         seqno = ring->get_seqno(ring, true);
2323
2324         while (!list_empty(&ring->request_list)) {
2325                 struct drm_i915_gem_request *request;
2326
2327                 request = list_first_entry(&ring->request_list,
2328                                            struct drm_i915_gem_request,
2329                                            list);
2330
2331                 if (!i915_seqno_passed(seqno, request->seqno))
2332                         break;
2333
2334                 trace_i915_gem_request_retire(ring, request->seqno);
2335                 /* We know the GPU must have read the request to have
2336                  * sent us the seqno + interrupt, so use the position
2337                  * of tail of the request to update the last known position
2338                  * of the GPU head.
2339                  */
2340                 ring->last_retired_head = request->tail;
2341
2342                 i915_gem_free_request(request);
2343         }
2344
2345         /* Move any buffers on the active list that are no longer referenced
2346          * by the ringbuffer to the flushing/inactive lists as appropriate.
2347          */
2348         while (!list_empty(&ring->active_list)) {
2349                 struct drm_i915_gem_object *obj;
2350
2351                 obj = list_first_entry(&ring->active_list,
2352                                       struct drm_i915_gem_object,
2353                                       ring_list);
2354
2355                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2356                         break;
2357
2358                 i915_gem_object_move_to_inactive(obj);
2359         }
2360
2361         if (unlikely(ring->trace_irq_seqno &&
2362                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2363                 ring->irq_put(ring);
2364                 ring->trace_irq_seqno = 0;
2365         }
2366
2367         WARN_ON(i915_verify_lists(ring->dev));
2368 }
2369
2370 void
2371 i915_gem_retire_requests(struct drm_device *dev)
2372 {
2373         drm_i915_private_t *dev_priv = dev->dev_private;
2374         struct intel_ring_buffer *ring;
2375         int i;
2376
2377         for_each_ring(ring, dev_priv, i)
2378                 i915_gem_retire_requests_ring(ring);
2379 }
2380
2381 static void
2382 i915_gem_retire_work_handler(struct work_struct *work)
2383 {
2384         drm_i915_private_t *dev_priv;
2385         struct drm_device *dev;
2386         struct intel_ring_buffer *ring;
2387         bool idle;
2388         int i;
2389
2390         dev_priv = container_of(work, drm_i915_private_t,
2391                                 mm.retire_work.work);
2392         dev = dev_priv->dev;
2393
2394         /* Come back later if the device is busy... */
2395         if (!mutex_trylock(&dev->struct_mutex)) {
2396                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2397                                    round_jiffies_up_relative(HZ));
2398                 return;
2399         }
2400
2401         i915_gem_retire_requests(dev);
2402
2403         /* Send a periodic flush down the ring so we don't hold onto GEM
2404          * objects indefinitely.
2405          */
2406         idle = true;
2407         for_each_ring(ring, dev_priv, i) {
2408                 if (ring->gpu_caches_dirty)
2409                         i915_add_request(ring, NULL);
2410
2411                 idle &= list_empty(&ring->request_list);
2412         }
2413
2414         if (!dev_priv->ums.mm_suspended && !idle)
2415                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2416                                    round_jiffies_up_relative(HZ));
2417         if (idle)
2418                 intel_mark_idle(dev);
2419
2420         mutex_unlock(&dev->struct_mutex);
2421 }
2422
2423 /**
2424  * Ensures that an object will eventually get non-busy by flushing any required
2425  * write domains, emitting any outstanding lazy request and retiring and
2426  * completed requests.
2427  */
2428 static int
2429 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2430 {
2431         int ret;
2432
2433         if (obj->active) {
2434                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2435                 if (ret)
2436                         return ret;
2437
2438                 i915_gem_retire_requests_ring(obj->ring);
2439         }
2440
2441         return 0;
2442 }
2443
2444 /**
2445  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2446  * @DRM_IOCTL_ARGS: standard ioctl arguments
2447  *
2448  * Returns 0 if successful, else an error is returned with the remaining time in
2449  * the timeout parameter.
2450  *  -ETIME: object is still busy after timeout
2451  *  -ERESTARTSYS: signal interrupted the wait
2452  *  -ENONENT: object doesn't exist
2453  * Also possible, but rare:
2454  *  -EAGAIN: GPU wedged
2455  *  -ENOMEM: damn
2456  *  -ENODEV: Internal IRQ fail
2457  *  -E?: The add request failed
2458  *
2459  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2460  * non-zero timeout parameter the wait ioctl will wait for the given number of
2461  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2462  * without holding struct_mutex the object may become re-busied before this
2463  * function completes. A similar but shorter * race condition exists in the busy
2464  * ioctl
2465  */
2466 int
2467 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2468 {
2469         drm_i915_private_t *dev_priv = dev->dev_private;
2470         struct drm_i915_gem_wait *args = data;
2471         struct drm_i915_gem_object *obj;
2472         struct intel_ring_buffer *ring = NULL;
2473         struct timespec timeout_stack, *timeout = NULL;
2474         unsigned reset_counter;
2475         u32 seqno = 0;
2476         int ret = 0;
2477
2478         if (args->timeout_ns >= 0) {
2479                 timeout_stack = ns_to_timespec(args->timeout_ns);
2480                 timeout = &timeout_stack;
2481         }
2482
2483         ret = i915_mutex_lock_interruptible(dev);
2484         if (ret)
2485                 return ret;
2486
2487         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2488         if (&obj->base == NULL) {
2489                 mutex_unlock(&dev->struct_mutex);
2490                 return -ENOENT;
2491         }
2492
2493         /* Need to make sure the object gets inactive eventually. */
2494         ret = i915_gem_object_flush_active(obj);
2495         if (ret)
2496                 goto out;
2497
2498         if (obj->active) {
2499                 seqno = obj->last_read_seqno;
2500                 ring = obj->ring;
2501         }
2502
2503         if (seqno == 0)
2504                  goto out;
2505
2506         /* Do this after OLR check to make sure we make forward progress polling
2507          * on this IOCTL with a 0 timeout (like busy ioctl)
2508          */
2509         if (!args->timeout_ns) {
2510                 ret = -ETIME;
2511                 goto out;
2512         }
2513
2514         drm_gem_object_unreference(&obj->base);
2515         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2516         mutex_unlock(&dev->struct_mutex);
2517
2518         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2519         if (timeout)
2520                 args->timeout_ns = timespec_to_ns(timeout);
2521         return ret;
2522
2523 out:
2524         drm_gem_object_unreference(&obj->base);
2525         mutex_unlock(&dev->struct_mutex);
2526         return ret;
2527 }
2528
2529 /**
2530  * i915_gem_object_sync - sync an object to a ring.
2531  *
2532  * @obj: object which may be in use on another ring.
2533  * @to: ring we wish to use the object on. May be NULL.
2534  *
2535  * This code is meant to abstract object synchronization with the GPU.
2536  * Calling with NULL implies synchronizing the object with the CPU
2537  * rather than a particular GPU ring.
2538  *
2539  * Returns 0 if successful, else propagates up the lower layer error.
2540  */
2541 int
2542 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2543                      struct intel_ring_buffer *to)
2544 {
2545         struct intel_ring_buffer *from = obj->ring;
2546         u32 seqno;
2547         int ret, idx;
2548
2549         if (from == NULL || to == from)
2550                 return 0;
2551
2552         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2553                 return i915_gem_object_wait_rendering(obj, false);
2554
2555         idx = intel_ring_sync_index(from, to);
2556
2557         seqno = obj->last_read_seqno;
2558         if (seqno <= from->sync_seqno[idx])
2559                 return 0;
2560
2561         ret = i915_gem_check_olr(obj->ring, seqno);
2562         if (ret)
2563                 return ret;
2564
2565         ret = to->sync_to(to, from, seqno);
2566         if (!ret)
2567                 /* We use last_read_seqno because sync_to()
2568                  * might have just caused seqno wrap under
2569                  * the radar.
2570                  */
2571                 from->sync_seqno[idx] = obj->last_read_seqno;
2572
2573         return ret;
2574 }
2575
2576 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2577 {
2578         u32 old_write_domain, old_read_domains;
2579
2580         /* Force a pagefault for domain tracking on next user access */
2581         i915_gem_release_mmap(obj);
2582
2583         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2584                 return;
2585
2586         /* Wait for any direct GTT access to complete */
2587         mb();
2588
2589         old_read_domains = obj->base.read_domains;
2590         old_write_domain = obj->base.write_domain;
2591
2592         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2593         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2594
2595         trace_i915_gem_object_change_domain(obj,
2596                                             old_read_domains,
2597                                             old_write_domain);
2598 }
2599
2600 int i915_vma_unbind(struct i915_vma *vma)
2601 {
2602         struct drm_i915_gem_object *obj = vma->obj;
2603         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2604         int ret;
2605
2606         if (list_empty(&vma->vma_link))
2607                 return 0;
2608
2609         if (obj->pin_count)
2610                 return -EBUSY;
2611
2612         BUG_ON(obj->pages == NULL);
2613
2614         ret = i915_gem_object_finish_gpu(obj);
2615         if (ret)
2616                 return ret;
2617         /* Continue on if we fail due to EIO, the GPU is hung so we
2618          * should be safe and we need to cleanup or else we might
2619          * cause memory corruption through use-after-free.
2620          */
2621
2622         i915_gem_object_finish_gtt(obj);
2623
2624         /* release the fence reg _after_ flushing */
2625         ret = i915_gem_object_put_fence(obj);
2626         if (ret)
2627                 return ret;
2628
2629         trace_i915_vma_unbind(vma);
2630
2631         if (obj->has_global_gtt_mapping)
2632                 i915_gem_gtt_unbind_object(obj);
2633         if (obj->has_aliasing_ppgtt_mapping) {
2634                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2635                 obj->has_aliasing_ppgtt_mapping = 0;
2636         }
2637         i915_gem_gtt_finish_object(obj);
2638         i915_gem_object_unpin_pages(obj);
2639
2640         list_del(&vma->mm_list);
2641         /* Avoid an unnecessary call to unbind on rebind. */
2642         if (i915_is_ggtt(vma->vm))
2643                 obj->map_and_fenceable = true;
2644
2645         list_del(&vma->vma_link);
2646         drm_mm_remove_node(&vma->node);
2647         i915_gem_vma_destroy(vma);
2648
2649         /* Since the unbound list is global, only move to that list if
2650          * no more VMAs exist.
2651          * NB: Until we have real VMAs there will only ever be one */
2652         WARN_ON(!list_empty(&obj->vma_list));
2653         if (list_empty(&obj->vma_list))
2654                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2655
2656         return 0;
2657 }
2658
2659 /**
2660  * Unbinds an object from the global GTT aperture.
2661  */
2662 int
2663 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2664 {
2665         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2666         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2667
2668         if (!i915_gem_obj_ggtt_bound(obj));
2669                 return 0;
2670
2671         if (obj->pin_count)
2672                 return -EBUSY;
2673
2674         BUG_ON(obj->pages == NULL);
2675
2676         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2677 }
2678
2679 int i915_gpu_idle(struct drm_device *dev)
2680 {
2681         drm_i915_private_t *dev_priv = dev->dev_private;
2682         struct intel_ring_buffer *ring;
2683         int ret, i;
2684
2685         /* Flush everything onto the inactive list. */
2686         for_each_ring(ring, dev_priv, i) {
2687                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2688                 if (ret)
2689                         return ret;
2690
2691                 ret = intel_ring_idle(ring);
2692                 if (ret)
2693                         return ret;
2694         }
2695
2696         return 0;
2697 }
2698
2699 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2700                                  struct drm_i915_gem_object *obj)
2701 {
2702         drm_i915_private_t *dev_priv = dev->dev_private;
2703         int fence_reg;
2704         int fence_pitch_shift;
2705
2706         if (INTEL_INFO(dev)->gen >= 6) {
2707                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2708                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2709         } else {
2710                 fence_reg = FENCE_REG_965_0;
2711                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2712         }
2713
2714         fence_reg += reg * 8;
2715
2716         /* To w/a incoherency with non-atomic 64-bit register updates,
2717          * we split the 64-bit update into two 32-bit writes. In order
2718          * for a partial fence not to be evaluated between writes, we
2719          * precede the update with write to turn off the fence register,
2720          * and only enable the fence as the last step.
2721          *
2722          * For extra levels of paranoia, we make sure each step lands
2723          * before applying the next step.
2724          */
2725         I915_WRITE(fence_reg, 0);
2726         POSTING_READ(fence_reg);
2727
2728         if (obj) {
2729                 u32 size = i915_gem_obj_ggtt_size(obj);
2730                 uint64_t val;
2731
2732                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2733                                  0xfffff000) << 32;
2734                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2735                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2736                 if (obj->tiling_mode == I915_TILING_Y)
2737                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2738                 val |= I965_FENCE_REG_VALID;
2739
2740                 I915_WRITE(fence_reg + 4, val >> 32);
2741                 POSTING_READ(fence_reg + 4);
2742
2743                 I915_WRITE(fence_reg + 0, val);
2744                 POSTING_READ(fence_reg);
2745         } else {
2746                 I915_WRITE(fence_reg + 4, 0);
2747                 POSTING_READ(fence_reg + 4);
2748         }
2749 }
2750
2751 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2752                                  struct drm_i915_gem_object *obj)
2753 {
2754         drm_i915_private_t *dev_priv = dev->dev_private;
2755         u32 val;
2756
2757         if (obj) {
2758                 u32 size = i915_gem_obj_ggtt_size(obj);
2759                 int pitch_val;
2760                 int tile_width;
2761
2762                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2763                      (size & -size) != size ||
2764                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2765                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2766                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2767
2768                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2769                         tile_width = 128;
2770                 else
2771                         tile_width = 512;
2772
2773                 /* Note: pitch better be a power of two tile widths */
2774                 pitch_val = obj->stride / tile_width;
2775                 pitch_val = ffs(pitch_val) - 1;
2776
2777                 val = i915_gem_obj_ggtt_offset(obj);
2778                 if (obj->tiling_mode == I915_TILING_Y)
2779                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2780                 val |= I915_FENCE_SIZE_BITS(size);
2781                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2782                 val |= I830_FENCE_REG_VALID;
2783         } else
2784                 val = 0;
2785
2786         if (reg < 8)
2787                 reg = FENCE_REG_830_0 + reg * 4;
2788         else
2789                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2790
2791         I915_WRITE(reg, val);
2792         POSTING_READ(reg);
2793 }
2794
2795 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2796                                 struct drm_i915_gem_object *obj)
2797 {
2798         drm_i915_private_t *dev_priv = dev->dev_private;
2799         uint32_t val;
2800
2801         if (obj) {
2802                 u32 size = i915_gem_obj_ggtt_size(obj);
2803                 uint32_t pitch_val;
2804
2805                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2806                      (size & -size) != size ||
2807                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2808                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2809                      i915_gem_obj_ggtt_offset(obj), size);
2810
2811                 pitch_val = obj->stride / 128;
2812                 pitch_val = ffs(pitch_val) - 1;
2813
2814                 val = i915_gem_obj_ggtt_offset(obj);
2815                 if (obj->tiling_mode == I915_TILING_Y)
2816                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2817                 val |= I830_FENCE_SIZE_BITS(size);
2818                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2819                 val |= I830_FENCE_REG_VALID;
2820         } else
2821                 val = 0;
2822
2823         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2824         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2825 }
2826
2827 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2828 {
2829         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2830 }
2831
2832 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2833                                  struct drm_i915_gem_object *obj)
2834 {
2835         struct drm_i915_private *dev_priv = dev->dev_private;
2836
2837         /* Ensure that all CPU reads are completed before installing a fence
2838          * and all writes before removing the fence.
2839          */
2840         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2841                 mb();
2842
2843         WARN(obj && (!obj->stride || !obj->tiling_mode),
2844              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2845              obj->stride, obj->tiling_mode);
2846
2847         switch (INTEL_INFO(dev)->gen) {
2848         case 7:
2849         case 6:
2850         case 5:
2851         case 4: i965_write_fence_reg(dev, reg, obj); break;
2852         case 3: i915_write_fence_reg(dev, reg, obj); break;
2853         case 2: i830_write_fence_reg(dev, reg, obj); break;
2854         default: BUG();
2855         }
2856
2857         /* And similarly be paranoid that no direct access to this region
2858          * is reordered to before the fence is installed.
2859          */
2860         if (i915_gem_object_needs_mb(obj))
2861                 mb();
2862 }
2863
2864 static inline int fence_number(struct drm_i915_private *dev_priv,
2865                                struct drm_i915_fence_reg *fence)
2866 {
2867         return fence - dev_priv->fence_regs;
2868 }
2869
2870 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2871                                          struct drm_i915_fence_reg *fence,
2872                                          bool enable)
2873 {
2874         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2875         int reg = fence_number(dev_priv, fence);
2876
2877         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2878
2879         if (enable) {
2880                 obj->fence_reg = reg;
2881                 fence->obj = obj;
2882                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2883         } else {
2884                 obj->fence_reg = I915_FENCE_REG_NONE;
2885                 fence->obj = NULL;
2886                 list_del_init(&fence->lru_list);
2887         }
2888         obj->fence_dirty = false;
2889 }
2890
2891 static int
2892 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2893 {
2894         if (obj->last_fenced_seqno) {
2895                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2896                 if (ret)
2897                         return ret;
2898
2899                 obj->last_fenced_seqno = 0;
2900         }
2901
2902         obj->fenced_gpu_access = false;
2903         return 0;
2904 }
2905
2906 int
2907 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2908 {
2909         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2910         struct drm_i915_fence_reg *fence;
2911         int ret;
2912
2913         ret = i915_gem_object_wait_fence(obj);
2914         if (ret)
2915                 return ret;
2916
2917         if (obj->fence_reg == I915_FENCE_REG_NONE)
2918                 return 0;
2919
2920         fence = &dev_priv->fence_regs[obj->fence_reg];
2921
2922         i915_gem_object_fence_lost(obj);
2923         i915_gem_object_update_fence(obj, fence, false);
2924
2925         return 0;
2926 }
2927
2928 static struct drm_i915_fence_reg *
2929 i915_find_fence_reg(struct drm_device *dev)
2930 {
2931         struct drm_i915_private *dev_priv = dev->dev_private;
2932         struct drm_i915_fence_reg *reg, *avail;
2933         int i;
2934
2935         /* First try to find a free reg */
2936         avail = NULL;
2937         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2938                 reg = &dev_priv->fence_regs[i];
2939                 if (!reg->obj)
2940                         return reg;
2941
2942                 if (!reg->pin_count)
2943                         avail = reg;
2944         }
2945
2946         if (avail == NULL)
2947                 return NULL;
2948
2949         /* None available, try to steal one or wait for a user to finish */
2950         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2951                 if (reg->pin_count)
2952                         continue;
2953
2954                 return reg;
2955         }
2956
2957         return NULL;
2958 }
2959
2960 /**
2961  * i915_gem_object_get_fence - set up fencing for an object
2962  * @obj: object to map through a fence reg
2963  *
2964  * When mapping objects through the GTT, userspace wants to be able to write
2965  * to them without having to worry about swizzling if the object is tiled.
2966  * This function walks the fence regs looking for a free one for @obj,
2967  * stealing one if it can't find any.
2968  *
2969  * It then sets up the reg based on the object's properties: address, pitch
2970  * and tiling format.
2971  *
2972  * For an untiled surface, this removes any existing fence.
2973  */
2974 int
2975 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2976 {
2977         struct drm_device *dev = obj->base.dev;
2978         struct drm_i915_private *dev_priv = dev->dev_private;
2979         bool enable = obj->tiling_mode != I915_TILING_NONE;
2980         struct drm_i915_fence_reg *reg;
2981         int ret;
2982
2983         /* Have we updated the tiling parameters upon the object and so
2984          * will need to serialise the write to the associated fence register?
2985          */
2986         if (obj->fence_dirty) {
2987                 ret = i915_gem_object_wait_fence(obj);
2988                 if (ret)
2989                         return ret;
2990         }
2991
2992         /* Just update our place in the LRU if our fence is getting reused. */
2993         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2994                 reg = &dev_priv->fence_regs[obj->fence_reg];
2995                 if (!obj->fence_dirty) {
2996                         list_move_tail(&reg->lru_list,
2997                                        &dev_priv->mm.fence_list);
2998                         return 0;
2999                 }
3000         } else if (enable) {
3001                 reg = i915_find_fence_reg(dev);
3002                 if (reg == NULL)
3003                         return -EDEADLK;
3004
3005                 if (reg->obj) {
3006                         struct drm_i915_gem_object *old = reg->obj;
3007
3008                         ret = i915_gem_object_wait_fence(old);
3009                         if (ret)
3010                                 return ret;
3011
3012                         i915_gem_object_fence_lost(old);
3013                 }
3014         } else
3015                 return 0;
3016
3017         i915_gem_object_update_fence(obj, reg, enable);
3018
3019         return 0;
3020 }
3021
3022 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3023                                      struct drm_mm_node *gtt_space,
3024                                      unsigned long cache_level)
3025 {
3026         struct drm_mm_node *other;
3027
3028         /* On non-LLC machines we have to be careful when putting differing
3029          * types of snoopable memory together to avoid the prefetcher
3030          * crossing memory domains and dying.
3031          */
3032         if (HAS_LLC(dev))
3033                 return true;
3034
3035         if (!drm_mm_node_allocated(gtt_space))
3036                 return true;
3037
3038         if (list_empty(&gtt_space->node_list))
3039                 return true;
3040
3041         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3042         if (other->allocated && !other->hole_follows && other->color != cache_level)
3043                 return false;
3044
3045         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3046         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3047                 return false;
3048
3049         return true;
3050 }
3051
3052 static void i915_gem_verify_gtt(struct drm_device *dev)
3053 {
3054 #if WATCH_GTT
3055         struct drm_i915_private *dev_priv = dev->dev_private;
3056         struct drm_i915_gem_object *obj;
3057         int err = 0;
3058
3059         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3060                 if (obj->gtt_space == NULL) {
3061                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3062                         err++;
3063                         continue;
3064                 }
3065
3066                 if (obj->cache_level != obj->gtt_space->color) {
3067                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3068                                i915_gem_obj_ggtt_offset(obj),
3069                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3070                                obj->cache_level,
3071                                obj->gtt_space->color);
3072                         err++;
3073                         continue;
3074                 }
3075
3076                 if (!i915_gem_valid_gtt_space(dev,
3077                                               obj->gtt_space,
3078                                               obj->cache_level)) {
3079                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3080                                i915_gem_obj_ggtt_offset(obj),
3081                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3082                                obj->cache_level);
3083                         err++;
3084                         continue;
3085                 }
3086         }
3087
3088         WARN_ON(err);
3089 #endif
3090 }
3091
3092 /**
3093  * Finds free space in the GTT aperture and binds the object there.
3094  */
3095 static int
3096 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3097                            struct i915_address_space *vm,
3098                            unsigned alignment,
3099                            bool map_and_fenceable,
3100                            bool nonblocking)
3101 {
3102         struct drm_device *dev = obj->base.dev;
3103         drm_i915_private_t *dev_priv = dev->dev_private;
3104         u32 size, fence_size, fence_alignment, unfenced_alignment;
3105         bool mappable, fenceable;
3106         size_t gtt_max =
3107                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3108         struct i915_vma *vma;
3109         int ret;
3110
3111         if (WARN_ON(!list_empty(&obj->vma_list)))
3112                 return -EBUSY;
3113
3114         fence_size = i915_gem_get_gtt_size(dev,
3115                                            obj->base.size,
3116                                            obj->tiling_mode);
3117         fence_alignment = i915_gem_get_gtt_alignment(dev,
3118                                                      obj->base.size,
3119                                                      obj->tiling_mode, true);
3120         unfenced_alignment =
3121                 i915_gem_get_gtt_alignment(dev,
3122                                                     obj->base.size,
3123                                                     obj->tiling_mode, false);
3124
3125         if (alignment == 0)
3126                 alignment = map_and_fenceable ? fence_alignment :
3127                                                 unfenced_alignment;
3128         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3129                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3130                 return -EINVAL;
3131         }
3132
3133         size = map_and_fenceable ? fence_size : obj->base.size;
3134
3135         /* If the object is bigger than the entire aperture, reject it early
3136          * before evicting everything in a vain attempt to find space.
3137          */
3138         if (obj->base.size > gtt_max) {
3139                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3140                           obj->base.size,
3141                           map_and_fenceable ? "mappable" : "total",
3142                           gtt_max);
3143                 return -E2BIG;
3144         }
3145
3146         ret = i915_gem_object_get_pages(obj);
3147         if (ret)
3148                 return ret;
3149
3150         i915_gem_object_pin_pages(obj);
3151
3152         /* FIXME: For now we only ever use 1 VMA per object */
3153         BUG_ON(!i915_is_ggtt(vm));
3154         WARN_ON(!list_empty(&obj->vma_list));
3155
3156         vma = i915_gem_vma_create(obj, vm);
3157         if (IS_ERR(vma)) {
3158                 ret = PTR_ERR(vma);
3159                 goto err_unpin;
3160         }
3161
3162 search_free:
3163         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3164                                                   size, alignment,
3165                                                   obj->cache_level, 0, gtt_max);
3166         if (ret) {
3167                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3168                                                obj->cache_level,
3169                                                map_and_fenceable,
3170                                                nonblocking);
3171                 if (ret == 0)
3172                         goto search_free;
3173
3174                 goto err_free_vma;
3175         }
3176         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3177                                               obj->cache_level))) {
3178                 ret = -EINVAL;
3179                 goto err_remove_node;
3180         }
3181
3182         ret = i915_gem_gtt_prepare_object(obj);
3183         if (ret)
3184                 goto err_remove_node;
3185
3186         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3187         list_add_tail(&vma->mm_list, &vm->inactive_list);
3188
3189         /* Keep GGTT vmas first to make debug easier */
3190         if (i915_is_ggtt(vm))
3191                 list_add(&vma->vma_link, &obj->vma_list);
3192         else
3193                 list_add_tail(&vma->vma_link, &obj->vma_list);
3194
3195         fenceable =
3196                 i915_is_ggtt(vm) &&
3197                 i915_gem_obj_ggtt_size(obj) == fence_size &&
3198                 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
3199
3200         mappable =
3201                 i915_is_ggtt(vm) &&
3202                 vma->node.start + obj->base.size <= dev_priv->gtt.mappable_end;
3203
3204         /* Map and fenceable only changes if the VM is the global GGTT */
3205         if (i915_is_ggtt(vm))
3206                 obj->map_and_fenceable = mappable && fenceable;
3207
3208         trace_i915_vma_bind(vma, map_and_fenceable);
3209         i915_gem_verify_gtt(dev);
3210         return 0;
3211
3212 err_remove_node:
3213         drm_mm_remove_node(&vma->node);
3214 err_free_vma:
3215         i915_gem_vma_destroy(vma);
3216 err_unpin:
3217         i915_gem_object_unpin_pages(obj);
3218         return ret;
3219 }
3220
3221 void
3222 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3223 {
3224         /* If we don't have a page list set up, then we're not pinned
3225          * to GPU, and we can ignore the cache flush because it'll happen
3226          * again at bind time.
3227          */
3228         if (obj->pages == NULL)
3229                 return;
3230
3231         /*
3232          * Stolen memory is always coherent with the GPU as it is explicitly
3233          * marked as wc by the system, or the system is cache-coherent.
3234          */
3235         if (obj->stolen)
3236                 return;
3237
3238         /* If the GPU is snooping the contents of the CPU cache,
3239          * we do not need to manually clear the CPU cache lines.  However,
3240          * the caches are only snooped when the render cache is
3241          * flushed/invalidated.  As we always have to emit invalidations
3242          * and flushes when moving into and out of the RENDER domain, correct
3243          * snooping behaviour occurs naturally as the result of our domain
3244          * tracking.
3245          */
3246         if (obj->cache_level != I915_CACHE_NONE)
3247                 return;
3248
3249         trace_i915_gem_object_clflush(obj);
3250
3251         drm_clflush_sg(obj->pages);
3252 }
3253
3254 /** Flushes the GTT write domain for the object if it's dirty. */
3255 static void
3256 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3257 {
3258         uint32_t old_write_domain;
3259
3260         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3261                 return;
3262
3263         /* No actual flushing is required for the GTT write domain.  Writes
3264          * to it immediately go to main memory as far as we know, so there's
3265          * no chipset flush.  It also doesn't land in render cache.
3266          *
3267          * However, we do have to enforce the order so that all writes through
3268          * the GTT land before any writes to the device, such as updates to
3269          * the GATT itself.
3270          */
3271         wmb();
3272
3273         old_write_domain = obj->base.write_domain;
3274         obj->base.write_domain = 0;
3275
3276         trace_i915_gem_object_change_domain(obj,
3277                                             obj->base.read_domains,
3278                                             old_write_domain);
3279 }
3280
3281 /** Flushes the CPU write domain for the object if it's dirty. */
3282 static void
3283 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3284 {
3285         uint32_t old_write_domain;
3286
3287         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3288                 return;
3289
3290         i915_gem_clflush_object(obj);
3291         i915_gem_chipset_flush(obj->base.dev);
3292         old_write_domain = obj->base.write_domain;
3293         obj->base.write_domain = 0;
3294
3295         trace_i915_gem_object_change_domain(obj,
3296                                             obj->base.read_domains,
3297                                             old_write_domain);
3298 }
3299
3300 /**
3301  * Moves a single object to the GTT read, and possibly write domain.
3302  *
3303  * This function returns when the move is complete, including waiting on
3304  * flushes to occur.
3305  */
3306 int
3307 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3308 {
3309         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3310         uint32_t old_write_domain, old_read_domains;
3311         int ret;
3312
3313         /* Not valid to be called on unbound objects. */
3314         if (!i915_gem_obj_bound_any(obj))
3315                 return -EINVAL;
3316
3317         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3318                 return 0;
3319
3320         ret = i915_gem_object_wait_rendering(obj, !write);
3321         if (ret)
3322                 return ret;
3323
3324         i915_gem_object_flush_cpu_write_domain(obj);
3325
3326         /* Serialise direct access to this object with the barriers for
3327          * coherent writes from the GPU, by effectively invalidating the
3328          * GTT domain upon first access.
3329          */
3330         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3331                 mb();
3332
3333         old_write_domain = obj->base.write_domain;
3334         old_read_domains = obj->base.read_domains;
3335
3336         /* It should now be out of any other write domains, and we can update
3337          * the domain values for our changes.
3338          */
3339         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3340         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3341         if (write) {
3342                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3343                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3344                 obj->dirty = 1;
3345         }
3346
3347         trace_i915_gem_object_change_domain(obj,
3348                                             old_read_domains,
3349                                             old_write_domain);
3350
3351         /* And bump the LRU for this access */
3352         if (i915_gem_object_is_inactive(obj)) {
3353                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3354                                                            &dev_priv->gtt.base);
3355                 if (vma)
3356                         list_move_tail(&vma->mm_list,
3357                                        &dev_priv->gtt.base.inactive_list);
3358
3359         }
3360
3361         return 0;
3362 }
3363
3364 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3365                                     enum i915_cache_level cache_level)
3366 {
3367         struct drm_device *dev = obj->base.dev;
3368         drm_i915_private_t *dev_priv = dev->dev_private;
3369         struct i915_vma *vma;
3370         int ret;
3371
3372         if (obj->cache_level == cache_level)
3373                 return 0;
3374
3375         if (obj->pin_count) {
3376                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3377                 return -EBUSY;
3378         }
3379
3380         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3381                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3382                         ret = i915_vma_unbind(vma);
3383                         if (ret)
3384                                 return ret;
3385
3386                         break;
3387                 }
3388         }
3389
3390         if (i915_gem_obj_bound_any(obj)) {
3391                 ret = i915_gem_object_finish_gpu(obj);
3392                 if (ret)
3393                         return ret;
3394
3395                 i915_gem_object_finish_gtt(obj);
3396
3397                 /* Before SandyBridge, you could not use tiling or fence
3398                  * registers with snooped memory, so relinquish any fences
3399                  * currently pointing to our region in the aperture.
3400                  */
3401                 if (INTEL_INFO(dev)->gen < 6) {
3402                         ret = i915_gem_object_put_fence(obj);
3403                         if (ret)
3404                                 return ret;
3405                 }
3406
3407                 if (obj->has_global_gtt_mapping)
3408                         i915_gem_gtt_bind_object(obj, cache_level);
3409                 if (obj->has_aliasing_ppgtt_mapping)
3410                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3411                                                obj, cache_level);
3412         }
3413
3414         if (cache_level == I915_CACHE_NONE) {
3415                 u32 old_read_domains, old_write_domain;
3416
3417                 /* If we're coming from LLC cached, then we haven't
3418                  * actually been tracking whether the data is in the
3419                  * CPU cache or not, since we only allow one bit set
3420                  * in obj->write_domain and have been skipping the clflushes.
3421                  * Just set it to the CPU cache for now.
3422                  */
3423                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3424                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3425
3426                 old_read_domains = obj->base.read_domains;
3427                 old_write_domain = obj->base.write_domain;
3428
3429                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3430                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3431
3432                 trace_i915_gem_object_change_domain(obj,
3433                                                     old_read_domains,
3434                                                     old_write_domain);
3435         }
3436
3437         list_for_each_entry(vma, &obj->vma_list, vma_link)
3438                 vma->node.color = cache_level;
3439         obj->cache_level = cache_level;
3440         i915_gem_verify_gtt(dev);
3441         return 0;
3442 }
3443
3444 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3445                                struct drm_file *file)
3446 {
3447         struct drm_i915_gem_caching *args = data;
3448         struct drm_i915_gem_object *obj;
3449         int ret;
3450
3451         ret = i915_mutex_lock_interruptible(dev);
3452         if (ret)
3453                 return ret;
3454
3455         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3456         if (&obj->base == NULL) {
3457                 ret = -ENOENT;
3458                 goto unlock;
3459         }
3460
3461         args->caching = obj->cache_level != I915_CACHE_NONE;
3462
3463         drm_gem_object_unreference(&obj->base);
3464 unlock:
3465         mutex_unlock(&dev->struct_mutex);
3466         return ret;
3467 }
3468
3469 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3470                                struct drm_file *file)
3471 {
3472         struct drm_i915_gem_caching *args = data;
3473         struct drm_i915_gem_object *obj;
3474         enum i915_cache_level level;
3475         int ret;
3476
3477         switch (args->caching) {
3478         case I915_CACHING_NONE:
3479                 level = I915_CACHE_NONE;
3480                 break;
3481         case I915_CACHING_CACHED:
3482                 level = I915_CACHE_LLC;
3483                 break;
3484         default:
3485                 return -EINVAL;
3486         }
3487
3488         ret = i915_mutex_lock_interruptible(dev);
3489         if (ret)
3490                 return ret;
3491
3492         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3493         if (&obj->base == NULL) {
3494                 ret = -ENOENT;
3495                 goto unlock;
3496         }
3497
3498         ret = i915_gem_object_set_cache_level(obj, level);
3499
3500         drm_gem_object_unreference(&obj->base);
3501 unlock:
3502         mutex_unlock(&dev->struct_mutex);
3503         return ret;
3504 }
3505
3506 /*
3507  * Prepare buffer for display plane (scanout, cursors, etc).
3508  * Can be called from an uninterruptible phase (modesetting) and allows
3509  * any flushes to be pipelined (for pageflips).
3510  */
3511 int
3512 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3513                                      u32 alignment,
3514                                      struct intel_ring_buffer *pipelined)
3515 {
3516         u32 old_read_domains, old_write_domain;
3517         int ret;
3518
3519         if (pipelined != obj->ring) {
3520                 ret = i915_gem_object_sync(obj, pipelined);
3521                 if (ret)
3522                         return ret;
3523         }
3524
3525         /* The display engine is not coherent with the LLC cache on gen6.  As
3526          * a result, we make sure that the pinning that is about to occur is
3527          * done with uncached PTEs. This is lowest common denominator for all
3528          * chipsets.
3529          *
3530          * However for gen6+, we could do better by using the GFDT bit instead
3531          * of uncaching, which would allow us to flush all the LLC-cached data
3532          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3533          */
3534         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3535         if (ret)
3536                 return ret;
3537
3538         /* As the user may map the buffer once pinned in the display plane
3539          * (e.g. libkms for the bootup splash), we have to ensure that we
3540          * always use map_and_fenceable for all scanout buffers.
3541          */
3542         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3543         if (ret)
3544                 return ret;
3545
3546         i915_gem_object_flush_cpu_write_domain(obj);
3547
3548         old_write_domain = obj->base.write_domain;
3549         old_read_domains = obj->base.read_domains;
3550
3551         /* It should now be out of any other write domains, and we can update
3552          * the domain values for our changes.
3553          */
3554         obj->base.write_domain = 0;
3555         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3556
3557         trace_i915_gem_object_change_domain(obj,
3558                                             old_read_domains,
3559                                             old_write_domain);
3560
3561         return 0;
3562 }
3563
3564 int
3565 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3566 {
3567         int ret;
3568
3569         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3570                 return 0;
3571
3572         ret = i915_gem_object_wait_rendering(obj, false);
3573         if (ret)
3574                 return ret;
3575
3576         /* Ensure that we invalidate the GPU's caches and TLBs. */
3577         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3578         return 0;
3579 }
3580
3581 /**
3582  * Moves a single object to the CPU read, and possibly write domain.
3583  *
3584  * This function returns when the move is complete, including waiting on
3585  * flushes to occur.
3586  */
3587 int
3588 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3589 {
3590         uint32_t old_write_domain, old_read_domains;
3591         int ret;
3592
3593         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3594                 return 0;
3595
3596         ret = i915_gem_object_wait_rendering(obj, !write);
3597         if (ret)
3598                 return ret;
3599
3600         i915_gem_object_flush_gtt_write_domain(obj);
3601
3602         old_write_domain = obj->base.write_domain;
3603         old_read_domains = obj->base.read_domains;
3604
3605         /* Flush the CPU cache if it's still invalid. */
3606         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3607                 i915_gem_clflush_object(obj);
3608
3609                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3610         }
3611
3612         /* It should now be out of any other write domains, and we can update
3613          * the domain values for our changes.
3614          */
3615         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3616
3617         /* If we're writing through the CPU, then the GPU read domains will
3618          * need to be invalidated at next use.
3619          */
3620         if (write) {
3621                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3622                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3623         }
3624
3625         trace_i915_gem_object_change_domain(obj,
3626                                             old_read_domains,
3627                                             old_write_domain);
3628
3629         return 0;
3630 }
3631
3632 /* Throttle our rendering by waiting until the ring has completed our requests
3633  * emitted over 20 msec ago.
3634  *
3635  * Note that if we were to use the current jiffies each time around the loop,
3636  * we wouldn't escape the function with any frames outstanding if the time to
3637  * render a frame was over 20ms.
3638  *
3639  * This should get us reasonable parallelism between CPU and GPU but also
3640  * relatively low latency when blocking on a particular request to finish.
3641  */
3642 static int
3643 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3644 {
3645         struct drm_i915_private *dev_priv = dev->dev_private;
3646         struct drm_i915_file_private *file_priv = file->driver_priv;
3647         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3648         struct drm_i915_gem_request *request;
3649         struct intel_ring_buffer *ring = NULL;
3650         unsigned reset_counter;
3651         u32 seqno = 0;
3652         int ret;
3653
3654         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3655         if (ret)
3656                 return ret;
3657
3658         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3659         if (ret)
3660                 return ret;
3661
3662         spin_lock(&file_priv->mm.lock);
3663         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3664                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3665                         break;
3666
3667                 ring = request->ring;
3668                 seqno = request->seqno;
3669         }
3670         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3671         spin_unlock(&file_priv->mm.lock);
3672
3673         if (seqno == 0)
3674                 return 0;
3675
3676         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3677         if (ret == 0)
3678                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3679
3680         return ret;
3681 }
3682
3683 int
3684 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3685                     struct i915_address_space *vm,
3686                     uint32_t alignment,
3687                     bool map_and_fenceable,
3688                     bool nonblocking)
3689 {
3690         struct i915_vma *vma;
3691         int ret;
3692
3693         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3694                 return -EBUSY;
3695
3696         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3697
3698         vma = i915_gem_obj_to_vma(obj, vm);
3699
3700         if (vma) {
3701                 if ((alignment &&
3702                      vma->node.start & (alignment - 1)) ||
3703                     (map_and_fenceable && !obj->map_and_fenceable)) {
3704                         WARN(obj->pin_count,
3705                              "bo is already pinned with incorrect alignment:"
3706                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3707                              " obj->map_and_fenceable=%d\n",
3708                              i915_gem_obj_offset(obj, vm), alignment,
3709                              map_and_fenceable,
3710                              obj->map_and_fenceable);
3711                         ret = i915_vma_unbind(vma);
3712                         if (ret)
3713                                 return ret;
3714                 }
3715         }
3716
3717         if (!i915_gem_obj_bound(obj, vm)) {
3718                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3719
3720                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3721                                                  map_and_fenceable,
3722                                                  nonblocking);
3723                 if (ret)
3724                         return ret;
3725
3726                 if (!dev_priv->mm.aliasing_ppgtt)
3727                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3728         }
3729
3730         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3731                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3732
3733         obj->pin_count++;
3734         obj->pin_mappable |= map_and_fenceable;
3735
3736         return 0;
3737 }
3738
3739 void
3740 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3741 {
3742         BUG_ON(obj->pin_count == 0);
3743         BUG_ON(!i915_gem_obj_bound_any(obj));
3744
3745         if (--obj->pin_count == 0)
3746                 obj->pin_mappable = false;
3747 }
3748
3749 int
3750 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3751                    struct drm_file *file)
3752 {
3753         struct drm_i915_gem_pin *args = data;
3754         struct drm_i915_gem_object *obj;
3755         int ret;
3756
3757         ret = i915_mutex_lock_interruptible(dev);
3758         if (ret)
3759                 return ret;
3760
3761         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3762         if (&obj->base == NULL) {
3763                 ret = -ENOENT;
3764                 goto unlock;
3765         }
3766
3767         if (obj->madv != I915_MADV_WILLNEED) {
3768                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3769                 ret = -EINVAL;
3770                 goto out;
3771         }
3772
3773         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3774                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3775                           args->handle);
3776                 ret = -EINVAL;
3777                 goto out;
3778         }
3779
3780         if (obj->user_pin_count == 0) {
3781                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3782                 if (ret)
3783                         goto out;
3784         }
3785
3786         obj->user_pin_count++;
3787         obj->pin_filp = file;
3788
3789         /* XXX - flush the CPU caches for pinned objects
3790          * as the X server doesn't manage domains yet
3791          */
3792         i915_gem_object_flush_cpu_write_domain(obj);
3793         args->offset = i915_gem_obj_ggtt_offset(obj);
3794 out:
3795         drm_gem_object_unreference(&obj->base);
3796 unlock:
3797         mutex_unlock(&dev->struct_mutex);
3798         return ret;
3799 }
3800
3801 int
3802 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3803                      struct drm_file *file)
3804 {
3805         struct drm_i915_gem_pin *args = data;
3806         struct drm_i915_gem_object *obj;
3807         int ret;
3808
3809         ret = i915_mutex_lock_interruptible(dev);
3810         if (ret)
3811                 return ret;
3812
3813         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3814         if (&obj->base == NULL) {
3815                 ret = -ENOENT;
3816                 goto unlock;
3817         }
3818
3819         if (obj->pin_filp != file) {
3820                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3821                           args->handle);
3822                 ret = -EINVAL;
3823                 goto out;
3824         }
3825         obj->user_pin_count--;
3826         if (obj->user_pin_count == 0) {
3827                 obj->pin_filp = NULL;
3828                 i915_gem_object_unpin(obj);
3829         }
3830
3831 out:
3832         drm_gem_object_unreference(&obj->base);
3833 unlock:
3834         mutex_unlock(&dev->struct_mutex);
3835         return ret;
3836 }
3837
3838 int
3839 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3840                     struct drm_file *file)
3841 {
3842         struct drm_i915_gem_busy *args = data;
3843         struct drm_i915_gem_object *obj;
3844         int ret;
3845
3846         ret = i915_mutex_lock_interruptible(dev);
3847         if (ret)
3848                 return ret;
3849
3850         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3851         if (&obj->base == NULL) {
3852                 ret = -ENOENT;
3853                 goto unlock;
3854         }
3855
3856         /* Count all active objects as busy, even if they are currently not used
3857          * by the gpu. Users of this interface expect objects to eventually
3858          * become non-busy without any further actions, therefore emit any
3859          * necessary flushes here.
3860          */
3861         ret = i915_gem_object_flush_active(obj);
3862
3863         args->busy = obj->active;
3864         if (obj->ring) {
3865                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3866                 args->busy |= intel_ring_flag(obj->ring) << 16;
3867         }
3868
3869         drm_gem_object_unreference(&obj->base);
3870 unlock:
3871         mutex_unlock(&dev->struct_mutex);
3872         return ret;
3873 }
3874
3875 int
3876 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3877                         struct drm_file *file_priv)
3878 {
3879         return i915_gem_ring_throttle(dev, file_priv);
3880 }
3881
3882 int
3883 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3884                        struct drm_file *file_priv)
3885 {
3886         struct drm_i915_gem_madvise *args = data;
3887         struct drm_i915_gem_object *obj;
3888         int ret;
3889
3890         switch (args->madv) {
3891         case I915_MADV_DONTNEED:
3892         case I915_MADV_WILLNEED:
3893             break;
3894         default:
3895             return -EINVAL;
3896         }
3897
3898         ret = i915_mutex_lock_interruptible(dev);
3899         if (ret)
3900                 return ret;
3901
3902         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3903         if (&obj->base == NULL) {
3904                 ret = -ENOENT;
3905                 goto unlock;
3906         }
3907
3908         if (obj->pin_count) {
3909                 ret = -EINVAL;
3910                 goto out;
3911         }
3912
3913         if (obj->madv != __I915_MADV_PURGED)
3914                 obj->madv = args->madv;
3915
3916         /* if the object is no longer attached, discard its backing storage */
3917         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3918                 i915_gem_object_truncate(obj);
3919
3920         args->retained = obj->madv != __I915_MADV_PURGED;
3921
3922 out:
3923         drm_gem_object_unreference(&obj->base);
3924 unlock:
3925         mutex_unlock(&dev->struct_mutex);
3926         return ret;
3927 }
3928
3929 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3930                           const struct drm_i915_gem_object_ops *ops)
3931 {
3932         INIT_LIST_HEAD(&obj->global_list);
3933         INIT_LIST_HEAD(&obj->ring_list);
3934         INIT_LIST_HEAD(&obj->exec_list);
3935         INIT_LIST_HEAD(&obj->vma_list);
3936
3937         obj->ops = ops;
3938
3939         obj->fence_reg = I915_FENCE_REG_NONE;
3940         obj->madv = I915_MADV_WILLNEED;
3941         /* Avoid an unnecessary call to unbind on the first bind. */
3942         obj->map_and_fenceable = true;
3943
3944         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3945 }
3946
3947 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3948         .get_pages = i915_gem_object_get_pages_gtt,
3949         .put_pages = i915_gem_object_put_pages_gtt,
3950 };
3951
3952 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3953                                                   size_t size)
3954 {
3955         struct drm_i915_gem_object *obj;
3956         struct address_space *mapping;
3957         gfp_t mask;
3958
3959         obj = i915_gem_object_alloc(dev);
3960         if (obj == NULL)
3961                 return NULL;
3962
3963         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3964                 i915_gem_object_free(obj);
3965                 return NULL;
3966         }
3967
3968         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3969         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3970                 /* 965gm cannot relocate objects above 4GiB. */
3971                 mask &= ~__GFP_HIGHMEM;
3972                 mask |= __GFP_DMA32;
3973         }
3974
3975         mapping = file_inode(obj->base.filp)->i_mapping;
3976         mapping_set_gfp_mask(mapping, mask);
3977
3978         i915_gem_object_init(obj, &i915_gem_object_ops);
3979
3980         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3981         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3982
3983         if (HAS_LLC(dev)) {
3984                 /* On some devices, we can have the GPU use the LLC (the CPU
3985                  * cache) for about a 10% performance improvement
3986                  * compared to uncached.  Graphics requests other than
3987                  * display scanout are coherent with the CPU in
3988                  * accessing this cache.  This means in this mode we
3989                  * don't need to clflush on the CPU side, and on the
3990                  * GPU side we only need to flush internal caches to
3991                  * get data visible to the CPU.
3992                  *
3993                  * However, we maintain the display planes as UC, and so
3994                  * need to rebind when first used as such.
3995                  */
3996                 obj->cache_level = I915_CACHE_LLC;
3997         } else
3998                 obj->cache_level = I915_CACHE_NONE;
3999
4000         trace_i915_gem_object_create(obj);
4001
4002         return obj;
4003 }
4004
4005 int i915_gem_init_object(struct drm_gem_object *obj)
4006 {
4007         BUG();
4008
4009         return 0;
4010 }
4011
4012 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4013 {
4014         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4015         struct drm_device *dev = obj->base.dev;
4016         drm_i915_private_t *dev_priv = dev->dev_private;
4017         struct i915_vma *vma, *next;
4018
4019         trace_i915_gem_object_destroy(obj);
4020
4021         if (obj->phys_obj)
4022                 i915_gem_detach_phys_object(dev, obj);
4023
4024         obj->pin_count = 0;
4025         /* NB: 0 or 1 elements */
4026         WARN_ON(!list_empty(&obj->vma_list) &&
4027                 !list_is_singular(&obj->vma_list));
4028         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4029                 int ret = i915_vma_unbind(vma);
4030                 if (WARN_ON(ret == -ERESTARTSYS)) {
4031                         bool was_interruptible;
4032
4033                         was_interruptible = dev_priv->mm.interruptible;
4034                         dev_priv->mm.interruptible = false;
4035
4036                         WARN_ON(i915_vma_unbind(vma));
4037
4038                         dev_priv->mm.interruptible = was_interruptible;
4039                 }
4040         }
4041
4042         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4043          * before progressing. */
4044         if (obj->stolen)
4045                 i915_gem_object_unpin_pages(obj);
4046
4047         if (WARN_ON(obj->pages_pin_count))
4048                 obj->pages_pin_count = 0;
4049         i915_gem_object_put_pages(obj);
4050         i915_gem_object_free_mmap_offset(obj);
4051         i915_gem_object_release_stolen(obj);
4052
4053         BUG_ON(obj->pages);
4054
4055         if (obj->base.import_attach)
4056                 drm_prime_gem_destroy(&obj->base, NULL);
4057
4058         drm_gem_object_release(&obj->base);
4059         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4060
4061         kfree(obj->bit_17);
4062         i915_gem_object_free(obj);
4063 }
4064
4065 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4066                                      struct i915_address_space *vm)
4067 {
4068         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4069         if (vma == NULL)
4070                 return ERR_PTR(-ENOMEM);
4071
4072         INIT_LIST_HEAD(&vma->vma_link);
4073         INIT_LIST_HEAD(&vma->mm_list);
4074         vma->vm = vm;
4075         vma->obj = obj;
4076
4077         return vma;
4078 }
4079
4080 void i915_gem_vma_destroy(struct i915_vma *vma)
4081 {
4082         WARN_ON(vma->node.allocated);
4083         kfree(vma);
4084 }
4085
4086 int
4087 i915_gem_idle(struct drm_device *dev)
4088 {
4089         drm_i915_private_t *dev_priv = dev->dev_private;
4090         int ret;
4091
4092         if (dev_priv->ums.mm_suspended) {
4093                 mutex_unlock(&dev->struct_mutex);
4094                 return 0;
4095         }
4096
4097         ret = i915_gpu_idle(dev);
4098         if (ret) {
4099                 mutex_unlock(&dev->struct_mutex);
4100                 return ret;
4101         }
4102         i915_gem_retire_requests(dev);
4103
4104         /* Under UMS, be paranoid and evict. */
4105         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4106                 i915_gem_evict_everything(dev);
4107
4108         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4109
4110         i915_kernel_lost_context(dev);
4111         i915_gem_cleanup_ringbuffer(dev);
4112
4113         /* Cancel the retire work handler, which should be idle now. */
4114         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4115
4116         return 0;
4117 }
4118
4119 void i915_gem_l3_remap(struct drm_device *dev)
4120 {
4121         drm_i915_private_t *dev_priv = dev->dev_private;
4122         u32 misccpctl;
4123         int i;
4124
4125         if (!HAS_L3_GPU_CACHE(dev))
4126                 return;
4127
4128         if (!dev_priv->l3_parity.remap_info)
4129                 return;
4130
4131         misccpctl = I915_READ(GEN7_MISCCPCTL);
4132         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4133         POSTING_READ(GEN7_MISCCPCTL);
4134
4135         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4136                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4137                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4138                         DRM_DEBUG("0x%x was already programmed to %x\n",
4139                                   GEN7_L3LOG_BASE + i, remap);
4140                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4141                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
4142                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4143         }
4144
4145         /* Make sure all the writes land before disabling dop clock gating */
4146         POSTING_READ(GEN7_L3LOG_BASE);
4147
4148         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4149 }
4150
4151 void i915_gem_init_swizzling(struct drm_device *dev)
4152 {
4153         drm_i915_private_t *dev_priv = dev->dev_private;
4154
4155         if (INTEL_INFO(dev)->gen < 5 ||
4156             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4157                 return;
4158
4159         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4160                                  DISP_TILE_SURFACE_SWIZZLING);
4161
4162         if (IS_GEN5(dev))
4163                 return;
4164
4165         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4166         if (IS_GEN6(dev))
4167                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4168         else if (IS_GEN7(dev))
4169                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4170         else
4171                 BUG();
4172 }
4173
4174 static bool
4175 intel_enable_blt(struct drm_device *dev)
4176 {
4177         if (!HAS_BLT(dev))
4178                 return false;
4179
4180         /* The blitter was dysfunctional on early prototypes */
4181         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4182                 DRM_INFO("BLT not supported on this pre-production hardware;"
4183                          " graphics performance will be degraded.\n");
4184                 return false;
4185         }
4186
4187         return true;
4188 }
4189
4190 static int i915_gem_init_rings(struct drm_device *dev)
4191 {
4192         struct drm_i915_private *dev_priv = dev->dev_private;
4193         int ret;
4194
4195         ret = intel_init_render_ring_buffer(dev);
4196         if (ret)
4197                 return ret;
4198
4199         if (HAS_BSD(dev)) {
4200                 ret = intel_init_bsd_ring_buffer(dev);
4201                 if (ret)
4202                         goto cleanup_render_ring;
4203         }
4204
4205         if (intel_enable_blt(dev)) {
4206                 ret = intel_init_blt_ring_buffer(dev);
4207                 if (ret)
4208                         goto cleanup_bsd_ring;
4209         }
4210
4211         if (HAS_VEBOX(dev)) {
4212                 ret = intel_init_vebox_ring_buffer(dev);
4213                 if (ret)
4214                         goto cleanup_blt_ring;
4215         }
4216
4217
4218         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4219         if (ret)
4220                 goto cleanup_vebox_ring;
4221
4222         return 0;
4223
4224 cleanup_vebox_ring:
4225         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4226 cleanup_blt_ring:
4227         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4228 cleanup_bsd_ring:
4229         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4230 cleanup_render_ring:
4231         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4232
4233         return ret;
4234 }
4235
4236 int
4237 i915_gem_init_hw(struct drm_device *dev)
4238 {
4239         drm_i915_private_t *dev_priv = dev->dev_private;
4240         int ret;
4241
4242         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4243                 return -EIO;
4244
4245         if (dev_priv->ellc_size)
4246                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4247
4248         if (HAS_PCH_NOP(dev)) {
4249                 u32 temp = I915_READ(GEN7_MSG_CTL);
4250                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4251                 I915_WRITE(GEN7_MSG_CTL, temp);
4252         }
4253
4254         i915_gem_l3_remap(dev);
4255
4256         i915_gem_init_swizzling(dev);
4257
4258         ret = i915_gem_init_rings(dev);
4259         if (ret)
4260                 return ret;
4261
4262         /*
4263          * XXX: There was some w/a described somewhere suggesting loading
4264          * contexts before PPGTT.
4265          */
4266         i915_gem_context_init(dev);
4267         if (dev_priv->mm.aliasing_ppgtt) {
4268                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4269                 if (ret) {
4270                         i915_gem_cleanup_aliasing_ppgtt(dev);
4271                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4272                 }
4273         }
4274
4275         return 0;
4276 }
4277
4278 int i915_gem_init(struct drm_device *dev)
4279 {
4280         struct drm_i915_private *dev_priv = dev->dev_private;
4281         int ret;
4282
4283         mutex_lock(&dev->struct_mutex);
4284
4285         if (IS_VALLEYVIEW(dev)) {
4286                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4287                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4288                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4289                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4290         }
4291
4292         i915_gem_init_global_gtt(dev);
4293
4294         ret = i915_gem_init_hw(dev);
4295         mutex_unlock(&dev->struct_mutex);
4296         if (ret) {
4297                 i915_gem_cleanup_aliasing_ppgtt(dev);
4298                 return ret;
4299         }
4300
4301         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4302         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4303                 dev_priv->dri1.allow_batchbuffer = 1;
4304         return 0;
4305 }
4306
4307 void
4308 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4309 {
4310         drm_i915_private_t *dev_priv = dev->dev_private;
4311         struct intel_ring_buffer *ring;
4312         int i;
4313
4314         for_each_ring(ring, dev_priv, i)
4315                 intel_cleanup_ring_buffer(ring);
4316 }
4317
4318 int
4319 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4320                        struct drm_file *file_priv)
4321 {
4322         struct drm_i915_private *dev_priv = dev->dev_private;
4323         int ret;
4324
4325         if (drm_core_check_feature(dev, DRIVER_MODESET))
4326                 return 0;
4327
4328         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4329                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4330                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4331         }
4332
4333         mutex_lock(&dev->struct_mutex);
4334         dev_priv->ums.mm_suspended = 0;
4335
4336         ret = i915_gem_init_hw(dev);
4337         if (ret != 0) {
4338                 mutex_unlock(&dev->struct_mutex);
4339                 return ret;
4340         }
4341
4342         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4343         mutex_unlock(&dev->struct_mutex);
4344
4345         ret = drm_irq_install(dev);
4346         if (ret)
4347                 goto cleanup_ringbuffer;
4348
4349         return 0;
4350
4351 cleanup_ringbuffer:
4352         mutex_lock(&dev->struct_mutex);
4353         i915_gem_cleanup_ringbuffer(dev);
4354         dev_priv->ums.mm_suspended = 1;
4355         mutex_unlock(&dev->struct_mutex);
4356
4357         return ret;
4358 }
4359
4360 int
4361 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4362                        struct drm_file *file_priv)
4363 {
4364         struct drm_i915_private *dev_priv = dev->dev_private;
4365         int ret;
4366
4367         if (drm_core_check_feature(dev, DRIVER_MODESET))
4368                 return 0;
4369
4370         drm_irq_uninstall(dev);
4371
4372         mutex_lock(&dev->struct_mutex);
4373         ret =  i915_gem_idle(dev);
4374
4375         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4376          * We need to replace this with a semaphore, or something.
4377          * And not confound ums.mm_suspended!
4378          */
4379         if (ret != 0)
4380                 dev_priv->ums.mm_suspended = 1;
4381         mutex_unlock(&dev->struct_mutex);
4382
4383         return ret;
4384 }
4385
4386 void
4387 i915_gem_lastclose(struct drm_device *dev)
4388 {
4389         int ret;
4390
4391         if (drm_core_check_feature(dev, DRIVER_MODESET))
4392                 return;
4393
4394         mutex_lock(&dev->struct_mutex);
4395         ret = i915_gem_idle(dev);
4396         if (ret)
4397                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4398         mutex_unlock(&dev->struct_mutex);
4399 }
4400
4401 static void
4402 init_ring_lists(struct intel_ring_buffer *ring)
4403 {
4404         INIT_LIST_HEAD(&ring->active_list);
4405         INIT_LIST_HEAD(&ring->request_list);
4406 }
4407
4408 static void i915_init_vm(struct drm_i915_private *dev_priv,
4409                          struct i915_address_space *vm)
4410 {
4411         vm->dev = dev_priv->dev;
4412         INIT_LIST_HEAD(&vm->active_list);
4413         INIT_LIST_HEAD(&vm->inactive_list);
4414         INIT_LIST_HEAD(&vm->global_link);
4415         list_add(&vm->global_link, &dev_priv->vm_list);
4416 }
4417
4418 void
4419 i915_gem_load(struct drm_device *dev)
4420 {
4421         drm_i915_private_t *dev_priv = dev->dev_private;
4422         int i;
4423
4424         dev_priv->slab =
4425                 kmem_cache_create("i915_gem_object",
4426                                   sizeof(struct drm_i915_gem_object), 0,
4427                                   SLAB_HWCACHE_ALIGN,
4428                                   NULL);
4429
4430         INIT_LIST_HEAD(&dev_priv->vm_list);
4431         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4432
4433         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4434         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4435         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4436         for (i = 0; i < I915_NUM_RINGS; i++)
4437                 init_ring_lists(&dev_priv->ring[i]);
4438         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4439                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4440         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4441                           i915_gem_retire_work_handler);
4442         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4443
4444         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4445         if (IS_GEN3(dev)) {
4446                 I915_WRITE(MI_ARB_STATE,
4447                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4448         }
4449
4450         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4451
4452         /* Old X drivers will take 0-2 for front, back, depth buffers */
4453         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4454                 dev_priv->fence_reg_start = 3;
4455
4456         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4457                 dev_priv->num_fence_regs = 32;
4458         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4459                 dev_priv->num_fence_regs = 16;
4460         else
4461                 dev_priv->num_fence_regs = 8;
4462
4463         /* Initialize fence registers to zero */
4464         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4465         i915_gem_restore_fences(dev);
4466
4467         i915_gem_detect_bit_6_swizzle(dev);
4468         init_waitqueue_head(&dev_priv->pending_flip_queue);
4469
4470         dev_priv->mm.interruptible = true;
4471
4472         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4473         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4474         register_shrinker(&dev_priv->mm.inactive_shrinker);
4475 }
4476
4477 /*
4478  * Create a physically contiguous memory object for this object
4479  * e.g. for cursor + overlay regs
4480  */
4481 static int i915_gem_init_phys_object(struct drm_device *dev,
4482                                      int id, int size, int align)
4483 {
4484         drm_i915_private_t *dev_priv = dev->dev_private;
4485         struct drm_i915_gem_phys_object *phys_obj;
4486         int ret;
4487
4488         if (dev_priv->mm.phys_objs[id - 1] || !size)
4489                 return 0;
4490
4491         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4492         if (!phys_obj)
4493                 return -ENOMEM;
4494
4495         phys_obj->id = id;
4496
4497         phys_obj->handle = drm_pci_alloc(dev, size, align);
4498         if (!phys_obj->handle) {
4499                 ret = -ENOMEM;
4500                 goto kfree_obj;
4501         }
4502 #ifdef CONFIG_X86
4503         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4504 #endif
4505
4506         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4507
4508         return 0;
4509 kfree_obj:
4510         kfree(phys_obj);
4511         return ret;
4512 }
4513
4514 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4515 {
4516         drm_i915_private_t *dev_priv = dev->dev_private;
4517         struct drm_i915_gem_phys_object *phys_obj;
4518
4519         if (!dev_priv->mm.phys_objs[id - 1])
4520                 return;
4521
4522         phys_obj = dev_priv->mm.phys_objs[id - 1];
4523         if (phys_obj->cur_obj) {
4524                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4525         }
4526
4527 #ifdef CONFIG_X86
4528         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4529 #endif
4530         drm_pci_free(dev, phys_obj->handle);
4531         kfree(phys_obj);
4532         dev_priv->mm.phys_objs[id - 1] = NULL;
4533 }
4534
4535 void i915_gem_free_all_phys_object(struct drm_device *dev)
4536 {
4537         int i;
4538
4539         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4540                 i915_gem_free_phys_object(dev, i);
4541 }
4542
4543 void i915_gem_detach_phys_object(struct drm_device *dev,
4544                                  struct drm_i915_gem_object *obj)
4545 {
4546         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4547         char *vaddr;
4548         int i;
4549         int page_count;
4550
4551         if (!obj->phys_obj)
4552                 return;
4553         vaddr = obj->phys_obj->handle->vaddr;
4554
4555         page_count = obj->base.size / PAGE_SIZE;
4556         for (i = 0; i < page_count; i++) {
4557                 struct page *page = shmem_read_mapping_page(mapping, i);
4558                 if (!IS_ERR(page)) {
4559                         char *dst = kmap_atomic(page);
4560                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4561                         kunmap_atomic(dst);
4562
4563                         drm_clflush_pages(&page, 1);
4564
4565                         set_page_dirty(page);
4566                         mark_page_accessed(page);
4567                         page_cache_release(page);
4568                 }
4569         }
4570         i915_gem_chipset_flush(dev);
4571
4572         obj->phys_obj->cur_obj = NULL;
4573         obj->phys_obj = NULL;
4574 }
4575
4576 int
4577 i915_gem_attach_phys_object(struct drm_device *dev,
4578                             struct drm_i915_gem_object *obj,
4579                             int id,
4580                             int align)
4581 {
4582         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4583         drm_i915_private_t *dev_priv = dev->dev_private;
4584         int ret = 0;
4585         int page_count;
4586         int i;
4587
4588         if (id > I915_MAX_PHYS_OBJECT)
4589                 return -EINVAL;
4590
4591         if (obj->phys_obj) {
4592                 if (obj->phys_obj->id == id)
4593                         return 0;
4594                 i915_gem_detach_phys_object(dev, obj);
4595         }
4596
4597         /* create a new object */
4598         if (!dev_priv->mm.phys_objs[id - 1]) {
4599                 ret = i915_gem_init_phys_object(dev, id,
4600                                                 obj->base.size, align);
4601                 if (ret) {
4602                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4603                                   id, obj->base.size);
4604                         return ret;
4605                 }
4606         }
4607
4608         /* bind to the object */
4609         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4610         obj->phys_obj->cur_obj = obj;
4611
4612         page_count = obj->base.size / PAGE_SIZE;
4613
4614         for (i = 0; i < page_count; i++) {
4615                 struct page *page;
4616                 char *dst, *src;
4617
4618                 page = shmem_read_mapping_page(mapping, i);
4619                 if (IS_ERR(page))
4620                         return PTR_ERR(page);
4621
4622                 src = kmap_atomic(page);
4623                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4624                 memcpy(dst, src, PAGE_SIZE);
4625                 kunmap_atomic(src);
4626
4627                 mark_page_accessed(page);
4628                 page_cache_release(page);
4629         }
4630
4631         return 0;
4632 }
4633
4634 static int
4635 i915_gem_phys_pwrite(struct drm_device *dev,
4636                      struct drm_i915_gem_object *obj,
4637                      struct drm_i915_gem_pwrite *args,
4638                      struct drm_file *file_priv)
4639 {
4640         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4641         char __user *user_data = to_user_ptr(args->data_ptr);
4642
4643         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4644                 unsigned long unwritten;
4645
4646                 /* The physical object once assigned is fixed for the lifetime
4647                  * of the obj, so we can safely drop the lock and continue
4648                  * to access vaddr.
4649                  */
4650                 mutex_unlock(&dev->struct_mutex);
4651                 unwritten = copy_from_user(vaddr, user_data, args->size);
4652                 mutex_lock(&dev->struct_mutex);
4653                 if (unwritten)
4654                         return -EFAULT;
4655         }
4656
4657         i915_gem_chipset_flush(dev);
4658         return 0;
4659 }
4660
4661 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4662 {
4663         struct drm_i915_file_private *file_priv = file->driver_priv;
4664
4665         /* Clean up our request list when the client is going away, so that
4666          * later retire_requests won't dereference our soon-to-be-gone
4667          * file_priv.
4668          */
4669         spin_lock(&file_priv->mm.lock);
4670         while (!list_empty(&file_priv->mm.request_list)) {
4671                 struct drm_i915_gem_request *request;
4672
4673                 request = list_first_entry(&file_priv->mm.request_list,
4674                                            struct drm_i915_gem_request,
4675                                            client_list);
4676                 list_del(&request->client_list);
4677                 request->file_priv = NULL;
4678         }
4679         spin_unlock(&file_priv->mm.lock);
4680 }
4681
4682 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4683 {
4684         if (!mutex_is_locked(mutex))
4685                 return false;
4686
4687 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4688         return mutex->owner == task;
4689 #else
4690         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4691         return false;
4692 #endif
4693 }
4694
4695 static int
4696 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4697 {
4698         struct drm_i915_private *dev_priv =
4699                 container_of(shrinker,
4700                              struct drm_i915_private,
4701                              mm.inactive_shrinker);
4702         struct drm_device *dev = dev_priv->dev;
4703         struct drm_i915_gem_object *obj;
4704         int nr_to_scan = sc->nr_to_scan;
4705         bool unlock = true;
4706         int cnt;
4707
4708         if (!mutex_trylock(&dev->struct_mutex)) {
4709                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4710                         return 0;
4711
4712                 if (dev_priv->mm.shrinker_no_lock_stealing)
4713                         return 0;
4714
4715                 unlock = false;
4716         }
4717
4718         if (nr_to_scan) {
4719                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4720                 if (nr_to_scan > 0)
4721                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4722                                                         false);
4723                 if (nr_to_scan > 0)
4724                         i915_gem_shrink_all(dev_priv);
4725         }
4726
4727         cnt = 0;
4728         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4729                 if (obj->pages_pin_count == 0)
4730                         cnt += obj->base.size >> PAGE_SHIFT;
4731
4732         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4733                 if (obj->active)
4734                         continue;
4735
4736                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4737                         cnt += obj->base.size >> PAGE_SHIFT;
4738         }
4739
4740         if (unlock)
4741                 mutex_unlock(&dev->struct_mutex);
4742         return cnt;
4743 }
4744
4745 /* All the new VM stuff */
4746 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4747                                   struct i915_address_space *vm)
4748 {
4749         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4750         struct i915_vma *vma;
4751
4752         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4753                 vm = &dev_priv->gtt.base;
4754
4755         BUG_ON(list_empty(&o->vma_list));
4756         list_for_each_entry(vma, &o->vma_list, vma_link) {
4757                 if (vma->vm == vm)
4758                         return vma->node.start;
4759
4760         }
4761         return -1;
4762 }
4763
4764 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4765                         struct i915_address_space *vm)
4766 {
4767         struct i915_vma *vma;
4768
4769         list_for_each_entry(vma, &o->vma_list, vma_link)
4770                 if (vma->vm == vm)
4771                         return true;
4772
4773         return false;
4774 }
4775
4776 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4777 {
4778         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4779         struct i915_address_space *vm;
4780
4781         list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4782                 if (i915_gem_obj_bound(o, vm))
4783                         return true;
4784
4785         return false;
4786 }
4787
4788 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4789                                 struct i915_address_space *vm)
4790 {
4791         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4792         struct i915_vma *vma;
4793
4794         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4795                 vm = &dev_priv->gtt.base;
4796
4797         BUG_ON(list_empty(&o->vma_list));
4798
4799         list_for_each_entry(vma, &o->vma_list, vma_link)
4800                 if (vma->vm == vm)
4801                         return vma->node.size;
4802
4803         return 0;
4804 }
4805
4806 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4807                                      struct i915_address_space *vm)
4808 {
4809         struct i915_vma *vma;
4810         list_for_each_entry(vma, &obj->vma_list, vma_link)
4811                 if (vma->vm == vm)
4812                         return vma;
4813
4814         return NULL;
4815 }