]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Only insert the mb() before updating the fence parameter
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92         int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error))
95         if (EXIT_COND)
96                 return 0;
97
98         /* GPU is already declared terminally dead, give up. */
99         if (i915_terminally_wedged(error))
100                 return -EIO;
101
102         /*
103          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
104          * userspace. If it takes that long something really bad is going on and
105          * we should simply try to bail out and fail as gracefully as possible.
106          */
107         ret = wait_event_interruptible_timeout(error->reset_queue,
108                                                EXIT_COND,
109                                                10*HZ);
110         if (ret == 0) {
111                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
112                 return -EIO;
113         } else if (ret < 0) {
114                 return ret;
115         }
116 #undef EXIT_COND
117
118         return 0;
119 }
120
121 int i915_mutex_lock_interruptible(struct drm_device *dev)
122 {
123         struct drm_i915_private *dev_priv = dev->dev_private;
124         int ret;
125
126         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
127         if (ret)
128                 return ret;
129
130         ret = mutex_lock_interruptible(&dev->struct_mutex);
131         if (ret)
132                 return ret;
133
134         WARN_ON(i915_verify_lists(dev));
135         return 0;
136 }
137
138 static inline bool
139 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
140 {
141         return obj->gtt_space && !obj->active;
142 }
143
144 int
145 i915_gem_init_ioctl(struct drm_device *dev, void *data,
146                     struct drm_file *file)
147 {
148         struct drm_i915_private *dev_priv = dev->dev_private;
149         struct drm_i915_gem_init *args = data;
150
151         if (drm_core_check_feature(dev, DRIVER_MODESET))
152                 return -ENODEV;
153
154         if (args->gtt_start >= args->gtt_end ||
155             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
156                 return -EINVAL;
157
158         /* GEM with user mode setting was never supported on ilk and later. */
159         if (INTEL_INFO(dev)->gen >= 5)
160                 return -ENODEV;
161
162         mutex_lock(&dev->struct_mutex);
163         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
164                                   args->gtt_end);
165         dev_priv->gtt.mappable_end = args->gtt_end;
166         mutex_unlock(&dev->struct_mutex);
167
168         return 0;
169 }
170
171 int
172 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
173                             struct drm_file *file)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         struct drm_i915_gem_get_aperture *args = data;
177         struct drm_i915_gem_object *obj;
178         size_t pinned;
179
180         pinned = 0;
181         mutex_lock(&dev->struct_mutex);
182         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
183                 if (obj->pin_count)
184                         pinned += obj->gtt_space->size;
185         mutex_unlock(&dev->struct_mutex);
186
187         args->aper_size = dev_priv->gtt.total;
188         args->aper_available_size = args->aper_size - pinned;
189
190         return 0;
191 }
192
193 void *i915_gem_object_alloc(struct drm_device *dev)
194 {
195         struct drm_i915_private *dev_priv = dev->dev_private;
196         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
197 }
198
199 void i915_gem_object_free(struct drm_i915_gem_object *obj)
200 {
201         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
202         kmem_cache_free(dev_priv->slab, obj);
203 }
204
205 static int
206 i915_gem_create(struct drm_file *file,
207                 struct drm_device *dev,
208                 uint64_t size,
209                 uint32_t *handle_p)
210 {
211         struct drm_i915_gem_object *obj;
212         int ret;
213         u32 handle;
214
215         size = roundup(size, PAGE_SIZE);
216         if (size == 0)
217                 return -EINVAL;
218
219         /* Allocate the new object */
220         obj = i915_gem_alloc_object(dev, size);
221         if (obj == NULL)
222                 return -ENOMEM;
223
224         ret = drm_gem_handle_create(file, &obj->base, &handle);
225         if (ret) {
226                 drm_gem_object_release(&obj->base);
227                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
228                 i915_gem_object_free(obj);
229                 return ret;
230         }
231
232         /* drop reference from allocate - handle holds it now */
233         drm_gem_object_unreference(&obj->base);
234         trace_i915_gem_object_create(obj);
235
236         *handle_p = handle;
237         return 0;
238 }
239
240 int
241 i915_gem_dumb_create(struct drm_file *file,
242                      struct drm_device *dev,
243                      struct drm_mode_create_dumb *args)
244 {
245         /* have to work out size/pitch and return them */
246         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
247         args->size = args->pitch * args->height;
248         return i915_gem_create(file, dev,
249                                args->size, &args->handle);
250 }
251
252 int i915_gem_dumb_destroy(struct drm_file *file,
253                           struct drm_device *dev,
254                           uint32_t handle)
255 {
256         return drm_gem_handle_delete(file, handle);
257 }
258
259 /**
260  * Creates a new mm object and returns a handle to it.
261  */
262 int
263 i915_gem_create_ioctl(struct drm_device *dev, void *data,
264                       struct drm_file *file)
265 {
266         struct drm_i915_gem_create *args = data;
267
268         return i915_gem_create(file, dev,
269                                args->size, &args->handle);
270 }
271
272 static inline int
273 __copy_to_user_swizzled(char __user *cpu_vaddr,
274                         const char *gpu_vaddr, int gpu_offset,
275                         int length)
276 {
277         int ret, cpu_offset = 0;
278
279         while (length > 0) {
280                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281                 int this_length = min(cacheline_end - gpu_offset, length);
282                 int swizzled_gpu_offset = gpu_offset ^ 64;
283
284                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
285                                      gpu_vaddr + swizzled_gpu_offset,
286                                      this_length);
287                 if (ret)
288                         return ret + length;
289
290                 cpu_offset += this_length;
291                 gpu_offset += this_length;
292                 length -= this_length;
293         }
294
295         return 0;
296 }
297
298 static inline int
299 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
300                           const char __user *cpu_vaddr,
301                           int length)
302 {
303         int ret, cpu_offset = 0;
304
305         while (length > 0) {
306                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
307                 int this_length = min(cacheline_end - gpu_offset, length);
308                 int swizzled_gpu_offset = gpu_offset ^ 64;
309
310                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
311                                        cpu_vaddr + cpu_offset,
312                                        this_length);
313                 if (ret)
314                         return ret + length;
315
316                 cpu_offset += this_length;
317                 gpu_offset += this_length;
318                 length -= this_length;
319         }
320
321         return 0;
322 }
323
324 /* Per-page copy function for the shmem pread fastpath.
325  * Flushes invalid cachelines before reading the target if
326  * needs_clflush is set. */
327 static int
328 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
329                  char __user *user_data,
330                  bool page_do_bit17_swizzling, bool needs_clflush)
331 {
332         char *vaddr;
333         int ret;
334
335         if (unlikely(page_do_bit17_swizzling))
336                 return -EINVAL;
337
338         vaddr = kmap_atomic(page);
339         if (needs_clflush)
340                 drm_clflush_virt_range(vaddr + shmem_page_offset,
341                                        page_length);
342         ret = __copy_to_user_inatomic(user_data,
343                                       vaddr + shmem_page_offset,
344                                       page_length);
345         kunmap_atomic(vaddr);
346
347         return ret ? -EFAULT : 0;
348 }
349
350 static void
351 shmem_clflush_swizzled_range(char *addr, unsigned long length,
352                              bool swizzled)
353 {
354         if (unlikely(swizzled)) {
355                 unsigned long start = (unsigned long) addr;
356                 unsigned long end = (unsigned long) addr + length;
357
358                 /* For swizzling simply ensure that we always flush both
359                  * channels. Lame, but simple and it works. Swizzled
360                  * pwrite/pread is far from a hotpath - current userspace
361                  * doesn't use it at all. */
362                 start = round_down(start, 128);
363                 end = round_up(end, 128);
364
365                 drm_clflush_virt_range((void *)start, end - start);
366         } else {
367                 drm_clflush_virt_range(addr, length);
368         }
369
370 }
371
372 /* Only difference to the fast-path function is that this can handle bit17
373  * and uses non-atomic copy and kmap functions. */
374 static int
375 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
376                  char __user *user_data,
377                  bool page_do_bit17_swizzling, bool needs_clflush)
378 {
379         char *vaddr;
380         int ret;
381
382         vaddr = kmap(page);
383         if (needs_clflush)
384                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
385                                              page_length,
386                                              page_do_bit17_swizzling);
387
388         if (page_do_bit17_swizzling)
389                 ret = __copy_to_user_swizzled(user_data,
390                                               vaddr, shmem_page_offset,
391                                               page_length);
392         else
393                 ret = __copy_to_user(user_data,
394                                      vaddr + shmem_page_offset,
395                                      page_length);
396         kunmap(page);
397
398         return ret ? - EFAULT : 0;
399 }
400
401 static int
402 i915_gem_shmem_pread(struct drm_device *dev,
403                      struct drm_i915_gem_object *obj,
404                      struct drm_i915_gem_pread *args,
405                      struct drm_file *file)
406 {
407         char __user *user_data;
408         ssize_t remain;
409         loff_t offset;
410         int shmem_page_offset, page_length, ret = 0;
411         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
412         int prefaulted = 0;
413         int needs_clflush = 0;
414         struct scatterlist *sg;
415         int i;
416
417         user_data = (char __user *) (uintptr_t) args->data_ptr;
418         remain = args->size;
419
420         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421
422         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423                 /* If we're not in the cpu read domain, set ourself into the gtt
424                  * read domain and manually flush cachelines (if required). This
425                  * optimizes for the case when the gpu will dirty the data
426                  * anyway again before the next pread happens. */
427                 if (obj->cache_level == I915_CACHE_NONE)
428                         needs_clflush = 1;
429                 if (obj->gtt_space) {
430                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
431                         if (ret)
432                                 return ret;
433                 }
434         }
435
436         ret = i915_gem_object_get_pages(obj);
437         if (ret)
438                 return ret;
439
440         i915_gem_object_pin_pages(obj);
441
442         offset = args->offset;
443
444         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
445                 struct page *page;
446
447                 if (i < offset >> PAGE_SHIFT)
448                         continue;
449
450                 if (remain <= 0)
451                         break;
452
453                 /* Operation in this page
454                  *
455                  * shmem_page_offset = offset within page in shmem file
456                  * page_length = bytes to copy for this page
457                  */
458                 shmem_page_offset = offset_in_page(offset);
459                 page_length = remain;
460                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
461                         page_length = PAGE_SIZE - shmem_page_offset;
462
463                 page = sg_page(sg);
464                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
465                         (page_to_phys(page) & (1 << 17)) != 0;
466
467                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
468                                        user_data, page_do_bit17_swizzling,
469                                        needs_clflush);
470                 if (ret == 0)
471                         goto next_page;
472
473                 mutex_unlock(&dev->struct_mutex);
474
475                 if (!prefaulted) {
476                         ret = fault_in_multipages_writeable(user_data, remain);
477                         /* Userspace is tricking us, but we've already clobbered
478                          * its pages with the prefault and promised to write the
479                          * data up to the first fault. Hence ignore any errors
480                          * and just continue. */
481                         (void)ret;
482                         prefaulted = 1;
483                 }
484
485                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486                                        user_data, page_do_bit17_swizzling,
487                                        needs_clflush);
488
489                 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492                 mark_page_accessed(page);
493
494                 if (ret)
495                         goto out;
496
497                 remain -= page_length;
498                 user_data += page_length;
499                 offset += page_length;
500         }
501
502 out:
503         i915_gem_object_unpin_pages(obj);
504
505         return ret;
506 }
507
508 /**
509  * Reads data from the object referenced by handle.
510  *
511  * On error, the contents of *data are undefined.
512  */
513 int
514 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
515                      struct drm_file *file)
516 {
517         struct drm_i915_gem_pread *args = data;
518         struct drm_i915_gem_object *obj;
519         int ret = 0;
520
521         if (args->size == 0)
522                 return 0;
523
524         if (!access_ok(VERIFY_WRITE,
525                        (char __user *)(uintptr_t)args->data_ptr,
526                        args->size))
527                 return -EFAULT;
528
529         ret = i915_mutex_lock_interruptible(dev);
530         if (ret)
531                 return ret;
532
533         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
534         if (&obj->base == NULL) {
535                 ret = -ENOENT;
536                 goto unlock;
537         }
538
539         /* Bounds check source.  */
540         if (args->offset > obj->base.size ||
541             args->size > obj->base.size - args->offset) {
542                 ret = -EINVAL;
543                 goto out;
544         }
545
546         /* prime objects have no backing filp to GEM pread/pwrite
547          * pages from.
548          */
549         if (!obj->base.filp) {
550                 ret = -EINVAL;
551                 goto out;
552         }
553
554         trace_i915_gem_object_pread(obj, args->offset, args->size);
555
556         ret = i915_gem_shmem_pread(dev, obj, args, file);
557
558 out:
559         drm_gem_object_unreference(&obj->base);
560 unlock:
561         mutex_unlock(&dev->struct_mutex);
562         return ret;
563 }
564
565 /* This is the fast write path which cannot handle
566  * page faults in the source data
567  */
568
569 static inline int
570 fast_user_write(struct io_mapping *mapping,
571                 loff_t page_base, int page_offset,
572                 char __user *user_data,
573                 int length)
574 {
575         void __iomem *vaddr_atomic;
576         void *vaddr;
577         unsigned long unwritten;
578
579         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
580         /* We can use the cpu mem copy function because this is X86. */
581         vaddr = (void __force*)vaddr_atomic + page_offset;
582         unwritten = __copy_from_user_inatomic_nocache(vaddr,
583                                                       user_data, length);
584         io_mapping_unmap_atomic(vaddr_atomic);
585         return unwritten;
586 }
587
588 /**
589  * This is the fast pwrite path, where we copy the data directly from the
590  * user into the GTT, uncached.
591  */
592 static int
593 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
594                          struct drm_i915_gem_object *obj,
595                          struct drm_i915_gem_pwrite *args,
596                          struct drm_file *file)
597 {
598         drm_i915_private_t *dev_priv = dev->dev_private;
599         ssize_t remain;
600         loff_t offset, page_base;
601         char __user *user_data;
602         int page_offset, page_length, ret;
603
604         ret = i915_gem_object_pin(obj, 0, true, true);
605         if (ret)
606                 goto out;
607
608         ret = i915_gem_object_set_to_gtt_domain(obj, true);
609         if (ret)
610                 goto out_unpin;
611
612         ret = i915_gem_object_put_fence(obj);
613         if (ret)
614                 goto out_unpin;
615
616         user_data = (char __user *) (uintptr_t) args->data_ptr;
617         remain = args->size;
618
619         offset = obj->gtt_offset + args->offset;
620
621         while (remain > 0) {
622                 /* Operation in this page
623                  *
624                  * page_base = page offset within aperture
625                  * page_offset = offset within page
626                  * page_length = bytes to copy for this page
627                  */
628                 page_base = offset & PAGE_MASK;
629                 page_offset = offset_in_page(offset);
630                 page_length = remain;
631                 if ((page_offset + remain) > PAGE_SIZE)
632                         page_length = PAGE_SIZE - page_offset;
633
634                 /* If we get a fault while copying data, then (presumably) our
635                  * source page isn't available.  Return the error and we'll
636                  * retry in the slow path.
637                  */
638                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
639                                     page_offset, user_data, page_length)) {
640                         ret = -EFAULT;
641                         goto out_unpin;
642                 }
643
644                 remain -= page_length;
645                 user_data += page_length;
646                 offset += page_length;
647         }
648
649 out_unpin:
650         i915_gem_object_unpin(obj);
651 out:
652         return ret;
653 }
654
655 /* Per-page copy function for the shmem pwrite fastpath.
656  * Flushes invalid cachelines before writing to the target if
657  * needs_clflush_before is set and flushes out any written cachelines after
658  * writing if needs_clflush is set. */
659 static int
660 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
661                   char __user *user_data,
662                   bool page_do_bit17_swizzling,
663                   bool needs_clflush_before,
664                   bool needs_clflush_after)
665 {
666         char *vaddr;
667         int ret;
668
669         if (unlikely(page_do_bit17_swizzling))
670                 return -EINVAL;
671
672         vaddr = kmap_atomic(page);
673         if (needs_clflush_before)
674                 drm_clflush_virt_range(vaddr + shmem_page_offset,
675                                        page_length);
676         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
677                                                 user_data,
678                                                 page_length);
679         if (needs_clflush_after)
680                 drm_clflush_virt_range(vaddr + shmem_page_offset,
681                                        page_length);
682         kunmap_atomic(vaddr);
683
684         return ret ? -EFAULT : 0;
685 }
686
687 /* Only difference to the fast-path function is that this can handle bit17
688  * and uses non-atomic copy and kmap functions. */
689 static int
690 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
691                   char __user *user_data,
692                   bool page_do_bit17_swizzling,
693                   bool needs_clflush_before,
694                   bool needs_clflush_after)
695 {
696         char *vaddr;
697         int ret;
698
699         vaddr = kmap(page);
700         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
701                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
702                                              page_length,
703                                              page_do_bit17_swizzling);
704         if (page_do_bit17_swizzling)
705                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
706                                                 user_data,
707                                                 page_length);
708         else
709                 ret = __copy_from_user(vaddr + shmem_page_offset,
710                                        user_data,
711                                        page_length);
712         if (needs_clflush_after)
713                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
714                                              page_length,
715                                              page_do_bit17_swizzling);
716         kunmap(page);
717
718         return ret ? -EFAULT : 0;
719 }
720
721 static int
722 i915_gem_shmem_pwrite(struct drm_device *dev,
723                       struct drm_i915_gem_object *obj,
724                       struct drm_i915_gem_pwrite *args,
725                       struct drm_file *file)
726 {
727         ssize_t remain;
728         loff_t offset;
729         char __user *user_data;
730         int shmem_page_offset, page_length, ret = 0;
731         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
732         int hit_slowpath = 0;
733         int needs_clflush_after = 0;
734         int needs_clflush_before = 0;
735         int i;
736         struct scatterlist *sg;
737
738         user_data = (char __user *) (uintptr_t) args->data_ptr;
739         remain = args->size;
740
741         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
742
743         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
744                 /* If we're not in the cpu write domain, set ourself into the gtt
745                  * write domain and manually flush cachelines (if required). This
746                  * optimizes for the case when the gpu will use the data
747                  * right away and we therefore have to clflush anyway. */
748                 if (obj->cache_level == I915_CACHE_NONE)
749                         needs_clflush_after = 1;
750                 if (obj->gtt_space) {
751                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
752                         if (ret)
753                                 return ret;
754                 }
755         }
756         /* Same trick applies for invalidate partially written cachelines before
757          * writing.  */
758         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
759             && obj->cache_level == I915_CACHE_NONE)
760                 needs_clflush_before = 1;
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
772                 struct page *page;
773                 int partial_cacheline_write;
774
775                 if (i < offset >> PAGE_SHIFT)
776                         continue;
777
778                 if (remain <= 0)
779                         break;
780
781                 /* Operation in this page
782                  *
783                  * shmem_page_offset = offset within page in shmem file
784                  * page_length = bytes to copy for this page
785                  */
786                 shmem_page_offset = offset_in_page(offset);
787
788                 page_length = remain;
789                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
790                         page_length = PAGE_SIZE - shmem_page_offset;
791
792                 /* If we don't overwrite a cacheline completely we need to be
793                  * careful to have up-to-date data by first clflushing. Don't
794                  * overcomplicate things and flush the entire patch. */
795                 partial_cacheline_write = needs_clflush_before &&
796                         ((shmem_page_offset | page_length)
797                                 & (boot_cpu_data.x86_clflush_size - 1));
798
799                 page = sg_page(sg);
800                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
801                         (page_to_phys(page) & (1 << 17)) != 0;
802
803                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
804                                         user_data, page_do_bit17_swizzling,
805                                         partial_cacheline_write,
806                                         needs_clflush_after);
807                 if (ret == 0)
808                         goto next_page;
809
810                 hit_slowpath = 1;
811                 mutex_unlock(&dev->struct_mutex);
812                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
813                                         user_data, page_do_bit17_swizzling,
814                                         partial_cacheline_write,
815                                         needs_clflush_after);
816
817                 mutex_lock(&dev->struct_mutex);
818
819 next_page:
820                 set_page_dirty(page);
821                 mark_page_accessed(page);
822
823                 if (ret)
824                         goto out;
825
826                 remain -= page_length;
827                 user_data += page_length;
828                 offset += page_length;
829         }
830
831 out:
832         i915_gem_object_unpin_pages(obj);
833
834         if (hit_slowpath) {
835                 /*
836                  * Fixup: Flush cpu caches in case we didn't flush the dirty
837                  * cachelines in-line while writing and the object moved
838                  * out of the cpu write domain while we've dropped the lock.
839                  */
840                 if (!needs_clflush_after &&
841                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
842                         i915_gem_clflush_object(obj);
843                         i915_gem_chipset_flush(dev);
844                 }
845         }
846
847         if (needs_clflush_after)
848                 i915_gem_chipset_flush(dev);
849
850         return ret;
851 }
852
853 /**
854  * Writes data to the object referenced by handle.
855  *
856  * On error, the contents of the buffer that were to be modified are undefined.
857  */
858 int
859 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
860                       struct drm_file *file)
861 {
862         struct drm_i915_gem_pwrite *args = data;
863         struct drm_i915_gem_object *obj;
864         int ret;
865
866         if (args->size == 0)
867                 return 0;
868
869         if (!access_ok(VERIFY_READ,
870                        (char __user *)(uintptr_t)args->data_ptr,
871                        args->size))
872                 return -EFAULT;
873
874         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
875                                            args->size);
876         if (ret)
877                 return -EFAULT;
878
879         ret = i915_mutex_lock_interruptible(dev);
880         if (ret)
881                 return ret;
882
883         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
884         if (&obj->base == NULL) {
885                 ret = -ENOENT;
886                 goto unlock;
887         }
888
889         /* Bounds check destination. */
890         if (args->offset > obj->base.size ||
891             args->size > obj->base.size - args->offset) {
892                 ret = -EINVAL;
893                 goto out;
894         }
895
896         /* prime objects have no backing filp to GEM pread/pwrite
897          * pages from.
898          */
899         if (!obj->base.filp) {
900                 ret = -EINVAL;
901                 goto out;
902         }
903
904         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
905
906         ret = -EFAULT;
907         /* We can only do the GTT pwrite on untiled buffers, as otherwise
908          * it would end up going through the fenced access, and we'll get
909          * different detiling behavior between reading and writing.
910          * pread/pwrite currently are reading and writing from the CPU
911          * perspective, requiring manual detiling by the client.
912          */
913         if (obj->phys_obj) {
914                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
915                 goto out;
916         }
917
918         if (obj->cache_level == I915_CACHE_NONE &&
919             obj->tiling_mode == I915_TILING_NONE &&
920             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
921                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
922                 /* Note that the gtt paths might fail with non-page-backed user
923                  * pointers (e.g. gtt mappings when moving data between
924                  * textures). Fallback to the shmem path in that case. */
925         }
926
927         if (ret == -EFAULT || ret == -ENOSPC)
928                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
929
930 out:
931         drm_gem_object_unreference(&obj->base);
932 unlock:
933         mutex_unlock(&dev->struct_mutex);
934         return ret;
935 }
936
937 int
938 i915_gem_check_wedge(struct i915_gpu_error *error,
939                      bool interruptible)
940 {
941         if (i915_reset_in_progress(error)) {
942                 /* Non-interruptible callers can't handle -EAGAIN, hence return
943                  * -EIO unconditionally for these. */
944                 if (!interruptible)
945                         return -EIO;
946
947                 /* Recovery complete, but the reset failed ... */
948                 if (i915_terminally_wedged(error))
949                         return -EIO;
950
951                 return -EAGAIN;
952         }
953
954         return 0;
955 }
956
957 /*
958  * Compare seqno against outstanding lazy request. Emit a request if they are
959  * equal.
960  */
961 static int
962 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
963 {
964         int ret;
965
966         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
967
968         ret = 0;
969         if (seqno == ring->outstanding_lazy_request)
970                 ret = i915_add_request(ring, NULL, NULL);
971
972         return ret;
973 }
974
975 /**
976  * __wait_seqno - wait until execution of seqno has finished
977  * @ring: the ring expected to report seqno
978  * @seqno: duh!
979  * @interruptible: do an interruptible wait (normally yes)
980  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
981  *
982  * Returns 0 if the seqno was found within the alloted time. Else returns the
983  * errno with remaining time filled in timeout argument.
984  */
985 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
986                         bool interruptible, struct timespec *timeout)
987 {
988         drm_i915_private_t *dev_priv = ring->dev->dev_private;
989         struct timespec before, now, wait_time={1,0};
990         unsigned long timeout_jiffies;
991         long end;
992         bool wait_forever = true;
993         int ret;
994
995         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
996                 return 0;
997
998         trace_i915_gem_request_wait_begin(ring, seqno);
999
1000         if (timeout != NULL) {
1001                 wait_time = *timeout;
1002                 wait_forever = false;
1003         }
1004
1005         timeout_jiffies = timespec_to_jiffies(&wait_time);
1006
1007         if (WARN_ON(!ring->irq_get(ring)))
1008                 return -ENODEV;
1009
1010         /* Record current time in case interrupted by signal, or wedged * */
1011         getrawmonotonic(&before);
1012
1013 #define EXIT_COND \
1014         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1015         i915_reset_in_progress(&dev_priv->gpu_error))
1016         do {
1017                 if (interruptible)
1018                         end = wait_event_interruptible_timeout(ring->irq_queue,
1019                                                                EXIT_COND,
1020                                                                timeout_jiffies);
1021                 else
1022                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1023                                                  timeout_jiffies);
1024
1025                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1026                 if (ret)
1027                         end = ret;
1028         } while (end == 0 && wait_forever);
1029
1030         getrawmonotonic(&now);
1031
1032         ring->irq_put(ring);
1033         trace_i915_gem_request_wait_end(ring, seqno);
1034 #undef EXIT_COND
1035
1036         if (timeout) {
1037                 struct timespec sleep_time = timespec_sub(now, before);
1038                 *timeout = timespec_sub(*timeout, sleep_time);
1039         }
1040
1041         switch (end) {
1042         case -EIO:
1043         case -EAGAIN: /* Wedged */
1044         case -ERESTARTSYS: /* Signal */
1045                 return (int)end;
1046         case 0: /* Timeout */
1047                 if (timeout)
1048                         set_normalized_timespec(timeout, 0, 0);
1049                 return -ETIME;
1050         default: /* Completed */
1051                 WARN_ON(end < 0); /* We're not aware of other errors */
1052                 return 0;
1053         }
1054 }
1055
1056 /**
1057  * Waits for a sequence number to be signaled, and cleans up the
1058  * request and object lists appropriately for that event.
1059  */
1060 int
1061 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1062 {
1063         struct drm_device *dev = ring->dev;
1064         struct drm_i915_private *dev_priv = dev->dev_private;
1065         bool interruptible = dev_priv->mm.interruptible;
1066         int ret;
1067
1068         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1069         BUG_ON(seqno == 0);
1070
1071         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1072         if (ret)
1073                 return ret;
1074
1075         ret = i915_gem_check_olr(ring, seqno);
1076         if (ret)
1077                 return ret;
1078
1079         return __wait_seqno(ring, seqno, interruptible, NULL);
1080 }
1081
1082 /**
1083  * Ensures that all rendering to the object has completed and the object is
1084  * safe to unbind from the GTT or access from the CPU.
1085  */
1086 static __must_check int
1087 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1088                                bool readonly)
1089 {
1090         struct intel_ring_buffer *ring = obj->ring;
1091         u32 seqno;
1092         int ret;
1093
1094         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1095         if (seqno == 0)
1096                 return 0;
1097
1098         ret = i915_wait_seqno(ring, seqno);
1099         if (ret)
1100                 return ret;
1101
1102         i915_gem_retire_requests_ring(ring);
1103
1104         /* Manually manage the write flush as we may have not yet
1105          * retired the buffer.
1106          */
1107         if (obj->last_write_seqno &&
1108             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1109                 obj->last_write_seqno = 0;
1110                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1111         }
1112
1113         return 0;
1114 }
1115
1116 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1117  * as the object state may change during this call.
1118  */
1119 static __must_check int
1120 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1121                                             bool readonly)
1122 {
1123         struct drm_device *dev = obj->base.dev;
1124         struct drm_i915_private *dev_priv = dev->dev_private;
1125         struct intel_ring_buffer *ring = obj->ring;
1126         u32 seqno;
1127         int ret;
1128
1129         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1130         BUG_ON(!dev_priv->mm.interruptible);
1131
1132         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1133         if (seqno == 0)
1134                 return 0;
1135
1136         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1137         if (ret)
1138                 return ret;
1139
1140         ret = i915_gem_check_olr(ring, seqno);
1141         if (ret)
1142                 return ret;
1143
1144         mutex_unlock(&dev->struct_mutex);
1145         ret = __wait_seqno(ring, seqno, true, NULL);
1146         mutex_lock(&dev->struct_mutex);
1147
1148         i915_gem_retire_requests_ring(ring);
1149
1150         /* Manually manage the write flush as we may have not yet
1151          * retired the buffer.
1152          */
1153         if (obj->last_write_seqno &&
1154             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1155                 obj->last_write_seqno = 0;
1156                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1157         }
1158
1159         return ret;
1160 }
1161
1162 /**
1163  * Called when user space prepares to use an object with the CPU, either
1164  * through the mmap ioctl's mapping or a GTT mapping.
1165  */
1166 int
1167 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1168                           struct drm_file *file)
1169 {
1170         struct drm_i915_gem_set_domain *args = data;
1171         struct drm_i915_gem_object *obj;
1172         uint32_t read_domains = args->read_domains;
1173         uint32_t write_domain = args->write_domain;
1174         int ret;
1175
1176         /* Only handle setting domains to types used by the CPU. */
1177         if (write_domain & I915_GEM_GPU_DOMAINS)
1178                 return -EINVAL;
1179
1180         if (read_domains & I915_GEM_GPU_DOMAINS)
1181                 return -EINVAL;
1182
1183         /* Having something in the write domain implies it's in the read
1184          * domain, and only that read domain.  Enforce that in the request.
1185          */
1186         if (write_domain != 0 && read_domains != write_domain)
1187                 return -EINVAL;
1188
1189         ret = i915_mutex_lock_interruptible(dev);
1190         if (ret)
1191                 return ret;
1192
1193         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1194         if (&obj->base == NULL) {
1195                 ret = -ENOENT;
1196                 goto unlock;
1197         }
1198
1199         /* Try to flush the object off the GPU without holding the lock.
1200          * We will repeat the flush holding the lock in the normal manner
1201          * to catch cases where we are gazumped.
1202          */
1203         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1204         if (ret)
1205                 goto unref;
1206
1207         if (read_domains & I915_GEM_DOMAIN_GTT) {
1208                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1209
1210                 /* Silently promote "you're not bound, there was nothing to do"
1211                  * to success, since the client was just asking us to
1212                  * make sure everything was done.
1213                  */
1214                 if (ret == -EINVAL)
1215                         ret = 0;
1216         } else {
1217                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1218         }
1219
1220 unref:
1221         drm_gem_object_unreference(&obj->base);
1222 unlock:
1223         mutex_unlock(&dev->struct_mutex);
1224         return ret;
1225 }
1226
1227 /**
1228  * Called when user space has done writes to this buffer
1229  */
1230 int
1231 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1232                          struct drm_file *file)
1233 {
1234         struct drm_i915_gem_sw_finish *args = data;
1235         struct drm_i915_gem_object *obj;
1236         int ret = 0;
1237
1238         ret = i915_mutex_lock_interruptible(dev);
1239         if (ret)
1240                 return ret;
1241
1242         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1243         if (&obj->base == NULL) {
1244                 ret = -ENOENT;
1245                 goto unlock;
1246         }
1247
1248         /* Pinned buffers may be scanout, so flush the cache */
1249         if (obj->pin_count)
1250                 i915_gem_object_flush_cpu_write_domain(obj);
1251
1252         drm_gem_object_unreference(&obj->base);
1253 unlock:
1254         mutex_unlock(&dev->struct_mutex);
1255         return ret;
1256 }
1257
1258 /**
1259  * Maps the contents of an object, returning the address it is mapped
1260  * into.
1261  *
1262  * While the mapping holds a reference on the contents of the object, it doesn't
1263  * imply a ref on the object itself.
1264  */
1265 int
1266 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1267                     struct drm_file *file)
1268 {
1269         struct drm_i915_gem_mmap *args = data;
1270         struct drm_gem_object *obj;
1271         unsigned long addr;
1272
1273         obj = drm_gem_object_lookup(dev, file, args->handle);
1274         if (obj == NULL)
1275                 return -ENOENT;
1276
1277         /* prime objects have no backing filp to GEM mmap
1278          * pages from.
1279          */
1280         if (!obj->filp) {
1281                 drm_gem_object_unreference_unlocked(obj);
1282                 return -EINVAL;
1283         }
1284
1285         addr = vm_mmap(obj->filp, 0, args->size,
1286                        PROT_READ | PROT_WRITE, MAP_SHARED,
1287                        args->offset);
1288         drm_gem_object_unreference_unlocked(obj);
1289         if (IS_ERR((void *)addr))
1290                 return addr;
1291
1292         args->addr_ptr = (uint64_t) addr;
1293
1294         return 0;
1295 }
1296
1297 /**
1298  * i915_gem_fault - fault a page into the GTT
1299  * vma: VMA in question
1300  * vmf: fault info
1301  *
1302  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1303  * from userspace.  The fault handler takes care of binding the object to
1304  * the GTT (if needed), allocating and programming a fence register (again,
1305  * only if needed based on whether the old reg is still valid or the object
1306  * is tiled) and inserting a new PTE into the faulting process.
1307  *
1308  * Note that the faulting process may involve evicting existing objects
1309  * from the GTT and/or fence registers to make room.  So performance may
1310  * suffer if the GTT working set is large or there are few fence registers
1311  * left.
1312  */
1313 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1314 {
1315         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1316         struct drm_device *dev = obj->base.dev;
1317         drm_i915_private_t *dev_priv = dev->dev_private;
1318         pgoff_t page_offset;
1319         unsigned long pfn;
1320         int ret = 0;
1321         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1322
1323         /* We don't use vmf->pgoff since that has the fake offset */
1324         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1325                 PAGE_SHIFT;
1326
1327         ret = i915_mutex_lock_interruptible(dev);
1328         if (ret)
1329                 goto out;
1330
1331         trace_i915_gem_object_fault(obj, page_offset, true, write);
1332
1333         /* Access to snoopable pages through the GTT is incoherent. */
1334         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1335                 ret = -EINVAL;
1336                 goto unlock;
1337         }
1338
1339         /* Now bind it into the GTT if needed */
1340         ret = i915_gem_object_pin(obj, 0, true, false);
1341         if (ret)
1342                 goto unlock;
1343
1344         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1345         if (ret)
1346                 goto unpin;
1347
1348         ret = i915_gem_object_get_fence(obj);
1349         if (ret)
1350                 goto unpin;
1351
1352         obj->fault_mappable = true;
1353
1354         pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1355                 page_offset;
1356
1357         /* Finally, remap it using the new GTT offset */
1358         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1359 unpin:
1360         i915_gem_object_unpin(obj);
1361 unlock:
1362         mutex_unlock(&dev->struct_mutex);
1363 out:
1364         switch (ret) {
1365         case -EIO:
1366                 /* If this -EIO is due to a gpu hang, give the reset code a
1367                  * chance to clean up the mess. Otherwise return the proper
1368                  * SIGBUS. */
1369                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1370                         return VM_FAULT_SIGBUS;
1371         case -EAGAIN:
1372                 /* Give the error handler a chance to run and move the
1373                  * objects off the GPU active list. Next time we service the
1374                  * fault, we should be able to transition the page into the
1375                  * GTT without touching the GPU (and so avoid further
1376                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1377                  * with coherency, just lost writes.
1378                  */
1379                 set_need_resched();
1380         case 0:
1381         case -ERESTARTSYS:
1382         case -EINTR:
1383         case -EBUSY:
1384                 /*
1385                  * EBUSY is ok: this just means that another thread
1386                  * already did the job.
1387                  */
1388                 return VM_FAULT_NOPAGE;
1389         case -ENOMEM:
1390                 return VM_FAULT_OOM;
1391         case -ENOSPC:
1392                 return VM_FAULT_SIGBUS;
1393         default:
1394                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1395                 return VM_FAULT_SIGBUS;
1396         }
1397 }
1398
1399 /**
1400  * i915_gem_release_mmap - remove physical page mappings
1401  * @obj: obj in question
1402  *
1403  * Preserve the reservation of the mmapping with the DRM core code, but
1404  * relinquish ownership of the pages back to the system.
1405  *
1406  * It is vital that we remove the page mapping if we have mapped a tiled
1407  * object through the GTT and then lose the fence register due to
1408  * resource pressure. Similarly if the object has been moved out of the
1409  * aperture, than pages mapped into userspace must be revoked. Removing the
1410  * mapping will then trigger a page fault on the next user access, allowing
1411  * fixup by i915_gem_fault().
1412  */
1413 void
1414 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1415 {
1416         if (!obj->fault_mappable)
1417                 return;
1418
1419         if (obj->base.dev->dev_mapping)
1420                 unmap_mapping_range(obj->base.dev->dev_mapping,
1421                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1422                                     obj->base.size, 1);
1423
1424         obj->fault_mappable = false;
1425 }
1426
1427 uint32_t
1428 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1429 {
1430         uint32_t gtt_size;
1431
1432         if (INTEL_INFO(dev)->gen >= 4 ||
1433             tiling_mode == I915_TILING_NONE)
1434                 return size;
1435
1436         /* Previous chips need a power-of-two fence region when tiling */
1437         if (INTEL_INFO(dev)->gen == 3)
1438                 gtt_size = 1024*1024;
1439         else
1440                 gtt_size = 512*1024;
1441
1442         while (gtt_size < size)
1443                 gtt_size <<= 1;
1444
1445         return gtt_size;
1446 }
1447
1448 /**
1449  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1450  * @obj: object to check
1451  *
1452  * Return the required GTT alignment for an object, taking into account
1453  * potential fence register mapping.
1454  */
1455 uint32_t
1456 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1457                            int tiling_mode, bool fenced)
1458 {
1459         /*
1460          * Minimum alignment is 4k (GTT page size), but might be greater
1461          * if a fence register is needed for the object.
1462          */
1463         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1464             tiling_mode == I915_TILING_NONE)
1465                 return 4096;
1466
1467         /*
1468          * Previous chips need to be aligned to the size of the smallest
1469          * fence register that can contain the object.
1470          */
1471         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1472 }
1473
1474 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1475 {
1476         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1477         int ret;
1478
1479         if (obj->base.map_list.map)
1480                 return 0;
1481
1482         dev_priv->mm.shrinker_no_lock_stealing = true;
1483
1484         ret = drm_gem_create_mmap_offset(&obj->base);
1485         if (ret != -ENOSPC)
1486                 goto out;
1487
1488         /* Badly fragmented mmap space? The only way we can recover
1489          * space is by destroying unwanted objects. We can't randomly release
1490          * mmap_offsets as userspace expects them to be persistent for the
1491          * lifetime of the objects. The closest we can is to release the
1492          * offsets on purgeable objects by truncating it and marking it purged,
1493          * which prevents userspace from ever using that object again.
1494          */
1495         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1496         ret = drm_gem_create_mmap_offset(&obj->base);
1497         if (ret != -ENOSPC)
1498                 goto out;
1499
1500         i915_gem_shrink_all(dev_priv);
1501         ret = drm_gem_create_mmap_offset(&obj->base);
1502 out:
1503         dev_priv->mm.shrinker_no_lock_stealing = false;
1504
1505         return ret;
1506 }
1507
1508 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1509 {
1510         if (!obj->base.map_list.map)
1511                 return;
1512
1513         drm_gem_free_mmap_offset(&obj->base);
1514 }
1515
1516 int
1517 i915_gem_mmap_gtt(struct drm_file *file,
1518                   struct drm_device *dev,
1519                   uint32_t handle,
1520                   uint64_t *offset)
1521 {
1522         struct drm_i915_private *dev_priv = dev->dev_private;
1523         struct drm_i915_gem_object *obj;
1524         int ret;
1525
1526         ret = i915_mutex_lock_interruptible(dev);
1527         if (ret)
1528                 return ret;
1529
1530         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1531         if (&obj->base == NULL) {
1532                 ret = -ENOENT;
1533                 goto unlock;
1534         }
1535
1536         if (obj->base.size > dev_priv->gtt.mappable_end) {
1537                 ret = -E2BIG;
1538                 goto out;
1539         }
1540
1541         if (obj->madv != I915_MADV_WILLNEED) {
1542                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1543                 ret = -EINVAL;
1544                 goto out;
1545         }
1546
1547         ret = i915_gem_object_create_mmap_offset(obj);
1548         if (ret)
1549                 goto out;
1550
1551         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1552
1553 out:
1554         drm_gem_object_unreference(&obj->base);
1555 unlock:
1556         mutex_unlock(&dev->struct_mutex);
1557         return ret;
1558 }
1559
1560 /**
1561  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1562  * @dev: DRM device
1563  * @data: GTT mapping ioctl data
1564  * @file: GEM object info
1565  *
1566  * Simply returns the fake offset to userspace so it can mmap it.
1567  * The mmap call will end up in drm_gem_mmap(), which will set things
1568  * up so we can get faults in the handler above.
1569  *
1570  * The fault handler will take care of binding the object into the GTT
1571  * (since it may have been evicted to make room for something), allocating
1572  * a fence register, and mapping the appropriate aperture address into
1573  * userspace.
1574  */
1575 int
1576 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1577                         struct drm_file *file)
1578 {
1579         struct drm_i915_gem_mmap_gtt *args = data;
1580
1581         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1582 }
1583
1584 /* Immediately discard the backing storage */
1585 static void
1586 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1587 {
1588         struct inode *inode;
1589
1590         i915_gem_object_free_mmap_offset(obj);
1591
1592         if (obj->base.filp == NULL)
1593                 return;
1594
1595         /* Our goal here is to return as much of the memory as
1596          * is possible back to the system as we are called from OOM.
1597          * To do this we must instruct the shmfs to drop all of its
1598          * backing pages, *now*.
1599          */
1600         inode = obj->base.filp->f_path.dentry->d_inode;
1601         shmem_truncate_range(inode, 0, (loff_t)-1);
1602
1603         obj->madv = __I915_MADV_PURGED;
1604 }
1605
1606 static inline int
1607 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1608 {
1609         return obj->madv == I915_MADV_DONTNEED;
1610 }
1611
1612 static void
1613 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1614 {
1615         int page_count = obj->base.size / PAGE_SIZE;
1616         struct scatterlist *sg;
1617         int ret, i;
1618
1619         BUG_ON(obj->madv == __I915_MADV_PURGED);
1620
1621         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1622         if (ret) {
1623                 /* In the event of a disaster, abandon all caches and
1624                  * hope for the best.
1625                  */
1626                 WARN_ON(ret != -EIO);
1627                 i915_gem_clflush_object(obj);
1628                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1629         }
1630
1631         if (i915_gem_object_needs_bit17_swizzle(obj))
1632                 i915_gem_object_save_bit_17_swizzle(obj);
1633
1634         if (obj->madv == I915_MADV_DONTNEED)
1635                 obj->dirty = 0;
1636
1637         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1638                 struct page *page = sg_page(sg);
1639
1640                 if (obj->dirty)
1641                         set_page_dirty(page);
1642
1643                 if (obj->madv == I915_MADV_WILLNEED)
1644                         mark_page_accessed(page);
1645
1646                 page_cache_release(page);
1647         }
1648         obj->dirty = 0;
1649
1650         sg_free_table(obj->pages);
1651         kfree(obj->pages);
1652 }
1653
1654 int
1655 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1656 {
1657         const struct drm_i915_gem_object_ops *ops = obj->ops;
1658
1659         if (obj->pages == NULL)
1660                 return 0;
1661
1662         BUG_ON(obj->gtt_space);
1663
1664         if (obj->pages_pin_count)
1665                 return -EBUSY;
1666
1667         /* ->put_pages might need to allocate memory for the bit17 swizzle
1668          * array, hence protect them from being reaped by removing them from gtt
1669          * lists early. */
1670         list_del(&obj->gtt_list);
1671
1672         ops->put_pages(obj);
1673         obj->pages = NULL;
1674
1675         if (i915_gem_object_is_purgeable(obj))
1676                 i915_gem_object_truncate(obj);
1677
1678         return 0;
1679 }
1680
1681 static long
1682 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1683 {
1684         struct drm_i915_gem_object *obj, *next;
1685         long count = 0;
1686
1687         list_for_each_entry_safe(obj, next,
1688                                  &dev_priv->mm.unbound_list,
1689                                  gtt_list) {
1690                 if (i915_gem_object_is_purgeable(obj) &&
1691                     i915_gem_object_put_pages(obj) == 0) {
1692                         count += obj->base.size >> PAGE_SHIFT;
1693                         if (count >= target)
1694                                 return count;
1695                 }
1696         }
1697
1698         list_for_each_entry_safe(obj, next,
1699                                  &dev_priv->mm.inactive_list,
1700                                  mm_list) {
1701                 if (i915_gem_object_is_purgeable(obj) &&
1702                     i915_gem_object_unbind(obj) == 0 &&
1703                     i915_gem_object_put_pages(obj) == 0) {
1704                         count += obj->base.size >> PAGE_SHIFT;
1705                         if (count >= target)
1706                                 return count;
1707                 }
1708         }
1709
1710         return count;
1711 }
1712
1713 static void
1714 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1715 {
1716         struct drm_i915_gem_object *obj, *next;
1717
1718         i915_gem_evict_everything(dev_priv->dev);
1719
1720         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1721                 i915_gem_object_put_pages(obj);
1722 }
1723
1724 static int
1725 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1726 {
1727         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1728         int page_count, i;
1729         struct address_space *mapping;
1730         struct sg_table *st;
1731         struct scatterlist *sg;
1732         struct page *page;
1733         gfp_t gfp;
1734
1735         /* Assert that the object is not currently in any GPU domain. As it
1736          * wasn't in the GTT, there shouldn't be any way it could have been in
1737          * a GPU cache
1738          */
1739         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1740         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1741
1742         st = kmalloc(sizeof(*st), GFP_KERNEL);
1743         if (st == NULL)
1744                 return -ENOMEM;
1745
1746         page_count = obj->base.size / PAGE_SIZE;
1747         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1748                 sg_free_table(st);
1749                 kfree(st);
1750                 return -ENOMEM;
1751         }
1752
1753         /* Get the list of pages out of our struct file.  They'll be pinned
1754          * at this point until we release them.
1755          *
1756          * Fail silently without starting the shrinker
1757          */
1758         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1759         gfp = mapping_gfp_mask(mapping);
1760         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1761         gfp &= ~(__GFP_IO | __GFP_WAIT);
1762         for_each_sg(st->sgl, sg, page_count, i) {
1763                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1764                 if (IS_ERR(page)) {
1765                         i915_gem_purge(dev_priv, page_count);
1766                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1767                 }
1768                 if (IS_ERR(page)) {
1769                         /* We've tried hard to allocate the memory by reaping
1770                          * our own buffer, now let the real VM do its job and
1771                          * go down in flames if truly OOM.
1772                          */
1773                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1774                         gfp |= __GFP_IO | __GFP_WAIT;
1775
1776                         i915_gem_shrink_all(dev_priv);
1777                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1778                         if (IS_ERR(page))
1779                                 goto err_pages;
1780
1781                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1782                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1783                 }
1784
1785                 sg_set_page(sg, page, PAGE_SIZE, 0);
1786         }
1787
1788         obj->pages = st;
1789
1790         if (i915_gem_object_needs_bit17_swizzle(obj))
1791                 i915_gem_object_do_bit_17_swizzle(obj);
1792
1793         return 0;
1794
1795 err_pages:
1796         for_each_sg(st->sgl, sg, i, page_count)
1797                 page_cache_release(sg_page(sg));
1798         sg_free_table(st);
1799         kfree(st);
1800         return PTR_ERR(page);
1801 }
1802
1803 /* Ensure that the associated pages are gathered from the backing storage
1804  * and pinned into our object. i915_gem_object_get_pages() may be called
1805  * multiple times before they are released by a single call to
1806  * i915_gem_object_put_pages() - once the pages are no longer referenced
1807  * either as a result of memory pressure (reaping pages under the shrinker)
1808  * or as the object is itself released.
1809  */
1810 int
1811 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1812 {
1813         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1814         const struct drm_i915_gem_object_ops *ops = obj->ops;
1815         int ret;
1816
1817         if (obj->pages)
1818                 return 0;
1819
1820         if (obj->madv != I915_MADV_WILLNEED) {
1821                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1822                 return -EINVAL;
1823         }
1824
1825         BUG_ON(obj->pages_pin_count);
1826
1827         ret = ops->get_pages(obj);
1828         if (ret)
1829                 return ret;
1830
1831         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1832         return 0;
1833 }
1834
1835 void
1836 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1837                                struct intel_ring_buffer *ring)
1838 {
1839         struct drm_device *dev = obj->base.dev;
1840         struct drm_i915_private *dev_priv = dev->dev_private;
1841         u32 seqno = intel_ring_get_seqno(ring);
1842
1843         BUG_ON(ring == NULL);
1844         obj->ring = ring;
1845
1846         /* Add a reference if we're newly entering the active list. */
1847         if (!obj->active) {
1848                 drm_gem_object_reference(&obj->base);
1849                 obj->active = 1;
1850         }
1851
1852         /* Move from whatever list we were on to the tail of execution. */
1853         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1854         list_move_tail(&obj->ring_list, &ring->active_list);
1855
1856         obj->last_read_seqno = seqno;
1857
1858         if (obj->fenced_gpu_access) {
1859                 obj->last_fenced_seqno = seqno;
1860
1861                 /* Bump MRU to take account of the delayed flush */
1862                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1863                         struct drm_i915_fence_reg *reg;
1864
1865                         reg = &dev_priv->fence_regs[obj->fence_reg];
1866                         list_move_tail(&reg->lru_list,
1867                                        &dev_priv->mm.fence_list);
1868                 }
1869         }
1870 }
1871
1872 static void
1873 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1874 {
1875         struct drm_device *dev = obj->base.dev;
1876         struct drm_i915_private *dev_priv = dev->dev_private;
1877
1878         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1879         BUG_ON(!obj->active);
1880
1881         if (obj->pin_count) /* are we a framebuffer? */
1882                 intel_mark_fb_idle(obj);
1883
1884         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1885
1886         list_del_init(&obj->ring_list);
1887         obj->ring = NULL;
1888
1889         obj->last_read_seqno = 0;
1890         obj->last_write_seqno = 0;
1891         obj->base.write_domain = 0;
1892
1893         obj->last_fenced_seqno = 0;
1894         obj->fenced_gpu_access = false;
1895
1896         obj->active = 0;
1897         drm_gem_object_unreference(&obj->base);
1898
1899         WARN_ON(i915_verify_lists(dev));
1900 }
1901
1902 static int
1903 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1904 {
1905         struct drm_i915_private *dev_priv = dev->dev_private;
1906         struct intel_ring_buffer *ring;
1907         int ret, i, j;
1908
1909         /* Carefully retire all requests without writing to the rings */
1910         for_each_ring(ring, dev_priv, i) {
1911                 ret = intel_ring_idle(ring);
1912                 if (ret)
1913                         return ret;
1914         }
1915         i915_gem_retire_requests(dev);
1916
1917         /* Finally reset hw state */
1918         for_each_ring(ring, dev_priv, i) {
1919                 intel_ring_init_seqno(ring, seqno);
1920
1921                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1922                         ring->sync_seqno[j] = 0;
1923         }
1924
1925         return 0;
1926 }
1927
1928 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1929 {
1930         struct drm_i915_private *dev_priv = dev->dev_private;
1931         int ret;
1932
1933         if (seqno == 0)
1934                 return -EINVAL;
1935
1936         /* HWS page needs to be set less than what we
1937          * will inject to ring
1938          */
1939         ret = i915_gem_init_seqno(dev, seqno - 1);
1940         if (ret)
1941                 return ret;
1942
1943         /* Carefully set the last_seqno value so that wrap
1944          * detection still works
1945          */
1946         dev_priv->next_seqno = seqno;
1947         dev_priv->last_seqno = seqno - 1;
1948         if (dev_priv->last_seqno == 0)
1949                 dev_priv->last_seqno--;
1950
1951         return 0;
1952 }
1953
1954 int
1955 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1956 {
1957         struct drm_i915_private *dev_priv = dev->dev_private;
1958
1959         /* reserve 0 for non-seqno */
1960         if (dev_priv->next_seqno == 0) {
1961                 int ret = i915_gem_init_seqno(dev, 0);
1962                 if (ret)
1963                         return ret;
1964
1965                 dev_priv->next_seqno = 1;
1966         }
1967
1968         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1969         return 0;
1970 }
1971
1972 int
1973 i915_add_request(struct intel_ring_buffer *ring,
1974                  struct drm_file *file,
1975                  u32 *out_seqno)
1976 {
1977         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1978         struct drm_i915_gem_request *request;
1979         u32 request_ring_position;
1980         int was_empty;
1981         int ret;
1982
1983         /*
1984          * Emit any outstanding flushes - execbuf can fail to emit the flush
1985          * after having emitted the batchbuffer command. Hence we need to fix
1986          * things up similar to emitting the lazy request. The difference here
1987          * is that the flush _must_ happen before the next request, no matter
1988          * what.
1989          */
1990         ret = intel_ring_flush_all_caches(ring);
1991         if (ret)
1992                 return ret;
1993
1994         request = kmalloc(sizeof(*request), GFP_KERNEL);
1995         if (request == NULL)
1996                 return -ENOMEM;
1997
1998
1999         /* Record the position of the start of the request so that
2000          * should we detect the updated seqno part-way through the
2001          * GPU processing the request, we never over-estimate the
2002          * position of the head.
2003          */
2004         request_ring_position = intel_ring_get_tail(ring);
2005
2006         ret = ring->add_request(ring);
2007         if (ret) {
2008                 kfree(request);
2009                 return ret;
2010         }
2011
2012         request->seqno = intel_ring_get_seqno(ring);
2013         request->ring = ring;
2014         request->tail = request_ring_position;
2015         request->emitted_jiffies = jiffies;
2016         was_empty = list_empty(&ring->request_list);
2017         list_add_tail(&request->list, &ring->request_list);
2018         request->file_priv = NULL;
2019
2020         if (file) {
2021                 struct drm_i915_file_private *file_priv = file->driver_priv;
2022
2023                 spin_lock(&file_priv->mm.lock);
2024                 request->file_priv = file_priv;
2025                 list_add_tail(&request->client_list,
2026                               &file_priv->mm.request_list);
2027                 spin_unlock(&file_priv->mm.lock);
2028         }
2029
2030         trace_i915_gem_request_add(ring, request->seqno);
2031         ring->outstanding_lazy_request = 0;
2032
2033         if (!dev_priv->mm.suspended) {
2034                 if (i915_enable_hangcheck) {
2035                         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2036                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2037                 }
2038                 if (was_empty) {
2039                         queue_delayed_work(dev_priv->wq,
2040                                            &dev_priv->mm.retire_work,
2041                                            round_jiffies_up_relative(HZ));
2042                         intel_mark_busy(dev_priv->dev);
2043                 }
2044         }
2045
2046         if (out_seqno)
2047                 *out_seqno = request->seqno;
2048         return 0;
2049 }
2050
2051 static inline void
2052 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2053 {
2054         struct drm_i915_file_private *file_priv = request->file_priv;
2055
2056         if (!file_priv)
2057                 return;
2058
2059         spin_lock(&file_priv->mm.lock);
2060         if (request->file_priv) {
2061                 list_del(&request->client_list);
2062                 request->file_priv = NULL;
2063         }
2064         spin_unlock(&file_priv->mm.lock);
2065 }
2066
2067 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2068                                       struct intel_ring_buffer *ring)
2069 {
2070         while (!list_empty(&ring->request_list)) {
2071                 struct drm_i915_gem_request *request;
2072
2073                 request = list_first_entry(&ring->request_list,
2074                                            struct drm_i915_gem_request,
2075                                            list);
2076
2077                 list_del(&request->list);
2078                 i915_gem_request_remove_from_client(request);
2079                 kfree(request);
2080         }
2081
2082         while (!list_empty(&ring->active_list)) {
2083                 struct drm_i915_gem_object *obj;
2084
2085                 obj = list_first_entry(&ring->active_list,
2086                                        struct drm_i915_gem_object,
2087                                        ring_list);
2088
2089                 i915_gem_object_move_to_inactive(obj);
2090         }
2091 }
2092
2093 static void i915_gem_reset_fences(struct drm_device *dev)
2094 {
2095         struct drm_i915_private *dev_priv = dev->dev_private;
2096         int i;
2097
2098         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2099                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2100
2101                 i915_gem_write_fence(dev, i, NULL);
2102
2103                 if (reg->obj)
2104                         i915_gem_object_fence_lost(reg->obj);
2105
2106                 reg->pin_count = 0;
2107                 reg->obj = NULL;
2108                 INIT_LIST_HEAD(&reg->lru_list);
2109         }
2110
2111         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2112 }
2113
2114 void i915_gem_reset(struct drm_device *dev)
2115 {
2116         struct drm_i915_private *dev_priv = dev->dev_private;
2117         struct drm_i915_gem_object *obj;
2118         struct intel_ring_buffer *ring;
2119         int i;
2120
2121         for_each_ring(ring, dev_priv, i)
2122                 i915_gem_reset_ring_lists(dev_priv, ring);
2123
2124         /* Move everything out of the GPU domains to ensure we do any
2125          * necessary invalidation upon reuse.
2126          */
2127         list_for_each_entry(obj,
2128                             &dev_priv->mm.inactive_list,
2129                             mm_list)
2130         {
2131                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2132         }
2133
2134         /* The fence registers are invalidated so clear them out */
2135         i915_gem_reset_fences(dev);
2136 }
2137
2138 /**
2139  * This function clears the request list as sequence numbers are passed.
2140  */
2141 void
2142 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2143 {
2144         uint32_t seqno;
2145
2146         if (list_empty(&ring->request_list))
2147                 return;
2148
2149         WARN_ON(i915_verify_lists(ring->dev));
2150
2151         seqno = ring->get_seqno(ring, true);
2152
2153         while (!list_empty(&ring->request_list)) {
2154                 struct drm_i915_gem_request *request;
2155
2156                 request = list_first_entry(&ring->request_list,
2157                                            struct drm_i915_gem_request,
2158                                            list);
2159
2160                 if (!i915_seqno_passed(seqno, request->seqno))
2161                         break;
2162
2163                 trace_i915_gem_request_retire(ring, request->seqno);
2164                 /* We know the GPU must have read the request to have
2165                  * sent us the seqno + interrupt, so use the position
2166                  * of tail of the request to update the last known position
2167                  * of the GPU head.
2168                  */
2169                 ring->last_retired_head = request->tail;
2170
2171                 list_del(&request->list);
2172                 i915_gem_request_remove_from_client(request);
2173                 kfree(request);
2174         }
2175
2176         /* Move any buffers on the active list that are no longer referenced
2177          * by the ringbuffer to the flushing/inactive lists as appropriate.
2178          */
2179         while (!list_empty(&ring->active_list)) {
2180                 struct drm_i915_gem_object *obj;
2181
2182                 obj = list_first_entry(&ring->active_list,
2183                                       struct drm_i915_gem_object,
2184                                       ring_list);
2185
2186                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2187                         break;
2188
2189                 i915_gem_object_move_to_inactive(obj);
2190         }
2191
2192         if (unlikely(ring->trace_irq_seqno &&
2193                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2194                 ring->irq_put(ring);
2195                 ring->trace_irq_seqno = 0;
2196         }
2197
2198         WARN_ON(i915_verify_lists(ring->dev));
2199 }
2200
2201 void
2202 i915_gem_retire_requests(struct drm_device *dev)
2203 {
2204         drm_i915_private_t *dev_priv = dev->dev_private;
2205         struct intel_ring_buffer *ring;
2206         int i;
2207
2208         for_each_ring(ring, dev_priv, i)
2209                 i915_gem_retire_requests_ring(ring);
2210 }
2211
2212 static void
2213 i915_gem_retire_work_handler(struct work_struct *work)
2214 {
2215         drm_i915_private_t *dev_priv;
2216         struct drm_device *dev;
2217         struct intel_ring_buffer *ring;
2218         bool idle;
2219         int i;
2220
2221         dev_priv = container_of(work, drm_i915_private_t,
2222                                 mm.retire_work.work);
2223         dev = dev_priv->dev;
2224
2225         /* Come back later if the device is busy... */
2226         if (!mutex_trylock(&dev->struct_mutex)) {
2227                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2228                                    round_jiffies_up_relative(HZ));
2229                 return;
2230         }
2231
2232         i915_gem_retire_requests(dev);
2233
2234         /* Send a periodic flush down the ring so we don't hold onto GEM
2235          * objects indefinitely.
2236          */
2237         idle = true;
2238         for_each_ring(ring, dev_priv, i) {
2239                 if (ring->gpu_caches_dirty)
2240                         i915_add_request(ring, NULL, NULL);
2241
2242                 idle &= list_empty(&ring->request_list);
2243         }
2244
2245         if (!dev_priv->mm.suspended && !idle)
2246                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2247                                    round_jiffies_up_relative(HZ));
2248         if (idle)
2249                 intel_mark_idle(dev);
2250
2251         mutex_unlock(&dev->struct_mutex);
2252 }
2253
2254 /**
2255  * Ensures that an object will eventually get non-busy by flushing any required
2256  * write domains, emitting any outstanding lazy request and retiring and
2257  * completed requests.
2258  */
2259 static int
2260 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2261 {
2262         int ret;
2263
2264         if (obj->active) {
2265                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2266                 if (ret)
2267                         return ret;
2268
2269                 i915_gem_retire_requests_ring(obj->ring);
2270         }
2271
2272         return 0;
2273 }
2274
2275 /**
2276  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2277  * @DRM_IOCTL_ARGS: standard ioctl arguments
2278  *
2279  * Returns 0 if successful, else an error is returned with the remaining time in
2280  * the timeout parameter.
2281  *  -ETIME: object is still busy after timeout
2282  *  -ERESTARTSYS: signal interrupted the wait
2283  *  -ENONENT: object doesn't exist
2284  * Also possible, but rare:
2285  *  -EAGAIN: GPU wedged
2286  *  -ENOMEM: damn
2287  *  -ENODEV: Internal IRQ fail
2288  *  -E?: The add request failed
2289  *
2290  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2291  * non-zero timeout parameter the wait ioctl will wait for the given number of
2292  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2293  * without holding struct_mutex the object may become re-busied before this
2294  * function completes. A similar but shorter * race condition exists in the busy
2295  * ioctl
2296  */
2297 int
2298 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2299 {
2300         struct drm_i915_gem_wait *args = data;
2301         struct drm_i915_gem_object *obj;
2302         struct intel_ring_buffer *ring = NULL;
2303         struct timespec timeout_stack, *timeout = NULL;
2304         u32 seqno = 0;
2305         int ret = 0;
2306
2307         if (args->timeout_ns >= 0) {
2308                 timeout_stack = ns_to_timespec(args->timeout_ns);
2309                 timeout = &timeout_stack;
2310         }
2311
2312         ret = i915_mutex_lock_interruptible(dev);
2313         if (ret)
2314                 return ret;
2315
2316         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2317         if (&obj->base == NULL) {
2318                 mutex_unlock(&dev->struct_mutex);
2319                 return -ENOENT;
2320         }
2321
2322         /* Need to make sure the object gets inactive eventually. */
2323         ret = i915_gem_object_flush_active(obj);
2324         if (ret)
2325                 goto out;
2326
2327         if (obj->active) {
2328                 seqno = obj->last_read_seqno;
2329                 ring = obj->ring;
2330         }
2331
2332         if (seqno == 0)
2333                  goto out;
2334
2335         /* Do this after OLR check to make sure we make forward progress polling
2336          * on this IOCTL with a 0 timeout (like busy ioctl)
2337          */
2338         if (!args->timeout_ns) {
2339                 ret = -ETIME;
2340                 goto out;
2341         }
2342
2343         drm_gem_object_unreference(&obj->base);
2344         mutex_unlock(&dev->struct_mutex);
2345
2346         ret = __wait_seqno(ring, seqno, true, timeout);
2347         if (timeout) {
2348                 WARN_ON(!timespec_valid(timeout));
2349                 args->timeout_ns = timespec_to_ns(timeout);
2350         }
2351         return ret;
2352
2353 out:
2354         drm_gem_object_unreference(&obj->base);
2355         mutex_unlock(&dev->struct_mutex);
2356         return ret;
2357 }
2358
2359 /**
2360  * i915_gem_object_sync - sync an object to a ring.
2361  *
2362  * @obj: object which may be in use on another ring.
2363  * @to: ring we wish to use the object on. May be NULL.
2364  *
2365  * This code is meant to abstract object synchronization with the GPU.
2366  * Calling with NULL implies synchronizing the object with the CPU
2367  * rather than a particular GPU ring.
2368  *
2369  * Returns 0 if successful, else propagates up the lower layer error.
2370  */
2371 int
2372 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2373                      struct intel_ring_buffer *to)
2374 {
2375         struct intel_ring_buffer *from = obj->ring;
2376         u32 seqno;
2377         int ret, idx;
2378
2379         if (from == NULL || to == from)
2380                 return 0;
2381
2382         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2383                 return i915_gem_object_wait_rendering(obj, false);
2384
2385         idx = intel_ring_sync_index(from, to);
2386
2387         seqno = obj->last_read_seqno;
2388         if (seqno <= from->sync_seqno[idx])
2389                 return 0;
2390
2391         ret = i915_gem_check_olr(obj->ring, seqno);
2392         if (ret)
2393                 return ret;
2394
2395         ret = to->sync_to(to, from, seqno);
2396         if (!ret)
2397                 /* We use last_read_seqno because sync_to()
2398                  * might have just caused seqno wrap under
2399                  * the radar.
2400                  */
2401                 from->sync_seqno[idx] = obj->last_read_seqno;
2402
2403         return ret;
2404 }
2405
2406 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2407 {
2408         u32 old_write_domain, old_read_domains;
2409
2410         /* Act a barrier for all accesses through the GTT */
2411         mb();
2412
2413         /* Force a pagefault for domain tracking on next user access */
2414         i915_gem_release_mmap(obj);
2415
2416         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2417                 return;
2418
2419         old_read_domains = obj->base.read_domains;
2420         old_write_domain = obj->base.write_domain;
2421
2422         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2423         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2424
2425         trace_i915_gem_object_change_domain(obj,
2426                                             old_read_domains,
2427                                             old_write_domain);
2428 }
2429
2430 /**
2431  * Unbinds an object from the GTT aperture.
2432  */
2433 int
2434 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2435 {
2436         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2437         int ret;
2438
2439         if (obj->gtt_space == NULL)
2440                 return 0;
2441
2442         if (obj->pin_count)
2443                 return -EBUSY;
2444
2445         BUG_ON(obj->pages == NULL);
2446
2447         ret = i915_gem_object_finish_gpu(obj);
2448         if (ret)
2449                 return ret;
2450         /* Continue on if we fail due to EIO, the GPU is hung so we
2451          * should be safe and we need to cleanup or else we might
2452          * cause memory corruption through use-after-free.
2453          */
2454
2455         i915_gem_object_finish_gtt(obj);
2456
2457         /* release the fence reg _after_ flushing */
2458         ret = i915_gem_object_put_fence(obj);
2459         if (ret)
2460                 return ret;
2461
2462         trace_i915_gem_object_unbind(obj);
2463
2464         if (obj->has_global_gtt_mapping)
2465                 i915_gem_gtt_unbind_object(obj);
2466         if (obj->has_aliasing_ppgtt_mapping) {
2467                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2468                 obj->has_aliasing_ppgtt_mapping = 0;
2469         }
2470         i915_gem_gtt_finish_object(obj);
2471
2472         list_del(&obj->mm_list);
2473         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2474         /* Avoid an unnecessary call to unbind on rebind. */
2475         obj->map_and_fenceable = true;
2476
2477         drm_mm_put_block(obj->gtt_space);
2478         obj->gtt_space = NULL;
2479         obj->gtt_offset = 0;
2480
2481         return 0;
2482 }
2483
2484 int i915_gpu_idle(struct drm_device *dev)
2485 {
2486         drm_i915_private_t *dev_priv = dev->dev_private;
2487         struct intel_ring_buffer *ring;
2488         int ret, i;
2489
2490         /* Flush everything onto the inactive list. */
2491         for_each_ring(ring, dev_priv, i) {
2492                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2493                 if (ret)
2494                         return ret;
2495
2496                 ret = intel_ring_idle(ring);
2497                 if (ret)
2498                         return ret;
2499         }
2500
2501         return 0;
2502 }
2503
2504 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2505                                  struct drm_i915_gem_object *obj)
2506 {
2507         drm_i915_private_t *dev_priv = dev->dev_private;
2508         int fence_reg;
2509         int fence_pitch_shift;
2510         uint64_t val;
2511
2512         if (INTEL_INFO(dev)->gen >= 6) {
2513                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2514                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2515         } else {
2516                 fence_reg = FENCE_REG_965_0;
2517                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2518         }
2519
2520         if (obj) {
2521                 u32 size = obj->gtt_space->size;
2522
2523                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2524                                  0xfffff000) << 32;
2525                 val |= obj->gtt_offset & 0xfffff000;
2526                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2527                 if (obj->tiling_mode == I915_TILING_Y)
2528                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2529                 val |= I965_FENCE_REG_VALID;
2530         } else
2531                 val = 0;
2532
2533         fence_reg += reg * 8;
2534         I915_WRITE64(fence_reg, val);
2535         POSTING_READ(fence_reg);
2536 }
2537
2538 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2539                                  struct drm_i915_gem_object *obj)
2540 {
2541         drm_i915_private_t *dev_priv = dev->dev_private;
2542         u32 val;
2543
2544         if (obj) {
2545                 u32 size = obj->gtt_space->size;
2546                 int pitch_val;
2547                 int tile_width;
2548
2549                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2550                      (size & -size) != size ||
2551                      (obj->gtt_offset & (size - 1)),
2552                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2553                      obj->gtt_offset, obj->map_and_fenceable, size);
2554
2555                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2556                         tile_width = 128;
2557                 else
2558                         tile_width = 512;
2559
2560                 /* Note: pitch better be a power of two tile widths */
2561                 pitch_val = obj->stride / tile_width;
2562                 pitch_val = ffs(pitch_val) - 1;
2563
2564                 val = obj->gtt_offset;
2565                 if (obj->tiling_mode == I915_TILING_Y)
2566                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2567                 val |= I915_FENCE_SIZE_BITS(size);
2568                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2569                 val |= I830_FENCE_REG_VALID;
2570         } else
2571                 val = 0;
2572
2573         if (reg < 8)
2574                 reg = FENCE_REG_830_0 + reg * 4;
2575         else
2576                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2577
2578         I915_WRITE(reg, val);
2579         POSTING_READ(reg);
2580 }
2581
2582 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2583                                 struct drm_i915_gem_object *obj)
2584 {
2585         drm_i915_private_t *dev_priv = dev->dev_private;
2586         uint32_t val;
2587
2588         if (obj) {
2589                 u32 size = obj->gtt_space->size;
2590                 uint32_t pitch_val;
2591
2592                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2593                      (size & -size) != size ||
2594                      (obj->gtt_offset & (size - 1)),
2595                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2596                      obj->gtt_offset, size);
2597
2598                 pitch_val = obj->stride / 128;
2599                 pitch_val = ffs(pitch_val) - 1;
2600
2601                 val = obj->gtt_offset;
2602                 if (obj->tiling_mode == I915_TILING_Y)
2603                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2604                 val |= I830_FENCE_SIZE_BITS(size);
2605                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2606                 val |= I830_FENCE_REG_VALID;
2607         } else
2608                 val = 0;
2609
2610         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2611         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2612 }
2613
2614 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2615 {
2616         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2617 }
2618
2619 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2620                                  struct drm_i915_gem_object *obj)
2621 {
2622         struct drm_i915_private *dev_priv = dev->dev_private;
2623
2624         /* Ensure that all CPU reads are completed before installing a fence
2625          * and all writes before removing the fence.
2626          */
2627         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2628                 mb();
2629
2630         switch (INTEL_INFO(dev)->gen) {
2631         case 7:
2632         case 6:
2633         case 5:
2634         case 4: i965_write_fence_reg(dev, reg, obj); break;
2635         case 3: i915_write_fence_reg(dev, reg, obj); break;
2636         case 2: i830_write_fence_reg(dev, reg, obj); break;
2637         default: BUG();
2638         }
2639
2640         /* And similarly be paranoid that no direct access to this region
2641          * is reordered to before the fence is installed.
2642          */
2643         if (i915_gem_object_needs_mb(obj))
2644                 mb();
2645 }
2646
2647 static inline int fence_number(struct drm_i915_private *dev_priv,
2648                                struct drm_i915_fence_reg *fence)
2649 {
2650         return fence - dev_priv->fence_regs;
2651 }
2652
2653 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2654                                          struct drm_i915_fence_reg *fence,
2655                                          bool enable)
2656 {
2657         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2658         int reg = fence_number(dev_priv, fence);
2659
2660         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2661
2662         if (enable) {
2663                 obj->fence_reg = reg;
2664                 fence->obj = obj;
2665                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2666         } else {
2667                 obj->fence_reg = I915_FENCE_REG_NONE;
2668                 fence->obj = NULL;
2669                 list_del_init(&fence->lru_list);
2670         }
2671 }
2672
2673 static int
2674 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2675 {
2676         if (obj->last_fenced_seqno) {
2677                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2678                 if (ret)
2679                         return ret;
2680
2681                 obj->last_fenced_seqno = 0;
2682         }
2683
2684         obj->fenced_gpu_access = false;
2685         return 0;
2686 }
2687
2688 int
2689 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2690 {
2691         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2692         int ret;
2693
2694         ret = i915_gem_object_wait_fence(obj);
2695         if (ret)
2696                 return ret;
2697
2698         if (obj->fence_reg == I915_FENCE_REG_NONE)
2699                 return 0;
2700
2701         i915_gem_object_update_fence(obj,
2702                                      &dev_priv->fence_regs[obj->fence_reg],
2703                                      false);
2704         i915_gem_object_fence_lost(obj);
2705
2706         return 0;
2707 }
2708
2709 static struct drm_i915_fence_reg *
2710 i915_find_fence_reg(struct drm_device *dev)
2711 {
2712         struct drm_i915_private *dev_priv = dev->dev_private;
2713         struct drm_i915_fence_reg *reg, *avail;
2714         int i;
2715
2716         /* First try to find a free reg */
2717         avail = NULL;
2718         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2719                 reg = &dev_priv->fence_regs[i];
2720                 if (!reg->obj)
2721                         return reg;
2722
2723                 if (!reg->pin_count)
2724                         avail = reg;
2725         }
2726
2727         if (avail == NULL)
2728                 return NULL;
2729
2730         /* None available, try to steal one or wait for a user to finish */
2731         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2732                 if (reg->pin_count)
2733                         continue;
2734
2735                 return reg;
2736         }
2737
2738         return NULL;
2739 }
2740
2741 /**
2742  * i915_gem_object_get_fence - set up fencing for an object
2743  * @obj: object to map through a fence reg
2744  *
2745  * When mapping objects through the GTT, userspace wants to be able to write
2746  * to them without having to worry about swizzling if the object is tiled.
2747  * This function walks the fence regs looking for a free one for @obj,
2748  * stealing one if it can't find any.
2749  *
2750  * It then sets up the reg based on the object's properties: address, pitch
2751  * and tiling format.
2752  *
2753  * For an untiled surface, this removes any existing fence.
2754  */
2755 int
2756 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2757 {
2758         struct drm_device *dev = obj->base.dev;
2759         struct drm_i915_private *dev_priv = dev->dev_private;
2760         bool enable = obj->tiling_mode != I915_TILING_NONE;
2761         struct drm_i915_fence_reg *reg;
2762         int ret;
2763
2764         /* Have we updated the tiling parameters upon the object and so
2765          * will need to serialise the write to the associated fence register?
2766          */
2767         if (obj->fence_dirty) {
2768                 ret = i915_gem_object_wait_fence(obj);
2769                 if (ret)
2770                         return ret;
2771         }
2772
2773         /* Just update our place in the LRU if our fence is getting reused. */
2774         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2775                 reg = &dev_priv->fence_regs[obj->fence_reg];
2776                 if (!obj->fence_dirty) {
2777                         list_move_tail(&reg->lru_list,
2778                                        &dev_priv->mm.fence_list);
2779                         return 0;
2780                 }
2781         } else if (enable) {
2782                 reg = i915_find_fence_reg(dev);
2783                 if (reg == NULL)
2784                         return -EDEADLK;
2785
2786                 if (reg->obj) {
2787                         struct drm_i915_gem_object *old = reg->obj;
2788
2789                         ret = i915_gem_object_wait_fence(old);
2790                         if (ret)
2791                                 return ret;
2792
2793                         i915_gem_object_fence_lost(old);
2794                 }
2795         } else
2796                 return 0;
2797
2798         i915_gem_object_update_fence(obj, reg, enable);
2799         obj->fence_dirty = false;
2800
2801         return 0;
2802 }
2803
2804 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2805                                      struct drm_mm_node *gtt_space,
2806                                      unsigned long cache_level)
2807 {
2808         struct drm_mm_node *other;
2809
2810         /* On non-LLC machines we have to be careful when putting differing
2811          * types of snoopable memory together to avoid the prefetcher
2812          * crossing memory domains and dying.
2813          */
2814         if (HAS_LLC(dev))
2815                 return true;
2816
2817         if (gtt_space == NULL)
2818                 return true;
2819
2820         if (list_empty(&gtt_space->node_list))
2821                 return true;
2822
2823         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2824         if (other->allocated && !other->hole_follows && other->color != cache_level)
2825                 return false;
2826
2827         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2828         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2829                 return false;
2830
2831         return true;
2832 }
2833
2834 static void i915_gem_verify_gtt(struct drm_device *dev)
2835 {
2836 #if WATCH_GTT
2837         struct drm_i915_private *dev_priv = dev->dev_private;
2838         struct drm_i915_gem_object *obj;
2839         int err = 0;
2840
2841         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2842                 if (obj->gtt_space == NULL) {
2843                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2844                         err++;
2845                         continue;
2846                 }
2847
2848                 if (obj->cache_level != obj->gtt_space->color) {
2849                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2850                                obj->gtt_space->start,
2851                                obj->gtt_space->start + obj->gtt_space->size,
2852                                obj->cache_level,
2853                                obj->gtt_space->color);
2854                         err++;
2855                         continue;
2856                 }
2857
2858                 if (!i915_gem_valid_gtt_space(dev,
2859                                               obj->gtt_space,
2860                                               obj->cache_level)) {
2861                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2862                                obj->gtt_space->start,
2863                                obj->gtt_space->start + obj->gtt_space->size,
2864                                obj->cache_level);
2865                         err++;
2866                         continue;
2867                 }
2868         }
2869
2870         WARN_ON(err);
2871 #endif
2872 }
2873
2874 /**
2875  * Finds free space in the GTT aperture and binds the object there.
2876  */
2877 static int
2878 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2879                             unsigned alignment,
2880                             bool map_and_fenceable,
2881                             bool nonblocking)
2882 {
2883         struct drm_device *dev = obj->base.dev;
2884         drm_i915_private_t *dev_priv = dev->dev_private;
2885         struct drm_mm_node *node;
2886         u32 size, fence_size, fence_alignment, unfenced_alignment;
2887         bool mappable, fenceable;
2888         int ret;
2889
2890         fence_size = i915_gem_get_gtt_size(dev,
2891                                            obj->base.size,
2892                                            obj->tiling_mode);
2893         fence_alignment = i915_gem_get_gtt_alignment(dev,
2894                                                      obj->base.size,
2895                                                      obj->tiling_mode, true);
2896         unfenced_alignment =
2897                 i915_gem_get_gtt_alignment(dev,
2898                                                     obj->base.size,
2899                                                     obj->tiling_mode, false);
2900
2901         if (alignment == 0)
2902                 alignment = map_and_fenceable ? fence_alignment :
2903                                                 unfenced_alignment;
2904         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2905                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2906                 return -EINVAL;
2907         }
2908
2909         size = map_and_fenceable ? fence_size : obj->base.size;
2910
2911         /* If the object is bigger than the entire aperture, reject it early
2912          * before evicting everything in a vain attempt to find space.
2913          */
2914         if (obj->base.size >
2915             (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2916                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2917                 return -E2BIG;
2918         }
2919
2920         ret = i915_gem_object_get_pages(obj);
2921         if (ret)
2922                 return ret;
2923
2924         i915_gem_object_pin_pages(obj);
2925
2926         node = kzalloc(sizeof(*node), GFP_KERNEL);
2927         if (node == NULL) {
2928                 i915_gem_object_unpin_pages(obj);
2929                 return -ENOMEM;
2930         }
2931
2932  search_free:
2933         if (map_and_fenceable)
2934                 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2935                                                           size, alignment, obj->cache_level,
2936                                                           0, dev_priv->gtt.mappable_end);
2937         else
2938                 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2939                                                  size, alignment, obj->cache_level);
2940         if (ret) {
2941                 ret = i915_gem_evict_something(dev, size, alignment,
2942                                                obj->cache_level,
2943                                                map_and_fenceable,
2944                                                nonblocking);
2945                 if (ret == 0)
2946                         goto search_free;
2947
2948                 i915_gem_object_unpin_pages(obj);
2949                 kfree(node);
2950                 return ret;
2951         }
2952         if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2953                 i915_gem_object_unpin_pages(obj);
2954                 drm_mm_put_block(node);
2955                 return -EINVAL;
2956         }
2957
2958         ret = i915_gem_gtt_prepare_object(obj);
2959         if (ret) {
2960                 i915_gem_object_unpin_pages(obj);
2961                 drm_mm_put_block(node);
2962                 return ret;
2963         }
2964
2965         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2966         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2967
2968         obj->gtt_space = node;
2969         obj->gtt_offset = node->start;
2970
2971         fenceable =
2972                 node->size == fence_size &&
2973                 (node->start & (fence_alignment - 1)) == 0;
2974
2975         mappable =
2976                 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
2977
2978         obj->map_and_fenceable = mappable && fenceable;
2979
2980         i915_gem_object_unpin_pages(obj);
2981         trace_i915_gem_object_bind(obj, map_and_fenceable);
2982         i915_gem_verify_gtt(dev);
2983         return 0;
2984 }
2985
2986 void
2987 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2988 {
2989         /* If we don't have a page list set up, then we're not pinned
2990          * to GPU, and we can ignore the cache flush because it'll happen
2991          * again at bind time.
2992          */
2993         if (obj->pages == NULL)
2994                 return;
2995
2996         /* If the GPU is snooping the contents of the CPU cache,
2997          * we do not need to manually clear the CPU cache lines.  However,
2998          * the caches are only snooped when the render cache is
2999          * flushed/invalidated.  As we always have to emit invalidations
3000          * and flushes when moving into and out of the RENDER domain, correct
3001          * snooping behaviour occurs naturally as the result of our domain
3002          * tracking.
3003          */
3004         if (obj->cache_level != I915_CACHE_NONE)
3005                 return;
3006
3007         trace_i915_gem_object_clflush(obj);
3008
3009         drm_clflush_sg(obj->pages);
3010 }
3011
3012 /** Flushes the GTT write domain for the object if it's dirty. */
3013 static void
3014 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3015 {
3016         uint32_t old_write_domain;
3017
3018         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3019                 return;
3020
3021         /* No actual flushing is required for the GTT write domain.  Writes
3022          * to it immediately go to main memory as far as we know, so there's
3023          * no chipset flush.  It also doesn't land in render cache.
3024          *
3025          * However, we do have to enforce the order so that all writes through
3026          * the GTT land before any writes to the device, such as updates to
3027          * the GATT itself.
3028          */
3029         wmb();
3030
3031         old_write_domain = obj->base.write_domain;
3032         obj->base.write_domain = 0;
3033
3034         trace_i915_gem_object_change_domain(obj,
3035                                             obj->base.read_domains,
3036                                             old_write_domain);
3037 }
3038
3039 /** Flushes the CPU write domain for the object if it's dirty. */
3040 static void
3041 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3042 {
3043         uint32_t old_write_domain;
3044
3045         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3046                 return;
3047
3048         i915_gem_clflush_object(obj);
3049         i915_gem_chipset_flush(obj->base.dev);
3050         old_write_domain = obj->base.write_domain;
3051         obj->base.write_domain = 0;
3052
3053         trace_i915_gem_object_change_domain(obj,
3054                                             obj->base.read_domains,
3055                                             old_write_domain);
3056 }
3057
3058 /**
3059  * Moves a single object to the GTT read, and possibly write domain.
3060  *
3061  * This function returns when the move is complete, including waiting on
3062  * flushes to occur.
3063  */
3064 int
3065 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3066 {
3067         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3068         uint32_t old_write_domain, old_read_domains;
3069         int ret;
3070
3071         /* Not valid to be called on unbound objects. */
3072         if (obj->gtt_space == NULL)
3073                 return -EINVAL;
3074
3075         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3076                 return 0;
3077
3078         ret = i915_gem_object_wait_rendering(obj, !write);
3079         if (ret)
3080                 return ret;
3081
3082         i915_gem_object_flush_cpu_write_domain(obj);
3083
3084         /* Serialise direct access to this object with the barriers for
3085          * coherent writes from the GPU, by effectively invalidating the
3086          * GTT domain upon first access.
3087          */
3088         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3089                 mb();
3090
3091         old_write_domain = obj->base.write_domain;
3092         old_read_domains = obj->base.read_domains;
3093
3094         /* It should now be out of any other write domains, and we can update
3095          * the domain values for our changes.
3096          */
3097         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3098         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3099         if (write) {
3100                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3101                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3102                 obj->dirty = 1;
3103         }
3104
3105         trace_i915_gem_object_change_domain(obj,
3106                                             old_read_domains,
3107                                             old_write_domain);
3108
3109         /* And bump the LRU for this access */
3110         if (i915_gem_object_is_inactive(obj))
3111                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3112
3113         return 0;
3114 }
3115
3116 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3117                                     enum i915_cache_level cache_level)
3118 {
3119         struct drm_device *dev = obj->base.dev;
3120         drm_i915_private_t *dev_priv = dev->dev_private;
3121         int ret;
3122
3123         if (obj->cache_level == cache_level)
3124                 return 0;
3125
3126         if (obj->pin_count) {
3127                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3128                 return -EBUSY;
3129         }
3130
3131         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3132                 ret = i915_gem_object_unbind(obj);
3133                 if (ret)
3134                         return ret;
3135         }
3136
3137         if (obj->gtt_space) {
3138                 ret = i915_gem_object_finish_gpu(obj);
3139                 if (ret)
3140                         return ret;
3141
3142                 i915_gem_object_finish_gtt(obj);
3143
3144                 /* Before SandyBridge, you could not use tiling or fence
3145                  * registers with snooped memory, so relinquish any fences
3146                  * currently pointing to our region in the aperture.
3147                  */
3148                 if (INTEL_INFO(dev)->gen < 6) {
3149                         ret = i915_gem_object_put_fence(obj);
3150                         if (ret)
3151                                 return ret;
3152                 }
3153
3154                 if (obj->has_global_gtt_mapping)
3155                         i915_gem_gtt_bind_object(obj, cache_level);
3156                 if (obj->has_aliasing_ppgtt_mapping)
3157                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3158                                                obj, cache_level);
3159
3160                 obj->gtt_space->color = cache_level;
3161         }
3162
3163         if (cache_level == I915_CACHE_NONE) {
3164                 u32 old_read_domains, old_write_domain;
3165
3166                 /* If we're coming from LLC cached, then we haven't
3167                  * actually been tracking whether the data is in the
3168                  * CPU cache or not, since we only allow one bit set
3169                  * in obj->write_domain and have been skipping the clflushes.
3170                  * Just set it to the CPU cache for now.
3171                  */
3172                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3173                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3174
3175                 old_read_domains = obj->base.read_domains;
3176                 old_write_domain = obj->base.write_domain;
3177
3178                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3179                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3180
3181                 trace_i915_gem_object_change_domain(obj,
3182                                                     old_read_domains,
3183                                                     old_write_domain);
3184         }
3185
3186         obj->cache_level = cache_level;
3187         i915_gem_verify_gtt(dev);
3188         return 0;
3189 }
3190
3191 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3192                                struct drm_file *file)
3193 {
3194         struct drm_i915_gem_caching *args = data;
3195         struct drm_i915_gem_object *obj;
3196         int ret;
3197
3198         ret = i915_mutex_lock_interruptible(dev);
3199         if (ret)
3200                 return ret;
3201
3202         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3203         if (&obj->base == NULL) {
3204                 ret = -ENOENT;
3205                 goto unlock;
3206         }
3207
3208         args->caching = obj->cache_level != I915_CACHE_NONE;
3209
3210         drm_gem_object_unreference(&obj->base);
3211 unlock:
3212         mutex_unlock(&dev->struct_mutex);
3213         return ret;
3214 }
3215
3216 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3217                                struct drm_file *file)
3218 {
3219         struct drm_i915_gem_caching *args = data;
3220         struct drm_i915_gem_object *obj;
3221         enum i915_cache_level level;
3222         int ret;
3223
3224         switch (args->caching) {
3225         case I915_CACHING_NONE:
3226                 level = I915_CACHE_NONE;
3227                 break;
3228         case I915_CACHING_CACHED:
3229                 level = I915_CACHE_LLC;
3230                 break;
3231         default:
3232                 return -EINVAL;
3233         }
3234
3235         ret = i915_mutex_lock_interruptible(dev);
3236         if (ret)
3237                 return ret;
3238
3239         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3240         if (&obj->base == NULL) {
3241                 ret = -ENOENT;
3242                 goto unlock;
3243         }
3244
3245         ret = i915_gem_object_set_cache_level(obj, level);
3246
3247         drm_gem_object_unreference(&obj->base);
3248 unlock:
3249         mutex_unlock(&dev->struct_mutex);
3250         return ret;
3251 }
3252
3253 /*
3254  * Prepare buffer for display plane (scanout, cursors, etc).
3255  * Can be called from an uninterruptible phase (modesetting) and allows
3256  * any flushes to be pipelined (for pageflips).
3257  */
3258 int
3259 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3260                                      u32 alignment,
3261                                      struct intel_ring_buffer *pipelined)
3262 {
3263         u32 old_read_domains, old_write_domain;
3264         int ret;
3265
3266         if (pipelined != obj->ring) {
3267                 ret = i915_gem_object_sync(obj, pipelined);
3268                 if (ret)
3269                         return ret;
3270         }
3271
3272         /* The display engine is not coherent with the LLC cache on gen6.  As
3273          * a result, we make sure that the pinning that is about to occur is
3274          * done with uncached PTEs. This is lowest common denominator for all
3275          * chipsets.
3276          *
3277          * However for gen6+, we could do better by using the GFDT bit instead
3278          * of uncaching, which would allow us to flush all the LLC-cached data
3279          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3280          */
3281         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3282         if (ret)
3283                 return ret;
3284
3285         /* As the user may map the buffer once pinned in the display plane
3286          * (e.g. libkms for the bootup splash), we have to ensure that we
3287          * always use map_and_fenceable for all scanout buffers.
3288          */
3289         ret = i915_gem_object_pin(obj, alignment, true, false);
3290         if (ret)
3291                 return ret;
3292
3293         i915_gem_object_flush_cpu_write_domain(obj);
3294
3295         old_write_domain = obj->base.write_domain;
3296         old_read_domains = obj->base.read_domains;
3297
3298         /* It should now be out of any other write domains, and we can update
3299          * the domain values for our changes.
3300          */
3301         obj->base.write_domain = 0;
3302         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3303
3304         trace_i915_gem_object_change_domain(obj,
3305                                             old_read_domains,
3306                                             old_write_domain);
3307
3308         return 0;
3309 }
3310
3311 int
3312 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3313 {
3314         int ret;
3315
3316         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3317                 return 0;
3318
3319         ret = i915_gem_object_wait_rendering(obj, false);
3320         if (ret)
3321                 return ret;
3322
3323         /* Ensure that we invalidate the GPU's caches and TLBs. */
3324         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3325         return 0;
3326 }
3327
3328 /**
3329  * Moves a single object to the CPU read, and possibly write domain.
3330  *
3331  * This function returns when the move is complete, including waiting on
3332  * flushes to occur.
3333  */
3334 int
3335 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3336 {
3337         uint32_t old_write_domain, old_read_domains;
3338         int ret;
3339
3340         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3341                 return 0;
3342
3343         ret = i915_gem_object_wait_rendering(obj, !write);
3344         if (ret)
3345                 return ret;
3346
3347         i915_gem_object_flush_gtt_write_domain(obj);
3348
3349         old_write_domain = obj->base.write_domain;
3350         old_read_domains = obj->base.read_domains;
3351
3352         /* Flush the CPU cache if it's still invalid. */
3353         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3354                 i915_gem_clflush_object(obj);
3355
3356                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3357         }
3358
3359         /* It should now be out of any other write domains, and we can update
3360          * the domain values for our changes.
3361          */
3362         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3363
3364         /* If we're writing through the CPU, then the GPU read domains will
3365          * need to be invalidated at next use.
3366          */
3367         if (write) {
3368                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3369                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3370         }
3371
3372         trace_i915_gem_object_change_domain(obj,
3373                                             old_read_domains,
3374                                             old_write_domain);
3375
3376         return 0;
3377 }
3378
3379 /* Throttle our rendering by waiting until the ring has completed our requests
3380  * emitted over 20 msec ago.
3381  *
3382  * Note that if we were to use the current jiffies each time around the loop,
3383  * we wouldn't escape the function with any frames outstanding if the time to
3384  * render a frame was over 20ms.
3385  *
3386  * This should get us reasonable parallelism between CPU and GPU but also
3387  * relatively low latency when blocking on a particular request to finish.
3388  */
3389 static int
3390 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3391 {
3392         struct drm_i915_private *dev_priv = dev->dev_private;
3393         struct drm_i915_file_private *file_priv = file->driver_priv;
3394         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3395         struct drm_i915_gem_request *request;
3396         struct intel_ring_buffer *ring = NULL;
3397         u32 seqno = 0;
3398         int ret;
3399
3400         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3401         if (ret)
3402                 return ret;
3403
3404         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3405         if (ret)
3406                 return ret;
3407
3408         spin_lock(&file_priv->mm.lock);
3409         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3410                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3411                         break;
3412
3413                 ring = request->ring;
3414                 seqno = request->seqno;
3415         }
3416         spin_unlock(&file_priv->mm.lock);
3417
3418         if (seqno == 0)
3419                 return 0;
3420
3421         ret = __wait_seqno(ring, seqno, true, NULL);
3422         if (ret == 0)
3423                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3424
3425         return ret;
3426 }
3427
3428 int
3429 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3430                     uint32_t alignment,
3431                     bool map_and_fenceable,
3432                     bool nonblocking)
3433 {
3434         int ret;
3435
3436         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3437                 return -EBUSY;
3438
3439         if (obj->gtt_space != NULL) {
3440                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3441                     (map_and_fenceable && !obj->map_and_fenceable)) {
3442                         WARN(obj->pin_count,
3443                              "bo is already pinned with incorrect alignment:"
3444                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3445                              " obj->map_and_fenceable=%d\n",
3446                              obj->gtt_offset, alignment,
3447                              map_and_fenceable,
3448                              obj->map_and_fenceable);
3449                         ret = i915_gem_object_unbind(obj);
3450                         if (ret)
3451                                 return ret;
3452                 }
3453         }
3454
3455         if (obj->gtt_space == NULL) {
3456                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3457
3458                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3459                                                   map_and_fenceable,
3460                                                   nonblocking);
3461                 if (ret)
3462                         return ret;
3463
3464                 if (!dev_priv->mm.aliasing_ppgtt)
3465                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3466         }
3467
3468         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3469                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3470
3471         obj->pin_count++;
3472         obj->pin_mappable |= map_and_fenceable;
3473
3474         return 0;
3475 }
3476
3477 void
3478 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3479 {
3480         BUG_ON(obj->pin_count == 0);
3481         BUG_ON(obj->gtt_space == NULL);
3482
3483         if (--obj->pin_count == 0)
3484                 obj->pin_mappable = false;
3485 }
3486
3487 int
3488 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3489                    struct drm_file *file)
3490 {
3491         struct drm_i915_gem_pin *args = data;
3492         struct drm_i915_gem_object *obj;
3493         int ret;
3494
3495         ret = i915_mutex_lock_interruptible(dev);
3496         if (ret)
3497                 return ret;
3498
3499         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3500         if (&obj->base == NULL) {
3501                 ret = -ENOENT;
3502                 goto unlock;
3503         }
3504
3505         if (obj->madv != I915_MADV_WILLNEED) {
3506                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3507                 ret = -EINVAL;
3508                 goto out;
3509         }
3510
3511         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3512                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3513                           args->handle);
3514                 ret = -EINVAL;
3515                 goto out;
3516         }
3517
3518         obj->user_pin_count++;
3519         obj->pin_filp = file;
3520         if (obj->user_pin_count == 1) {
3521                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3522                 if (ret)
3523                         goto out;
3524         }
3525
3526         /* XXX - flush the CPU caches for pinned objects
3527          * as the X server doesn't manage domains yet
3528          */
3529         i915_gem_object_flush_cpu_write_domain(obj);
3530         args->offset = obj->gtt_offset;
3531 out:
3532         drm_gem_object_unreference(&obj->base);
3533 unlock:
3534         mutex_unlock(&dev->struct_mutex);
3535         return ret;
3536 }
3537
3538 int
3539 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3540                      struct drm_file *file)
3541 {
3542         struct drm_i915_gem_pin *args = data;
3543         struct drm_i915_gem_object *obj;
3544         int ret;
3545
3546         ret = i915_mutex_lock_interruptible(dev);
3547         if (ret)
3548                 return ret;
3549
3550         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3551         if (&obj->base == NULL) {
3552                 ret = -ENOENT;
3553                 goto unlock;
3554         }
3555
3556         if (obj->pin_filp != file) {
3557                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3558                           args->handle);
3559                 ret = -EINVAL;
3560                 goto out;
3561         }
3562         obj->user_pin_count--;
3563         if (obj->user_pin_count == 0) {
3564                 obj->pin_filp = NULL;
3565                 i915_gem_object_unpin(obj);
3566         }
3567
3568 out:
3569         drm_gem_object_unreference(&obj->base);
3570 unlock:
3571         mutex_unlock(&dev->struct_mutex);
3572         return ret;
3573 }
3574
3575 int
3576 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3577                     struct drm_file *file)
3578 {
3579         struct drm_i915_gem_busy *args = data;
3580         struct drm_i915_gem_object *obj;
3581         int ret;
3582
3583         ret = i915_mutex_lock_interruptible(dev);
3584         if (ret)
3585                 return ret;
3586
3587         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3588         if (&obj->base == NULL) {
3589                 ret = -ENOENT;
3590                 goto unlock;
3591         }
3592
3593         /* Count all active objects as busy, even if they are currently not used
3594          * by the gpu. Users of this interface expect objects to eventually
3595          * become non-busy without any further actions, therefore emit any
3596          * necessary flushes here.
3597          */
3598         ret = i915_gem_object_flush_active(obj);
3599
3600         args->busy = obj->active;
3601         if (obj->ring) {
3602                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3603                 args->busy |= intel_ring_flag(obj->ring) << 16;
3604         }
3605
3606         drm_gem_object_unreference(&obj->base);
3607 unlock:
3608         mutex_unlock(&dev->struct_mutex);
3609         return ret;
3610 }
3611
3612 int
3613 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3614                         struct drm_file *file_priv)
3615 {
3616         return i915_gem_ring_throttle(dev, file_priv);
3617 }
3618
3619 int
3620 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3621                        struct drm_file *file_priv)
3622 {
3623         struct drm_i915_gem_madvise *args = data;
3624         struct drm_i915_gem_object *obj;
3625         int ret;
3626
3627         switch (args->madv) {
3628         case I915_MADV_DONTNEED:
3629         case I915_MADV_WILLNEED:
3630             break;
3631         default:
3632             return -EINVAL;
3633         }
3634
3635         ret = i915_mutex_lock_interruptible(dev);
3636         if (ret)
3637                 return ret;
3638
3639         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3640         if (&obj->base == NULL) {
3641                 ret = -ENOENT;
3642                 goto unlock;
3643         }
3644
3645         if (obj->pin_count) {
3646                 ret = -EINVAL;
3647                 goto out;
3648         }
3649
3650         if (obj->madv != __I915_MADV_PURGED)
3651                 obj->madv = args->madv;
3652
3653         /* if the object is no longer attached, discard its backing storage */
3654         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3655                 i915_gem_object_truncate(obj);
3656
3657         args->retained = obj->madv != __I915_MADV_PURGED;
3658
3659 out:
3660         drm_gem_object_unreference(&obj->base);
3661 unlock:
3662         mutex_unlock(&dev->struct_mutex);
3663         return ret;
3664 }
3665
3666 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3667                           const struct drm_i915_gem_object_ops *ops)
3668 {
3669         INIT_LIST_HEAD(&obj->mm_list);
3670         INIT_LIST_HEAD(&obj->gtt_list);
3671         INIT_LIST_HEAD(&obj->ring_list);
3672         INIT_LIST_HEAD(&obj->exec_list);
3673
3674         obj->ops = ops;
3675
3676         obj->fence_reg = I915_FENCE_REG_NONE;
3677         obj->madv = I915_MADV_WILLNEED;
3678         /* Avoid an unnecessary call to unbind on the first bind. */
3679         obj->map_and_fenceable = true;
3680
3681         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3682 }
3683
3684 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3685         .get_pages = i915_gem_object_get_pages_gtt,
3686         .put_pages = i915_gem_object_put_pages_gtt,
3687 };
3688
3689 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3690                                                   size_t size)
3691 {
3692         struct drm_i915_gem_object *obj;
3693         struct address_space *mapping;
3694         gfp_t mask;
3695
3696         obj = i915_gem_object_alloc(dev);
3697         if (obj == NULL)
3698                 return NULL;
3699
3700         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3701                 i915_gem_object_free(obj);
3702                 return NULL;
3703         }
3704
3705         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3706         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3707                 /* 965gm cannot relocate objects above 4GiB. */
3708                 mask &= ~__GFP_HIGHMEM;
3709                 mask |= __GFP_DMA32;
3710         }
3711
3712         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3713         mapping_set_gfp_mask(mapping, mask);
3714
3715         i915_gem_object_init(obj, &i915_gem_object_ops);
3716
3717         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3718         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3719
3720         if (HAS_LLC(dev)) {
3721                 /* On some devices, we can have the GPU use the LLC (the CPU
3722                  * cache) for about a 10% performance improvement
3723                  * compared to uncached.  Graphics requests other than
3724                  * display scanout are coherent with the CPU in
3725                  * accessing this cache.  This means in this mode we
3726                  * don't need to clflush on the CPU side, and on the
3727                  * GPU side we only need to flush internal caches to
3728                  * get data visible to the CPU.
3729                  *
3730                  * However, we maintain the display planes as UC, and so
3731                  * need to rebind when first used as such.
3732                  */
3733                 obj->cache_level = I915_CACHE_LLC;
3734         } else
3735                 obj->cache_level = I915_CACHE_NONE;
3736
3737         return obj;
3738 }
3739
3740 int i915_gem_init_object(struct drm_gem_object *obj)
3741 {
3742         BUG();
3743
3744         return 0;
3745 }
3746
3747 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3748 {
3749         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3750         struct drm_device *dev = obj->base.dev;
3751         drm_i915_private_t *dev_priv = dev->dev_private;
3752
3753         trace_i915_gem_object_destroy(obj);
3754
3755         if (obj->phys_obj)
3756                 i915_gem_detach_phys_object(dev, obj);
3757
3758         obj->pin_count = 0;
3759         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3760                 bool was_interruptible;
3761
3762                 was_interruptible = dev_priv->mm.interruptible;
3763                 dev_priv->mm.interruptible = false;
3764
3765                 WARN_ON(i915_gem_object_unbind(obj));
3766
3767                 dev_priv->mm.interruptible = was_interruptible;
3768         }
3769
3770         obj->pages_pin_count = 0;
3771         i915_gem_object_put_pages(obj);
3772         i915_gem_object_free_mmap_offset(obj);
3773         i915_gem_object_release_stolen(obj);
3774
3775         BUG_ON(obj->pages);
3776
3777         if (obj->base.import_attach)
3778                 drm_prime_gem_destroy(&obj->base, NULL);
3779
3780         drm_gem_object_release(&obj->base);
3781         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3782
3783         kfree(obj->bit_17);
3784         i915_gem_object_free(obj);
3785 }
3786
3787 int
3788 i915_gem_idle(struct drm_device *dev)
3789 {
3790         drm_i915_private_t *dev_priv = dev->dev_private;
3791         int ret;
3792
3793         mutex_lock(&dev->struct_mutex);
3794
3795         if (dev_priv->mm.suspended) {
3796                 mutex_unlock(&dev->struct_mutex);
3797                 return 0;
3798         }
3799
3800         ret = i915_gpu_idle(dev);
3801         if (ret) {
3802                 mutex_unlock(&dev->struct_mutex);
3803                 return ret;
3804         }
3805         i915_gem_retire_requests(dev);
3806
3807         /* Under UMS, be paranoid and evict. */
3808         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3809                 i915_gem_evict_everything(dev);
3810
3811         i915_gem_reset_fences(dev);
3812
3813         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3814          * We need to replace this with a semaphore, or something.
3815          * And not confound mm.suspended!
3816          */
3817         dev_priv->mm.suspended = 1;
3818         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3819
3820         i915_kernel_lost_context(dev);
3821         i915_gem_cleanup_ringbuffer(dev);
3822
3823         mutex_unlock(&dev->struct_mutex);
3824
3825         /* Cancel the retire work handler, which should be idle now. */
3826         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3827
3828         return 0;
3829 }
3830
3831 void i915_gem_l3_remap(struct drm_device *dev)
3832 {
3833         drm_i915_private_t *dev_priv = dev->dev_private;
3834         u32 misccpctl;
3835         int i;
3836
3837         if (!IS_IVYBRIDGE(dev))
3838                 return;
3839
3840         if (!dev_priv->l3_parity.remap_info)
3841                 return;
3842
3843         misccpctl = I915_READ(GEN7_MISCCPCTL);
3844         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3845         POSTING_READ(GEN7_MISCCPCTL);
3846
3847         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3848                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3849                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3850                         DRM_DEBUG("0x%x was already programmed to %x\n",
3851                                   GEN7_L3LOG_BASE + i, remap);
3852                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3853                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3854                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3855         }
3856
3857         /* Make sure all the writes land before disabling dop clock gating */
3858         POSTING_READ(GEN7_L3LOG_BASE);
3859
3860         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3861 }
3862
3863 void i915_gem_init_swizzling(struct drm_device *dev)
3864 {
3865         drm_i915_private_t *dev_priv = dev->dev_private;
3866
3867         if (INTEL_INFO(dev)->gen < 5 ||
3868             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3869                 return;
3870
3871         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3872                                  DISP_TILE_SURFACE_SWIZZLING);
3873
3874         if (IS_GEN5(dev))
3875                 return;
3876
3877         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3878         if (IS_GEN6(dev))
3879                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3880         else if (IS_GEN7(dev))
3881                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3882         else
3883                 BUG();
3884 }
3885
3886 static bool
3887 intel_enable_blt(struct drm_device *dev)
3888 {
3889         if (!HAS_BLT(dev))
3890                 return false;
3891
3892         /* The blitter was dysfunctional on early prototypes */
3893         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3894                 DRM_INFO("BLT not supported on this pre-production hardware;"
3895                          " graphics performance will be degraded.\n");
3896                 return false;
3897         }
3898
3899         return true;
3900 }
3901
3902 int
3903 i915_gem_init_hw(struct drm_device *dev)
3904 {
3905         drm_i915_private_t *dev_priv = dev->dev_private;
3906         int ret;
3907
3908         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3909                 return -EIO;
3910
3911         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3912                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3913
3914         i915_gem_l3_remap(dev);
3915
3916         i915_gem_init_swizzling(dev);
3917
3918         dev_priv->next_seqno = dev_priv->last_seqno = (u32)~0 - 0x1000;
3919
3920         ret = intel_init_render_ring_buffer(dev);
3921         if (ret)
3922                 return ret;
3923
3924         if (HAS_BSD(dev)) {
3925                 ret = intel_init_bsd_ring_buffer(dev);
3926                 if (ret)
3927                         goto cleanup_render_ring;
3928         }
3929
3930         if (intel_enable_blt(dev)) {
3931                 ret = intel_init_blt_ring_buffer(dev);
3932                 if (ret)
3933                         goto cleanup_bsd_ring;
3934         }
3935
3936         /*
3937          * XXX: There was some w/a described somewhere suggesting loading
3938          * contexts before PPGTT.
3939          */
3940         i915_gem_context_init(dev);
3941         i915_gem_init_ppgtt(dev);
3942
3943         return 0;
3944
3945 cleanup_bsd_ring:
3946         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3947 cleanup_render_ring:
3948         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3949         return ret;
3950 }
3951
3952 int i915_gem_init(struct drm_device *dev)
3953 {
3954         struct drm_i915_private *dev_priv = dev->dev_private;
3955         int ret;
3956
3957         mutex_lock(&dev->struct_mutex);
3958         i915_gem_init_global_gtt(dev);
3959         ret = i915_gem_init_hw(dev);
3960         mutex_unlock(&dev->struct_mutex);
3961         if (ret) {
3962                 i915_gem_cleanup_aliasing_ppgtt(dev);
3963                 return ret;
3964         }
3965
3966         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3967         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3968                 dev_priv->dri1.allow_batchbuffer = 1;
3969         return 0;
3970 }
3971
3972 void
3973 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3974 {
3975         drm_i915_private_t *dev_priv = dev->dev_private;
3976         struct intel_ring_buffer *ring;
3977         int i;
3978
3979         for_each_ring(ring, dev_priv, i)
3980                 intel_cleanup_ring_buffer(ring);
3981 }
3982
3983 int
3984 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3985                        struct drm_file *file_priv)
3986 {
3987         drm_i915_private_t *dev_priv = dev->dev_private;
3988         int ret;
3989
3990         if (drm_core_check_feature(dev, DRIVER_MODESET))
3991                 return 0;
3992
3993         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
3994                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3995                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
3996         }
3997
3998         mutex_lock(&dev->struct_mutex);
3999         dev_priv->mm.suspended = 0;
4000
4001         ret = i915_gem_init_hw(dev);
4002         if (ret != 0) {
4003                 mutex_unlock(&dev->struct_mutex);
4004                 return ret;
4005         }
4006
4007         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4008         mutex_unlock(&dev->struct_mutex);
4009
4010         ret = drm_irq_install(dev);
4011         if (ret)
4012                 goto cleanup_ringbuffer;
4013
4014         return 0;
4015
4016 cleanup_ringbuffer:
4017         mutex_lock(&dev->struct_mutex);
4018         i915_gem_cleanup_ringbuffer(dev);
4019         dev_priv->mm.suspended = 1;
4020         mutex_unlock(&dev->struct_mutex);
4021
4022         return ret;
4023 }
4024
4025 int
4026 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4027                        struct drm_file *file_priv)
4028 {
4029         if (drm_core_check_feature(dev, DRIVER_MODESET))
4030                 return 0;
4031
4032         drm_irq_uninstall(dev);
4033         return i915_gem_idle(dev);
4034 }
4035
4036 void
4037 i915_gem_lastclose(struct drm_device *dev)
4038 {
4039         int ret;
4040
4041         if (drm_core_check_feature(dev, DRIVER_MODESET))
4042                 return;
4043
4044         ret = i915_gem_idle(dev);
4045         if (ret)
4046                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4047 }
4048
4049 static void
4050 init_ring_lists(struct intel_ring_buffer *ring)
4051 {
4052         INIT_LIST_HEAD(&ring->active_list);
4053         INIT_LIST_HEAD(&ring->request_list);
4054 }
4055
4056 void
4057 i915_gem_load(struct drm_device *dev)
4058 {
4059         drm_i915_private_t *dev_priv = dev->dev_private;
4060         int i;
4061
4062         dev_priv->slab =
4063                 kmem_cache_create("i915_gem_object",
4064                                   sizeof(struct drm_i915_gem_object), 0,
4065                                   SLAB_HWCACHE_ALIGN,
4066                                   NULL);
4067
4068         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4069         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4070         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4071         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4072         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4073         for (i = 0; i < I915_NUM_RINGS; i++)
4074                 init_ring_lists(&dev_priv->ring[i]);
4075         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4076                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4077         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4078                           i915_gem_retire_work_handler);
4079         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4080
4081         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4082         if (IS_GEN3(dev)) {
4083                 I915_WRITE(MI_ARB_STATE,
4084                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4085         }
4086
4087         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4088
4089         /* Old X drivers will take 0-2 for front, back, depth buffers */
4090         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4091                 dev_priv->fence_reg_start = 3;
4092
4093         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4094                 dev_priv->num_fence_regs = 16;
4095         else
4096                 dev_priv->num_fence_regs = 8;
4097
4098         /* Initialize fence registers to zero */
4099         i915_gem_reset_fences(dev);
4100
4101         i915_gem_detect_bit_6_swizzle(dev);
4102         init_waitqueue_head(&dev_priv->pending_flip_queue);
4103
4104         dev_priv->mm.interruptible = true;
4105
4106         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4107         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4108         register_shrinker(&dev_priv->mm.inactive_shrinker);
4109 }
4110
4111 /*
4112  * Create a physically contiguous memory object for this object
4113  * e.g. for cursor + overlay regs
4114  */
4115 static int i915_gem_init_phys_object(struct drm_device *dev,
4116                                      int id, int size, int align)
4117 {
4118         drm_i915_private_t *dev_priv = dev->dev_private;
4119         struct drm_i915_gem_phys_object *phys_obj;
4120         int ret;
4121
4122         if (dev_priv->mm.phys_objs[id - 1] || !size)
4123                 return 0;
4124
4125         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4126         if (!phys_obj)
4127                 return -ENOMEM;
4128
4129         phys_obj->id = id;
4130
4131         phys_obj->handle = drm_pci_alloc(dev, size, align);
4132         if (!phys_obj->handle) {
4133                 ret = -ENOMEM;
4134                 goto kfree_obj;
4135         }
4136 #ifdef CONFIG_X86
4137         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4138 #endif
4139
4140         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4141
4142         return 0;
4143 kfree_obj:
4144         kfree(phys_obj);
4145         return ret;
4146 }
4147
4148 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4149 {
4150         drm_i915_private_t *dev_priv = dev->dev_private;
4151         struct drm_i915_gem_phys_object *phys_obj;
4152
4153         if (!dev_priv->mm.phys_objs[id - 1])
4154                 return;
4155
4156         phys_obj = dev_priv->mm.phys_objs[id - 1];
4157         if (phys_obj->cur_obj) {
4158                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4159         }
4160
4161 #ifdef CONFIG_X86
4162         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4163 #endif
4164         drm_pci_free(dev, phys_obj->handle);
4165         kfree(phys_obj);
4166         dev_priv->mm.phys_objs[id - 1] = NULL;
4167 }
4168
4169 void i915_gem_free_all_phys_object(struct drm_device *dev)
4170 {
4171         int i;
4172
4173         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4174                 i915_gem_free_phys_object(dev, i);
4175 }
4176
4177 void i915_gem_detach_phys_object(struct drm_device *dev,
4178                                  struct drm_i915_gem_object *obj)
4179 {
4180         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4181         char *vaddr;
4182         int i;
4183         int page_count;
4184
4185         if (!obj->phys_obj)
4186                 return;
4187         vaddr = obj->phys_obj->handle->vaddr;
4188
4189         page_count = obj->base.size / PAGE_SIZE;
4190         for (i = 0; i < page_count; i++) {
4191                 struct page *page = shmem_read_mapping_page(mapping, i);
4192                 if (!IS_ERR(page)) {
4193                         char *dst = kmap_atomic(page);
4194                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4195                         kunmap_atomic(dst);
4196
4197                         drm_clflush_pages(&page, 1);
4198
4199                         set_page_dirty(page);
4200                         mark_page_accessed(page);
4201                         page_cache_release(page);
4202                 }
4203         }
4204         i915_gem_chipset_flush(dev);
4205
4206         obj->phys_obj->cur_obj = NULL;
4207         obj->phys_obj = NULL;
4208 }
4209
4210 int
4211 i915_gem_attach_phys_object(struct drm_device *dev,
4212                             struct drm_i915_gem_object *obj,
4213                             int id,
4214                             int align)
4215 {
4216         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4217         drm_i915_private_t *dev_priv = dev->dev_private;
4218         int ret = 0;
4219         int page_count;
4220         int i;
4221
4222         if (id > I915_MAX_PHYS_OBJECT)
4223                 return -EINVAL;
4224
4225         if (obj->phys_obj) {
4226                 if (obj->phys_obj->id == id)
4227                         return 0;
4228                 i915_gem_detach_phys_object(dev, obj);
4229         }
4230
4231         /* create a new object */
4232         if (!dev_priv->mm.phys_objs[id - 1]) {
4233                 ret = i915_gem_init_phys_object(dev, id,
4234                                                 obj->base.size, align);
4235                 if (ret) {
4236                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4237                                   id, obj->base.size);
4238                         return ret;
4239                 }
4240         }
4241
4242         /* bind to the object */
4243         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4244         obj->phys_obj->cur_obj = obj;
4245
4246         page_count = obj->base.size / PAGE_SIZE;
4247
4248         for (i = 0; i < page_count; i++) {
4249                 struct page *page;
4250                 char *dst, *src;
4251
4252                 page = shmem_read_mapping_page(mapping, i);
4253                 if (IS_ERR(page))
4254                         return PTR_ERR(page);
4255
4256                 src = kmap_atomic(page);
4257                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4258                 memcpy(dst, src, PAGE_SIZE);
4259                 kunmap_atomic(src);
4260
4261                 mark_page_accessed(page);
4262                 page_cache_release(page);
4263         }
4264
4265         return 0;
4266 }
4267
4268 static int
4269 i915_gem_phys_pwrite(struct drm_device *dev,
4270                      struct drm_i915_gem_object *obj,
4271                      struct drm_i915_gem_pwrite *args,
4272                      struct drm_file *file_priv)
4273 {
4274         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4275         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4276
4277         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4278                 unsigned long unwritten;
4279
4280                 /* The physical object once assigned is fixed for the lifetime
4281                  * of the obj, so we can safely drop the lock and continue
4282                  * to access vaddr.
4283                  */
4284                 mutex_unlock(&dev->struct_mutex);
4285                 unwritten = copy_from_user(vaddr, user_data, args->size);
4286                 mutex_lock(&dev->struct_mutex);
4287                 if (unwritten)
4288                         return -EFAULT;
4289         }
4290
4291         i915_gem_chipset_flush(dev);
4292         return 0;
4293 }
4294
4295 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4296 {
4297         struct drm_i915_file_private *file_priv = file->driver_priv;
4298
4299         /* Clean up our request list when the client is going away, so that
4300          * later retire_requests won't dereference our soon-to-be-gone
4301          * file_priv.
4302          */
4303         spin_lock(&file_priv->mm.lock);
4304         while (!list_empty(&file_priv->mm.request_list)) {
4305                 struct drm_i915_gem_request *request;
4306
4307                 request = list_first_entry(&file_priv->mm.request_list,
4308                                            struct drm_i915_gem_request,
4309                                            client_list);
4310                 list_del(&request->client_list);
4311                 request->file_priv = NULL;
4312         }
4313         spin_unlock(&file_priv->mm.lock);
4314 }
4315
4316 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4317 {
4318         if (!mutex_is_locked(mutex))
4319                 return false;
4320
4321 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4322         return mutex->owner == task;
4323 #else
4324         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4325         return false;
4326 #endif
4327 }
4328
4329 static int
4330 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4331 {
4332         struct drm_i915_private *dev_priv =
4333                 container_of(shrinker,
4334                              struct drm_i915_private,
4335                              mm.inactive_shrinker);
4336         struct drm_device *dev = dev_priv->dev;
4337         struct drm_i915_gem_object *obj;
4338         int nr_to_scan = sc->nr_to_scan;
4339         bool unlock = true;
4340         int cnt;
4341
4342         if (!mutex_trylock(&dev->struct_mutex)) {
4343                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4344                         return 0;
4345
4346                 if (dev_priv->mm.shrinker_no_lock_stealing)
4347                         return 0;
4348
4349                 unlock = false;
4350         }
4351
4352         if (nr_to_scan) {
4353                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4354                 if (nr_to_scan > 0)
4355                         i915_gem_shrink_all(dev_priv);
4356         }
4357
4358         cnt = 0;
4359         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4360                 if (obj->pages_pin_count == 0)
4361                         cnt += obj->base.size >> PAGE_SHIFT;
4362         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4363                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4364                         cnt += obj->base.size >> PAGE_SHIFT;
4365
4366         if (unlock)
4367                 mutex_unlock(&dev->struct_mutex);
4368         return cnt;
4369 }