]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Squash repeated awaits on the same fence
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
53                 return false;
54
55         if (!i915_gem_object_is_coherent(obj))
56                 return true;
57
58         return obj->pin_display;
59 }
60
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63                      struct drm_mm_node *node, u32 size)
64 {
65         memset(node, 0, sizeof(*node));
66         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67                                            size, 0, I915_COLOR_UNEVICTABLE,
68                                            0, ggtt->mappable_end,
69                                            DRM_MM_INSERT_LOW);
70 }
71
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75         drm_mm_remove_node(node);
76 }
77
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80                                   u64 size)
81 {
82         spin_lock(&dev_priv->mm.object_stat_lock);
83         dev_priv->mm.object_count++;
84         dev_priv->mm.object_memory += size;
85         spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89                                      u64 size)
90 {
91         spin_lock(&dev_priv->mm.object_stat_lock);
92         dev_priv->mm.object_count--;
93         dev_priv->mm.object_memory -= size;
94         spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100         int ret;
101
102         might_sleep();
103
104         /*
105          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106          * userspace. If it takes that long something really bad is going on and
107          * we should simply try to bail out and fail as gracefully as possible.
108          */
109         ret = wait_event_interruptible_timeout(error->reset_queue,
110                                                !i915_reset_backoff(error),
111                                                I915_RESET_TIMEOUT);
112         if (ret == 0) {
113                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114                 return -EIO;
115         } else if (ret < 0) {
116                 return ret;
117         } else {
118                 return 0;
119         }
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124         struct drm_i915_private *dev_priv = to_i915(dev);
125         int ret;
126
127         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128         if (ret)
129                 return ret;
130
131         ret = mutex_lock_interruptible(&dev->struct_mutex);
132         if (ret)
133                 return ret;
134
135         return 0;
136 }
137
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140                             struct drm_file *file)
141 {
142         struct drm_i915_private *dev_priv = to_i915(dev);
143         struct i915_ggtt *ggtt = &dev_priv->ggtt;
144         struct drm_i915_gem_get_aperture *args = data;
145         struct i915_vma *vma;
146         size_t pinned;
147
148         pinned = 0;
149         mutex_lock(&dev->struct_mutex);
150         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151                 if (i915_vma_is_pinned(vma))
152                         pinned += vma->node.size;
153         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154                 if (i915_vma_is_pinned(vma))
155                         pinned += vma->node.size;
156         mutex_unlock(&dev->struct_mutex);
157
158         args->aper_size = ggtt->base.total;
159         args->aper_available_size = args->aper_size - pinned;
160
161         return 0;
162 }
163
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167         struct address_space *mapping = obj->base.filp->f_mapping;
168         drm_dma_handle_t *phys;
169         struct sg_table *st;
170         struct scatterlist *sg;
171         char *vaddr;
172         int i;
173
174         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175                 return ERR_PTR(-EINVAL);
176
177         /* Always aligning to the object size, allows a single allocation
178          * to handle all possible callers, and given typical object sizes,
179          * the alignment of the buddy allocation will naturally match.
180          */
181         phys = drm_pci_alloc(obj->base.dev,
182                              obj->base.size,
183                              roundup_pow_of_two(obj->base.size));
184         if (!phys)
185                 return ERR_PTR(-ENOMEM);
186
187         vaddr = phys->vaddr;
188         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189                 struct page *page;
190                 char *src;
191
192                 page = shmem_read_mapping_page(mapping, i);
193                 if (IS_ERR(page)) {
194                         st = ERR_CAST(page);
195                         goto err_phys;
196                 }
197
198                 src = kmap_atomic(page);
199                 memcpy(vaddr, src, PAGE_SIZE);
200                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201                 kunmap_atomic(src);
202
203                 put_page(page);
204                 vaddr += PAGE_SIZE;
205         }
206
207         i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209         st = kmalloc(sizeof(*st), GFP_KERNEL);
210         if (!st) {
211                 st = ERR_PTR(-ENOMEM);
212                 goto err_phys;
213         }
214
215         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216                 kfree(st);
217                 st = ERR_PTR(-ENOMEM);
218                 goto err_phys;
219         }
220
221         sg = st->sgl;
222         sg->offset = 0;
223         sg->length = obj->base.size;
224
225         sg_dma_address(sg) = phys->busaddr;
226         sg_dma_len(sg) = obj->base.size;
227
228         obj->phys_handle = phys;
229         return st;
230
231 err_phys:
232         drm_pci_free(obj->base.dev, phys);
233         return st;
234 }
235
236 static void
237 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
238                                 struct sg_table *pages,
239                                 bool needs_clflush)
240 {
241         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
242
243         if (obj->mm.madv == I915_MADV_DONTNEED)
244                 obj->mm.dirty = false;
245
246         if (needs_clflush &&
247             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
248             !i915_gem_object_is_coherent(obj))
249                 drm_clflush_sg(pages);
250
251         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
252         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
253 }
254
255 static void
256 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
257                                struct sg_table *pages)
258 {
259         __i915_gem_object_release_shmem(obj, pages, false);
260
261         if (obj->mm.dirty) {
262                 struct address_space *mapping = obj->base.filp->f_mapping;
263                 char *vaddr = obj->phys_handle->vaddr;
264                 int i;
265
266                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
267                         struct page *page;
268                         char *dst;
269
270                         page = shmem_read_mapping_page(mapping, i);
271                         if (IS_ERR(page))
272                                 continue;
273
274                         dst = kmap_atomic(page);
275                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
276                         memcpy(dst, vaddr, PAGE_SIZE);
277                         kunmap_atomic(dst);
278
279                         set_page_dirty(page);
280                         if (obj->mm.madv == I915_MADV_WILLNEED)
281                                 mark_page_accessed(page);
282                         put_page(page);
283                         vaddr += PAGE_SIZE;
284                 }
285                 obj->mm.dirty = false;
286         }
287
288         sg_free_table(pages);
289         kfree(pages);
290
291         drm_pci_free(obj->base.dev, obj->phys_handle);
292 }
293
294 static void
295 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
296 {
297         i915_gem_object_unpin_pages(obj);
298 }
299
300 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
301         .get_pages = i915_gem_object_get_pages_phys,
302         .put_pages = i915_gem_object_put_pages_phys,
303         .release = i915_gem_object_release_phys,
304 };
305
306 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
307
308 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
309 {
310         struct i915_vma *vma;
311         LIST_HEAD(still_in_list);
312         int ret;
313
314         lockdep_assert_held(&obj->base.dev->struct_mutex);
315
316         /* Closed vma are removed from the obj->vma_list - but they may
317          * still have an active binding on the object. To remove those we
318          * must wait for all rendering to complete to the object (as unbinding
319          * must anyway), and retire the requests.
320          */
321         ret = i915_gem_object_wait(obj,
322                                    I915_WAIT_INTERRUPTIBLE |
323                                    I915_WAIT_LOCKED |
324                                    I915_WAIT_ALL,
325                                    MAX_SCHEDULE_TIMEOUT,
326                                    NULL);
327         if (ret)
328                 return ret;
329
330         i915_gem_retire_requests(to_i915(obj->base.dev));
331
332         while ((vma = list_first_entry_or_null(&obj->vma_list,
333                                                struct i915_vma,
334                                                obj_link))) {
335                 list_move_tail(&vma->obj_link, &still_in_list);
336                 ret = i915_vma_unbind(vma);
337                 if (ret)
338                         break;
339         }
340         list_splice(&still_in_list, &obj->vma_list);
341
342         return ret;
343 }
344
345 static long
346 i915_gem_object_wait_fence(struct dma_fence *fence,
347                            unsigned int flags,
348                            long timeout,
349                            struct intel_rps_client *rps)
350 {
351         struct drm_i915_gem_request *rq;
352
353         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
354
355         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
356                 return timeout;
357
358         if (!dma_fence_is_i915(fence))
359                 return dma_fence_wait_timeout(fence,
360                                               flags & I915_WAIT_INTERRUPTIBLE,
361                                               timeout);
362
363         rq = to_request(fence);
364         if (i915_gem_request_completed(rq))
365                 goto out;
366
367         /* This client is about to stall waiting for the GPU. In many cases
368          * this is undesirable and limits the throughput of the system, as
369          * many clients cannot continue processing user input/output whilst
370          * blocked. RPS autotuning may take tens of milliseconds to respond
371          * to the GPU load and thus incurs additional latency for the client.
372          * We can circumvent that by promoting the GPU frequency to maximum
373          * before we wait. This makes the GPU throttle up much more quickly
374          * (good for benchmarks and user experience, e.g. window animations),
375          * but at a cost of spending more power processing the workload
376          * (bad for battery). Not all clients even want their results
377          * immediately and for them we should just let the GPU select its own
378          * frequency to maximise efficiency. To prevent a single client from
379          * forcing the clocks too high for the whole system, we only allow
380          * each client to waitboost once in a busy period.
381          */
382         if (rps) {
383                 if (INTEL_GEN(rq->i915) >= 6)
384                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
385                 else
386                         rps = NULL;
387         }
388
389         timeout = i915_wait_request(rq, flags, timeout);
390
391 out:
392         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
393                 i915_gem_request_retire_upto(rq);
394
395         if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
396                 /* The GPU is now idle and this client has stalled.
397                  * Since no other client has submitted a request in the
398                  * meantime, assume that this client is the only one
399                  * supplying work to the GPU but is unable to keep that
400                  * work supplied because it is waiting. Since the GPU is
401                  * then never kept fully busy, RPS autoclocking will
402                  * keep the clocks relatively low, causing further delays.
403                  * Compensate by giving the synchronous client credit for
404                  * a waitboost next time.
405                  */
406                 spin_lock(&rq->i915->rps.client_lock);
407                 list_del_init(&rps->link);
408                 spin_unlock(&rq->i915->rps.client_lock);
409         }
410
411         return timeout;
412 }
413
414 static long
415 i915_gem_object_wait_reservation(struct reservation_object *resv,
416                                  unsigned int flags,
417                                  long timeout,
418                                  struct intel_rps_client *rps)
419 {
420         unsigned int seq = __read_seqcount_begin(&resv->seq);
421         struct dma_fence *excl;
422         bool prune_fences = false;
423
424         if (flags & I915_WAIT_ALL) {
425                 struct dma_fence **shared;
426                 unsigned int count, i;
427                 int ret;
428
429                 ret = reservation_object_get_fences_rcu(resv,
430                                                         &excl, &count, &shared);
431                 if (ret)
432                         return ret;
433
434                 for (i = 0; i < count; i++) {
435                         timeout = i915_gem_object_wait_fence(shared[i],
436                                                              flags, timeout,
437                                                              rps);
438                         if (timeout < 0)
439                                 break;
440
441                         dma_fence_put(shared[i]);
442                 }
443
444                 for (; i < count; i++)
445                         dma_fence_put(shared[i]);
446                 kfree(shared);
447
448                 prune_fences = count && timeout >= 0;
449         } else {
450                 excl = reservation_object_get_excl_rcu(resv);
451         }
452
453         if (excl && timeout >= 0) {
454                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
455                 prune_fences = timeout >= 0;
456         }
457
458         dma_fence_put(excl);
459
460         /* Oportunistically prune the fences iff we know they have *all* been
461          * signaled and that the reservation object has not been changed (i.e.
462          * no new fences have been added).
463          */
464         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
465                 if (reservation_object_trylock(resv)) {
466                         if (!__read_seqcount_retry(&resv->seq, seq))
467                                 reservation_object_add_excl_fence(resv, NULL);
468                         reservation_object_unlock(resv);
469                 }
470         }
471
472         return timeout;
473 }
474
475 static void __fence_set_priority(struct dma_fence *fence, int prio)
476 {
477         struct drm_i915_gem_request *rq;
478         struct intel_engine_cs *engine;
479
480         if (!dma_fence_is_i915(fence))
481                 return;
482
483         rq = to_request(fence);
484         engine = rq->engine;
485         if (!engine->schedule)
486                 return;
487
488         engine->schedule(rq, prio);
489 }
490
491 static void fence_set_priority(struct dma_fence *fence, int prio)
492 {
493         /* Recurse once into a fence-array */
494         if (dma_fence_is_array(fence)) {
495                 struct dma_fence_array *array = to_dma_fence_array(fence);
496                 int i;
497
498                 for (i = 0; i < array->num_fences; i++)
499                         __fence_set_priority(array->fences[i], prio);
500         } else {
501                 __fence_set_priority(fence, prio);
502         }
503 }
504
505 int
506 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
507                               unsigned int flags,
508                               int prio)
509 {
510         struct dma_fence *excl;
511
512         if (flags & I915_WAIT_ALL) {
513                 struct dma_fence **shared;
514                 unsigned int count, i;
515                 int ret;
516
517                 ret = reservation_object_get_fences_rcu(obj->resv,
518                                                         &excl, &count, &shared);
519                 if (ret)
520                         return ret;
521
522                 for (i = 0; i < count; i++) {
523                         fence_set_priority(shared[i], prio);
524                         dma_fence_put(shared[i]);
525                 }
526
527                 kfree(shared);
528         } else {
529                 excl = reservation_object_get_excl_rcu(obj->resv);
530         }
531
532         if (excl) {
533                 fence_set_priority(excl, prio);
534                 dma_fence_put(excl);
535         }
536         return 0;
537 }
538
539 /**
540  * Waits for rendering to the object to be completed
541  * @obj: i915 gem object
542  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
543  * @timeout: how long to wait
544  * @rps: client (user process) to charge for any waitboosting
545  */
546 int
547 i915_gem_object_wait(struct drm_i915_gem_object *obj,
548                      unsigned int flags,
549                      long timeout,
550                      struct intel_rps_client *rps)
551 {
552         might_sleep();
553 #if IS_ENABLED(CONFIG_LOCKDEP)
554         GEM_BUG_ON(debug_locks &&
555                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
556                    !!(flags & I915_WAIT_LOCKED));
557 #endif
558         GEM_BUG_ON(timeout < 0);
559
560         timeout = i915_gem_object_wait_reservation(obj->resv,
561                                                    flags, timeout,
562                                                    rps);
563         return timeout < 0 ? timeout : 0;
564 }
565
566 static struct intel_rps_client *to_rps_client(struct drm_file *file)
567 {
568         struct drm_i915_file_private *fpriv = file->driver_priv;
569
570         return &fpriv->rps;
571 }
572
573 int
574 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
575                             int align)
576 {
577         int ret;
578
579         if (align > obj->base.size)
580                 return -EINVAL;
581
582         if (obj->ops == &i915_gem_phys_ops)
583                 return 0;
584
585         if (obj->mm.madv != I915_MADV_WILLNEED)
586                 return -EFAULT;
587
588         if (obj->base.filp == NULL)
589                 return -EINVAL;
590
591         ret = i915_gem_object_unbind(obj);
592         if (ret)
593                 return ret;
594
595         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
596         if (obj->mm.pages)
597                 return -EBUSY;
598
599         GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
600         obj->ops = &i915_gem_phys_ops;
601
602         ret = i915_gem_object_pin_pages(obj);
603         if (ret)
604                 goto err_xfer;
605
606         return 0;
607
608 err_xfer:
609         obj->ops = &i915_gem_object_ops;
610         return ret;
611 }
612
613 static int
614 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
615                      struct drm_i915_gem_pwrite *args,
616                      struct drm_file *file)
617 {
618         void *vaddr = obj->phys_handle->vaddr + args->offset;
619         char __user *user_data = u64_to_user_ptr(args->data_ptr);
620
621         /* We manually control the domain here and pretend that it
622          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
623          */
624         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
625         if (copy_from_user(vaddr, user_data, args->size))
626                 return -EFAULT;
627
628         drm_clflush_virt_range(vaddr, args->size);
629         i915_gem_chipset_flush(to_i915(obj->base.dev));
630
631         intel_fb_obj_flush(obj, ORIGIN_CPU);
632         return 0;
633 }
634
635 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
636 {
637         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
638 }
639
640 void i915_gem_object_free(struct drm_i915_gem_object *obj)
641 {
642         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
643         kmem_cache_free(dev_priv->objects, obj);
644 }
645
646 static int
647 i915_gem_create(struct drm_file *file,
648                 struct drm_i915_private *dev_priv,
649                 uint64_t size,
650                 uint32_t *handle_p)
651 {
652         struct drm_i915_gem_object *obj;
653         int ret;
654         u32 handle;
655
656         size = roundup(size, PAGE_SIZE);
657         if (size == 0)
658                 return -EINVAL;
659
660         /* Allocate the new object */
661         obj = i915_gem_object_create(dev_priv, size);
662         if (IS_ERR(obj))
663                 return PTR_ERR(obj);
664
665         ret = drm_gem_handle_create(file, &obj->base, &handle);
666         /* drop reference from allocate - handle holds it now */
667         i915_gem_object_put(obj);
668         if (ret)
669                 return ret;
670
671         *handle_p = handle;
672         return 0;
673 }
674
675 int
676 i915_gem_dumb_create(struct drm_file *file,
677                      struct drm_device *dev,
678                      struct drm_mode_create_dumb *args)
679 {
680         /* have to work out size/pitch and return them */
681         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
682         args->size = args->pitch * args->height;
683         return i915_gem_create(file, to_i915(dev),
684                                args->size, &args->handle);
685 }
686
687 /**
688  * Creates a new mm object and returns a handle to it.
689  * @dev: drm device pointer
690  * @data: ioctl data blob
691  * @file: drm file pointer
692  */
693 int
694 i915_gem_create_ioctl(struct drm_device *dev, void *data,
695                       struct drm_file *file)
696 {
697         struct drm_i915_private *dev_priv = to_i915(dev);
698         struct drm_i915_gem_create *args = data;
699
700         i915_gem_flush_free_objects(dev_priv);
701
702         return i915_gem_create(file, dev_priv,
703                                args->size, &args->handle);
704 }
705
706 static inline enum fb_op_origin
707 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
708 {
709         return (domain == I915_GEM_DOMAIN_GTT ?
710                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
711 }
712
713 static void
714 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
715 {
716         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
717
718         if (!(obj->base.write_domain & flush_domains))
719                 return;
720
721         /* No actual flushing is required for the GTT write domain.  Writes
722          * to it "immediately" go to main memory as far as we know, so there's
723          * no chipset flush.  It also doesn't land in render cache.
724          *
725          * However, we do have to enforce the order so that all writes through
726          * the GTT land before any writes to the device, such as updates to
727          * the GATT itself.
728          *
729          * We also have to wait a bit for the writes to land from the GTT.
730          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
731          * timing. This issue has only been observed when switching quickly
732          * between GTT writes and CPU reads from inside the kernel on recent hw,
733          * and it appears to only affect discrete GTT blocks (i.e. on LLC
734          * system agents we cannot reproduce this behaviour).
735          */
736         wmb();
737
738         switch (obj->base.write_domain) {
739         case I915_GEM_DOMAIN_GTT:
740                 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
741                         if (intel_runtime_pm_get_if_in_use(dev_priv)) {
742                                 spin_lock_irq(&dev_priv->uncore.lock);
743                                 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
744                                 spin_unlock_irq(&dev_priv->uncore.lock);
745                                 intel_runtime_pm_put(dev_priv);
746                         }
747                 }
748
749                 intel_fb_obj_flush(obj,
750                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
751                 break;
752
753         case I915_GEM_DOMAIN_CPU:
754                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
755                 break;
756         }
757
758         obj->base.write_domain = 0;
759 }
760
761 static inline int
762 __copy_to_user_swizzled(char __user *cpu_vaddr,
763                         const char *gpu_vaddr, int gpu_offset,
764                         int length)
765 {
766         int ret, cpu_offset = 0;
767
768         while (length > 0) {
769                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
770                 int this_length = min(cacheline_end - gpu_offset, length);
771                 int swizzled_gpu_offset = gpu_offset ^ 64;
772
773                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
774                                      gpu_vaddr + swizzled_gpu_offset,
775                                      this_length);
776                 if (ret)
777                         return ret + length;
778
779                 cpu_offset += this_length;
780                 gpu_offset += this_length;
781                 length -= this_length;
782         }
783
784         return 0;
785 }
786
787 static inline int
788 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
789                           const char __user *cpu_vaddr,
790                           int length)
791 {
792         int ret, cpu_offset = 0;
793
794         while (length > 0) {
795                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
796                 int this_length = min(cacheline_end - gpu_offset, length);
797                 int swizzled_gpu_offset = gpu_offset ^ 64;
798
799                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
800                                        cpu_vaddr + cpu_offset,
801                                        this_length);
802                 if (ret)
803                         return ret + length;
804
805                 cpu_offset += this_length;
806                 gpu_offset += this_length;
807                 length -= this_length;
808         }
809
810         return 0;
811 }
812
813 /*
814  * Pins the specified object's pages and synchronizes the object with
815  * GPU accesses. Sets needs_clflush to non-zero if the caller should
816  * flush the object from the CPU cache.
817  */
818 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
819                                     unsigned int *needs_clflush)
820 {
821         int ret;
822
823         lockdep_assert_held(&obj->base.dev->struct_mutex);
824
825         *needs_clflush = 0;
826         if (!i915_gem_object_has_struct_page(obj))
827                 return -ENODEV;
828
829         ret = i915_gem_object_wait(obj,
830                                    I915_WAIT_INTERRUPTIBLE |
831                                    I915_WAIT_LOCKED,
832                                    MAX_SCHEDULE_TIMEOUT,
833                                    NULL);
834         if (ret)
835                 return ret;
836
837         ret = i915_gem_object_pin_pages(obj);
838         if (ret)
839                 return ret;
840
841         if (i915_gem_object_is_coherent(obj) ||
842             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
843                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
844                 if (ret)
845                         goto err_unpin;
846                 else
847                         goto out;
848         }
849
850         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
851
852         /* If we're not in the cpu read domain, set ourself into the gtt
853          * read domain and manually flush cachelines (if required). This
854          * optimizes for the case when the gpu will dirty the data
855          * anyway again before the next pread happens.
856          */
857         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
858                 *needs_clflush = CLFLUSH_BEFORE;
859
860 out:
861         /* return with the pages pinned */
862         return 0;
863
864 err_unpin:
865         i915_gem_object_unpin_pages(obj);
866         return ret;
867 }
868
869 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
870                                      unsigned int *needs_clflush)
871 {
872         int ret;
873
874         lockdep_assert_held(&obj->base.dev->struct_mutex);
875
876         *needs_clflush = 0;
877         if (!i915_gem_object_has_struct_page(obj))
878                 return -ENODEV;
879
880         ret = i915_gem_object_wait(obj,
881                                    I915_WAIT_INTERRUPTIBLE |
882                                    I915_WAIT_LOCKED |
883                                    I915_WAIT_ALL,
884                                    MAX_SCHEDULE_TIMEOUT,
885                                    NULL);
886         if (ret)
887                 return ret;
888
889         ret = i915_gem_object_pin_pages(obj);
890         if (ret)
891                 return ret;
892
893         if (i915_gem_object_is_coherent(obj) ||
894             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
895                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
896                 if (ret)
897                         goto err_unpin;
898                 else
899                         goto out;
900         }
901
902         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
903
904         /* If we're not in the cpu write domain, set ourself into the
905          * gtt write domain and manually flush cachelines (as required).
906          * This optimizes for the case when the gpu will use the data
907          * right away and we therefore have to clflush anyway.
908          */
909         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
910                 *needs_clflush |= CLFLUSH_AFTER;
911
912         /* Same trick applies to invalidate partially written cachelines read
913          * before writing.
914          */
915         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
916                 *needs_clflush |= CLFLUSH_BEFORE;
917
918 out:
919         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
920         obj->mm.dirty = true;
921         /* return with the pages pinned */
922         return 0;
923
924 err_unpin:
925         i915_gem_object_unpin_pages(obj);
926         return ret;
927 }
928
929 static void
930 shmem_clflush_swizzled_range(char *addr, unsigned long length,
931                              bool swizzled)
932 {
933         if (unlikely(swizzled)) {
934                 unsigned long start = (unsigned long) addr;
935                 unsigned long end = (unsigned long) addr + length;
936
937                 /* For swizzling simply ensure that we always flush both
938                  * channels. Lame, but simple and it works. Swizzled
939                  * pwrite/pread is far from a hotpath - current userspace
940                  * doesn't use it at all. */
941                 start = round_down(start, 128);
942                 end = round_up(end, 128);
943
944                 drm_clflush_virt_range((void *)start, end - start);
945         } else {
946                 drm_clflush_virt_range(addr, length);
947         }
948
949 }
950
951 /* Only difference to the fast-path function is that this can handle bit17
952  * and uses non-atomic copy and kmap functions. */
953 static int
954 shmem_pread_slow(struct page *page, int offset, int length,
955                  char __user *user_data,
956                  bool page_do_bit17_swizzling, bool needs_clflush)
957 {
958         char *vaddr;
959         int ret;
960
961         vaddr = kmap(page);
962         if (needs_clflush)
963                 shmem_clflush_swizzled_range(vaddr + offset, length,
964                                              page_do_bit17_swizzling);
965
966         if (page_do_bit17_swizzling)
967                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
968         else
969                 ret = __copy_to_user(user_data, vaddr + offset, length);
970         kunmap(page);
971
972         return ret ? - EFAULT : 0;
973 }
974
975 static int
976 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
977             bool page_do_bit17_swizzling, bool needs_clflush)
978 {
979         int ret;
980
981         ret = -ENODEV;
982         if (!page_do_bit17_swizzling) {
983                 char *vaddr = kmap_atomic(page);
984
985                 if (needs_clflush)
986                         drm_clflush_virt_range(vaddr + offset, length);
987                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
988                 kunmap_atomic(vaddr);
989         }
990         if (ret == 0)
991                 return 0;
992
993         return shmem_pread_slow(page, offset, length, user_data,
994                                 page_do_bit17_swizzling, needs_clflush);
995 }
996
997 static int
998 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
999                      struct drm_i915_gem_pread *args)
1000 {
1001         char __user *user_data;
1002         u64 remain;
1003         unsigned int obj_do_bit17_swizzling;
1004         unsigned int needs_clflush;
1005         unsigned int idx, offset;
1006         int ret;
1007
1008         obj_do_bit17_swizzling = 0;
1009         if (i915_gem_object_needs_bit17_swizzle(obj))
1010                 obj_do_bit17_swizzling = BIT(17);
1011
1012         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1013         if (ret)
1014                 return ret;
1015
1016         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1017         mutex_unlock(&obj->base.dev->struct_mutex);
1018         if (ret)
1019                 return ret;
1020
1021         remain = args->size;
1022         user_data = u64_to_user_ptr(args->data_ptr);
1023         offset = offset_in_page(args->offset);
1024         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1025                 struct page *page = i915_gem_object_get_page(obj, idx);
1026                 int length;
1027
1028                 length = remain;
1029                 if (offset + length > PAGE_SIZE)
1030                         length = PAGE_SIZE - offset;
1031
1032                 ret = shmem_pread(page, offset, length, user_data,
1033                                   page_to_phys(page) & obj_do_bit17_swizzling,
1034                                   needs_clflush);
1035                 if (ret)
1036                         break;
1037
1038                 remain -= length;
1039                 user_data += length;
1040                 offset = 0;
1041         }
1042
1043         i915_gem_obj_finish_shmem_access(obj);
1044         return ret;
1045 }
1046
1047 static inline bool
1048 gtt_user_read(struct io_mapping *mapping,
1049               loff_t base, int offset,
1050               char __user *user_data, int length)
1051 {
1052         void *vaddr;
1053         unsigned long unwritten;
1054
1055         /* We can use the cpu mem copy function because this is X86. */
1056         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1057         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1058         io_mapping_unmap_atomic(vaddr);
1059         if (unwritten) {
1060                 vaddr = (void __force *)
1061                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1062                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1063                 io_mapping_unmap(vaddr);
1064         }
1065         return unwritten;
1066 }
1067
1068 static int
1069 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1070                    const struct drm_i915_gem_pread *args)
1071 {
1072         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1073         struct i915_ggtt *ggtt = &i915->ggtt;
1074         struct drm_mm_node node;
1075         struct i915_vma *vma;
1076         void __user *user_data;
1077         u64 remain, offset;
1078         int ret;
1079
1080         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1081         if (ret)
1082                 return ret;
1083
1084         intel_runtime_pm_get(i915);
1085         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1086                                        PIN_MAPPABLE | PIN_NONBLOCK);
1087         if (!IS_ERR(vma)) {
1088                 node.start = i915_ggtt_offset(vma);
1089                 node.allocated = false;
1090                 ret = i915_vma_put_fence(vma);
1091                 if (ret) {
1092                         i915_vma_unpin(vma);
1093                         vma = ERR_PTR(ret);
1094                 }
1095         }
1096         if (IS_ERR(vma)) {
1097                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1098                 if (ret)
1099                         goto out_unlock;
1100                 GEM_BUG_ON(!node.allocated);
1101         }
1102
1103         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1104         if (ret)
1105                 goto out_unpin;
1106
1107         mutex_unlock(&i915->drm.struct_mutex);
1108
1109         user_data = u64_to_user_ptr(args->data_ptr);
1110         remain = args->size;
1111         offset = args->offset;
1112
1113         while (remain > 0) {
1114                 /* Operation in this page
1115                  *
1116                  * page_base = page offset within aperture
1117                  * page_offset = offset within page
1118                  * page_length = bytes to copy for this page
1119                  */
1120                 u32 page_base = node.start;
1121                 unsigned page_offset = offset_in_page(offset);
1122                 unsigned page_length = PAGE_SIZE - page_offset;
1123                 page_length = remain < page_length ? remain : page_length;
1124                 if (node.allocated) {
1125                         wmb();
1126                         ggtt->base.insert_page(&ggtt->base,
1127                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1128                                                node.start, I915_CACHE_NONE, 0);
1129                         wmb();
1130                 } else {
1131                         page_base += offset & PAGE_MASK;
1132                 }
1133
1134                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1135                                   user_data, page_length)) {
1136                         ret = -EFAULT;
1137                         break;
1138                 }
1139
1140                 remain -= page_length;
1141                 user_data += page_length;
1142                 offset += page_length;
1143         }
1144
1145         mutex_lock(&i915->drm.struct_mutex);
1146 out_unpin:
1147         if (node.allocated) {
1148                 wmb();
1149                 ggtt->base.clear_range(&ggtt->base,
1150                                        node.start, node.size);
1151                 remove_mappable_node(&node);
1152         } else {
1153                 i915_vma_unpin(vma);
1154         }
1155 out_unlock:
1156         intel_runtime_pm_put(i915);
1157         mutex_unlock(&i915->drm.struct_mutex);
1158
1159         return ret;
1160 }
1161
1162 /**
1163  * Reads data from the object referenced by handle.
1164  * @dev: drm device pointer
1165  * @data: ioctl data blob
1166  * @file: drm file pointer
1167  *
1168  * On error, the contents of *data are undefined.
1169  */
1170 int
1171 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1172                      struct drm_file *file)
1173 {
1174         struct drm_i915_gem_pread *args = data;
1175         struct drm_i915_gem_object *obj;
1176         int ret;
1177
1178         if (args->size == 0)
1179                 return 0;
1180
1181         if (!access_ok(VERIFY_WRITE,
1182                        u64_to_user_ptr(args->data_ptr),
1183                        args->size))
1184                 return -EFAULT;
1185
1186         obj = i915_gem_object_lookup(file, args->handle);
1187         if (!obj)
1188                 return -ENOENT;
1189
1190         /* Bounds check source.  */
1191         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1192                 ret = -EINVAL;
1193                 goto out;
1194         }
1195
1196         trace_i915_gem_object_pread(obj, args->offset, args->size);
1197
1198         ret = i915_gem_object_wait(obj,
1199                                    I915_WAIT_INTERRUPTIBLE,
1200                                    MAX_SCHEDULE_TIMEOUT,
1201                                    to_rps_client(file));
1202         if (ret)
1203                 goto out;
1204
1205         ret = i915_gem_object_pin_pages(obj);
1206         if (ret)
1207                 goto out;
1208
1209         ret = i915_gem_shmem_pread(obj, args);
1210         if (ret == -EFAULT || ret == -ENODEV)
1211                 ret = i915_gem_gtt_pread(obj, args);
1212
1213         i915_gem_object_unpin_pages(obj);
1214 out:
1215         i915_gem_object_put(obj);
1216         return ret;
1217 }
1218
1219 /* This is the fast write path which cannot handle
1220  * page faults in the source data
1221  */
1222
1223 static inline bool
1224 ggtt_write(struct io_mapping *mapping,
1225            loff_t base, int offset,
1226            char __user *user_data, int length)
1227 {
1228         void *vaddr;
1229         unsigned long unwritten;
1230
1231         /* We can use the cpu mem copy function because this is X86. */
1232         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1233         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1234                                                       user_data, length);
1235         io_mapping_unmap_atomic(vaddr);
1236         if (unwritten) {
1237                 vaddr = (void __force *)
1238                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1239                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1240                 io_mapping_unmap(vaddr);
1241         }
1242
1243         return unwritten;
1244 }
1245
1246 /**
1247  * This is the fast pwrite path, where we copy the data directly from the
1248  * user into the GTT, uncached.
1249  * @obj: i915 GEM object
1250  * @args: pwrite arguments structure
1251  */
1252 static int
1253 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1254                          const struct drm_i915_gem_pwrite *args)
1255 {
1256         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1257         struct i915_ggtt *ggtt = &i915->ggtt;
1258         struct drm_mm_node node;
1259         struct i915_vma *vma;
1260         u64 remain, offset;
1261         void __user *user_data;
1262         int ret;
1263
1264         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1265         if (ret)
1266                 return ret;
1267
1268         intel_runtime_pm_get(i915);
1269         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1270                                        PIN_MAPPABLE | PIN_NONBLOCK);
1271         if (!IS_ERR(vma)) {
1272                 node.start = i915_ggtt_offset(vma);
1273                 node.allocated = false;
1274                 ret = i915_vma_put_fence(vma);
1275                 if (ret) {
1276                         i915_vma_unpin(vma);
1277                         vma = ERR_PTR(ret);
1278                 }
1279         }
1280         if (IS_ERR(vma)) {
1281                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1282                 if (ret)
1283                         goto out_unlock;
1284                 GEM_BUG_ON(!node.allocated);
1285         }
1286
1287         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1288         if (ret)
1289                 goto out_unpin;
1290
1291         mutex_unlock(&i915->drm.struct_mutex);
1292
1293         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1294
1295         user_data = u64_to_user_ptr(args->data_ptr);
1296         offset = args->offset;
1297         remain = args->size;
1298         while (remain) {
1299                 /* Operation in this page
1300                  *
1301                  * page_base = page offset within aperture
1302                  * page_offset = offset within page
1303                  * page_length = bytes to copy for this page
1304                  */
1305                 u32 page_base = node.start;
1306                 unsigned int page_offset = offset_in_page(offset);
1307                 unsigned int page_length = PAGE_SIZE - page_offset;
1308                 page_length = remain < page_length ? remain : page_length;
1309                 if (node.allocated) {
1310                         wmb(); /* flush the write before we modify the GGTT */
1311                         ggtt->base.insert_page(&ggtt->base,
1312                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1313                                                node.start, I915_CACHE_NONE, 0);
1314                         wmb(); /* flush modifications to the GGTT (insert_page) */
1315                 } else {
1316                         page_base += offset & PAGE_MASK;
1317                 }
1318                 /* If we get a fault while copying data, then (presumably) our
1319                  * source page isn't available.  Return the error and we'll
1320                  * retry in the slow path.
1321                  * If the object is non-shmem backed, we retry again with the
1322                  * path that handles page fault.
1323                  */
1324                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1325                                user_data, page_length)) {
1326                         ret = -EFAULT;
1327                         break;
1328                 }
1329
1330                 remain -= page_length;
1331                 user_data += page_length;
1332                 offset += page_length;
1333         }
1334         intel_fb_obj_flush(obj, ORIGIN_CPU);
1335
1336         mutex_lock(&i915->drm.struct_mutex);
1337 out_unpin:
1338         if (node.allocated) {
1339                 wmb();
1340                 ggtt->base.clear_range(&ggtt->base,
1341                                        node.start, node.size);
1342                 remove_mappable_node(&node);
1343         } else {
1344                 i915_vma_unpin(vma);
1345         }
1346 out_unlock:
1347         intel_runtime_pm_put(i915);
1348         mutex_unlock(&i915->drm.struct_mutex);
1349         return ret;
1350 }
1351
1352 static int
1353 shmem_pwrite_slow(struct page *page, int offset, int length,
1354                   char __user *user_data,
1355                   bool page_do_bit17_swizzling,
1356                   bool needs_clflush_before,
1357                   bool needs_clflush_after)
1358 {
1359         char *vaddr;
1360         int ret;
1361
1362         vaddr = kmap(page);
1363         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1364                 shmem_clflush_swizzled_range(vaddr + offset, length,
1365                                              page_do_bit17_swizzling);
1366         if (page_do_bit17_swizzling)
1367                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1368                                                 length);
1369         else
1370                 ret = __copy_from_user(vaddr + offset, user_data, length);
1371         if (needs_clflush_after)
1372                 shmem_clflush_swizzled_range(vaddr + offset, length,
1373                                              page_do_bit17_swizzling);
1374         kunmap(page);
1375
1376         return ret ? -EFAULT : 0;
1377 }
1378
1379 /* Per-page copy function for the shmem pwrite fastpath.
1380  * Flushes invalid cachelines before writing to the target if
1381  * needs_clflush_before is set and flushes out any written cachelines after
1382  * writing if needs_clflush is set.
1383  */
1384 static int
1385 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1386              bool page_do_bit17_swizzling,
1387              bool needs_clflush_before,
1388              bool needs_clflush_after)
1389 {
1390         int ret;
1391
1392         ret = -ENODEV;
1393         if (!page_do_bit17_swizzling) {
1394                 char *vaddr = kmap_atomic(page);
1395
1396                 if (needs_clflush_before)
1397                         drm_clflush_virt_range(vaddr + offset, len);
1398                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1399                 if (needs_clflush_after)
1400                         drm_clflush_virt_range(vaddr + offset, len);
1401
1402                 kunmap_atomic(vaddr);
1403         }
1404         if (ret == 0)
1405                 return ret;
1406
1407         return shmem_pwrite_slow(page, offset, len, user_data,
1408                                  page_do_bit17_swizzling,
1409                                  needs_clflush_before,
1410                                  needs_clflush_after);
1411 }
1412
1413 static int
1414 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1415                       const struct drm_i915_gem_pwrite *args)
1416 {
1417         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1418         void __user *user_data;
1419         u64 remain;
1420         unsigned int obj_do_bit17_swizzling;
1421         unsigned int partial_cacheline_write;
1422         unsigned int needs_clflush;
1423         unsigned int offset, idx;
1424         int ret;
1425
1426         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1427         if (ret)
1428                 return ret;
1429
1430         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1431         mutex_unlock(&i915->drm.struct_mutex);
1432         if (ret)
1433                 return ret;
1434
1435         obj_do_bit17_swizzling = 0;
1436         if (i915_gem_object_needs_bit17_swizzle(obj))
1437                 obj_do_bit17_swizzling = BIT(17);
1438
1439         /* If we don't overwrite a cacheline completely we need to be
1440          * careful to have up-to-date data by first clflushing. Don't
1441          * overcomplicate things and flush the entire patch.
1442          */
1443         partial_cacheline_write = 0;
1444         if (needs_clflush & CLFLUSH_BEFORE)
1445                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1446
1447         user_data = u64_to_user_ptr(args->data_ptr);
1448         remain = args->size;
1449         offset = offset_in_page(args->offset);
1450         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1451                 struct page *page = i915_gem_object_get_page(obj, idx);
1452                 int length;
1453
1454                 length = remain;
1455                 if (offset + length > PAGE_SIZE)
1456                         length = PAGE_SIZE - offset;
1457
1458                 ret = shmem_pwrite(page, offset, length, user_data,
1459                                    page_to_phys(page) & obj_do_bit17_swizzling,
1460                                    (offset | length) & partial_cacheline_write,
1461                                    needs_clflush & CLFLUSH_AFTER);
1462                 if (ret)
1463                         break;
1464
1465                 remain -= length;
1466                 user_data += length;
1467                 offset = 0;
1468         }
1469
1470         intel_fb_obj_flush(obj, ORIGIN_CPU);
1471         i915_gem_obj_finish_shmem_access(obj);
1472         return ret;
1473 }
1474
1475 /**
1476  * Writes data to the object referenced by handle.
1477  * @dev: drm device
1478  * @data: ioctl data blob
1479  * @file: drm file
1480  *
1481  * On error, the contents of the buffer that were to be modified are undefined.
1482  */
1483 int
1484 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1485                       struct drm_file *file)
1486 {
1487         struct drm_i915_gem_pwrite *args = data;
1488         struct drm_i915_gem_object *obj;
1489         int ret;
1490
1491         if (args->size == 0)
1492                 return 0;
1493
1494         if (!access_ok(VERIFY_READ,
1495                        u64_to_user_ptr(args->data_ptr),
1496                        args->size))
1497                 return -EFAULT;
1498
1499         obj = i915_gem_object_lookup(file, args->handle);
1500         if (!obj)
1501                 return -ENOENT;
1502
1503         /* Bounds check destination. */
1504         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1505                 ret = -EINVAL;
1506                 goto err;
1507         }
1508
1509         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1510
1511         ret = -ENODEV;
1512         if (obj->ops->pwrite)
1513                 ret = obj->ops->pwrite(obj, args);
1514         if (ret != -ENODEV)
1515                 goto err;
1516
1517         ret = i915_gem_object_wait(obj,
1518                                    I915_WAIT_INTERRUPTIBLE |
1519                                    I915_WAIT_ALL,
1520                                    MAX_SCHEDULE_TIMEOUT,
1521                                    to_rps_client(file));
1522         if (ret)
1523                 goto err;
1524
1525         ret = i915_gem_object_pin_pages(obj);
1526         if (ret)
1527                 goto err;
1528
1529         ret = -EFAULT;
1530         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1531          * it would end up going through the fenced access, and we'll get
1532          * different detiling behavior between reading and writing.
1533          * pread/pwrite currently are reading and writing from the CPU
1534          * perspective, requiring manual detiling by the client.
1535          */
1536         if (!i915_gem_object_has_struct_page(obj) ||
1537             cpu_write_needs_clflush(obj))
1538                 /* Note that the gtt paths might fail with non-page-backed user
1539                  * pointers (e.g. gtt mappings when moving data between
1540                  * textures). Fallback to the shmem path in that case.
1541                  */
1542                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1543
1544         if (ret == -EFAULT || ret == -ENOSPC) {
1545                 if (obj->phys_handle)
1546                         ret = i915_gem_phys_pwrite(obj, args, file);
1547                 else
1548                         ret = i915_gem_shmem_pwrite(obj, args);
1549         }
1550
1551         i915_gem_object_unpin_pages(obj);
1552 err:
1553         i915_gem_object_put(obj);
1554         return ret;
1555 }
1556
1557 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1558 {
1559         struct drm_i915_private *i915;
1560         struct list_head *list;
1561         struct i915_vma *vma;
1562
1563         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1564                 if (!i915_vma_is_ggtt(vma))
1565                         break;
1566
1567                 if (i915_vma_is_active(vma))
1568                         continue;
1569
1570                 if (!drm_mm_node_allocated(&vma->node))
1571                         continue;
1572
1573                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1574         }
1575
1576         i915 = to_i915(obj->base.dev);
1577         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1578         list_move_tail(&obj->global_link, list);
1579 }
1580
1581 /**
1582  * Called when user space prepares to use an object with the CPU, either
1583  * through the mmap ioctl's mapping or a GTT mapping.
1584  * @dev: drm device
1585  * @data: ioctl data blob
1586  * @file: drm file
1587  */
1588 int
1589 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1590                           struct drm_file *file)
1591 {
1592         struct drm_i915_gem_set_domain *args = data;
1593         struct drm_i915_gem_object *obj;
1594         uint32_t read_domains = args->read_domains;
1595         uint32_t write_domain = args->write_domain;
1596         int err;
1597
1598         /* Only handle setting domains to types used by the CPU. */
1599         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1600                 return -EINVAL;
1601
1602         /* Having something in the write domain implies it's in the read
1603          * domain, and only that read domain.  Enforce that in the request.
1604          */
1605         if (write_domain != 0 && read_domains != write_domain)
1606                 return -EINVAL;
1607
1608         obj = i915_gem_object_lookup(file, args->handle);
1609         if (!obj)
1610                 return -ENOENT;
1611
1612         /* Try to flush the object off the GPU without holding the lock.
1613          * We will repeat the flush holding the lock in the normal manner
1614          * to catch cases where we are gazumped.
1615          */
1616         err = i915_gem_object_wait(obj,
1617                                    I915_WAIT_INTERRUPTIBLE |
1618                                    (write_domain ? I915_WAIT_ALL : 0),
1619                                    MAX_SCHEDULE_TIMEOUT,
1620                                    to_rps_client(file));
1621         if (err)
1622                 goto out;
1623
1624         /* Flush and acquire obj->pages so that we are coherent through
1625          * direct access in memory with previous cached writes through
1626          * shmemfs and that our cache domain tracking remains valid.
1627          * For example, if the obj->filp was moved to swap without us
1628          * being notified and releasing the pages, we would mistakenly
1629          * continue to assume that the obj remained out of the CPU cached
1630          * domain.
1631          */
1632         err = i915_gem_object_pin_pages(obj);
1633         if (err)
1634                 goto out;
1635
1636         err = i915_mutex_lock_interruptible(dev);
1637         if (err)
1638                 goto out_unpin;
1639
1640         if (read_domains & I915_GEM_DOMAIN_WC)
1641                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1642         else if (read_domains & I915_GEM_DOMAIN_GTT)
1643                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1644         else
1645                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1646
1647         /* And bump the LRU for this access */
1648         i915_gem_object_bump_inactive_ggtt(obj);
1649
1650         mutex_unlock(&dev->struct_mutex);
1651
1652         if (write_domain != 0)
1653                 intel_fb_obj_invalidate(obj,
1654                                         fb_write_origin(obj, write_domain));
1655
1656 out_unpin:
1657         i915_gem_object_unpin_pages(obj);
1658 out:
1659         i915_gem_object_put(obj);
1660         return err;
1661 }
1662
1663 /**
1664  * Called when user space has done writes to this buffer
1665  * @dev: drm device
1666  * @data: ioctl data blob
1667  * @file: drm file
1668  */
1669 int
1670 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1671                          struct drm_file *file)
1672 {
1673         struct drm_i915_gem_sw_finish *args = data;
1674         struct drm_i915_gem_object *obj;
1675
1676         obj = i915_gem_object_lookup(file, args->handle);
1677         if (!obj)
1678                 return -ENOENT;
1679
1680         /* Pinned buffers may be scanout, so flush the cache */
1681         i915_gem_object_flush_if_display(obj);
1682         i915_gem_object_put(obj);
1683
1684         return 0;
1685 }
1686
1687 /**
1688  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1689  *                       it is mapped to.
1690  * @dev: drm device
1691  * @data: ioctl data blob
1692  * @file: drm file
1693  *
1694  * While the mapping holds a reference on the contents of the object, it doesn't
1695  * imply a ref on the object itself.
1696  *
1697  * IMPORTANT:
1698  *
1699  * DRM driver writers who look a this function as an example for how to do GEM
1700  * mmap support, please don't implement mmap support like here. The modern way
1701  * to implement DRM mmap support is with an mmap offset ioctl (like
1702  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1703  * That way debug tooling like valgrind will understand what's going on, hiding
1704  * the mmap call in a driver private ioctl will break that. The i915 driver only
1705  * does cpu mmaps this way because we didn't know better.
1706  */
1707 int
1708 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1709                     struct drm_file *file)
1710 {
1711         struct drm_i915_gem_mmap *args = data;
1712         struct drm_i915_gem_object *obj;
1713         unsigned long addr;
1714
1715         if (args->flags & ~(I915_MMAP_WC))
1716                 return -EINVAL;
1717
1718         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1719                 return -ENODEV;
1720
1721         obj = i915_gem_object_lookup(file, args->handle);
1722         if (!obj)
1723                 return -ENOENT;
1724
1725         /* prime objects have no backing filp to GEM mmap
1726          * pages from.
1727          */
1728         if (!obj->base.filp) {
1729                 i915_gem_object_put(obj);
1730                 return -EINVAL;
1731         }
1732
1733         addr = vm_mmap(obj->base.filp, 0, args->size,
1734                        PROT_READ | PROT_WRITE, MAP_SHARED,
1735                        args->offset);
1736         if (args->flags & I915_MMAP_WC) {
1737                 struct mm_struct *mm = current->mm;
1738                 struct vm_area_struct *vma;
1739
1740                 if (down_write_killable(&mm->mmap_sem)) {
1741                         i915_gem_object_put(obj);
1742                         return -EINTR;
1743                 }
1744                 vma = find_vma(mm, addr);
1745                 if (vma)
1746                         vma->vm_page_prot =
1747                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1748                 else
1749                         addr = -ENOMEM;
1750                 up_write(&mm->mmap_sem);
1751
1752                 /* This may race, but that's ok, it only gets set */
1753                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1754         }
1755         i915_gem_object_put(obj);
1756         if (IS_ERR((void *)addr))
1757                 return addr;
1758
1759         args->addr_ptr = (uint64_t) addr;
1760
1761         return 0;
1762 }
1763
1764 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1765 {
1766         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1767 }
1768
1769 /**
1770  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1771  *
1772  * A history of the GTT mmap interface:
1773  *
1774  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1775  *     aligned and suitable for fencing, and still fit into the available
1776  *     mappable space left by the pinned display objects. A classic problem
1777  *     we called the page-fault-of-doom where we would ping-pong between
1778  *     two objects that could not fit inside the GTT and so the memcpy
1779  *     would page one object in at the expense of the other between every
1780  *     single byte.
1781  *
1782  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1783  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1784  *     object is too large for the available space (or simply too large
1785  *     for the mappable aperture!), a view is created instead and faulted
1786  *     into userspace. (This view is aligned and sized appropriately for
1787  *     fenced access.)
1788  *
1789  * 2 - Recognise WC as a separate cache domain so that we can flush the
1790  *     delayed writes via GTT before performing direct access via WC.
1791  *
1792  * Restrictions:
1793  *
1794  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1795  *    hangs on some architectures, corruption on others. An attempt to service
1796  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1797  *
1798  *  * the object must be able to fit into RAM (physical memory, though no
1799  *    limited to the mappable aperture).
1800  *
1801  *
1802  * Caveats:
1803  *
1804  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1805  *    all data to system memory. Subsequent access will not be synchronized.
1806  *
1807  *  * all mappings are revoked on runtime device suspend.
1808  *
1809  *  * there are only 8, 16 or 32 fence registers to share between all users
1810  *    (older machines require fence register for display and blitter access
1811  *    as well). Contention of the fence registers will cause the previous users
1812  *    to be unmapped and any new access will generate new page faults.
1813  *
1814  *  * running out of memory while servicing a fault may generate a SIGBUS,
1815  *    rather than the expected SIGSEGV.
1816  */
1817 int i915_gem_mmap_gtt_version(void)
1818 {
1819         return 2;
1820 }
1821
1822 static inline struct i915_ggtt_view
1823 compute_partial_view(struct drm_i915_gem_object *obj,
1824                      pgoff_t page_offset,
1825                      unsigned int chunk)
1826 {
1827         struct i915_ggtt_view view;
1828
1829         if (i915_gem_object_is_tiled(obj))
1830                 chunk = roundup(chunk, tile_row_pages(obj));
1831
1832         view.type = I915_GGTT_VIEW_PARTIAL;
1833         view.partial.offset = rounddown(page_offset, chunk);
1834         view.partial.size =
1835                 min_t(unsigned int, chunk,
1836                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1837
1838         /* If the partial covers the entire object, just create a normal VMA. */
1839         if (chunk >= obj->base.size >> PAGE_SHIFT)
1840                 view.type = I915_GGTT_VIEW_NORMAL;
1841
1842         return view;
1843 }
1844
1845 /**
1846  * i915_gem_fault - fault a page into the GTT
1847  * @vmf: fault info
1848  *
1849  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1850  * from userspace.  The fault handler takes care of binding the object to
1851  * the GTT (if needed), allocating and programming a fence register (again,
1852  * only if needed based on whether the old reg is still valid or the object
1853  * is tiled) and inserting a new PTE into the faulting process.
1854  *
1855  * Note that the faulting process may involve evicting existing objects
1856  * from the GTT and/or fence registers to make room.  So performance may
1857  * suffer if the GTT working set is large or there are few fence registers
1858  * left.
1859  *
1860  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1861  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1862  */
1863 int i915_gem_fault(struct vm_fault *vmf)
1864 {
1865 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1866         struct vm_area_struct *area = vmf->vma;
1867         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1868         struct drm_device *dev = obj->base.dev;
1869         struct drm_i915_private *dev_priv = to_i915(dev);
1870         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1871         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1872         struct i915_vma *vma;
1873         pgoff_t page_offset;
1874         unsigned int flags;
1875         int ret;
1876
1877         /* We don't use vmf->pgoff since that has the fake offset */
1878         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1879
1880         trace_i915_gem_object_fault(obj, page_offset, true, write);
1881
1882         /* Try to flush the object off the GPU first without holding the lock.
1883          * Upon acquiring the lock, we will perform our sanity checks and then
1884          * repeat the flush holding the lock in the normal manner to catch cases
1885          * where we are gazumped.
1886          */
1887         ret = i915_gem_object_wait(obj,
1888                                    I915_WAIT_INTERRUPTIBLE,
1889                                    MAX_SCHEDULE_TIMEOUT,
1890                                    NULL);
1891         if (ret)
1892                 goto err;
1893
1894         ret = i915_gem_object_pin_pages(obj);
1895         if (ret)
1896                 goto err;
1897
1898         intel_runtime_pm_get(dev_priv);
1899
1900         ret = i915_mutex_lock_interruptible(dev);
1901         if (ret)
1902                 goto err_rpm;
1903
1904         /* Access to snoopable pages through the GTT is incoherent. */
1905         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1906                 ret = -EFAULT;
1907                 goto err_unlock;
1908         }
1909
1910         /* If the object is smaller than a couple of partial vma, it is
1911          * not worth only creating a single partial vma - we may as well
1912          * clear enough space for the full object.
1913          */
1914         flags = PIN_MAPPABLE;
1915         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1916                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1917
1918         /* Now pin it into the GTT as needed */
1919         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1920         if (IS_ERR(vma)) {
1921                 /* Use a partial view if it is bigger than available space */
1922                 struct i915_ggtt_view view =
1923                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1924
1925                 /* Userspace is now writing through an untracked VMA, abandon
1926                  * all hope that the hardware is able to track future writes.
1927                  */
1928                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1929
1930                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1931         }
1932         if (IS_ERR(vma)) {
1933                 ret = PTR_ERR(vma);
1934                 goto err_unlock;
1935         }
1936
1937         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1938         if (ret)
1939                 goto err_unpin;
1940
1941         ret = i915_vma_get_fence(vma);
1942         if (ret)
1943                 goto err_unpin;
1944
1945         /* Mark as being mmapped into userspace for later revocation */
1946         assert_rpm_wakelock_held(dev_priv);
1947         if (list_empty(&obj->userfault_link))
1948                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1949
1950         /* Finally, remap it using the new GTT offset */
1951         ret = remap_io_mapping(area,
1952                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1953                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1954                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1955                                &ggtt->mappable);
1956
1957 err_unpin:
1958         __i915_vma_unpin(vma);
1959 err_unlock:
1960         mutex_unlock(&dev->struct_mutex);
1961 err_rpm:
1962         intel_runtime_pm_put(dev_priv);
1963         i915_gem_object_unpin_pages(obj);
1964 err:
1965         switch (ret) {
1966         case -EIO:
1967                 /*
1968                  * We eat errors when the gpu is terminally wedged to avoid
1969                  * userspace unduly crashing (gl has no provisions for mmaps to
1970                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1971                  * and so needs to be reported.
1972                  */
1973                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1974                         ret = VM_FAULT_SIGBUS;
1975                         break;
1976                 }
1977         case -EAGAIN:
1978                 /*
1979                  * EAGAIN means the gpu is hung and we'll wait for the error
1980                  * handler to reset everything when re-faulting in
1981                  * i915_mutex_lock_interruptible.
1982                  */
1983         case 0:
1984         case -ERESTARTSYS:
1985         case -EINTR:
1986         case -EBUSY:
1987                 /*
1988                  * EBUSY is ok: this just means that another thread
1989                  * already did the job.
1990                  */
1991                 ret = VM_FAULT_NOPAGE;
1992                 break;
1993         case -ENOMEM:
1994                 ret = VM_FAULT_OOM;
1995                 break;
1996         case -ENOSPC:
1997         case -EFAULT:
1998                 ret = VM_FAULT_SIGBUS;
1999                 break;
2000         default:
2001                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2002                 ret = VM_FAULT_SIGBUS;
2003                 break;
2004         }
2005         return ret;
2006 }
2007
2008 /**
2009  * i915_gem_release_mmap - remove physical page mappings
2010  * @obj: obj in question
2011  *
2012  * Preserve the reservation of the mmapping with the DRM core code, but
2013  * relinquish ownership of the pages back to the system.
2014  *
2015  * It is vital that we remove the page mapping if we have mapped a tiled
2016  * object through the GTT and then lose the fence register due to
2017  * resource pressure. Similarly if the object has been moved out of the
2018  * aperture, than pages mapped into userspace must be revoked. Removing the
2019  * mapping will then trigger a page fault on the next user access, allowing
2020  * fixup by i915_gem_fault().
2021  */
2022 void
2023 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2024 {
2025         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2026
2027         /* Serialisation between user GTT access and our code depends upon
2028          * revoking the CPU's PTE whilst the mutex is held. The next user
2029          * pagefault then has to wait until we release the mutex.
2030          *
2031          * Note that RPM complicates somewhat by adding an additional
2032          * requirement that operations to the GGTT be made holding the RPM
2033          * wakeref.
2034          */
2035         lockdep_assert_held(&i915->drm.struct_mutex);
2036         intel_runtime_pm_get(i915);
2037
2038         if (list_empty(&obj->userfault_link))
2039                 goto out;
2040
2041         list_del_init(&obj->userfault_link);
2042         drm_vma_node_unmap(&obj->base.vma_node,
2043                            obj->base.dev->anon_inode->i_mapping);
2044
2045         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2046          * memory transactions from userspace before we return. The TLB
2047          * flushing implied above by changing the PTE above *should* be
2048          * sufficient, an extra barrier here just provides us with a bit
2049          * of paranoid documentation about our requirement to serialise
2050          * memory writes before touching registers / GSM.
2051          */
2052         wmb();
2053
2054 out:
2055         intel_runtime_pm_put(i915);
2056 }
2057
2058 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2059 {
2060         struct drm_i915_gem_object *obj, *on;
2061         int i;
2062
2063         /*
2064          * Only called during RPM suspend. All users of the userfault_list
2065          * must be holding an RPM wakeref to ensure that this can not
2066          * run concurrently with themselves (and use the struct_mutex for
2067          * protection between themselves).
2068          */
2069
2070         list_for_each_entry_safe(obj, on,
2071                                  &dev_priv->mm.userfault_list, userfault_link) {
2072                 list_del_init(&obj->userfault_link);
2073                 drm_vma_node_unmap(&obj->base.vma_node,
2074                                    obj->base.dev->anon_inode->i_mapping);
2075         }
2076
2077         /* The fence will be lost when the device powers down. If any were
2078          * in use by hardware (i.e. they are pinned), we should not be powering
2079          * down! All other fences will be reacquired by the user upon waking.
2080          */
2081         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2082                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2083
2084                 /* Ideally we want to assert that the fence register is not
2085                  * live at this point (i.e. that no piece of code will be
2086                  * trying to write through fence + GTT, as that both violates
2087                  * our tracking of activity and associated locking/barriers,
2088                  * but also is illegal given that the hw is powered down).
2089                  *
2090                  * Previously we used reg->pin_count as a "liveness" indicator.
2091                  * That is not sufficient, and we need a more fine-grained
2092                  * tool if we want to have a sanity check here.
2093                  */
2094
2095                 if (!reg->vma)
2096                         continue;
2097
2098                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2099                 reg->dirty = true;
2100         }
2101 }
2102
2103 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2104 {
2105         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2106         int err;
2107
2108         err = drm_gem_create_mmap_offset(&obj->base);
2109         if (likely(!err))
2110                 return 0;
2111
2112         /* Attempt to reap some mmap space from dead objects */
2113         do {
2114                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2115                 if (err)
2116                         break;
2117
2118                 i915_gem_drain_freed_objects(dev_priv);
2119                 err = drm_gem_create_mmap_offset(&obj->base);
2120                 if (!err)
2121                         break;
2122
2123         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2124
2125         return err;
2126 }
2127
2128 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2129 {
2130         drm_gem_free_mmap_offset(&obj->base);
2131 }
2132
2133 int
2134 i915_gem_mmap_gtt(struct drm_file *file,
2135                   struct drm_device *dev,
2136                   uint32_t handle,
2137                   uint64_t *offset)
2138 {
2139         struct drm_i915_gem_object *obj;
2140         int ret;
2141
2142         obj = i915_gem_object_lookup(file, handle);
2143         if (!obj)
2144                 return -ENOENT;
2145
2146         ret = i915_gem_object_create_mmap_offset(obj);
2147         if (ret == 0)
2148                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2149
2150         i915_gem_object_put(obj);
2151         return ret;
2152 }
2153
2154 /**
2155  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2156  * @dev: DRM device
2157  * @data: GTT mapping ioctl data
2158  * @file: GEM object info
2159  *
2160  * Simply returns the fake offset to userspace so it can mmap it.
2161  * The mmap call will end up in drm_gem_mmap(), which will set things
2162  * up so we can get faults in the handler above.
2163  *
2164  * The fault handler will take care of binding the object into the GTT
2165  * (since it may have been evicted to make room for something), allocating
2166  * a fence register, and mapping the appropriate aperture address into
2167  * userspace.
2168  */
2169 int
2170 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2171                         struct drm_file *file)
2172 {
2173         struct drm_i915_gem_mmap_gtt *args = data;
2174
2175         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2176 }
2177
2178 /* Immediately discard the backing storage */
2179 static void
2180 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2181 {
2182         i915_gem_object_free_mmap_offset(obj);
2183
2184         if (obj->base.filp == NULL)
2185                 return;
2186
2187         /* Our goal here is to return as much of the memory as
2188          * is possible back to the system as we are called from OOM.
2189          * To do this we must instruct the shmfs to drop all of its
2190          * backing pages, *now*.
2191          */
2192         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2193         obj->mm.madv = __I915_MADV_PURGED;
2194         obj->mm.pages = ERR_PTR(-EFAULT);
2195 }
2196
2197 /* Try to discard unwanted pages */
2198 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2199 {
2200         struct address_space *mapping;
2201
2202         lockdep_assert_held(&obj->mm.lock);
2203         GEM_BUG_ON(obj->mm.pages);
2204
2205         switch (obj->mm.madv) {
2206         case I915_MADV_DONTNEED:
2207                 i915_gem_object_truncate(obj);
2208         case __I915_MADV_PURGED:
2209                 return;
2210         }
2211
2212         if (obj->base.filp == NULL)
2213                 return;
2214
2215         mapping = obj->base.filp->f_mapping,
2216         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2217 }
2218
2219 static void
2220 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2221                               struct sg_table *pages)
2222 {
2223         struct sgt_iter sgt_iter;
2224         struct page *page;
2225
2226         __i915_gem_object_release_shmem(obj, pages, true);
2227
2228         i915_gem_gtt_finish_pages(obj, pages);
2229
2230         if (i915_gem_object_needs_bit17_swizzle(obj))
2231                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2232
2233         for_each_sgt_page(page, sgt_iter, pages) {
2234                 if (obj->mm.dirty)
2235                         set_page_dirty(page);
2236
2237                 if (obj->mm.madv == I915_MADV_WILLNEED)
2238                         mark_page_accessed(page);
2239
2240                 put_page(page);
2241         }
2242         obj->mm.dirty = false;
2243
2244         sg_free_table(pages);
2245         kfree(pages);
2246 }
2247
2248 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2249 {
2250         struct radix_tree_iter iter;
2251         void **slot;
2252
2253         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2254                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2255 }
2256
2257 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2258                                  enum i915_mm_subclass subclass)
2259 {
2260         struct sg_table *pages;
2261
2262         if (i915_gem_object_has_pinned_pages(obj))
2263                 return;
2264
2265         GEM_BUG_ON(obj->bind_count);
2266         if (!READ_ONCE(obj->mm.pages))
2267                 return;
2268
2269         /* May be called by shrinker from within get_pages() (on another bo) */
2270         mutex_lock_nested(&obj->mm.lock, subclass);
2271         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2272                 goto unlock;
2273
2274         /* ->put_pages might need to allocate memory for the bit17 swizzle
2275          * array, hence protect them from being reaped by removing them from gtt
2276          * lists early. */
2277         pages = fetch_and_zero(&obj->mm.pages);
2278         GEM_BUG_ON(!pages);
2279
2280         if (obj->mm.mapping) {
2281                 void *ptr;
2282
2283                 ptr = ptr_mask_bits(obj->mm.mapping);
2284                 if (is_vmalloc_addr(ptr))
2285                         vunmap(ptr);
2286                 else
2287                         kunmap(kmap_to_page(ptr));
2288
2289                 obj->mm.mapping = NULL;
2290         }
2291
2292         __i915_gem_object_reset_page_iter(obj);
2293
2294         if (!IS_ERR(pages))
2295                 obj->ops->put_pages(obj, pages);
2296
2297 unlock:
2298         mutex_unlock(&obj->mm.lock);
2299 }
2300
2301 static bool i915_sg_trim(struct sg_table *orig_st)
2302 {
2303         struct sg_table new_st;
2304         struct scatterlist *sg, *new_sg;
2305         unsigned int i;
2306
2307         if (orig_st->nents == orig_st->orig_nents)
2308                 return false;
2309
2310         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2311                 return false;
2312
2313         new_sg = new_st.sgl;
2314         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2315                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2316                 /* called before being DMA mapped, no need to copy sg->dma_* */
2317                 new_sg = sg_next(new_sg);
2318         }
2319         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2320
2321         sg_free_table(orig_st);
2322
2323         *orig_st = new_st;
2324         return true;
2325 }
2326
2327 static struct sg_table *
2328 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2329 {
2330         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2331         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2332         unsigned long i;
2333         struct address_space *mapping;
2334         struct sg_table *st;
2335         struct scatterlist *sg;
2336         struct sgt_iter sgt_iter;
2337         struct page *page;
2338         unsigned long last_pfn = 0;     /* suppress gcc warning */
2339         unsigned int max_segment;
2340         int ret;
2341         gfp_t gfp;
2342
2343         /* Assert that the object is not currently in any GPU domain. As it
2344          * wasn't in the GTT, there shouldn't be any way it could have been in
2345          * a GPU cache
2346          */
2347         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2348         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2349
2350         max_segment = swiotlb_max_segment();
2351         if (!max_segment)
2352                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2353
2354         st = kmalloc(sizeof(*st), GFP_KERNEL);
2355         if (st == NULL)
2356                 return ERR_PTR(-ENOMEM);
2357
2358 rebuild_st:
2359         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2360                 kfree(st);
2361                 return ERR_PTR(-ENOMEM);
2362         }
2363
2364         /* Get the list of pages out of our struct file.  They'll be pinned
2365          * at this point until we release them.
2366          *
2367          * Fail silently without starting the shrinker
2368          */
2369         mapping = obj->base.filp->f_mapping;
2370         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2371         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2372         sg = st->sgl;
2373         st->nents = 0;
2374         for (i = 0; i < page_count; i++) {
2375                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2376                 if (unlikely(IS_ERR(page))) {
2377                         i915_gem_shrink(dev_priv,
2378                                         page_count,
2379                                         I915_SHRINK_BOUND |
2380                                         I915_SHRINK_UNBOUND |
2381                                         I915_SHRINK_PURGEABLE);
2382                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2383                 }
2384                 if (unlikely(IS_ERR(page))) {
2385                         gfp_t reclaim;
2386
2387                         /* We've tried hard to allocate the memory by reaping
2388                          * our own buffer, now let the real VM do its job and
2389                          * go down in flames if truly OOM.
2390                          *
2391                          * However, since graphics tend to be disposable,
2392                          * defer the oom here by reporting the ENOMEM back
2393                          * to userspace.
2394                          */
2395                         reclaim = mapping_gfp_mask(mapping);
2396                         reclaim |= __GFP_NORETRY; /* reclaim, but no oom */
2397
2398                         page = shmem_read_mapping_page_gfp(mapping, i, reclaim);
2399                         if (IS_ERR(page)) {
2400                                 ret = PTR_ERR(page);
2401                                 goto err_sg;
2402                         }
2403                 }
2404                 if (!i ||
2405                     sg->length >= max_segment ||
2406                     page_to_pfn(page) != last_pfn + 1) {
2407                         if (i)
2408                                 sg = sg_next(sg);
2409                         st->nents++;
2410                         sg_set_page(sg, page, PAGE_SIZE, 0);
2411                 } else {
2412                         sg->length += PAGE_SIZE;
2413                 }
2414                 last_pfn = page_to_pfn(page);
2415
2416                 /* Check that the i965g/gm workaround works. */
2417                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2418         }
2419         if (sg) /* loop terminated early; short sg table */
2420                 sg_mark_end(sg);
2421
2422         /* Trim unused sg entries to avoid wasting memory. */
2423         i915_sg_trim(st);
2424
2425         ret = i915_gem_gtt_prepare_pages(obj, st);
2426         if (ret) {
2427                 /* DMA remapping failed? One possible cause is that
2428                  * it could not reserve enough large entries, asking
2429                  * for PAGE_SIZE chunks instead may be helpful.
2430                  */
2431                 if (max_segment > PAGE_SIZE) {
2432                         for_each_sgt_page(page, sgt_iter, st)
2433                                 put_page(page);
2434                         sg_free_table(st);
2435
2436                         max_segment = PAGE_SIZE;
2437                         goto rebuild_st;
2438                 } else {
2439                         dev_warn(&dev_priv->drm.pdev->dev,
2440                                  "Failed to DMA remap %lu pages\n",
2441                                  page_count);
2442                         goto err_pages;
2443                 }
2444         }
2445
2446         if (i915_gem_object_needs_bit17_swizzle(obj))
2447                 i915_gem_object_do_bit_17_swizzle(obj, st);
2448
2449         return st;
2450
2451 err_sg:
2452         sg_mark_end(sg);
2453 err_pages:
2454         for_each_sgt_page(page, sgt_iter, st)
2455                 put_page(page);
2456         sg_free_table(st);
2457         kfree(st);
2458
2459         /* shmemfs first checks if there is enough memory to allocate the page
2460          * and reports ENOSPC should there be insufficient, along with the usual
2461          * ENOMEM for a genuine allocation failure.
2462          *
2463          * We use ENOSPC in our driver to mean that we have run out of aperture
2464          * space and so want to translate the error from shmemfs back to our
2465          * usual understanding of ENOMEM.
2466          */
2467         if (ret == -ENOSPC)
2468                 ret = -ENOMEM;
2469
2470         return ERR_PTR(ret);
2471 }
2472
2473 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2474                                  struct sg_table *pages)
2475 {
2476         lockdep_assert_held(&obj->mm.lock);
2477
2478         obj->mm.get_page.sg_pos = pages->sgl;
2479         obj->mm.get_page.sg_idx = 0;
2480
2481         obj->mm.pages = pages;
2482
2483         if (i915_gem_object_is_tiled(obj) &&
2484             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2485                 GEM_BUG_ON(obj->mm.quirked);
2486                 __i915_gem_object_pin_pages(obj);
2487                 obj->mm.quirked = true;
2488         }
2489 }
2490
2491 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2492 {
2493         struct sg_table *pages;
2494
2495         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2496
2497         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2498                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2499                 return -EFAULT;
2500         }
2501
2502         pages = obj->ops->get_pages(obj);
2503         if (unlikely(IS_ERR(pages)))
2504                 return PTR_ERR(pages);
2505
2506         __i915_gem_object_set_pages(obj, pages);
2507         return 0;
2508 }
2509
2510 /* Ensure that the associated pages are gathered from the backing storage
2511  * and pinned into our object. i915_gem_object_pin_pages() may be called
2512  * multiple times before they are released by a single call to
2513  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2514  * either as a result of memory pressure (reaping pages under the shrinker)
2515  * or as the object is itself released.
2516  */
2517 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2518 {
2519         int err;
2520
2521         err = mutex_lock_interruptible(&obj->mm.lock);
2522         if (err)
2523                 return err;
2524
2525         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2526                 err = ____i915_gem_object_get_pages(obj);
2527                 if (err)
2528                         goto unlock;
2529
2530                 smp_mb__before_atomic();
2531         }
2532         atomic_inc(&obj->mm.pages_pin_count);
2533
2534 unlock:
2535         mutex_unlock(&obj->mm.lock);
2536         return err;
2537 }
2538
2539 /* The 'mapping' part of i915_gem_object_pin_map() below */
2540 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2541                                  enum i915_map_type type)
2542 {
2543         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2544         struct sg_table *sgt = obj->mm.pages;
2545         struct sgt_iter sgt_iter;
2546         struct page *page;
2547         struct page *stack_pages[32];
2548         struct page **pages = stack_pages;
2549         unsigned long i = 0;
2550         pgprot_t pgprot;
2551         void *addr;
2552
2553         /* A single page can always be kmapped */
2554         if (n_pages == 1 && type == I915_MAP_WB)
2555                 return kmap(sg_page(sgt->sgl));
2556
2557         if (n_pages > ARRAY_SIZE(stack_pages)) {
2558                 /* Too big for stack -- allocate temporary array instead */
2559                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2560                 if (!pages)
2561                         return NULL;
2562         }
2563
2564         for_each_sgt_page(page, sgt_iter, sgt)
2565                 pages[i++] = page;
2566
2567         /* Check that we have the expected number of pages */
2568         GEM_BUG_ON(i != n_pages);
2569
2570         switch (type) {
2571         case I915_MAP_WB:
2572                 pgprot = PAGE_KERNEL;
2573                 break;
2574         case I915_MAP_WC:
2575                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2576                 break;
2577         }
2578         addr = vmap(pages, n_pages, 0, pgprot);
2579
2580         if (pages != stack_pages)
2581                 drm_free_large(pages);
2582
2583         return addr;
2584 }
2585
2586 /* get, pin, and map the pages of the object into kernel space */
2587 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2588                               enum i915_map_type type)
2589 {
2590         enum i915_map_type has_type;
2591         bool pinned;
2592         void *ptr;
2593         int ret;
2594
2595         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2596
2597         ret = mutex_lock_interruptible(&obj->mm.lock);
2598         if (ret)
2599                 return ERR_PTR(ret);
2600
2601         pinned = true;
2602         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2603                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2604                         ret = ____i915_gem_object_get_pages(obj);
2605                         if (ret)
2606                                 goto err_unlock;
2607
2608                         smp_mb__before_atomic();
2609                 }
2610                 atomic_inc(&obj->mm.pages_pin_count);
2611                 pinned = false;
2612         }
2613         GEM_BUG_ON(!obj->mm.pages);
2614
2615         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2616         if (ptr && has_type != type) {
2617                 if (pinned) {
2618                         ret = -EBUSY;
2619                         goto err_unpin;
2620                 }
2621
2622                 if (is_vmalloc_addr(ptr))
2623                         vunmap(ptr);
2624                 else
2625                         kunmap(kmap_to_page(ptr));
2626
2627                 ptr = obj->mm.mapping = NULL;
2628         }
2629
2630         if (!ptr) {
2631                 ptr = i915_gem_object_map(obj, type);
2632                 if (!ptr) {
2633                         ret = -ENOMEM;
2634                         goto err_unpin;
2635                 }
2636
2637                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2638         }
2639
2640 out_unlock:
2641         mutex_unlock(&obj->mm.lock);
2642         return ptr;
2643
2644 err_unpin:
2645         atomic_dec(&obj->mm.pages_pin_count);
2646 err_unlock:
2647         ptr = ERR_PTR(ret);
2648         goto out_unlock;
2649 }
2650
2651 static int
2652 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2653                            const struct drm_i915_gem_pwrite *arg)
2654 {
2655         struct address_space *mapping = obj->base.filp->f_mapping;
2656         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2657         u64 remain, offset;
2658         unsigned int pg;
2659
2660         /* Before we instantiate/pin the backing store for our use, we
2661          * can prepopulate the shmemfs filp efficiently using a write into
2662          * the pagecache. We avoid the penalty of instantiating all the
2663          * pages, important if the user is just writing to a few and never
2664          * uses the object on the GPU, and using a direct write into shmemfs
2665          * allows it to avoid the cost of retrieving a page (either swapin
2666          * or clearing-before-use) before it is overwritten.
2667          */
2668         if (READ_ONCE(obj->mm.pages))
2669                 return -ENODEV;
2670
2671         /* Before the pages are instantiated the object is treated as being
2672          * in the CPU domain. The pages will be clflushed as required before
2673          * use, and we can freely write into the pages directly. If userspace
2674          * races pwrite with any other operation; corruption will ensue -
2675          * that is userspace's prerogative!
2676          */
2677
2678         remain = arg->size;
2679         offset = arg->offset;
2680         pg = offset_in_page(offset);
2681
2682         do {
2683                 unsigned int len, unwritten;
2684                 struct page *page;
2685                 void *data, *vaddr;
2686                 int err;
2687
2688                 len = PAGE_SIZE - pg;
2689                 if (len > remain)
2690                         len = remain;
2691
2692                 err = pagecache_write_begin(obj->base.filp, mapping,
2693                                             offset, len, 0,
2694                                             &page, &data);
2695                 if (err < 0)
2696                         return err;
2697
2698                 vaddr = kmap(page);
2699                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2700                 kunmap(page);
2701
2702                 err = pagecache_write_end(obj->base.filp, mapping,
2703                                           offset, len, len - unwritten,
2704                                           page, data);
2705                 if (err < 0)
2706                         return err;
2707
2708                 if (unwritten)
2709                         return -EFAULT;
2710
2711                 remain -= len;
2712                 user_data += len;
2713                 offset += len;
2714                 pg = 0;
2715         } while (remain);
2716
2717         return 0;
2718 }
2719
2720 static bool ban_context(const struct i915_gem_context *ctx)
2721 {
2722         return (i915_gem_context_is_bannable(ctx) &&
2723                 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2724 }
2725
2726 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2727 {
2728         ctx->guilty_count++;
2729         ctx->ban_score += CONTEXT_SCORE_GUILTY;
2730         if (ban_context(ctx))
2731                 i915_gem_context_set_banned(ctx);
2732
2733         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2734                          ctx->name, ctx->ban_score,
2735                          yesno(i915_gem_context_is_banned(ctx)));
2736
2737         if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2738                 return;
2739
2740         ctx->file_priv->context_bans++;
2741         DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2742                          ctx->name, ctx->file_priv->context_bans);
2743 }
2744
2745 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2746 {
2747         ctx->active_count++;
2748 }
2749
2750 struct drm_i915_gem_request *
2751 i915_gem_find_active_request(struct intel_engine_cs *engine)
2752 {
2753         struct drm_i915_gem_request *request, *active = NULL;
2754         unsigned long flags;
2755
2756         /* We are called by the error capture and reset at a random
2757          * point in time. In particular, note that neither is crucially
2758          * ordered with an interrupt. After a hang, the GPU is dead and we
2759          * assume that no more writes can happen (we waited long enough for
2760          * all writes that were in transaction to be flushed) - adding an
2761          * extra delay for a recent interrupt is pointless. Hence, we do
2762          * not need an engine->irq_seqno_barrier() before the seqno reads.
2763          */
2764         spin_lock_irqsave(&engine->timeline->lock, flags);
2765         list_for_each_entry(request, &engine->timeline->requests, link) {
2766                 if (__i915_gem_request_completed(request,
2767                                                  request->global_seqno))
2768                         continue;
2769
2770                 GEM_BUG_ON(request->engine != engine);
2771                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2772                                     &request->fence.flags));
2773
2774                 active = request;
2775                 break;
2776         }
2777         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2778
2779         return active;
2780 }
2781
2782 static bool engine_stalled(struct intel_engine_cs *engine)
2783 {
2784         if (!engine->hangcheck.stalled)
2785                 return false;
2786
2787         /* Check for possible seqno movement after hang declaration */
2788         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2789                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2790                 return false;
2791         }
2792
2793         return true;
2794 }
2795
2796 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2797 {
2798         struct intel_engine_cs *engine;
2799         enum intel_engine_id id;
2800         int err = 0;
2801
2802         /* Ensure irq handler finishes, and not run again. */
2803         for_each_engine(engine, dev_priv, id) {
2804                 struct drm_i915_gem_request *request;
2805
2806                 /* Prevent the signaler thread from updating the request
2807                  * state (by calling dma_fence_signal) as we are processing
2808                  * the reset. The write from the GPU of the seqno is
2809                  * asynchronous and the signaler thread may see a different
2810                  * value to us and declare the request complete, even though
2811                  * the reset routine have picked that request as the active
2812                  * (incomplete) request. This conflict is not handled
2813                  * gracefully!
2814                  */
2815                 kthread_park(engine->breadcrumbs.signaler);
2816
2817                 /* Prevent request submission to the hardware until we have
2818                  * completed the reset in i915_gem_reset_finish(). If a request
2819                  * is completed by one engine, it may then queue a request
2820                  * to a second via its engine->irq_tasklet *just* as we are
2821                  * calling engine->init_hw() and also writing the ELSP.
2822                  * Turning off the engine->irq_tasklet until the reset is over
2823                  * prevents the race.
2824                  */
2825                 tasklet_kill(&engine->irq_tasklet);
2826                 tasklet_disable(&engine->irq_tasklet);
2827
2828                 if (engine->irq_seqno_barrier)
2829                         engine->irq_seqno_barrier(engine);
2830
2831                 if (engine_stalled(engine)) {
2832                         request = i915_gem_find_active_request(engine);
2833                         if (request && request->fence.error == -EIO)
2834                                 err = -EIO; /* Previous reset failed! */
2835                 }
2836         }
2837
2838         i915_gem_revoke_fences(dev_priv);
2839
2840         return err;
2841 }
2842
2843 static void skip_request(struct drm_i915_gem_request *request)
2844 {
2845         void *vaddr = request->ring->vaddr;
2846         u32 head;
2847
2848         /* As this request likely depends on state from the lost
2849          * context, clear out all the user operations leaving the
2850          * breadcrumb at the end (so we get the fence notifications).
2851          */
2852         head = request->head;
2853         if (request->postfix < head) {
2854                 memset(vaddr + head, 0, request->ring->size - head);
2855                 head = 0;
2856         }
2857         memset(vaddr + head, 0, request->postfix - head);
2858
2859         dma_fence_set_error(&request->fence, -EIO);
2860 }
2861
2862 static void engine_skip_context(struct drm_i915_gem_request *request)
2863 {
2864         struct intel_engine_cs *engine = request->engine;
2865         struct i915_gem_context *hung_ctx = request->ctx;
2866         struct intel_timeline *timeline;
2867         unsigned long flags;
2868
2869         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2870
2871         spin_lock_irqsave(&engine->timeline->lock, flags);
2872         spin_lock(&timeline->lock);
2873
2874         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2875                 if (request->ctx == hung_ctx)
2876                         skip_request(request);
2877
2878         list_for_each_entry(request, &timeline->requests, link)
2879                 skip_request(request);
2880
2881         spin_unlock(&timeline->lock);
2882         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2883 }
2884
2885 /* Returns true if the request was guilty of hang */
2886 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2887 {
2888         /* Read once and return the resolution */
2889         const bool guilty = engine_stalled(request->engine);
2890
2891         /* The guilty request will get skipped on a hung engine.
2892          *
2893          * Users of client default contexts do not rely on logical
2894          * state preserved between batches so it is safe to execute
2895          * queued requests following the hang. Non default contexts
2896          * rely on preserved state, so skipping a batch loses the
2897          * evolution of the state and it needs to be considered corrupted.
2898          * Executing more queued batches on top of corrupted state is
2899          * risky. But we take the risk by trying to advance through
2900          * the queued requests in order to make the client behaviour
2901          * more predictable around resets, by not throwing away random
2902          * amount of batches it has prepared for execution. Sophisticated
2903          * clients can use gem_reset_stats_ioctl and dma fence status
2904          * (exported via sync_file info ioctl on explicit fences) to observe
2905          * when it loses the context state and should rebuild accordingly.
2906          *
2907          * The context ban, and ultimately the client ban, mechanism are safety
2908          * valves if client submission ends up resulting in nothing more than
2909          * subsequent hangs.
2910          */
2911
2912         if (guilty) {
2913                 i915_gem_context_mark_guilty(request->ctx);
2914                 skip_request(request);
2915         } else {
2916                 i915_gem_context_mark_innocent(request->ctx);
2917                 dma_fence_set_error(&request->fence, -EAGAIN);
2918         }
2919
2920         return guilty;
2921 }
2922
2923 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2924 {
2925         struct drm_i915_gem_request *request;
2926
2927         request = i915_gem_find_active_request(engine);
2928         if (request && i915_gem_reset_request(request)) {
2929                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2930                                  engine->name, request->global_seqno);
2931
2932                 /* If this context is now banned, skip all pending requests. */
2933                 if (i915_gem_context_is_banned(request->ctx))
2934                         engine_skip_context(request);
2935         }
2936
2937         /* Setup the CS to resume from the breadcrumb of the hung request */
2938         engine->reset_hw(engine, request);
2939 }
2940
2941 void i915_gem_reset(struct drm_i915_private *dev_priv)
2942 {
2943         struct intel_engine_cs *engine;
2944         enum intel_engine_id id;
2945
2946         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2947
2948         i915_gem_retire_requests(dev_priv);
2949
2950         for_each_engine(engine, dev_priv, id) {
2951                 struct i915_gem_context *ctx;
2952
2953                 i915_gem_reset_engine(engine);
2954                 ctx = fetch_and_zero(&engine->last_retired_context);
2955                 if (ctx)
2956                         engine->context_unpin(engine, ctx);
2957         }
2958
2959         i915_gem_restore_fences(dev_priv);
2960
2961         if (dev_priv->gt.awake) {
2962                 intel_sanitize_gt_powersave(dev_priv);
2963                 intel_enable_gt_powersave(dev_priv);
2964                 if (INTEL_GEN(dev_priv) >= 6)
2965                         gen6_rps_busy(dev_priv);
2966         }
2967 }
2968
2969 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2970 {
2971         struct intel_engine_cs *engine;
2972         enum intel_engine_id id;
2973
2974         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2975
2976         for_each_engine(engine, dev_priv, id) {
2977                 tasklet_enable(&engine->irq_tasklet);
2978                 kthread_unpark(engine->breadcrumbs.signaler);
2979         }
2980 }
2981
2982 static void nop_submit_request(struct drm_i915_gem_request *request)
2983 {
2984         dma_fence_set_error(&request->fence, -EIO);
2985         i915_gem_request_submit(request);
2986         intel_engine_init_global_seqno(request->engine, request->global_seqno);
2987 }
2988
2989 static void engine_set_wedged(struct intel_engine_cs *engine)
2990 {
2991         struct drm_i915_gem_request *request;
2992         unsigned long flags;
2993
2994         /* We need to be sure that no thread is running the old callback as
2995          * we install the nop handler (otherwise we would submit a request
2996          * to hardware that will never complete). In order to prevent this
2997          * race, we wait until the machine is idle before making the swap
2998          * (using stop_machine()).
2999          */
3000         engine->submit_request = nop_submit_request;
3001
3002         /* Mark all executing requests as skipped */
3003         spin_lock_irqsave(&engine->timeline->lock, flags);
3004         list_for_each_entry(request, &engine->timeline->requests, link)
3005                 dma_fence_set_error(&request->fence, -EIO);
3006         spin_unlock_irqrestore(&engine->timeline->lock, flags);
3007
3008         /* Mark all pending requests as complete so that any concurrent
3009          * (lockless) lookup doesn't try and wait upon the request as we
3010          * reset it.
3011          */
3012         intel_engine_init_global_seqno(engine,
3013                                        intel_engine_last_submit(engine));
3014
3015         /*
3016          * Clear the execlists queue up before freeing the requests, as those
3017          * are the ones that keep the context and ringbuffer backing objects
3018          * pinned in place.
3019          */
3020
3021         if (i915.enable_execlists) {
3022                 unsigned long flags;
3023
3024                 spin_lock_irqsave(&engine->timeline->lock, flags);
3025
3026                 i915_gem_request_put(engine->execlist_port[0].request);
3027                 i915_gem_request_put(engine->execlist_port[1].request);
3028                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3029                 engine->execlist_queue = RB_ROOT;
3030                 engine->execlist_first = NULL;
3031
3032                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3033         }
3034 }
3035
3036 static int __i915_gem_set_wedged_BKL(void *data)
3037 {
3038         struct drm_i915_private *i915 = data;
3039         struct intel_engine_cs *engine;
3040         enum intel_engine_id id;
3041
3042         for_each_engine(engine, i915, id)
3043                 engine_set_wedged(engine);
3044
3045         return 0;
3046 }
3047
3048 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3049 {
3050         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3051         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3052
3053         /* Retire completed requests first so the list of inflight/incomplete
3054          * requests is accurate and we don't try and mark successful requests
3055          * as in error during __i915_gem_set_wedged_BKL().
3056          */
3057         i915_gem_retire_requests(dev_priv);
3058
3059         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3060
3061         i915_gem_context_lost(dev_priv);
3062
3063         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3064 }
3065
3066 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3067 {
3068         struct i915_gem_timeline *tl;
3069         int i;
3070
3071         lockdep_assert_held(&i915->drm.struct_mutex);
3072         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3073                 return true;
3074
3075         /* Before unwedging, make sure that all pending operations
3076          * are flushed and errored out - we may have requests waiting upon
3077          * third party fences. We marked all inflight requests as EIO, and
3078          * every execbuf since returned EIO, for consistency we want all
3079          * the currently pending requests to also be marked as EIO, which
3080          * is done inside our nop_submit_request - and so we must wait.
3081          *
3082          * No more can be submitted until we reset the wedged bit.
3083          */
3084         list_for_each_entry(tl, &i915->gt.timelines, link) {
3085                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3086                         struct drm_i915_gem_request *rq;
3087
3088                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3089                                                   &i915->drm.struct_mutex);
3090                         if (!rq)
3091                                 continue;
3092
3093                         /* We can't use our normal waiter as we want to
3094                          * avoid recursively trying to handle the current
3095                          * reset. The basic dma_fence_default_wait() installs
3096                          * a callback for dma_fence_signal(), which is
3097                          * triggered by our nop handler (indirectly, the
3098                          * callback enables the signaler thread which is
3099                          * woken by the nop_submit_request() advancing the seqno
3100                          * and when the seqno passes the fence, the signaler
3101                          * then signals the fence waking us up).
3102                          */
3103                         if (dma_fence_default_wait(&rq->fence, true,
3104                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3105                                 return false;
3106                 }
3107         }
3108
3109         /* Undo nop_submit_request. We prevent all new i915 requests from
3110          * being queued (by disallowing execbuf whilst wedged) so having
3111          * waited for all active requests above, we know the system is idle
3112          * and do not have to worry about a thread being inside
3113          * engine->submit_request() as we swap over. So unlike installing
3114          * the nop_submit_request on reset, we can do this from normal
3115          * context and do not require stop_machine().
3116          */
3117         intel_engines_reset_default_submission(i915);
3118
3119         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3120         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3121
3122         return true;
3123 }
3124
3125 static void
3126 i915_gem_retire_work_handler(struct work_struct *work)
3127 {
3128         struct drm_i915_private *dev_priv =
3129                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3130         struct drm_device *dev = &dev_priv->drm;
3131
3132         /* Come back later if the device is busy... */
3133         if (mutex_trylock(&dev->struct_mutex)) {
3134                 i915_gem_retire_requests(dev_priv);
3135                 mutex_unlock(&dev->struct_mutex);
3136         }
3137
3138         /* Keep the retire handler running until we are finally idle.
3139          * We do not need to do this test under locking as in the worst-case
3140          * we queue the retire worker once too often.
3141          */
3142         if (READ_ONCE(dev_priv->gt.awake)) {
3143                 i915_queue_hangcheck(dev_priv);
3144                 queue_delayed_work(dev_priv->wq,
3145                                    &dev_priv->gt.retire_work,
3146                                    round_jiffies_up_relative(HZ));
3147         }
3148 }
3149
3150 static void
3151 i915_gem_idle_work_handler(struct work_struct *work)
3152 {
3153         struct drm_i915_private *dev_priv =
3154                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3155         struct drm_device *dev = &dev_priv->drm;
3156         struct intel_engine_cs *engine;
3157         enum intel_engine_id id;
3158         bool rearm_hangcheck;
3159
3160         if (!READ_ONCE(dev_priv->gt.awake))
3161                 return;
3162
3163         /*
3164          * Wait for last execlists context complete, but bail out in case a
3165          * new request is submitted.
3166          */
3167         wait_for(intel_engines_are_idle(dev_priv), 10);
3168         if (READ_ONCE(dev_priv->gt.active_requests))
3169                 return;
3170
3171         rearm_hangcheck =
3172                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3173
3174         if (!mutex_trylock(&dev->struct_mutex)) {
3175                 /* Currently busy, come back later */
3176                 mod_delayed_work(dev_priv->wq,
3177                                  &dev_priv->gt.idle_work,
3178                                  msecs_to_jiffies(50));
3179                 goto out_rearm;
3180         }
3181
3182         /*
3183          * New request retired after this work handler started, extend active
3184          * period until next instance of the work.
3185          */
3186         if (work_pending(work))
3187                 goto out_unlock;
3188
3189         if (dev_priv->gt.active_requests)
3190                 goto out_unlock;
3191
3192         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3193                 DRM_ERROR("Timeout waiting for engines to idle\n");
3194
3195         for_each_engine(engine, dev_priv, id) {
3196                 intel_engine_disarm_breadcrumbs(engine);
3197                 i915_gem_batch_pool_fini(&engine->batch_pool);
3198         }
3199         i915_gem_timelines_mark_idle(dev_priv);
3200
3201         GEM_BUG_ON(!dev_priv->gt.awake);
3202         dev_priv->gt.awake = false;
3203         rearm_hangcheck = false;
3204
3205         if (INTEL_GEN(dev_priv) >= 6)
3206                 gen6_rps_idle(dev_priv);
3207         intel_runtime_pm_put(dev_priv);
3208 out_unlock:
3209         mutex_unlock(&dev->struct_mutex);
3210
3211 out_rearm:
3212         if (rearm_hangcheck) {
3213                 GEM_BUG_ON(!dev_priv->gt.awake);
3214                 i915_queue_hangcheck(dev_priv);
3215         }
3216 }
3217
3218 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3219 {
3220         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3221         struct drm_i915_file_private *fpriv = file->driver_priv;
3222         struct i915_vma *vma, *vn;
3223
3224         mutex_lock(&obj->base.dev->struct_mutex);
3225         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3226                 if (vma->vm->file == fpriv)
3227                         i915_vma_close(vma);
3228
3229         if (i915_gem_object_is_active(obj) &&
3230             !i915_gem_object_has_active_reference(obj)) {
3231                 i915_gem_object_set_active_reference(obj);
3232                 i915_gem_object_get(obj);
3233         }
3234         mutex_unlock(&obj->base.dev->struct_mutex);
3235 }
3236
3237 static unsigned long to_wait_timeout(s64 timeout_ns)
3238 {
3239         if (timeout_ns < 0)
3240                 return MAX_SCHEDULE_TIMEOUT;
3241
3242         if (timeout_ns == 0)
3243                 return 0;
3244
3245         return nsecs_to_jiffies_timeout(timeout_ns);
3246 }
3247
3248 /**
3249  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3250  * @dev: drm device pointer
3251  * @data: ioctl data blob
3252  * @file: drm file pointer
3253  *
3254  * Returns 0 if successful, else an error is returned with the remaining time in
3255  * the timeout parameter.
3256  *  -ETIME: object is still busy after timeout
3257  *  -ERESTARTSYS: signal interrupted the wait
3258  *  -ENONENT: object doesn't exist
3259  * Also possible, but rare:
3260  *  -EAGAIN: GPU wedged
3261  *  -ENOMEM: damn
3262  *  -ENODEV: Internal IRQ fail
3263  *  -E?: The add request failed
3264  *
3265  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3266  * non-zero timeout parameter the wait ioctl will wait for the given number of
3267  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3268  * without holding struct_mutex the object may become re-busied before this
3269  * function completes. A similar but shorter * race condition exists in the busy
3270  * ioctl
3271  */
3272 int
3273 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3274 {
3275         struct drm_i915_gem_wait *args = data;
3276         struct drm_i915_gem_object *obj;
3277         ktime_t start;
3278         long ret;
3279
3280         if (args->flags != 0)
3281                 return -EINVAL;
3282
3283         obj = i915_gem_object_lookup(file, args->bo_handle);
3284         if (!obj)
3285                 return -ENOENT;
3286
3287         start = ktime_get();
3288
3289         ret = i915_gem_object_wait(obj,
3290                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3291                                    to_wait_timeout(args->timeout_ns),
3292                                    to_rps_client(file));
3293
3294         if (args->timeout_ns > 0) {
3295                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3296                 if (args->timeout_ns < 0)
3297                         args->timeout_ns = 0;
3298
3299                 /*
3300                  * Apparently ktime isn't accurate enough and occasionally has a
3301                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3302                  * things up to make the test happy. We allow up to 1 jiffy.
3303                  *
3304                  * This is a regression from the timespec->ktime conversion.
3305                  */
3306                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3307                         args->timeout_ns = 0;
3308         }
3309
3310         i915_gem_object_put(obj);
3311         return ret;
3312 }
3313
3314 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3315 {
3316         int ret, i;
3317
3318         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3319                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3320                 if (ret)
3321                         return ret;
3322         }
3323
3324         return 0;
3325 }
3326
3327 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3328 {
3329         return wait_for(intel_engine_is_idle(engine), timeout_ms);
3330 }
3331
3332 static int wait_for_engines(struct drm_i915_private *i915)
3333 {
3334         struct intel_engine_cs *engine;
3335         enum intel_engine_id id;
3336
3337         for_each_engine(engine, i915, id) {
3338                 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3339                         i915_gem_set_wedged(i915);
3340                         return -EIO;
3341                 }
3342
3343                 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3344                            intel_engine_last_submit(engine));
3345         }
3346
3347         return 0;
3348 }
3349
3350 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3351 {
3352         int ret;
3353
3354         if (flags & I915_WAIT_LOCKED) {
3355                 struct i915_gem_timeline *tl;
3356
3357                 lockdep_assert_held(&i915->drm.struct_mutex);
3358
3359                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3360                         ret = wait_for_timeline(tl, flags);
3361                         if (ret)
3362                                 return ret;
3363                 }
3364
3365                 i915_gem_retire_requests(i915);
3366                 GEM_BUG_ON(i915->gt.active_requests);
3367
3368                 ret = wait_for_engines(i915);
3369         } else {
3370                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3371         }
3372
3373         return ret;
3374 }
3375
3376 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3377 {
3378         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3379                 return;
3380
3381         i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3382         obj->base.write_domain = 0;
3383 }
3384
3385 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3386 {
3387         if (!READ_ONCE(obj->pin_display))
3388                 return;
3389
3390         mutex_lock(&obj->base.dev->struct_mutex);
3391         __i915_gem_object_flush_for_display(obj);
3392         mutex_unlock(&obj->base.dev->struct_mutex);
3393 }
3394
3395 /**
3396  * Moves a single object to the WC read, and possibly write domain.
3397  * @obj: object to act on
3398  * @write: ask for write access or read only
3399  *
3400  * This function returns when the move is complete, including waiting on
3401  * flushes to occur.
3402  */
3403 int
3404 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3405 {
3406         int ret;
3407
3408         lockdep_assert_held(&obj->base.dev->struct_mutex);
3409
3410         ret = i915_gem_object_wait(obj,
3411                                    I915_WAIT_INTERRUPTIBLE |
3412                                    I915_WAIT_LOCKED |
3413                                    (write ? I915_WAIT_ALL : 0),
3414                                    MAX_SCHEDULE_TIMEOUT,
3415                                    NULL);
3416         if (ret)
3417                 return ret;
3418
3419         if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3420                 return 0;
3421
3422         /* Flush and acquire obj->pages so that we are coherent through
3423          * direct access in memory with previous cached writes through
3424          * shmemfs and that our cache domain tracking remains valid.
3425          * For example, if the obj->filp was moved to swap without us
3426          * being notified and releasing the pages, we would mistakenly
3427          * continue to assume that the obj remained out of the CPU cached
3428          * domain.
3429          */
3430         ret = i915_gem_object_pin_pages(obj);
3431         if (ret)
3432                 return ret;
3433
3434         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3435
3436         /* Serialise direct access to this object with the barriers for
3437          * coherent writes from the GPU, by effectively invalidating the
3438          * WC domain upon first access.
3439          */
3440         if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3441                 mb();
3442
3443         /* It should now be out of any other write domains, and we can update
3444          * the domain values for our changes.
3445          */
3446         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3447         obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3448         if (write) {
3449                 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3450                 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3451                 obj->mm.dirty = true;
3452         }
3453
3454         i915_gem_object_unpin_pages(obj);
3455         return 0;
3456 }
3457
3458 /**
3459  * Moves a single object to the GTT read, and possibly write domain.
3460  * @obj: object to act on
3461  * @write: ask for write access or read only
3462  *
3463  * This function returns when the move is complete, including waiting on
3464  * flushes to occur.
3465  */
3466 int
3467 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3468 {
3469         int ret;
3470
3471         lockdep_assert_held(&obj->base.dev->struct_mutex);
3472
3473         ret = i915_gem_object_wait(obj,
3474                                    I915_WAIT_INTERRUPTIBLE |
3475                                    I915_WAIT_LOCKED |
3476                                    (write ? I915_WAIT_ALL : 0),
3477                                    MAX_SCHEDULE_TIMEOUT,
3478                                    NULL);
3479         if (ret)
3480                 return ret;
3481
3482         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3483                 return 0;
3484
3485         /* Flush and acquire obj->pages so that we are coherent through
3486          * direct access in memory with previous cached writes through
3487          * shmemfs and that our cache domain tracking remains valid.
3488          * For example, if the obj->filp was moved to swap without us
3489          * being notified and releasing the pages, we would mistakenly
3490          * continue to assume that the obj remained out of the CPU cached
3491          * domain.
3492          */
3493         ret = i915_gem_object_pin_pages(obj);
3494         if (ret)
3495                 return ret;
3496
3497         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3498
3499         /* Serialise direct access to this object with the barriers for
3500          * coherent writes from the GPU, by effectively invalidating the
3501          * GTT domain upon first access.
3502          */
3503         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3504                 mb();
3505
3506         /* It should now be out of any other write domains, and we can update
3507          * the domain values for our changes.
3508          */
3509         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3510         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3511         if (write) {
3512                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3513                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3514                 obj->mm.dirty = true;
3515         }
3516
3517         i915_gem_object_unpin_pages(obj);
3518         return 0;
3519 }
3520
3521 /**
3522  * Changes the cache-level of an object across all VMA.
3523  * @obj: object to act on
3524  * @cache_level: new cache level to set for the object
3525  *
3526  * After this function returns, the object will be in the new cache-level
3527  * across all GTT and the contents of the backing storage will be coherent,
3528  * with respect to the new cache-level. In order to keep the backing storage
3529  * coherent for all users, we only allow a single cache level to be set
3530  * globally on the object and prevent it from being changed whilst the
3531  * hardware is reading from the object. That is if the object is currently
3532  * on the scanout it will be set to uncached (or equivalent display
3533  * cache coherency) and all non-MOCS GPU access will also be uncached so
3534  * that all direct access to the scanout remains coherent.
3535  */
3536 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3537                                     enum i915_cache_level cache_level)
3538 {
3539         struct i915_vma *vma;
3540         int ret;
3541
3542         lockdep_assert_held(&obj->base.dev->struct_mutex);
3543
3544         if (obj->cache_level == cache_level)
3545                 return 0;
3546
3547         /* Inspect the list of currently bound VMA and unbind any that would
3548          * be invalid given the new cache-level. This is principally to
3549          * catch the issue of the CS prefetch crossing page boundaries and
3550          * reading an invalid PTE on older architectures.
3551          */
3552 restart:
3553         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3554                 if (!drm_mm_node_allocated(&vma->node))
3555                         continue;
3556
3557                 if (i915_vma_is_pinned(vma)) {
3558                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3559                         return -EBUSY;
3560                 }
3561
3562                 if (i915_gem_valid_gtt_space(vma, cache_level))
3563                         continue;
3564
3565                 ret = i915_vma_unbind(vma);
3566                 if (ret)
3567                         return ret;
3568
3569                 /* As unbinding may affect other elements in the
3570                  * obj->vma_list (due to side-effects from retiring
3571                  * an active vma), play safe and restart the iterator.
3572                  */
3573                 goto restart;
3574         }
3575
3576         /* We can reuse the existing drm_mm nodes but need to change the
3577          * cache-level on the PTE. We could simply unbind them all and
3578          * rebind with the correct cache-level on next use. However since
3579          * we already have a valid slot, dma mapping, pages etc, we may as
3580          * rewrite the PTE in the belief that doing so tramples upon less
3581          * state and so involves less work.
3582          */
3583         if (obj->bind_count) {
3584                 /* Before we change the PTE, the GPU must not be accessing it.
3585                  * If we wait upon the object, we know that all the bound
3586                  * VMA are no longer active.
3587                  */
3588                 ret = i915_gem_object_wait(obj,
3589                                            I915_WAIT_INTERRUPTIBLE |
3590                                            I915_WAIT_LOCKED |
3591                                            I915_WAIT_ALL,
3592                                            MAX_SCHEDULE_TIMEOUT,
3593                                            NULL);
3594                 if (ret)
3595                         return ret;
3596
3597                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3598                     cache_level != I915_CACHE_NONE) {
3599                         /* Access to snoopable pages through the GTT is
3600                          * incoherent and on some machines causes a hard
3601                          * lockup. Relinquish the CPU mmaping to force
3602                          * userspace to refault in the pages and we can
3603                          * then double check if the GTT mapping is still
3604                          * valid for that pointer access.
3605                          */
3606                         i915_gem_release_mmap(obj);
3607
3608                         /* As we no longer need a fence for GTT access,
3609                          * we can relinquish it now (and so prevent having
3610                          * to steal a fence from someone else on the next
3611                          * fence request). Note GPU activity would have
3612                          * dropped the fence as all snoopable access is
3613                          * supposed to be linear.
3614                          */
3615                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3616                                 ret = i915_vma_put_fence(vma);
3617                                 if (ret)
3618                                         return ret;
3619                         }
3620                 } else {
3621                         /* We either have incoherent backing store and
3622                          * so no GTT access or the architecture is fully
3623                          * coherent. In such cases, existing GTT mmaps
3624                          * ignore the cache bit in the PTE and we can
3625                          * rewrite it without confusing the GPU or having
3626                          * to force userspace to fault back in its mmaps.
3627                          */
3628                 }
3629
3630                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3631                         if (!drm_mm_node_allocated(&vma->node))
3632                                 continue;
3633
3634                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3635                         if (ret)
3636                                 return ret;
3637                 }
3638         }
3639
3640         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3641             i915_gem_object_is_coherent(obj))
3642                 obj->cache_dirty = true;
3643
3644         list_for_each_entry(vma, &obj->vma_list, obj_link)
3645                 vma->node.color = cache_level;
3646         obj->cache_level = cache_level;
3647
3648         return 0;
3649 }
3650
3651 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3652                                struct drm_file *file)
3653 {
3654         struct drm_i915_gem_caching *args = data;
3655         struct drm_i915_gem_object *obj;
3656         int err = 0;
3657
3658         rcu_read_lock();
3659         obj = i915_gem_object_lookup_rcu(file, args->handle);
3660         if (!obj) {
3661                 err = -ENOENT;
3662                 goto out;
3663         }
3664
3665         switch (obj->cache_level) {
3666         case I915_CACHE_LLC:
3667         case I915_CACHE_L3_LLC:
3668                 args->caching = I915_CACHING_CACHED;
3669                 break;
3670
3671         case I915_CACHE_WT:
3672                 args->caching = I915_CACHING_DISPLAY;
3673                 break;
3674
3675         default:
3676                 args->caching = I915_CACHING_NONE;
3677                 break;
3678         }
3679 out:
3680         rcu_read_unlock();
3681         return err;
3682 }
3683
3684 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3685                                struct drm_file *file)
3686 {
3687         struct drm_i915_private *i915 = to_i915(dev);
3688         struct drm_i915_gem_caching *args = data;
3689         struct drm_i915_gem_object *obj;
3690         enum i915_cache_level level;
3691         int ret = 0;
3692
3693         switch (args->caching) {
3694         case I915_CACHING_NONE:
3695                 level = I915_CACHE_NONE;
3696                 break;
3697         case I915_CACHING_CACHED:
3698                 /*
3699                  * Due to a HW issue on BXT A stepping, GPU stores via a
3700                  * snooped mapping may leave stale data in a corresponding CPU
3701                  * cacheline, whereas normally such cachelines would get
3702                  * invalidated.
3703                  */
3704                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3705                         return -ENODEV;
3706
3707                 level = I915_CACHE_LLC;
3708                 break;
3709         case I915_CACHING_DISPLAY:
3710                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3711                 break;
3712         default:
3713                 return -EINVAL;
3714         }
3715
3716         obj = i915_gem_object_lookup(file, args->handle);
3717         if (!obj)
3718                 return -ENOENT;
3719
3720         if (obj->cache_level == level)
3721                 goto out;
3722
3723         ret = i915_gem_object_wait(obj,
3724                                    I915_WAIT_INTERRUPTIBLE,
3725                                    MAX_SCHEDULE_TIMEOUT,
3726                                    to_rps_client(file));
3727         if (ret)
3728                 goto out;
3729
3730         ret = i915_mutex_lock_interruptible(dev);
3731         if (ret)
3732                 goto out;
3733
3734         ret = i915_gem_object_set_cache_level(obj, level);
3735         mutex_unlock(&dev->struct_mutex);
3736
3737 out:
3738         i915_gem_object_put(obj);
3739         return ret;
3740 }
3741
3742 /*
3743  * Prepare buffer for display plane (scanout, cursors, etc).
3744  * Can be called from an uninterruptible phase (modesetting) and allows
3745  * any flushes to be pipelined (for pageflips).
3746  */
3747 struct i915_vma *
3748 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3749                                      u32 alignment,
3750                                      const struct i915_ggtt_view *view)
3751 {
3752         struct i915_vma *vma;
3753         int ret;
3754
3755         lockdep_assert_held(&obj->base.dev->struct_mutex);
3756
3757         /* Mark the pin_display early so that we account for the
3758          * display coherency whilst setting up the cache domains.
3759          */
3760         obj->pin_display++;
3761
3762         /* The display engine is not coherent with the LLC cache on gen6.  As
3763          * a result, we make sure that the pinning that is about to occur is
3764          * done with uncached PTEs. This is lowest common denominator for all
3765          * chipsets.
3766          *
3767          * However for gen6+, we could do better by using the GFDT bit instead
3768          * of uncaching, which would allow us to flush all the LLC-cached data
3769          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3770          */
3771         ret = i915_gem_object_set_cache_level(obj,
3772                                               HAS_WT(to_i915(obj->base.dev)) ?
3773                                               I915_CACHE_WT : I915_CACHE_NONE);
3774         if (ret) {
3775                 vma = ERR_PTR(ret);
3776                 goto err_unpin_display;
3777         }
3778
3779         /* As the user may map the buffer once pinned in the display plane
3780          * (e.g. libkms for the bootup splash), we have to ensure that we
3781          * always use map_and_fenceable for all scanout buffers. However,
3782          * it may simply be too big to fit into mappable, in which case
3783          * put it anyway and hope that userspace can cope (but always first
3784          * try to preserve the existing ABI).
3785          */
3786         vma = ERR_PTR(-ENOSPC);
3787         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3788                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3789                                                PIN_MAPPABLE | PIN_NONBLOCK);
3790         if (IS_ERR(vma)) {
3791                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3792                 unsigned int flags;
3793
3794                 /* Valleyview is definitely limited to scanning out the first
3795                  * 512MiB. Lets presume this behaviour was inherited from the
3796                  * g4x display engine and that all earlier gen are similarly
3797                  * limited. Testing suggests that it is a little more
3798                  * complicated than this. For example, Cherryview appears quite
3799                  * happy to scanout from anywhere within its global aperture.
3800                  */
3801                 flags = 0;
3802                 if (HAS_GMCH_DISPLAY(i915))
3803                         flags = PIN_MAPPABLE;
3804                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3805         }
3806         if (IS_ERR(vma))
3807                 goto err_unpin_display;
3808
3809         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3810
3811         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3812         __i915_gem_object_flush_for_display(obj);
3813         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3814
3815         /* It should now be out of any other write domains, and we can update
3816          * the domain values for our changes.
3817          */
3818         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3819
3820         return vma;
3821
3822 err_unpin_display:
3823         obj->pin_display--;
3824         return vma;
3825 }
3826
3827 void
3828 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3829 {
3830         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3831
3832         if (WARN_ON(vma->obj->pin_display == 0))
3833                 return;
3834
3835         if (--vma->obj->pin_display == 0)
3836                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3837
3838         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3839         i915_gem_object_bump_inactive_ggtt(vma->obj);
3840
3841         i915_vma_unpin(vma);
3842 }
3843
3844 /**
3845  * Moves a single object to the CPU read, and possibly write domain.
3846  * @obj: object to act on
3847  * @write: requesting write or read-only access
3848  *
3849  * This function returns when the move is complete, including waiting on
3850  * flushes to occur.
3851  */
3852 int
3853 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3854 {
3855         int ret;
3856
3857         lockdep_assert_held(&obj->base.dev->struct_mutex);
3858
3859         ret = i915_gem_object_wait(obj,
3860                                    I915_WAIT_INTERRUPTIBLE |
3861                                    I915_WAIT_LOCKED |
3862                                    (write ? I915_WAIT_ALL : 0),
3863                                    MAX_SCHEDULE_TIMEOUT,
3864                                    NULL);
3865         if (ret)
3866                 return ret;
3867
3868         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3869                 return 0;
3870
3871         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3872
3873         /* Flush the CPU cache if it's still invalid. */
3874         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3875                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3876                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3877         }
3878
3879         /* It should now be out of any other write domains, and we can update
3880          * the domain values for our changes.
3881          */
3882         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3883
3884         /* If we're writing through the CPU, then the GPU read domains will
3885          * need to be invalidated at next use.
3886          */
3887         if (write) {
3888                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3889                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3890         }
3891
3892         return 0;
3893 }
3894
3895 /* Throttle our rendering by waiting until the ring has completed our requests
3896  * emitted over 20 msec ago.
3897  *
3898  * Note that if we were to use the current jiffies each time around the loop,
3899  * we wouldn't escape the function with any frames outstanding if the time to
3900  * render a frame was over 20ms.
3901  *
3902  * This should get us reasonable parallelism between CPU and GPU but also
3903  * relatively low latency when blocking on a particular request to finish.
3904  */
3905 static int
3906 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3907 {
3908         struct drm_i915_private *dev_priv = to_i915(dev);
3909         struct drm_i915_file_private *file_priv = file->driver_priv;
3910         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3911         struct drm_i915_gem_request *request, *target = NULL;
3912         long ret;
3913
3914         /* ABI: return -EIO if already wedged */
3915         if (i915_terminally_wedged(&dev_priv->gpu_error))
3916                 return -EIO;
3917
3918         spin_lock(&file_priv->mm.lock);
3919         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3920                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3921                         break;
3922
3923                 if (target) {
3924                         list_del(&target->client_link);
3925                         target->file_priv = NULL;
3926                 }
3927
3928                 target = request;
3929         }
3930         if (target)
3931                 i915_gem_request_get(target);
3932         spin_unlock(&file_priv->mm.lock);
3933
3934         if (target == NULL)
3935                 return 0;
3936
3937         ret = i915_wait_request(target,
3938                                 I915_WAIT_INTERRUPTIBLE,
3939                                 MAX_SCHEDULE_TIMEOUT);
3940         i915_gem_request_put(target);
3941
3942         return ret < 0 ? ret : 0;
3943 }
3944
3945 struct i915_vma *
3946 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3947                          const struct i915_ggtt_view *view,
3948                          u64 size,
3949                          u64 alignment,
3950                          u64 flags)
3951 {
3952         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3953         struct i915_address_space *vm = &dev_priv->ggtt.base;
3954         struct i915_vma *vma;
3955         int ret;
3956
3957         lockdep_assert_held(&obj->base.dev->struct_mutex);
3958
3959         vma = i915_vma_instance(obj, vm, view);
3960         if (unlikely(IS_ERR(vma)))
3961                 return vma;
3962
3963         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3964                 if (flags & PIN_NONBLOCK &&
3965                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3966                         return ERR_PTR(-ENOSPC);
3967
3968                 if (flags & PIN_MAPPABLE) {
3969                         /* If the required space is larger than the available
3970                          * aperture, we will not able to find a slot for the
3971                          * object and unbinding the object now will be in
3972                          * vain. Worse, doing so may cause us to ping-pong
3973                          * the object in and out of the Global GTT and
3974                          * waste a lot of cycles under the mutex.
3975                          */
3976                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
3977                                 return ERR_PTR(-E2BIG);
3978
3979                         /* If NONBLOCK is set the caller is optimistically
3980                          * trying to cache the full object within the mappable
3981                          * aperture, and *must* have a fallback in place for
3982                          * situations where we cannot bind the object. We
3983                          * can be a little more lax here and use the fallback
3984                          * more often to avoid costly migrations of ourselves
3985                          * and other objects within the aperture.
3986                          *
3987                          * Half-the-aperture is used as a simple heuristic.
3988                          * More interesting would to do search for a free
3989                          * block prior to making the commitment to unbind.
3990                          * That caters for the self-harm case, and with a
3991                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3992                          * we could try to minimise harm to others.
3993                          */
3994                         if (flags & PIN_NONBLOCK &&
3995                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3996                                 return ERR_PTR(-ENOSPC);
3997                 }
3998
3999                 WARN(i915_vma_is_pinned(vma),
4000                      "bo is already pinned in ggtt with incorrect alignment:"
4001                      " offset=%08x, req.alignment=%llx,"
4002                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4003                      i915_ggtt_offset(vma), alignment,
4004                      !!(flags & PIN_MAPPABLE),
4005                      i915_vma_is_map_and_fenceable(vma));
4006                 ret = i915_vma_unbind(vma);
4007                 if (ret)
4008                         return ERR_PTR(ret);
4009         }
4010
4011         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4012         if (ret)
4013                 return ERR_PTR(ret);
4014
4015         return vma;
4016 }
4017
4018 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4019 {
4020         /* Note that we could alias engines in the execbuf API, but
4021          * that would be very unwise as it prevents userspace from
4022          * fine control over engine selection. Ahem.
4023          *
4024          * This should be something like EXEC_MAX_ENGINE instead of
4025          * I915_NUM_ENGINES.
4026          */
4027         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4028         return 0x10000 << id;
4029 }
4030
4031 static __always_inline unsigned int __busy_write_id(unsigned int id)
4032 {
4033         /* The uABI guarantees an active writer is also amongst the read
4034          * engines. This would be true if we accessed the activity tracking
4035          * under the lock, but as we perform the lookup of the object and
4036          * its activity locklessly we can not guarantee that the last_write
4037          * being active implies that we have set the same engine flag from
4038          * last_read - hence we always set both read and write busy for
4039          * last_write.
4040          */
4041         return id | __busy_read_flag(id);
4042 }
4043
4044 static __always_inline unsigned int
4045 __busy_set_if_active(const struct dma_fence *fence,
4046                      unsigned int (*flag)(unsigned int id))
4047 {
4048         struct drm_i915_gem_request *rq;
4049
4050         /* We have to check the current hw status of the fence as the uABI
4051          * guarantees forward progress. We could rely on the idle worker
4052          * to eventually flush us, but to minimise latency just ask the
4053          * hardware.
4054          *
4055          * Note we only report on the status of native fences.
4056          */
4057         if (!dma_fence_is_i915(fence))
4058                 return 0;
4059
4060         /* opencode to_request() in order to avoid const warnings */
4061         rq = container_of(fence, struct drm_i915_gem_request, fence);
4062         if (i915_gem_request_completed(rq))
4063                 return 0;
4064
4065         return flag(rq->engine->uabi_id);
4066 }
4067
4068 static __always_inline unsigned int
4069 busy_check_reader(const struct dma_fence *fence)
4070 {
4071         return __busy_set_if_active(fence, __busy_read_flag);
4072 }
4073
4074 static __always_inline unsigned int
4075 busy_check_writer(const struct dma_fence *fence)
4076 {
4077         if (!fence)
4078                 return 0;
4079
4080         return __busy_set_if_active(fence, __busy_write_id);
4081 }
4082
4083 int
4084 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4085                     struct drm_file *file)
4086 {
4087         struct drm_i915_gem_busy *args = data;
4088         struct drm_i915_gem_object *obj;
4089         struct reservation_object_list *list;
4090         unsigned int seq;
4091         int err;
4092
4093         err = -ENOENT;
4094         rcu_read_lock();
4095         obj = i915_gem_object_lookup_rcu(file, args->handle);
4096         if (!obj)
4097                 goto out;
4098
4099         /* A discrepancy here is that we do not report the status of
4100          * non-i915 fences, i.e. even though we may report the object as idle,
4101          * a call to set-domain may still stall waiting for foreign rendering.
4102          * This also means that wait-ioctl may report an object as busy,
4103          * where busy-ioctl considers it idle.
4104          *
4105          * We trade the ability to warn of foreign fences to report on which
4106          * i915 engines are active for the object.
4107          *
4108          * Alternatively, we can trade that extra information on read/write
4109          * activity with
4110          *      args->busy =
4111          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4112          * to report the overall busyness. This is what the wait-ioctl does.
4113          *
4114          */
4115 retry:
4116         seq = raw_read_seqcount(&obj->resv->seq);
4117
4118         /* Translate the exclusive fence to the READ *and* WRITE engine */
4119         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4120
4121         /* Translate shared fences to READ set of engines */
4122         list = rcu_dereference(obj->resv->fence);
4123         if (list) {
4124                 unsigned int shared_count = list->shared_count, i;
4125
4126                 for (i = 0; i < shared_count; ++i) {
4127                         struct dma_fence *fence =
4128                                 rcu_dereference(list->shared[i]);
4129
4130                         args->busy |= busy_check_reader(fence);
4131                 }
4132         }
4133
4134         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4135                 goto retry;
4136
4137         err = 0;
4138 out:
4139         rcu_read_unlock();
4140         return err;
4141 }
4142
4143 int
4144 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4145                         struct drm_file *file_priv)
4146 {
4147         return i915_gem_ring_throttle(dev, file_priv);
4148 }
4149
4150 int
4151 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4152                        struct drm_file *file_priv)
4153 {
4154         struct drm_i915_private *dev_priv = to_i915(dev);
4155         struct drm_i915_gem_madvise *args = data;
4156         struct drm_i915_gem_object *obj;
4157         int err;
4158
4159         switch (args->madv) {
4160         case I915_MADV_DONTNEED:
4161         case I915_MADV_WILLNEED:
4162             break;
4163         default:
4164             return -EINVAL;
4165         }
4166
4167         obj = i915_gem_object_lookup(file_priv, args->handle);
4168         if (!obj)
4169                 return -ENOENT;
4170
4171         err = mutex_lock_interruptible(&obj->mm.lock);
4172         if (err)
4173                 goto out;
4174
4175         if (obj->mm.pages &&
4176             i915_gem_object_is_tiled(obj) &&
4177             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4178                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4179                         GEM_BUG_ON(!obj->mm.quirked);
4180                         __i915_gem_object_unpin_pages(obj);
4181                         obj->mm.quirked = false;
4182                 }
4183                 if (args->madv == I915_MADV_WILLNEED) {
4184                         GEM_BUG_ON(obj->mm.quirked);
4185                         __i915_gem_object_pin_pages(obj);
4186                         obj->mm.quirked = true;
4187                 }
4188         }
4189
4190         if (obj->mm.madv != __I915_MADV_PURGED)
4191                 obj->mm.madv = args->madv;
4192
4193         /* if the object is no longer attached, discard its backing storage */
4194         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4195                 i915_gem_object_truncate(obj);
4196
4197         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4198         mutex_unlock(&obj->mm.lock);
4199
4200 out:
4201         i915_gem_object_put(obj);
4202         return err;
4203 }
4204
4205 static void
4206 frontbuffer_retire(struct i915_gem_active *active,
4207                    struct drm_i915_gem_request *request)
4208 {
4209         struct drm_i915_gem_object *obj =
4210                 container_of(active, typeof(*obj), frontbuffer_write);
4211
4212         intel_fb_obj_flush(obj, ORIGIN_CS);
4213 }
4214
4215 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4216                           const struct drm_i915_gem_object_ops *ops)
4217 {
4218         mutex_init(&obj->mm.lock);
4219
4220         INIT_LIST_HEAD(&obj->global_link);
4221         INIT_LIST_HEAD(&obj->userfault_link);
4222         INIT_LIST_HEAD(&obj->obj_exec_link);
4223         INIT_LIST_HEAD(&obj->vma_list);
4224         INIT_LIST_HEAD(&obj->batch_pool_link);
4225
4226         obj->ops = ops;
4227
4228         reservation_object_init(&obj->__builtin_resv);
4229         obj->resv = &obj->__builtin_resv;
4230
4231         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4232         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4233
4234         obj->mm.madv = I915_MADV_WILLNEED;
4235         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4236         mutex_init(&obj->mm.get_page.lock);
4237
4238         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4239 }
4240
4241 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4242         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4243                  I915_GEM_OBJECT_IS_SHRINKABLE,
4244
4245         .get_pages = i915_gem_object_get_pages_gtt,
4246         .put_pages = i915_gem_object_put_pages_gtt,
4247
4248         .pwrite = i915_gem_object_pwrite_gtt,
4249 };
4250
4251 struct drm_i915_gem_object *
4252 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4253 {
4254         struct drm_i915_gem_object *obj;
4255         struct address_space *mapping;
4256         gfp_t mask;
4257         int ret;
4258
4259         /* There is a prevalence of the assumption that we fit the object's
4260          * page count inside a 32bit _signed_ variable. Let's document this and
4261          * catch if we ever need to fix it. In the meantime, if you do spot
4262          * such a local variable, please consider fixing!
4263          */
4264         if (size >> PAGE_SHIFT > INT_MAX)
4265                 return ERR_PTR(-E2BIG);
4266
4267         if (overflows_type(size, obj->base.size))
4268                 return ERR_PTR(-E2BIG);
4269
4270         obj = i915_gem_object_alloc(dev_priv);
4271         if (obj == NULL)
4272                 return ERR_PTR(-ENOMEM);
4273
4274         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4275         if (ret)
4276                 goto fail;
4277
4278         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4279         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4280                 /* 965gm cannot relocate objects above 4GiB. */
4281                 mask &= ~__GFP_HIGHMEM;
4282                 mask |= __GFP_DMA32;
4283         }
4284
4285         mapping = obj->base.filp->f_mapping;
4286         mapping_set_gfp_mask(mapping, mask);
4287
4288         i915_gem_object_init(obj, &i915_gem_object_ops);
4289
4290         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4291         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4292
4293         if (HAS_LLC(dev_priv)) {
4294                 /* On some devices, we can have the GPU use the LLC (the CPU
4295                  * cache) for about a 10% performance improvement
4296                  * compared to uncached.  Graphics requests other than
4297                  * display scanout are coherent with the CPU in
4298                  * accessing this cache.  This means in this mode we
4299                  * don't need to clflush on the CPU side, and on the
4300                  * GPU side we only need to flush internal caches to
4301                  * get data visible to the CPU.
4302                  *
4303                  * However, we maintain the display planes as UC, and so
4304                  * need to rebind when first used as such.
4305                  */
4306                 obj->cache_level = I915_CACHE_LLC;
4307         } else
4308                 obj->cache_level = I915_CACHE_NONE;
4309
4310         trace_i915_gem_object_create(obj);
4311
4312         return obj;
4313
4314 fail:
4315         i915_gem_object_free(obj);
4316         return ERR_PTR(ret);
4317 }
4318
4319 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4320 {
4321         /* If we are the last user of the backing storage (be it shmemfs
4322          * pages or stolen etc), we know that the pages are going to be
4323          * immediately released. In this case, we can then skip copying
4324          * back the contents from the GPU.
4325          */
4326
4327         if (obj->mm.madv != I915_MADV_WILLNEED)
4328                 return false;
4329
4330         if (obj->base.filp == NULL)
4331                 return true;
4332
4333         /* At first glance, this looks racy, but then again so would be
4334          * userspace racing mmap against close. However, the first external
4335          * reference to the filp can only be obtained through the
4336          * i915_gem_mmap_ioctl() which safeguards us against the user
4337          * acquiring such a reference whilst we are in the middle of
4338          * freeing the object.
4339          */
4340         return atomic_long_read(&obj->base.filp->f_count) == 1;
4341 }
4342
4343 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4344                                     struct llist_node *freed)
4345 {
4346         struct drm_i915_gem_object *obj, *on;
4347
4348         mutex_lock(&i915->drm.struct_mutex);
4349         intel_runtime_pm_get(i915);
4350         llist_for_each_entry(obj, freed, freed) {
4351                 struct i915_vma *vma, *vn;
4352
4353                 trace_i915_gem_object_destroy(obj);
4354
4355                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4356                 list_for_each_entry_safe(vma, vn,
4357                                          &obj->vma_list, obj_link) {
4358                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4359                         GEM_BUG_ON(i915_vma_is_active(vma));
4360                         vma->flags &= ~I915_VMA_PIN_MASK;
4361                         i915_vma_close(vma);
4362                 }
4363                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4364                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4365
4366                 list_del(&obj->global_link);
4367         }
4368         intel_runtime_pm_put(i915);
4369         mutex_unlock(&i915->drm.struct_mutex);
4370
4371         cond_resched();
4372
4373         llist_for_each_entry_safe(obj, on, freed, freed) {
4374                 GEM_BUG_ON(obj->bind_count);
4375                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4376
4377                 if (obj->ops->release)
4378                         obj->ops->release(obj);
4379
4380                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4381                         atomic_set(&obj->mm.pages_pin_count, 0);
4382                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4383                 GEM_BUG_ON(obj->mm.pages);
4384
4385                 if (obj->base.import_attach)
4386                         drm_prime_gem_destroy(&obj->base, NULL);
4387
4388                 reservation_object_fini(&obj->__builtin_resv);
4389                 drm_gem_object_release(&obj->base);
4390                 i915_gem_info_remove_obj(i915, obj->base.size);
4391
4392                 kfree(obj->bit_17);
4393                 i915_gem_object_free(obj);
4394         }
4395 }
4396
4397 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4398 {
4399         struct llist_node *freed;
4400
4401         freed = llist_del_all(&i915->mm.free_list);
4402         if (unlikely(freed))
4403                 __i915_gem_free_objects(i915, freed);
4404 }
4405
4406 static void __i915_gem_free_work(struct work_struct *work)
4407 {
4408         struct drm_i915_private *i915 =
4409                 container_of(work, struct drm_i915_private, mm.free_work);
4410         struct llist_node *freed;
4411
4412         /* All file-owned VMA should have been released by this point through
4413          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4414          * However, the object may also be bound into the global GTT (e.g.
4415          * older GPUs without per-process support, or for direct access through
4416          * the GTT either for the user or for scanout). Those VMA still need to
4417          * unbound now.
4418          */
4419
4420         while ((freed = llist_del_all(&i915->mm.free_list))) {
4421                 __i915_gem_free_objects(i915, freed);
4422                 if (need_resched())
4423                         break;
4424         }
4425 }
4426
4427 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4428 {
4429         struct drm_i915_gem_object *obj =
4430                 container_of(head, typeof(*obj), rcu);
4431         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4432
4433         /* We can't simply use call_rcu() from i915_gem_free_object()
4434          * as we need to block whilst unbinding, and the call_rcu
4435          * task may be called from softirq context. So we take a
4436          * detour through a worker.
4437          */
4438         if (llist_add(&obj->freed, &i915->mm.free_list))
4439                 schedule_work(&i915->mm.free_work);
4440 }
4441
4442 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4443 {
4444         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4445
4446         if (obj->mm.quirked)
4447                 __i915_gem_object_unpin_pages(obj);
4448
4449         if (discard_backing_storage(obj))
4450                 obj->mm.madv = I915_MADV_DONTNEED;
4451
4452         /* Before we free the object, make sure any pure RCU-only
4453          * read-side critical sections are complete, e.g.
4454          * i915_gem_busy_ioctl(). For the corresponding synchronized
4455          * lookup see i915_gem_object_lookup_rcu().
4456          */
4457         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4458 }
4459
4460 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4461 {
4462         lockdep_assert_held(&obj->base.dev->struct_mutex);
4463
4464         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4465         if (i915_gem_object_is_active(obj))
4466                 i915_gem_object_set_active_reference(obj);
4467         else
4468                 i915_gem_object_put(obj);
4469 }
4470
4471 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4472 {
4473         struct intel_engine_cs *engine;
4474         enum intel_engine_id id;
4475
4476         for_each_engine(engine, dev_priv, id)
4477                 GEM_BUG_ON(engine->last_retired_context &&
4478                            !i915_gem_context_is_kernel(engine->last_retired_context));
4479 }
4480
4481 void i915_gem_sanitize(struct drm_i915_private *i915)
4482 {
4483         /*
4484          * If we inherit context state from the BIOS or earlier occupants
4485          * of the GPU, the GPU may be in an inconsistent state when we
4486          * try to take over. The only way to remove the earlier state
4487          * is by resetting. However, resetting on earlier gen is tricky as
4488          * it may impact the display and we are uncertain about the stability
4489          * of the reset, so this could be applied to even earlier gen.
4490          */
4491         if (INTEL_GEN(i915) >= 5) {
4492                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4493                 WARN_ON(reset && reset != -ENODEV);
4494         }
4495 }
4496
4497 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4498 {
4499         struct drm_device *dev = &dev_priv->drm;
4500         int ret;
4501
4502         intel_runtime_pm_get(dev_priv);
4503         intel_suspend_gt_powersave(dev_priv);
4504
4505         mutex_lock(&dev->struct_mutex);
4506
4507         /* We have to flush all the executing contexts to main memory so
4508          * that they can saved in the hibernation image. To ensure the last
4509          * context image is coherent, we have to switch away from it. That
4510          * leaves the dev_priv->kernel_context still active when
4511          * we actually suspend, and its image in memory may not match the GPU
4512          * state. Fortunately, the kernel_context is disposable and we do
4513          * not rely on its state.
4514          */
4515         ret = i915_gem_switch_to_kernel_context(dev_priv);
4516         if (ret)
4517                 goto err_unlock;
4518
4519         ret = i915_gem_wait_for_idle(dev_priv,
4520                                      I915_WAIT_INTERRUPTIBLE |
4521                                      I915_WAIT_LOCKED);
4522         if (ret)
4523                 goto err_unlock;
4524
4525         assert_kernel_context_is_current(dev_priv);
4526         i915_gem_context_lost(dev_priv);
4527         mutex_unlock(&dev->struct_mutex);
4528
4529         intel_guc_suspend(dev_priv);
4530
4531         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4532         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4533
4534         /* As the idle_work is rearming if it detects a race, play safe and
4535          * repeat the flush until it is definitely idle.
4536          */
4537         while (flush_delayed_work(&dev_priv->gt.idle_work))
4538                 ;
4539
4540         i915_gem_drain_freed_objects(dev_priv);
4541
4542         /* Assert that we sucessfully flushed all the work and
4543          * reset the GPU back to its idle, low power state.
4544          */
4545         WARN_ON(dev_priv->gt.awake);
4546         WARN_ON(!intel_engines_are_idle(dev_priv));
4547
4548         /*
4549          * Neither the BIOS, ourselves or any other kernel
4550          * expects the system to be in execlists mode on startup,
4551          * so we need to reset the GPU back to legacy mode. And the only
4552          * known way to disable logical contexts is through a GPU reset.
4553          *
4554          * So in order to leave the system in a known default configuration,
4555          * always reset the GPU upon unload and suspend. Afterwards we then
4556          * clean up the GEM state tracking, flushing off the requests and
4557          * leaving the system in a known idle state.
4558          *
4559          * Note that is of the upmost importance that the GPU is idle and
4560          * all stray writes are flushed *before* we dismantle the backing
4561          * storage for the pinned objects.
4562          *
4563          * However, since we are uncertain that resetting the GPU on older
4564          * machines is a good idea, we don't - just in case it leaves the
4565          * machine in an unusable condition.
4566          */
4567         i915_gem_sanitize(dev_priv);
4568         goto out_rpm_put;
4569
4570 err_unlock:
4571         mutex_unlock(&dev->struct_mutex);
4572 out_rpm_put:
4573         intel_runtime_pm_put(dev_priv);
4574         return ret;
4575 }
4576
4577 void i915_gem_resume(struct drm_i915_private *dev_priv)
4578 {
4579         struct drm_device *dev = &dev_priv->drm;
4580
4581         WARN_ON(dev_priv->gt.awake);
4582
4583         mutex_lock(&dev->struct_mutex);
4584         i915_gem_restore_gtt_mappings(dev_priv);
4585
4586         /* As we didn't flush the kernel context before suspend, we cannot
4587          * guarantee that the context image is complete. So let's just reset
4588          * it and start again.
4589          */
4590         dev_priv->gt.resume(dev_priv);
4591
4592         mutex_unlock(&dev->struct_mutex);
4593 }
4594
4595 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4596 {
4597         if (INTEL_GEN(dev_priv) < 5 ||
4598             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4599                 return;
4600
4601         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4602                                  DISP_TILE_SURFACE_SWIZZLING);
4603
4604         if (IS_GEN5(dev_priv))
4605                 return;
4606
4607         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4608         if (IS_GEN6(dev_priv))
4609                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4610         else if (IS_GEN7(dev_priv))
4611                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4612         else if (IS_GEN8(dev_priv))
4613                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4614         else
4615                 BUG();
4616 }
4617
4618 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4619 {
4620         I915_WRITE(RING_CTL(base), 0);
4621         I915_WRITE(RING_HEAD(base), 0);
4622         I915_WRITE(RING_TAIL(base), 0);
4623         I915_WRITE(RING_START(base), 0);
4624 }
4625
4626 static void init_unused_rings(struct drm_i915_private *dev_priv)
4627 {
4628         if (IS_I830(dev_priv)) {
4629                 init_unused_ring(dev_priv, PRB1_BASE);
4630                 init_unused_ring(dev_priv, SRB0_BASE);
4631                 init_unused_ring(dev_priv, SRB1_BASE);
4632                 init_unused_ring(dev_priv, SRB2_BASE);
4633                 init_unused_ring(dev_priv, SRB3_BASE);
4634         } else if (IS_GEN2(dev_priv)) {
4635                 init_unused_ring(dev_priv, SRB0_BASE);
4636                 init_unused_ring(dev_priv, SRB1_BASE);
4637         } else if (IS_GEN3(dev_priv)) {
4638                 init_unused_ring(dev_priv, PRB1_BASE);
4639                 init_unused_ring(dev_priv, PRB2_BASE);
4640         }
4641 }
4642
4643 static int __i915_gem_restart_engines(void *data)
4644 {
4645         struct drm_i915_private *i915 = data;
4646         struct intel_engine_cs *engine;
4647         enum intel_engine_id id;
4648         int err;
4649
4650         for_each_engine(engine, i915, id) {
4651                 err = engine->init_hw(engine);
4652                 if (err)
4653                         return err;
4654         }
4655
4656         return 0;
4657 }
4658
4659 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4660 {
4661         int ret;
4662
4663         dev_priv->gt.last_init_time = ktime_get();
4664
4665         /* Double layer security blanket, see i915_gem_init() */
4666         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4667
4668         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4669                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4670
4671         if (IS_HASWELL(dev_priv))
4672                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4673                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4674
4675         if (HAS_PCH_NOP(dev_priv)) {
4676                 if (IS_IVYBRIDGE(dev_priv)) {
4677                         u32 temp = I915_READ(GEN7_MSG_CTL);
4678                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4679                         I915_WRITE(GEN7_MSG_CTL, temp);
4680                 } else if (INTEL_GEN(dev_priv) >= 7) {
4681                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4682                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4683                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4684                 }
4685         }
4686
4687         i915_gem_init_swizzling(dev_priv);
4688
4689         /*
4690          * At least 830 can leave some of the unused rings
4691          * "active" (ie. head != tail) after resume which
4692          * will prevent c3 entry. Makes sure all unused rings
4693          * are totally idle.
4694          */
4695         init_unused_rings(dev_priv);
4696
4697         BUG_ON(!dev_priv->kernel_context);
4698
4699         ret = i915_ppgtt_init_hw(dev_priv);
4700         if (ret) {
4701                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4702                 goto out;
4703         }
4704
4705         /* Need to do basic initialisation of all rings first: */
4706         ret = __i915_gem_restart_engines(dev_priv);
4707         if (ret)
4708                 goto out;
4709
4710         intel_mocs_init_l3cc_table(dev_priv);
4711
4712         /* We can't enable contexts until all firmware is loaded */
4713         ret = intel_uc_init_hw(dev_priv);
4714         if (ret)
4715                 goto out;
4716
4717 out:
4718         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4719         return ret;
4720 }
4721
4722 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4723 {
4724         if (INTEL_INFO(dev_priv)->gen < 6)
4725                 return false;
4726
4727         /* TODO: make semaphores and Execlists play nicely together */
4728         if (i915.enable_execlists)
4729                 return false;
4730
4731         if (value >= 0)
4732                 return value;
4733
4734 #ifdef CONFIG_INTEL_IOMMU
4735         /* Enable semaphores on SNB when IO remapping is off */
4736         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4737                 return false;
4738 #endif
4739
4740         return true;
4741 }
4742
4743 int i915_gem_init(struct drm_i915_private *dev_priv)
4744 {
4745         int ret;
4746
4747         mutex_lock(&dev_priv->drm.struct_mutex);
4748
4749         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4750
4751         if (!i915.enable_execlists) {
4752                 dev_priv->gt.resume = intel_legacy_submission_resume;
4753                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4754         } else {
4755                 dev_priv->gt.resume = intel_lr_context_resume;
4756                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4757         }
4758
4759         /* This is just a security blanket to placate dragons.
4760          * On some systems, we very sporadically observe that the first TLBs
4761          * used by the CS may be stale, despite us poking the TLB reset. If
4762          * we hold the forcewake during initialisation these problems
4763          * just magically go away.
4764          */
4765         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4766
4767         i915_gem_init_userptr(dev_priv);
4768
4769         ret = i915_gem_init_ggtt(dev_priv);
4770         if (ret)
4771                 goto out_unlock;
4772
4773         ret = i915_gem_context_init(dev_priv);
4774         if (ret)
4775                 goto out_unlock;
4776
4777         ret = intel_engines_init(dev_priv);
4778         if (ret)
4779                 goto out_unlock;
4780
4781         ret = i915_gem_init_hw(dev_priv);
4782         if (ret == -EIO) {
4783                 /* Allow engine initialisation to fail by marking the GPU as
4784                  * wedged. But we only want to do this where the GPU is angry,
4785                  * for all other failure, such as an allocation failure, bail.
4786                  */
4787                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4788                 i915_gem_set_wedged(dev_priv);
4789                 ret = 0;
4790         }
4791
4792 out_unlock:
4793         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4794         mutex_unlock(&dev_priv->drm.struct_mutex);
4795
4796         return ret;
4797 }
4798
4799 void i915_gem_init_mmio(struct drm_i915_private *i915)
4800 {
4801         i915_gem_sanitize(i915);
4802 }
4803
4804 void
4805 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4806 {
4807         struct intel_engine_cs *engine;
4808         enum intel_engine_id id;
4809
4810         for_each_engine(engine, dev_priv, id)
4811                 dev_priv->gt.cleanup_engine(engine);
4812 }
4813
4814 void
4815 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4816 {
4817         int i;
4818
4819         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4820             !IS_CHERRYVIEW(dev_priv))
4821                 dev_priv->num_fence_regs = 32;
4822         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4823                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4824                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4825                 dev_priv->num_fence_regs = 16;
4826         else
4827                 dev_priv->num_fence_regs = 8;
4828
4829         if (intel_vgpu_active(dev_priv))
4830                 dev_priv->num_fence_regs =
4831                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4832
4833         /* Initialize fence registers to zero */
4834         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4835                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4836
4837                 fence->i915 = dev_priv;
4838                 fence->id = i;
4839                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4840         }
4841         i915_gem_restore_fences(dev_priv);
4842
4843         i915_gem_detect_bit_6_swizzle(dev_priv);
4844 }
4845
4846 int
4847 i915_gem_load_init(struct drm_i915_private *dev_priv)
4848 {
4849         int err = -ENOMEM;
4850
4851         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4852         if (!dev_priv->objects)
4853                 goto err_out;
4854
4855         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4856         if (!dev_priv->vmas)
4857                 goto err_objects;
4858
4859         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4860                                         SLAB_HWCACHE_ALIGN |
4861                                         SLAB_RECLAIM_ACCOUNT |
4862                                         SLAB_DESTROY_BY_RCU);
4863         if (!dev_priv->requests)
4864                 goto err_vmas;
4865
4866         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4867                                             SLAB_HWCACHE_ALIGN |
4868                                             SLAB_RECLAIM_ACCOUNT);
4869         if (!dev_priv->dependencies)
4870                 goto err_requests;
4871
4872         mutex_lock(&dev_priv->drm.struct_mutex);
4873         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4874         err = i915_gem_timeline_init__global(dev_priv);
4875         mutex_unlock(&dev_priv->drm.struct_mutex);
4876         if (err)
4877                 goto err_dependencies;
4878
4879         INIT_LIST_HEAD(&dev_priv->context_list);
4880         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4881         init_llist_head(&dev_priv->mm.free_list);
4882         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4883         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4884         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4885         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4886         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4887                           i915_gem_retire_work_handler);
4888         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4889                           i915_gem_idle_work_handler);
4890         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4891         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4892
4893         init_waitqueue_head(&dev_priv->pending_flip_queue);
4894
4895         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4896
4897         spin_lock_init(&dev_priv->fb_tracking.lock);
4898
4899         return 0;
4900
4901 err_dependencies:
4902         kmem_cache_destroy(dev_priv->dependencies);
4903 err_requests:
4904         kmem_cache_destroy(dev_priv->requests);
4905 err_vmas:
4906         kmem_cache_destroy(dev_priv->vmas);
4907 err_objects:
4908         kmem_cache_destroy(dev_priv->objects);
4909 err_out:
4910         return err;
4911 }
4912
4913 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4914 {
4915         i915_gem_drain_freed_objects(dev_priv);
4916         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4917         WARN_ON(dev_priv->mm.object_count);
4918
4919         mutex_lock(&dev_priv->drm.struct_mutex);
4920         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4921         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4922         mutex_unlock(&dev_priv->drm.struct_mutex);
4923
4924         kmem_cache_destroy(dev_priv->dependencies);
4925         kmem_cache_destroy(dev_priv->requests);
4926         kmem_cache_destroy(dev_priv->vmas);
4927         kmem_cache_destroy(dev_priv->objects);
4928
4929         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4930         rcu_barrier();
4931 }
4932
4933 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4934 {
4935         /* Discard all purgeable objects, let userspace recover those as
4936          * required after resuming.
4937          */
4938         i915_gem_shrink_all(dev_priv);
4939
4940         return 0;
4941 }
4942
4943 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4944 {
4945         struct drm_i915_gem_object *obj;
4946         struct list_head *phases[] = {
4947                 &dev_priv->mm.unbound_list,
4948                 &dev_priv->mm.bound_list,
4949                 NULL
4950         }, **p;
4951
4952         /* Called just before we write the hibernation image.
4953          *
4954          * We need to update the domain tracking to reflect that the CPU
4955          * will be accessing all the pages to create and restore from the
4956          * hibernation, and so upon restoration those pages will be in the
4957          * CPU domain.
4958          *
4959          * To make sure the hibernation image contains the latest state,
4960          * we update that state just before writing out the image.
4961          *
4962          * To try and reduce the hibernation image, we manually shrink
4963          * the objects as well, see i915_gem_freeze()
4964          */
4965
4966         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4967         i915_gem_drain_freed_objects(dev_priv);
4968
4969         mutex_lock(&dev_priv->drm.struct_mutex);
4970         for (p = phases; *p; p++) {
4971                 list_for_each_entry(obj, *p, global_link) {
4972                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4973                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4974                 }
4975         }
4976         mutex_unlock(&dev_priv->drm.struct_mutex);
4977
4978         return 0;
4979 }
4980
4981 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4982 {
4983         struct drm_i915_file_private *file_priv = file->driver_priv;
4984         struct drm_i915_gem_request *request;
4985
4986         /* Clean up our request list when the client is going away, so that
4987          * later retire_requests won't dereference our soon-to-be-gone
4988          * file_priv.
4989          */
4990         spin_lock(&file_priv->mm.lock);
4991         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4992                 request->file_priv = NULL;
4993         spin_unlock(&file_priv->mm.lock);
4994
4995         if (!list_empty(&file_priv->rps.link)) {
4996                 spin_lock(&to_i915(dev)->rps.client_lock);
4997                 list_del(&file_priv->rps.link);
4998                 spin_unlock(&to_i915(dev)->rps.client_lock);
4999         }
5000 }
5001
5002 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5003 {
5004         struct drm_i915_file_private *file_priv;
5005         int ret;
5006
5007         DRM_DEBUG("\n");
5008
5009         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5010         if (!file_priv)
5011                 return -ENOMEM;
5012
5013         file->driver_priv = file_priv;
5014         file_priv->dev_priv = to_i915(dev);
5015         file_priv->file = file;
5016         INIT_LIST_HEAD(&file_priv->rps.link);
5017
5018         spin_lock_init(&file_priv->mm.lock);
5019         INIT_LIST_HEAD(&file_priv->mm.request_list);
5020
5021         file_priv->bsd_engine = -1;
5022
5023         ret = i915_gem_context_open(dev, file);
5024         if (ret)
5025                 kfree(file_priv);
5026
5027         return ret;
5028 }
5029
5030 /**
5031  * i915_gem_track_fb - update frontbuffer tracking
5032  * @old: current GEM buffer for the frontbuffer slots
5033  * @new: new GEM buffer for the frontbuffer slots
5034  * @frontbuffer_bits: bitmask of frontbuffer slots
5035  *
5036  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5037  * from @old and setting them in @new. Both @old and @new can be NULL.
5038  */
5039 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5040                        struct drm_i915_gem_object *new,
5041                        unsigned frontbuffer_bits)
5042 {
5043         /* Control of individual bits within the mask are guarded by
5044          * the owning plane->mutex, i.e. we can never see concurrent
5045          * manipulation of individual bits. But since the bitfield as a whole
5046          * is updated using RMW, we need to use atomics in order to update
5047          * the bits.
5048          */
5049         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5050                      sizeof(atomic_t) * BITS_PER_BYTE);
5051
5052         if (old) {
5053                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5054                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5055         }
5056
5057         if (new) {
5058                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5059                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5060         }
5061 }
5062
5063 /* Allocate a new GEM object and fill it with the supplied data */
5064 struct drm_i915_gem_object *
5065 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5066                                  const void *data, size_t size)
5067 {
5068         struct drm_i915_gem_object *obj;
5069         struct file *file;
5070         size_t offset;
5071         int err;
5072
5073         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5074         if (IS_ERR(obj))
5075                 return obj;
5076
5077         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5078
5079         file = obj->base.filp;
5080         offset = 0;
5081         do {
5082                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5083                 struct page *page;
5084                 void *pgdata, *vaddr;
5085
5086                 err = pagecache_write_begin(file, file->f_mapping,
5087                                             offset, len, 0,
5088                                             &page, &pgdata);
5089                 if (err < 0)
5090                         goto fail;
5091
5092                 vaddr = kmap(page);
5093                 memcpy(vaddr, data, len);
5094                 kunmap(page);
5095
5096                 err = pagecache_write_end(file, file->f_mapping,
5097                                           offset, len, len,
5098                                           page, pgdata);
5099                 if (err < 0)
5100                         goto fail;
5101
5102                 size -= len;
5103                 data += len;
5104                 offset += len;
5105         } while (size);
5106
5107         return obj;
5108
5109 fail:
5110         i915_gem_object_put(obj);
5111         return ERR_PTR(err);
5112 }
5113
5114 struct scatterlist *
5115 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5116                        unsigned int n,
5117                        unsigned int *offset)
5118 {
5119         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5120         struct scatterlist *sg;
5121         unsigned int idx, count;
5122
5123         might_sleep();
5124         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5125         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5126
5127         /* As we iterate forward through the sg, we record each entry in a
5128          * radixtree for quick repeated (backwards) lookups. If we have seen
5129          * this index previously, we will have an entry for it.
5130          *
5131          * Initial lookup is O(N), but this is amortized to O(1) for
5132          * sequential page access (where each new request is consecutive
5133          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5134          * i.e. O(1) with a large constant!
5135          */
5136         if (n < READ_ONCE(iter->sg_idx))
5137                 goto lookup;
5138
5139         mutex_lock(&iter->lock);
5140
5141         /* We prefer to reuse the last sg so that repeated lookup of this
5142          * (or the subsequent) sg are fast - comparing against the last
5143          * sg is faster than going through the radixtree.
5144          */
5145
5146         sg = iter->sg_pos;
5147         idx = iter->sg_idx;
5148         count = __sg_page_count(sg);
5149
5150         while (idx + count <= n) {
5151                 unsigned long exception, i;
5152                 int ret;
5153
5154                 /* If we cannot allocate and insert this entry, or the
5155                  * individual pages from this range, cancel updating the
5156                  * sg_idx so that on this lookup we are forced to linearly
5157                  * scan onwards, but on future lookups we will try the
5158                  * insertion again (in which case we need to be careful of
5159                  * the error return reporting that we have already inserted
5160                  * this index).
5161                  */
5162                 ret = radix_tree_insert(&iter->radix, idx, sg);
5163                 if (ret && ret != -EEXIST)
5164                         goto scan;
5165
5166                 exception =
5167                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5168                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5169                 for (i = 1; i < count; i++) {
5170                         ret = radix_tree_insert(&iter->radix, idx + i,
5171                                                 (void *)exception);
5172                         if (ret && ret != -EEXIST)
5173                                 goto scan;
5174                 }
5175
5176                 idx += count;
5177                 sg = ____sg_next(sg);
5178                 count = __sg_page_count(sg);
5179         }
5180
5181 scan:
5182         iter->sg_pos = sg;
5183         iter->sg_idx = idx;
5184
5185         mutex_unlock(&iter->lock);
5186
5187         if (unlikely(n < idx)) /* insertion completed by another thread */
5188                 goto lookup;
5189
5190         /* In case we failed to insert the entry into the radixtree, we need
5191          * to look beyond the current sg.
5192          */
5193         while (idx + count <= n) {
5194                 idx += count;
5195                 sg = ____sg_next(sg);
5196                 count = __sg_page_count(sg);
5197         }
5198
5199         *offset = n - idx;
5200         return sg;
5201
5202 lookup:
5203         rcu_read_lock();
5204
5205         sg = radix_tree_lookup(&iter->radix, n);
5206         GEM_BUG_ON(!sg);
5207
5208         /* If this index is in the middle of multi-page sg entry,
5209          * the radixtree will contain an exceptional entry that points
5210          * to the start of that range. We will return the pointer to
5211          * the base page and the offset of this page within the
5212          * sg entry's range.
5213          */
5214         *offset = 0;
5215         if (unlikely(radix_tree_exception(sg))) {
5216                 unsigned long base =
5217                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5218
5219                 sg = radix_tree_lookup(&iter->radix, base);
5220                 GEM_BUG_ON(!sg);
5221
5222                 *offset = n - base;
5223         }
5224
5225         rcu_read_unlock();
5226
5227         return sg;
5228 }
5229
5230 struct page *
5231 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5232 {
5233         struct scatterlist *sg;
5234         unsigned int offset;
5235
5236         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5237
5238         sg = i915_gem_object_get_sg(obj, n, &offset);
5239         return nth_page(sg_page(sg), offset);
5240 }
5241
5242 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5243 struct page *
5244 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5245                                unsigned int n)
5246 {
5247         struct page *page;
5248
5249         page = i915_gem_object_get_page(obj, n);
5250         if (!obj->mm.dirty)
5251                 set_page_dirty(page);
5252
5253         return page;
5254 }
5255
5256 dma_addr_t
5257 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5258                                 unsigned long n)
5259 {
5260         struct scatterlist *sg;
5261         unsigned int offset;
5262
5263         sg = i915_gem_object_get_sg(obj, n, &offset);
5264         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5265 }
5266
5267 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5268 #include "selftests/scatterlist.c"
5269 #include "selftests/mock_gem_device.c"
5270 #include "selftests/huge_gem_object.c"
5271 #include "selftests/i915_gem_object.c"
5272 #include "selftests/i915_gem_coherency.c"
5273 #endif