]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'nfs-for-3.8-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92         struct drm_i915_private *dev_priv = dev->dev_private;
93         struct completion *x = &dev_priv->error_completion;
94         unsigned long flags;
95         int ret;
96
97         if (!atomic_read(&dev_priv->mm.wedged))
98                 return 0;
99
100         /*
101          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102          * userspace. If it takes that long something really bad is going on and
103          * we should simply try to bail out and fail as gracefully as possible.
104          */
105         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106         if (ret == 0) {
107                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108                 return -EIO;
109         } else if (ret < 0) {
110                 return ret;
111         }
112
113         if (atomic_read(&dev_priv->mm.wedged)) {
114                 /* GPU is hung, bump the completion count to account for
115                  * the token we just consumed so that we never hit zero and
116                  * end up waiting upon a subsequent completion event that
117                  * will never happen.
118                  */
119                 spin_lock_irqsave(&x->wait.lock, flags);
120                 x->done++;
121                 spin_unlock_irqrestore(&x->wait.lock, flags);
122         }
123         return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128         int ret;
129
130         ret = i915_gem_wait_for_error(dev);
131         if (ret)
132                 return ret;
133
134         ret = mutex_lock_interruptible(&dev->struct_mutex);
135         if (ret)
136                 return ret;
137
138         WARN_ON(i915_verify_lists(dev));
139         return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145         return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150                     struct drm_file *file)
151 {
152         struct drm_i915_gem_init *args = data;
153
154         if (drm_core_check_feature(dev, DRIVER_MODESET))
155                 return -ENODEV;
156
157         if (args->gtt_start >= args->gtt_end ||
158             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159                 return -EINVAL;
160
161         /* GEM with user mode setting was never supported on ilk and later. */
162         if (INTEL_INFO(dev)->gen >= 5)
163                 return -ENODEV;
164
165         mutex_lock(&dev->struct_mutex);
166         i915_gem_init_global_gtt(dev, args->gtt_start,
167                                  args->gtt_end, args->gtt_end);
168         mutex_unlock(&dev->struct_mutex);
169
170         return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175                             struct drm_file *file)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         struct drm_i915_gem_get_aperture *args = data;
179         struct drm_i915_gem_object *obj;
180         size_t pinned;
181
182         pinned = 0;
183         mutex_lock(&dev->struct_mutex);
184         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185                 if (obj->pin_count)
186                         pinned += obj->gtt_space->size;
187         mutex_unlock(&dev->struct_mutex);
188
189         args->aper_size = dev_priv->mm.gtt_total;
190         args->aper_available_size = args->aper_size - pinned;
191
192         return 0;
193 }
194
195 static int
196 i915_gem_create(struct drm_file *file,
197                 struct drm_device *dev,
198                 uint64_t size,
199                 uint32_t *handle_p)
200 {
201         struct drm_i915_gem_object *obj;
202         int ret;
203         u32 handle;
204
205         size = roundup(size, PAGE_SIZE);
206         if (size == 0)
207                 return -EINVAL;
208
209         /* Allocate the new object */
210         obj = i915_gem_alloc_object(dev, size);
211         if (obj == NULL)
212                 return -ENOMEM;
213
214         ret = drm_gem_handle_create(file, &obj->base, &handle);
215         if (ret) {
216                 drm_gem_object_release(&obj->base);
217                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218                 kfree(obj);
219                 return ret;
220         }
221
222         /* drop reference from allocate - handle holds it now */
223         drm_gem_object_unreference(&obj->base);
224         trace_i915_gem_object_create(obj);
225
226         *handle_p = handle;
227         return 0;
228 }
229
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232                      struct drm_device *dev,
233                      struct drm_mode_create_dumb *args)
234 {
235         /* have to work out size/pitch and return them */
236         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237         args->size = args->pitch * args->height;
238         return i915_gem_create(file, dev,
239                                args->size, &args->handle);
240 }
241
242 int i915_gem_dumb_destroy(struct drm_file *file,
243                           struct drm_device *dev,
244                           uint32_t handle)
245 {
246         return drm_gem_handle_delete(file, handle);
247 }
248
249 /**
250  * Creates a new mm object and returns a handle to it.
251  */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254                       struct drm_file *file)
255 {
256         struct drm_i915_gem_create *args = data;
257
258         return i915_gem_create(file, dev,
259                                args->size, &args->handle);
260 }
261
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265
266         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267                 obj->tiling_mode != I915_TILING_NONE;
268 }
269
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272                         const char *gpu_vaddr, int gpu_offset,
273                         int length)
274 {
275         int ret, cpu_offset = 0;
276
277         while (length > 0) {
278                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279                 int this_length = min(cacheline_end - gpu_offset, length);
280                 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283                                      gpu_vaddr + swizzled_gpu_offset,
284                                      this_length);
285                 if (ret)
286                         return ret + length;
287
288                 cpu_offset += this_length;
289                 gpu_offset += this_length;
290                 length -= this_length;
291         }
292
293         return 0;
294 }
295
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298                           const char __user *cpu_vaddr,
299                           int length)
300 {
301         int ret, cpu_offset = 0;
302
303         while (length > 0) {
304                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305                 int this_length = min(cacheline_end - gpu_offset, length);
306                 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309                                        cpu_vaddr + cpu_offset,
310                                        this_length);
311                 if (ret)
312                         return ret + length;
313
314                 cpu_offset += this_length;
315                 gpu_offset += this_length;
316                 length -= this_length;
317         }
318
319         return 0;
320 }
321
322 /* Per-page copy function for the shmem pread fastpath.
323  * Flushes invalid cachelines before reading the target if
324  * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327                  char __user *user_data,
328                  bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330         char *vaddr;
331         int ret;
332
333         if (unlikely(page_do_bit17_swizzling))
334                 return -EINVAL;
335
336         vaddr = kmap_atomic(page);
337         if (needs_clflush)
338                 drm_clflush_virt_range(vaddr + shmem_page_offset,
339                                        page_length);
340         ret = __copy_to_user_inatomic(user_data,
341                                       vaddr + shmem_page_offset,
342                                       page_length);
343         kunmap_atomic(vaddr);
344
345         return ret ? -EFAULT : 0;
346 }
347
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350                              bool swizzled)
351 {
352         if (unlikely(swizzled)) {
353                 unsigned long start = (unsigned long) addr;
354                 unsigned long end = (unsigned long) addr + length;
355
356                 /* For swizzling simply ensure that we always flush both
357                  * channels. Lame, but simple and it works. Swizzled
358                  * pwrite/pread is far from a hotpath - current userspace
359                  * doesn't use it at all. */
360                 start = round_down(start, 128);
361                 end = round_up(end, 128);
362
363                 drm_clflush_virt_range((void *)start, end - start);
364         } else {
365                 drm_clflush_virt_range(addr, length);
366         }
367
368 }
369
370 /* Only difference to the fast-path function is that this can handle bit17
371  * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374                  char __user *user_data,
375                  bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377         char *vaddr;
378         int ret;
379
380         vaddr = kmap(page);
381         if (needs_clflush)
382                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383                                              page_length,
384                                              page_do_bit17_swizzling);
385
386         if (page_do_bit17_swizzling)
387                 ret = __copy_to_user_swizzled(user_data,
388                                               vaddr, shmem_page_offset,
389                                               page_length);
390         else
391                 ret = __copy_to_user(user_data,
392                                      vaddr + shmem_page_offset,
393                                      page_length);
394         kunmap(page);
395
396         return ret ? - EFAULT : 0;
397 }
398
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401                      struct drm_i915_gem_object *obj,
402                      struct drm_i915_gem_pread *args,
403                      struct drm_file *file)
404 {
405         char __user *user_data;
406         ssize_t remain;
407         loff_t offset;
408         int shmem_page_offset, page_length, ret = 0;
409         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410         int hit_slowpath = 0;
411         int prefaulted = 0;
412         int needs_clflush = 0;
413         struct scatterlist *sg;
414         int i;
415
416         user_data = (char __user *) (uintptr_t) args->data_ptr;
417         remain = args->size;
418
419         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422                 /* If we're not in the cpu read domain, set ourself into the gtt
423                  * read domain and manually flush cachelines (if required). This
424                  * optimizes for the case when the gpu will dirty the data
425                  * anyway again before the next pread happens. */
426                 if (obj->cache_level == I915_CACHE_NONE)
427                         needs_clflush = 1;
428                 if (obj->gtt_space) {
429                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
430                         if (ret)
431                                 return ret;
432                 }
433         }
434
435         ret = i915_gem_object_get_pages(obj);
436         if (ret)
437                 return ret;
438
439         i915_gem_object_pin_pages(obj);
440
441         offset = args->offset;
442
443         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444                 struct page *page;
445
446                 if (i < offset >> PAGE_SHIFT)
447                         continue;
448
449                 if (remain <= 0)
450                         break;
451
452                 /* Operation in this page
453                  *
454                  * shmem_page_offset = offset within page in shmem file
455                  * page_length = bytes to copy for this page
456                  */
457                 shmem_page_offset = offset_in_page(offset);
458                 page_length = remain;
459                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460                         page_length = PAGE_SIZE - shmem_page_offset;
461
462                 page = sg_page(sg);
463                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464                         (page_to_phys(page) & (1 << 17)) != 0;
465
466                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467                                        user_data, page_do_bit17_swizzling,
468                                        needs_clflush);
469                 if (ret == 0)
470                         goto next_page;
471
472                 hit_slowpath = 1;
473                 mutex_unlock(&dev->struct_mutex);
474
475                 if (!prefaulted) {
476                         ret = fault_in_multipages_writeable(user_data, remain);
477                         /* Userspace is tricking us, but we've already clobbered
478                          * its pages with the prefault and promised to write the
479                          * data up to the first fault. Hence ignore any errors
480                          * and just continue. */
481                         (void)ret;
482                         prefaulted = 1;
483                 }
484
485                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486                                        user_data, page_do_bit17_swizzling,
487                                        needs_clflush);
488
489                 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492                 mark_page_accessed(page);
493
494                 if (ret)
495                         goto out;
496
497                 remain -= page_length;
498                 user_data += page_length;
499                 offset += page_length;
500         }
501
502 out:
503         i915_gem_object_unpin_pages(obj);
504
505         if (hit_slowpath) {
506                 /* Fixup: Kill any reinstated backing storage pages */
507                 if (obj->madv == __I915_MADV_PURGED)
508                         i915_gem_object_truncate(obj);
509         }
510
511         return ret;
512 }
513
514 /**
515  * Reads data from the object referenced by handle.
516  *
517  * On error, the contents of *data are undefined.
518  */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521                      struct drm_file *file)
522 {
523         struct drm_i915_gem_pread *args = data;
524         struct drm_i915_gem_object *obj;
525         int ret = 0;
526
527         if (args->size == 0)
528                 return 0;
529
530         if (!access_ok(VERIFY_WRITE,
531                        (char __user *)(uintptr_t)args->data_ptr,
532                        args->size))
533                 return -EFAULT;
534
535         ret = i915_mutex_lock_interruptible(dev);
536         if (ret)
537                 return ret;
538
539         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540         if (&obj->base == NULL) {
541                 ret = -ENOENT;
542                 goto unlock;
543         }
544
545         /* Bounds check source.  */
546         if (args->offset > obj->base.size ||
547             args->size > obj->base.size - args->offset) {
548                 ret = -EINVAL;
549                 goto out;
550         }
551
552         /* prime objects have no backing filp to GEM pread/pwrite
553          * pages from.
554          */
555         if (!obj->base.filp) {
556                 ret = -EINVAL;
557                 goto out;
558         }
559
560         trace_i915_gem_object_pread(obj, args->offset, args->size);
561
562         ret = i915_gem_shmem_pread(dev, obj, args, file);
563
564 out:
565         drm_gem_object_unreference(&obj->base);
566 unlock:
567         mutex_unlock(&dev->struct_mutex);
568         return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572  * page faults in the source data
573  */
574
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577                 loff_t page_base, int page_offset,
578                 char __user *user_data,
579                 int length)
580 {
581         void __iomem *vaddr_atomic;
582         void *vaddr;
583         unsigned long unwritten;
584
585         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586         /* We can use the cpu mem copy function because this is X86. */
587         vaddr = (void __force*)vaddr_atomic + page_offset;
588         unwritten = __copy_from_user_inatomic_nocache(vaddr,
589                                                       user_data, length);
590         io_mapping_unmap_atomic(vaddr_atomic);
591         return unwritten;
592 }
593
594 /**
595  * This is the fast pwrite path, where we copy the data directly from the
596  * user into the GTT, uncached.
597  */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600                          struct drm_i915_gem_object *obj,
601                          struct drm_i915_gem_pwrite *args,
602                          struct drm_file *file)
603 {
604         drm_i915_private_t *dev_priv = dev->dev_private;
605         ssize_t remain;
606         loff_t offset, page_base;
607         char __user *user_data;
608         int page_offset, page_length, ret;
609
610         ret = i915_gem_object_pin(obj, 0, true, true);
611         if (ret)
612                 goto out;
613
614         ret = i915_gem_object_set_to_gtt_domain(obj, true);
615         if (ret)
616                 goto out_unpin;
617
618         ret = i915_gem_object_put_fence(obj);
619         if (ret)
620                 goto out_unpin;
621
622         user_data = (char __user *) (uintptr_t) args->data_ptr;
623         remain = args->size;
624
625         offset = obj->gtt_offset + args->offset;
626
627         while (remain > 0) {
628                 /* Operation in this page
629                  *
630                  * page_base = page offset within aperture
631                  * page_offset = offset within page
632                  * page_length = bytes to copy for this page
633                  */
634                 page_base = offset & PAGE_MASK;
635                 page_offset = offset_in_page(offset);
636                 page_length = remain;
637                 if ((page_offset + remain) > PAGE_SIZE)
638                         page_length = PAGE_SIZE - page_offset;
639
640                 /* If we get a fault while copying data, then (presumably) our
641                  * source page isn't available.  Return the error and we'll
642                  * retry in the slow path.
643                  */
644                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645                                     page_offset, user_data, page_length)) {
646                         ret = -EFAULT;
647                         goto out_unpin;
648                 }
649
650                 remain -= page_length;
651                 user_data += page_length;
652                 offset += page_length;
653         }
654
655 out_unpin:
656         i915_gem_object_unpin(obj);
657 out:
658         return ret;
659 }
660
661 /* Per-page copy function for the shmem pwrite fastpath.
662  * Flushes invalid cachelines before writing to the target if
663  * needs_clflush_before is set and flushes out any written cachelines after
664  * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667                   char __user *user_data,
668                   bool page_do_bit17_swizzling,
669                   bool needs_clflush_before,
670                   bool needs_clflush_after)
671 {
672         char *vaddr;
673         int ret;
674
675         if (unlikely(page_do_bit17_swizzling))
676                 return -EINVAL;
677
678         vaddr = kmap_atomic(page);
679         if (needs_clflush_before)
680                 drm_clflush_virt_range(vaddr + shmem_page_offset,
681                                        page_length);
682         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683                                                 user_data,
684                                                 page_length);
685         if (needs_clflush_after)
686                 drm_clflush_virt_range(vaddr + shmem_page_offset,
687                                        page_length);
688         kunmap_atomic(vaddr);
689
690         return ret ? -EFAULT : 0;
691 }
692
693 /* Only difference to the fast-path function is that this can handle bit17
694  * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697                   char __user *user_data,
698                   bool page_do_bit17_swizzling,
699                   bool needs_clflush_before,
700                   bool needs_clflush_after)
701 {
702         char *vaddr;
703         int ret;
704
705         vaddr = kmap(page);
706         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708                                              page_length,
709                                              page_do_bit17_swizzling);
710         if (page_do_bit17_swizzling)
711                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712                                                 user_data,
713                                                 page_length);
714         else
715                 ret = __copy_from_user(vaddr + shmem_page_offset,
716                                        user_data,
717                                        page_length);
718         if (needs_clflush_after)
719                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720                                              page_length,
721                                              page_do_bit17_swizzling);
722         kunmap(page);
723
724         return ret ? -EFAULT : 0;
725 }
726
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729                       struct drm_i915_gem_object *obj,
730                       struct drm_i915_gem_pwrite *args,
731                       struct drm_file *file)
732 {
733         ssize_t remain;
734         loff_t offset;
735         char __user *user_data;
736         int shmem_page_offset, page_length, ret = 0;
737         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738         int hit_slowpath = 0;
739         int needs_clflush_after = 0;
740         int needs_clflush_before = 0;
741         int i;
742         struct scatterlist *sg;
743
744         user_data = (char __user *) (uintptr_t) args->data_ptr;
745         remain = args->size;
746
747         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748
749         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750                 /* If we're not in the cpu write domain, set ourself into the gtt
751                  * write domain and manually flush cachelines (if required). This
752                  * optimizes for the case when the gpu will use the data
753                  * right away and we therefore have to clflush anyway. */
754                 if (obj->cache_level == I915_CACHE_NONE)
755                         needs_clflush_after = 1;
756                 if (obj->gtt_space) {
757                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
758                         if (ret)
759                                 return ret;
760                 }
761         }
762         /* Same trick applies for invalidate partially written cachelines before
763          * writing.  */
764         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765             && obj->cache_level == I915_CACHE_NONE)
766                 needs_clflush_before = 1;
767
768         ret = i915_gem_object_get_pages(obj);
769         if (ret)
770                 return ret;
771
772         i915_gem_object_pin_pages(obj);
773
774         offset = args->offset;
775         obj->dirty = 1;
776
777         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778                 struct page *page;
779                 int partial_cacheline_write;
780
781                 if (i < offset >> PAGE_SHIFT)
782                         continue;
783
784                 if (remain <= 0)
785                         break;
786
787                 /* Operation in this page
788                  *
789                  * shmem_page_offset = offset within page in shmem file
790                  * page_length = bytes to copy for this page
791                  */
792                 shmem_page_offset = offset_in_page(offset);
793
794                 page_length = remain;
795                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796                         page_length = PAGE_SIZE - shmem_page_offset;
797
798                 /* If we don't overwrite a cacheline completely we need to be
799                  * careful to have up-to-date data by first clflushing. Don't
800                  * overcomplicate things and flush the entire patch. */
801                 partial_cacheline_write = needs_clflush_before &&
802                         ((shmem_page_offset | page_length)
803                                 & (boot_cpu_data.x86_clflush_size - 1));
804
805                 page = sg_page(sg);
806                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807                         (page_to_phys(page) & (1 << 17)) != 0;
808
809                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813                 if (ret == 0)
814                         goto next_page;
815
816                 hit_slowpath = 1;
817                 mutex_unlock(&dev->struct_mutex);
818                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819                                         user_data, page_do_bit17_swizzling,
820                                         partial_cacheline_write,
821                                         needs_clflush_after);
822
823                 mutex_lock(&dev->struct_mutex);
824
825 next_page:
826                 set_page_dirty(page);
827                 mark_page_accessed(page);
828
829                 if (ret)
830                         goto out;
831
832                 remain -= page_length;
833                 user_data += page_length;
834                 offset += page_length;
835         }
836
837 out:
838         i915_gem_object_unpin_pages(obj);
839
840         if (hit_slowpath) {
841                 /* Fixup: Kill any reinstated backing storage pages */
842                 if (obj->madv == __I915_MADV_PURGED)
843                         i915_gem_object_truncate(obj);
844                 /* and flush dirty cachelines in case the object isn't in the cpu write
845                  * domain anymore. */
846                 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847                         i915_gem_clflush_object(obj);
848                         i915_gem_chipset_flush(dev);
849                 }
850         }
851
852         if (needs_clflush_after)
853                 i915_gem_chipset_flush(dev);
854
855         return ret;
856 }
857
858 /**
859  * Writes data to the object referenced by handle.
860  *
861  * On error, the contents of the buffer that were to be modified are undefined.
862  */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865                       struct drm_file *file)
866 {
867         struct drm_i915_gem_pwrite *args = data;
868         struct drm_i915_gem_object *obj;
869         int ret;
870
871         if (args->size == 0)
872                 return 0;
873
874         if (!access_ok(VERIFY_READ,
875                        (char __user *)(uintptr_t)args->data_ptr,
876                        args->size))
877                 return -EFAULT;
878
879         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880                                            args->size);
881         if (ret)
882                 return -EFAULT;
883
884         ret = i915_mutex_lock_interruptible(dev);
885         if (ret)
886                 return ret;
887
888         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889         if (&obj->base == NULL) {
890                 ret = -ENOENT;
891                 goto unlock;
892         }
893
894         /* Bounds check destination. */
895         if (args->offset > obj->base.size ||
896             args->size > obj->base.size - args->offset) {
897                 ret = -EINVAL;
898                 goto out;
899         }
900
901         /* prime objects have no backing filp to GEM pread/pwrite
902          * pages from.
903          */
904         if (!obj->base.filp) {
905                 ret = -EINVAL;
906                 goto out;
907         }
908
909         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911         ret = -EFAULT;
912         /* We can only do the GTT pwrite on untiled buffers, as otherwise
913          * it would end up going through the fenced access, and we'll get
914          * different detiling behavior between reading and writing.
915          * pread/pwrite currently are reading and writing from the CPU
916          * perspective, requiring manual detiling by the client.
917          */
918         if (obj->phys_obj) {
919                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920                 goto out;
921         }
922
923         if (obj->cache_level == I915_CACHE_NONE &&
924             obj->tiling_mode == I915_TILING_NONE &&
925             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927                 /* Note that the gtt paths might fail with non-page-backed user
928                  * pointers (e.g. gtt mappings when moving data between
929                  * textures). Fallback to the shmem path in that case. */
930         }
931
932         if (ret == -EFAULT || ret == -ENOSPC)
933                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934
935 out:
936         drm_gem_object_unreference(&obj->base);
937 unlock:
938         mutex_unlock(&dev->struct_mutex);
939         return ret;
940 }
941
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944                      bool interruptible)
945 {
946         if (atomic_read(&dev_priv->mm.wedged)) {
947                 struct completion *x = &dev_priv->error_completion;
948                 bool recovery_complete;
949                 unsigned long flags;
950
951                 /* Give the error handler a chance to run. */
952                 spin_lock_irqsave(&x->wait.lock, flags);
953                 recovery_complete = x->done > 0;
954                 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956                 /* Non-interruptible callers can't handle -EAGAIN, hence return
957                  * -EIO unconditionally for these. */
958                 if (!interruptible)
959                         return -EIO;
960
961                 /* Recovery complete, but still wedged means reset failure. */
962                 if (recovery_complete)
963                         return -EIO;
964
965                 return -EAGAIN;
966         }
967
968         return 0;
969 }
970
971 /*
972  * Compare seqno against outstanding lazy request. Emit a request if they are
973  * equal.
974  */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978         int ret;
979
980         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982         ret = 0;
983         if (seqno == ring->outstanding_lazy_request)
984                 ret = i915_add_request(ring, NULL, NULL);
985
986         return ret;
987 }
988
989 /**
990  * __wait_seqno - wait until execution of seqno has finished
991  * @ring: the ring expected to report seqno
992  * @seqno: duh!
993  * @interruptible: do an interruptible wait (normally yes)
994  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995  *
996  * Returns 0 if the seqno was found within the alloted time. Else returns the
997  * errno with remaining time filled in timeout argument.
998  */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000                         bool interruptible, struct timespec *timeout)
1001 {
1002         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003         struct timespec before, now, wait_time={1,0};
1004         unsigned long timeout_jiffies;
1005         long end;
1006         bool wait_forever = true;
1007         int ret;
1008
1009         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010                 return 0;
1011
1012         trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014         if (timeout != NULL) {
1015                 wait_time = *timeout;
1016                 wait_forever = false;
1017         }
1018
1019         timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021         if (WARN_ON(!ring->irq_get(ring)))
1022                 return -ENODEV;
1023
1024         /* Record current time in case interrupted by signal, or wedged * */
1025         getrawmonotonic(&before);
1026
1027 #define EXIT_COND \
1028         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029         atomic_read(&dev_priv->mm.wedged))
1030         do {
1031                 if (interruptible)
1032                         end = wait_event_interruptible_timeout(ring->irq_queue,
1033                                                                EXIT_COND,
1034                                                                timeout_jiffies);
1035                 else
1036                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037                                                  timeout_jiffies);
1038
1039                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040                 if (ret)
1041                         end = ret;
1042         } while (end == 0 && wait_forever);
1043
1044         getrawmonotonic(&now);
1045
1046         ring->irq_put(ring);
1047         trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049
1050         if (timeout) {
1051                 struct timespec sleep_time = timespec_sub(now, before);
1052                 *timeout = timespec_sub(*timeout, sleep_time);
1053         }
1054
1055         switch (end) {
1056         case -EIO:
1057         case -EAGAIN: /* Wedged */
1058         case -ERESTARTSYS: /* Signal */
1059                 return (int)end;
1060         case 0: /* Timeout */
1061                 if (timeout)
1062                         set_normalized_timespec(timeout, 0, 0);
1063                 return -ETIME;
1064         default: /* Completed */
1065                 WARN_ON(end < 0); /* We're not aware of other errors */
1066                 return 0;
1067         }
1068 }
1069
1070 /**
1071  * Waits for a sequence number to be signaled, and cleans up the
1072  * request and object lists appropriately for that event.
1073  */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077         struct drm_device *dev = ring->dev;
1078         struct drm_i915_private *dev_priv = dev->dev_private;
1079         bool interruptible = dev_priv->mm.interruptible;
1080         int ret;
1081
1082         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083         BUG_ON(seqno == 0);
1084
1085         ret = i915_gem_check_wedge(dev_priv, interruptible);
1086         if (ret)
1087                 return ret;
1088
1089         ret = i915_gem_check_olr(ring, seqno);
1090         if (ret)
1091                 return ret;
1092
1093         return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095
1096 /**
1097  * Ensures that all rendering to the object has completed and the object is
1098  * safe to unbind from the GTT or access from the CPU.
1099  */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102                                bool readonly)
1103 {
1104         struct intel_ring_buffer *ring = obj->ring;
1105         u32 seqno;
1106         int ret;
1107
1108         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109         if (seqno == 0)
1110                 return 0;
1111
1112         ret = i915_wait_seqno(ring, seqno);
1113         if (ret)
1114                 return ret;
1115
1116         i915_gem_retire_requests_ring(ring);
1117
1118         /* Manually manage the write flush as we may have not yet
1119          * retired the buffer.
1120          */
1121         if (obj->last_write_seqno &&
1122             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123                 obj->last_write_seqno = 0;
1124                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125         }
1126
1127         return 0;
1128 }
1129
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131  * as the object state may change during this call.
1132  */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135                                             bool readonly)
1136 {
1137         struct drm_device *dev = obj->base.dev;
1138         struct drm_i915_private *dev_priv = dev->dev_private;
1139         struct intel_ring_buffer *ring = obj->ring;
1140         u32 seqno;
1141         int ret;
1142
1143         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144         BUG_ON(!dev_priv->mm.interruptible);
1145
1146         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147         if (seqno == 0)
1148                 return 0;
1149
1150         ret = i915_gem_check_wedge(dev_priv, true);
1151         if (ret)
1152                 return ret;
1153
1154         ret = i915_gem_check_olr(ring, seqno);
1155         if (ret)
1156                 return ret;
1157
1158         mutex_unlock(&dev->struct_mutex);
1159         ret = __wait_seqno(ring, seqno, true, NULL);
1160         mutex_lock(&dev->struct_mutex);
1161
1162         i915_gem_retire_requests_ring(ring);
1163
1164         /* Manually manage the write flush as we may have not yet
1165          * retired the buffer.
1166          */
1167         if (obj->last_write_seqno &&
1168             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169                 obj->last_write_seqno = 0;
1170                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171         }
1172
1173         return ret;
1174 }
1175
1176 /**
1177  * Called when user space prepares to use an object with the CPU, either
1178  * through the mmap ioctl's mapping or a GTT mapping.
1179  */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182                           struct drm_file *file)
1183 {
1184         struct drm_i915_gem_set_domain *args = data;
1185         struct drm_i915_gem_object *obj;
1186         uint32_t read_domains = args->read_domains;
1187         uint32_t write_domain = args->write_domain;
1188         int ret;
1189
1190         /* Only handle setting domains to types used by the CPU. */
1191         if (write_domain & I915_GEM_GPU_DOMAINS)
1192                 return -EINVAL;
1193
1194         if (read_domains & I915_GEM_GPU_DOMAINS)
1195                 return -EINVAL;
1196
1197         /* Having something in the write domain implies it's in the read
1198          * domain, and only that read domain.  Enforce that in the request.
1199          */
1200         if (write_domain != 0 && read_domains != write_domain)
1201                 return -EINVAL;
1202
1203         ret = i915_mutex_lock_interruptible(dev);
1204         if (ret)
1205                 return ret;
1206
1207         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208         if (&obj->base == NULL) {
1209                 ret = -ENOENT;
1210                 goto unlock;
1211         }
1212
1213         /* Try to flush the object off the GPU without holding the lock.
1214          * We will repeat the flush holding the lock in the normal manner
1215          * to catch cases where we are gazumped.
1216          */
1217         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218         if (ret)
1219                 goto unref;
1220
1221         if (read_domains & I915_GEM_DOMAIN_GTT) {
1222                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223
1224                 /* Silently promote "you're not bound, there was nothing to do"
1225                  * to success, since the client was just asking us to
1226                  * make sure everything was done.
1227                  */
1228                 if (ret == -EINVAL)
1229                         ret = 0;
1230         } else {
1231                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232         }
1233
1234 unref:
1235         drm_gem_object_unreference(&obj->base);
1236 unlock:
1237         mutex_unlock(&dev->struct_mutex);
1238         return ret;
1239 }
1240
1241 /**
1242  * Called when user space has done writes to this buffer
1243  */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246                          struct drm_file *file)
1247 {
1248         struct drm_i915_gem_sw_finish *args = data;
1249         struct drm_i915_gem_object *obj;
1250         int ret = 0;
1251
1252         ret = i915_mutex_lock_interruptible(dev);
1253         if (ret)
1254                 return ret;
1255
1256         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257         if (&obj->base == NULL) {
1258                 ret = -ENOENT;
1259                 goto unlock;
1260         }
1261
1262         /* Pinned buffers may be scanout, so flush the cache */
1263         if (obj->pin_count)
1264                 i915_gem_object_flush_cpu_write_domain(obj);
1265
1266         drm_gem_object_unreference(&obj->base);
1267 unlock:
1268         mutex_unlock(&dev->struct_mutex);
1269         return ret;
1270 }
1271
1272 /**
1273  * Maps the contents of an object, returning the address it is mapped
1274  * into.
1275  *
1276  * While the mapping holds a reference on the contents of the object, it doesn't
1277  * imply a ref on the object itself.
1278  */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281                     struct drm_file *file)
1282 {
1283         struct drm_i915_gem_mmap *args = data;
1284         struct drm_gem_object *obj;
1285         unsigned long addr;
1286
1287         obj = drm_gem_object_lookup(dev, file, args->handle);
1288         if (obj == NULL)
1289                 return -ENOENT;
1290
1291         /* prime objects have no backing filp to GEM mmap
1292          * pages from.
1293          */
1294         if (!obj->filp) {
1295                 drm_gem_object_unreference_unlocked(obj);
1296                 return -EINVAL;
1297         }
1298
1299         addr = vm_mmap(obj->filp, 0, args->size,
1300                        PROT_READ | PROT_WRITE, MAP_SHARED,
1301                        args->offset);
1302         drm_gem_object_unreference_unlocked(obj);
1303         if (IS_ERR((void *)addr))
1304                 return addr;
1305
1306         args->addr_ptr = (uint64_t) addr;
1307
1308         return 0;
1309 }
1310
1311 /**
1312  * i915_gem_fault - fault a page into the GTT
1313  * vma: VMA in question
1314  * vmf: fault info
1315  *
1316  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317  * from userspace.  The fault handler takes care of binding the object to
1318  * the GTT (if needed), allocating and programming a fence register (again,
1319  * only if needed based on whether the old reg is still valid or the object
1320  * is tiled) and inserting a new PTE into the faulting process.
1321  *
1322  * Note that the faulting process may involve evicting existing objects
1323  * from the GTT and/or fence registers to make room.  So performance may
1324  * suffer if the GTT working set is large or there are few fence registers
1325  * left.
1326  */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330         struct drm_device *dev = obj->base.dev;
1331         drm_i915_private_t *dev_priv = dev->dev_private;
1332         pgoff_t page_offset;
1333         unsigned long pfn;
1334         int ret = 0;
1335         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336
1337         /* We don't use vmf->pgoff since that has the fake offset */
1338         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339                 PAGE_SHIFT;
1340
1341         ret = i915_mutex_lock_interruptible(dev);
1342         if (ret)
1343                 goto out;
1344
1345         trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
1347         /* Now bind it into the GTT if needed */
1348         ret = i915_gem_object_pin(obj, 0, true, false);
1349         if (ret)
1350                 goto unlock;
1351
1352         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1353         if (ret)
1354                 goto unpin;
1355
1356         ret = i915_gem_object_get_fence(obj);
1357         if (ret)
1358                 goto unpin;
1359
1360         obj->fault_mappable = true;
1361
1362         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1363                 page_offset;
1364
1365         /* Finally, remap it using the new GTT offset */
1366         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1367 unpin:
1368         i915_gem_object_unpin(obj);
1369 unlock:
1370         mutex_unlock(&dev->struct_mutex);
1371 out:
1372         switch (ret) {
1373         case -EIO:
1374                 /* If this -EIO is due to a gpu hang, give the reset code a
1375                  * chance to clean up the mess. Otherwise return the proper
1376                  * SIGBUS. */
1377                 if (!atomic_read(&dev_priv->mm.wedged))
1378                         return VM_FAULT_SIGBUS;
1379         case -EAGAIN:
1380                 /* Give the error handler a chance to run and move the
1381                  * objects off the GPU active list. Next time we service the
1382                  * fault, we should be able to transition the page into the
1383                  * GTT without touching the GPU (and so avoid further
1384                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1385                  * with coherency, just lost writes.
1386                  */
1387                 set_need_resched();
1388         case 0:
1389         case -ERESTARTSYS:
1390         case -EINTR:
1391         case -EBUSY:
1392                 /*
1393                  * EBUSY is ok: this just means that another thread
1394                  * already did the job.
1395                  */
1396                 return VM_FAULT_NOPAGE;
1397         case -ENOMEM:
1398                 return VM_FAULT_OOM;
1399         case -ENOSPC:
1400                 return VM_FAULT_SIGBUS;
1401         default:
1402                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1403                 return VM_FAULT_SIGBUS;
1404         }
1405 }
1406
1407 /**
1408  * i915_gem_release_mmap - remove physical page mappings
1409  * @obj: obj in question
1410  *
1411  * Preserve the reservation of the mmapping with the DRM core code, but
1412  * relinquish ownership of the pages back to the system.
1413  *
1414  * It is vital that we remove the page mapping if we have mapped a tiled
1415  * object through the GTT and then lose the fence register due to
1416  * resource pressure. Similarly if the object has been moved out of the
1417  * aperture, than pages mapped into userspace must be revoked. Removing the
1418  * mapping will then trigger a page fault on the next user access, allowing
1419  * fixup by i915_gem_fault().
1420  */
1421 void
1422 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1423 {
1424         if (!obj->fault_mappable)
1425                 return;
1426
1427         if (obj->base.dev->dev_mapping)
1428                 unmap_mapping_range(obj->base.dev->dev_mapping,
1429                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1430                                     obj->base.size, 1);
1431
1432         obj->fault_mappable = false;
1433 }
1434
1435 static uint32_t
1436 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1437 {
1438         uint32_t gtt_size;
1439
1440         if (INTEL_INFO(dev)->gen >= 4 ||
1441             tiling_mode == I915_TILING_NONE)
1442                 return size;
1443
1444         /* Previous chips need a power-of-two fence region when tiling */
1445         if (INTEL_INFO(dev)->gen == 3)
1446                 gtt_size = 1024*1024;
1447         else
1448                 gtt_size = 512*1024;
1449
1450         while (gtt_size < size)
1451                 gtt_size <<= 1;
1452
1453         return gtt_size;
1454 }
1455
1456 /**
1457  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1458  * @obj: object to check
1459  *
1460  * Return the required GTT alignment for an object, taking into account
1461  * potential fence register mapping.
1462  */
1463 static uint32_t
1464 i915_gem_get_gtt_alignment(struct drm_device *dev,
1465                            uint32_t size,
1466                            int tiling_mode)
1467 {
1468         /*
1469          * Minimum alignment is 4k (GTT page size), but might be greater
1470          * if a fence register is needed for the object.
1471          */
1472         if (INTEL_INFO(dev)->gen >= 4 ||
1473             tiling_mode == I915_TILING_NONE)
1474                 return 4096;
1475
1476         /*
1477          * Previous chips need to be aligned to the size of the smallest
1478          * fence register that can contain the object.
1479          */
1480         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1481 }
1482
1483 /**
1484  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1485  *                                       unfenced object
1486  * @dev: the device
1487  * @size: size of the object
1488  * @tiling_mode: tiling mode of the object
1489  *
1490  * Return the required GTT alignment for an object, only taking into account
1491  * unfenced tiled surface requirements.
1492  */
1493 uint32_t
1494 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1495                                     uint32_t size,
1496                                     int tiling_mode)
1497 {
1498         /*
1499          * Minimum alignment is 4k (GTT page size) for sane hw.
1500          */
1501         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1502             tiling_mode == I915_TILING_NONE)
1503                 return 4096;
1504
1505         /* Previous hardware however needs to be aligned to a power-of-two
1506          * tile height. The simplest method for determining this is to reuse
1507          * the power-of-tile object size.
1508          */
1509         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1510 }
1511
1512 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1513 {
1514         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1515         int ret;
1516
1517         if (obj->base.map_list.map)
1518                 return 0;
1519
1520         dev_priv->mm.shrinker_no_lock_stealing = true;
1521
1522         ret = drm_gem_create_mmap_offset(&obj->base);
1523         if (ret != -ENOSPC)
1524                 goto out;
1525
1526         /* Badly fragmented mmap space? The only way we can recover
1527          * space is by destroying unwanted objects. We can't randomly release
1528          * mmap_offsets as userspace expects them to be persistent for the
1529          * lifetime of the objects. The closest we can is to release the
1530          * offsets on purgeable objects by truncating it and marking it purged,
1531          * which prevents userspace from ever using that object again.
1532          */
1533         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1534         ret = drm_gem_create_mmap_offset(&obj->base);
1535         if (ret != -ENOSPC)
1536                 goto out;
1537
1538         i915_gem_shrink_all(dev_priv);
1539         ret = drm_gem_create_mmap_offset(&obj->base);
1540 out:
1541         dev_priv->mm.shrinker_no_lock_stealing = false;
1542
1543         return ret;
1544 }
1545
1546 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1547 {
1548         if (!obj->base.map_list.map)
1549                 return;
1550
1551         drm_gem_free_mmap_offset(&obj->base);
1552 }
1553
1554 int
1555 i915_gem_mmap_gtt(struct drm_file *file,
1556                   struct drm_device *dev,
1557                   uint32_t handle,
1558                   uint64_t *offset)
1559 {
1560         struct drm_i915_private *dev_priv = dev->dev_private;
1561         struct drm_i915_gem_object *obj;
1562         int ret;
1563
1564         ret = i915_mutex_lock_interruptible(dev);
1565         if (ret)
1566                 return ret;
1567
1568         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1569         if (&obj->base == NULL) {
1570                 ret = -ENOENT;
1571                 goto unlock;
1572         }
1573
1574         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1575                 ret = -E2BIG;
1576                 goto out;
1577         }
1578
1579         if (obj->madv != I915_MADV_WILLNEED) {
1580                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1581                 ret = -EINVAL;
1582                 goto out;
1583         }
1584
1585         ret = i915_gem_object_create_mmap_offset(obj);
1586         if (ret)
1587                 goto out;
1588
1589         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1590
1591 out:
1592         drm_gem_object_unreference(&obj->base);
1593 unlock:
1594         mutex_unlock(&dev->struct_mutex);
1595         return ret;
1596 }
1597
1598 /**
1599  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1600  * @dev: DRM device
1601  * @data: GTT mapping ioctl data
1602  * @file: GEM object info
1603  *
1604  * Simply returns the fake offset to userspace so it can mmap it.
1605  * The mmap call will end up in drm_gem_mmap(), which will set things
1606  * up so we can get faults in the handler above.
1607  *
1608  * The fault handler will take care of binding the object into the GTT
1609  * (since it may have been evicted to make room for something), allocating
1610  * a fence register, and mapping the appropriate aperture address into
1611  * userspace.
1612  */
1613 int
1614 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1615                         struct drm_file *file)
1616 {
1617         struct drm_i915_gem_mmap_gtt *args = data;
1618
1619         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1620 }
1621
1622 /* Immediately discard the backing storage */
1623 static void
1624 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1625 {
1626         struct inode *inode;
1627
1628         i915_gem_object_free_mmap_offset(obj);
1629
1630         if (obj->base.filp == NULL)
1631                 return;
1632
1633         /* Our goal here is to return as much of the memory as
1634          * is possible back to the system as we are called from OOM.
1635          * To do this we must instruct the shmfs to drop all of its
1636          * backing pages, *now*.
1637          */
1638         inode = obj->base.filp->f_path.dentry->d_inode;
1639         shmem_truncate_range(inode, 0, (loff_t)-1);
1640
1641         obj->madv = __I915_MADV_PURGED;
1642 }
1643
1644 static inline int
1645 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1646 {
1647         return obj->madv == I915_MADV_DONTNEED;
1648 }
1649
1650 static void
1651 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1652 {
1653         int page_count = obj->base.size / PAGE_SIZE;
1654         struct scatterlist *sg;
1655         int ret, i;
1656
1657         BUG_ON(obj->madv == __I915_MADV_PURGED);
1658
1659         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1660         if (ret) {
1661                 /* In the event of a disaster, abandon all caches and
1662                  * hope for the best.
1663                  */
1664                 WARN_ON(ret != -EIO);
1665                 i915_gem_clflush_object(obj);
1666                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1667         }
1668
1669         if (i915_gem_object_needs_bit17_swizzle(obj))
1670                 i915_gem_object_save_bit_17_swizzle(obj);
1671
1672         if (obj->madv == I915_MADV_DONTNEED)
1673                 obj->dirty = 0;
1674
1675         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1676                 struct page *page = sg_page(sg);
1677
1678                 if (obj->dirty)
1679                         set_page_dirty(page);
1680
1681                 if (obj->madv == I915_MADV_WILLNEED)
1682                         mark_page_accessed(page);
1683
1684                 page_cache_release(page);
1685         }
1686         obj->dirty = 0;
1687
1688         sg_free_table(obj->pages);
1689         kfree(obj->pages);
1690 }
1691
1692 static int
1693 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1694 {
1695         const struct drm_i915_gem_object_ops *ops = obj->ops;
1696
1697         if (obj->pages == NULL)
1698                 return 0;
1699
1700         BUG_ON(obj->gtt_space);
1701
1702         if (obj->pages_pin_count)
1703                 return -EBUSY;
1704
1705         /* ->put_pages might need to allocate memory for the bit17 swizzle
1706          * array, hence protect them from being reaped by removing them from gtt
1707          * lists early. */
1708         list_del(&obj->gtt_list);
1709
1710         ops->put_pages(obj);
1711         obj->pages = NULL;
1712
1713         if (i915_gem_object_is_purgeable(obj))
1714                 i915_gem_object_truncate(obj);
1715
1716         return 0;
1717 }
1718
1719 static long
1720 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1721                   bool purgeable_only)
1722 {
1723         struct drm_i915_gem_object *obj, *next;
1724         long count = 0;
1725
1726         list_for_each_entry_safe(obj, next,
1727                                  &dev_priv->mm.unbound_list,
1728                                  gtt_list) {
1729                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1730                     i915_gem_object_put_pages(obj) == 0) {
1731                         count += obj->base.size >> PAGE_SHIFT;
1732                         if (count >= target)
1733                                 return count;
1734                 }
1735         }
1736
1737         list_for_each_entry_safe(obj, next,
1738                                  &dev_priv->mm.inactive_list,
1739                                  mm_list) {
1740                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1741                     i915_gem_object_unbind(obj) == 0 &&
1742                     i915_gem_object_put_pages(obj) == 0) {
1743                         count += obj->base.size >> PAGE_SHIFT;
1744                         if (count >= target)
1745                                 return count;
1746                 }
1747         }
1748
1749         return count;
1750 }
1751
1752 static long
1753 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1754 {
1755         return __i915_gem_shrink(dev_priv, target, true);
1756 }
1757
1758 static void
1759 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1760 {
1761         struct drm_i915_gem_object *obj, *next;
1762
1763         i915_gem_evict_everything(dev_priv->dev);
1764
1765         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1766                 i915_gem_object_put_pages(obj);
1767 }
1768
1769 static int
1770 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1771 {
1772         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1773         int page_count, i;
1774         struct address_space *mapping;
1775         struct sg_table *st;
1776         struct scatterlist *sg;
1777         struct page *page;
1778         gfp_t gfp;
1779
1780         /* Assert that the object is not currently in any GPU domain. As it
1781          * wasn't in the GTT, there shouldn't be any way it could have been in
1782          * a GPU cache
1783          */
1784         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1785         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1786
1787         st = kmalloc(sizeof(*st), GFP_KERNEL);
1788         if (st == NULL)
1789                 return -ENOMEM;
1790
1791         page_count = obj->base.size / PAGE_SIZE;
1792         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1793                 sg_free_table(st);
1794                 kfree(st);
1795                 return -ENOMEM;
1796         }
1797
1798         /* Get the list of pages out of our struct file.  They'll be pinned
1799          * at this point until we release them.
1800          *
1801          * Fail silently without starting the shrinker
1802          */
1803         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1804         gfp = mapping_gfp_mask(mapping);
1805         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1806         gfp &= ~(__GFP_IO | __GFP_WAIT);
1807         for_each_sg(st->sgl, sg, page_count, i) {
1808                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1809                 if (IS_ERR(page)) {
1810                         i915_gem_purge(dev_priv, page_count);
1811                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1812                 }
1813                 if (IS_ERR(page)) {
1814                         /* We've tried hard to allocate the memory by reaping
1815                          * our own buffer, now let the real VM do its job and
1816                          * go down in flames if truly OOM.
1817                          */
1818                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1819                         gfp |= __GFP_IO | __GFP_WAIT;
1820
1821                         i915_gem_shrink_all(dev_priv);
1822                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1823                         if (IS_ERR(page))
1824                                 goto err_pages;
1825
1826                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1827                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1828                 }
1829
1830                 sg_set_page(sg, page, PAGE_SIZE, 0);
1831         }
1832
1833         obj->pages = st;
1834
1835         if (i915_gem_object_needs_bit17_swizzle(obj))
1836                 i915_gem_object_do_bit_17_swizzle(obj);
1837
1838         return 0;
1839
1840 err_pages:
1841         for_each_sg(st->sgl, sg, i, page_count)
1842                 page_cache_release(sg_page(sg));
1843         sg_free_table(st);
1844         kfree(st);
1845         return PTR_ERR(page);
1846 }
1847
1848 /* Ensure that the associated pages are gathered from the backing storage
1849  * and pinned into our object. i915_gem_object_get_pages() may be called
1850  * multiple times before they are released by a single call to
1851  * i915_gem_object_put_pages() - once the pages are no longer referenced
1852  * either as a result of memory pressure (reaping pages under the shrinker)
1853  * or as the object is itself released.
1854  */
1855 int
1856 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1857 {
1858         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1859         const struct drm_i915_gem_object_ops *ops = obj->ops;
1860         int ret;
1861
1862         if (obj->pages)
1863                 return 0;
1864
1865         BUG_ON(obj->pages_pin_count);
1866
1867         ret = ops->get_pages(obj);
1868         if (ret)
1869                 return ret;
1870
1871         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1872         return 0;
1873 }
1874
1875 void
1876 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1877                                struct intel_ring_buffer *ring)
1878 {
1879         struct drm_device *dev = obj->base.dev;
1880         struct drm_i915_private *dev_priv = dev->dev_private;
1881         u32 seqno = intel_ring_get_seqno(ring);
1882
1883         BUG_ON(ring == NULL);
1884         obj->ring = ring;
1885
1886         /* Add a reference if we're newly entering the active list. */
1887         if (!obj->active) {
1888                 drm_gem_object_reference(&obj->base);
1889                 obj->active = 1;
1890         }
1891
1892         /* Move from whatever list we were on to the tail of execution. */
1893         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1894         list_move_tail(&obj->ring_list, &ring->active_list);
1895
1896         obj->last_read_seqno = seqno;
1897
1898         if (obj->fenced_gpu_access) {
1899                 obj->last_fenced_seqno = seqno;
1900
1901                 /* Bump MRU to take account of the delayed flush */
1902                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1903                         struct drm_i915_fence_reg *reg;
1904
1905                         reg = &dev_priv->fence_regs[obj->fence_reg];
1906                         list_move_tail(&reg->lru_list,
1907                                        &dev_priv->mm.fence_list);
1908                 }
1909         }
1910 }
1911
1912 static void
1913 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1914 {
1915         struct drm_device *dev = obj->base.dev;
1916         struct drm_i915_private *dev_priv = dev->dev_private;
1917
1918         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1919         BUG_ON(!obj->active);
1920
1921         if (obj->pin_count) /* are we a framebuffer? */
1922                 intel_mark_fb_idle(obj);
1923
1924         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1925
1926         list_del_init(&obj->ring_list);
1927         obj->ring = NULL;
1928
1929         obj->last_read_seqno = 0;
1930         obj->last_write_seqno = 0;
1931         obj->base.write_domain = 0;
1932
1933         obj->last_fenced_seqno = 0;
1934         obj->fenced_gpu_access = false;
1935
1936         obj->active = 0;
1937         drm_gem_object_unreference(&obj->base);
1938
1939         WARN_ON(i915_verify_lists(dev));
1940 }
1941
1942 static int
1943 i915_gem_handle_seqno_wrap(struct drm_device *dev)
1944 {
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946         struct intel_ring_buffer *ring;
1947         int ret, i, j;
1948
1949         /* The hardware uses various monotonic 32-bit counters, if we
1950          * detect that they will wraparound we need to idle the GPU
1951          * and reset those counters.
1952          */
1953         ret = 0;
1954         for_each_ring(ring, dev_priv, i) {
1955                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1956                         ret |= ring->sync_seqno[j] != 0;
1957         }
1958         if (ret == 0)
1959                 return ret;
1960
1961         ret = i915_gpu_idle(dev);
1962         if (ret)
1963                 return ret;
1964
1965         i915_gem_retire_requests(dev);
1966         for_each_ring(ring, dev_priv, i) {
1967                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1968                         ring->sync_seqno[j] = 0;
1969         }
1970
1971         return 0;
1972 }
1973
1974 int
1975 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1976 {
1977         struct drm_i915_private *dev_priv = dev->dev_private;
1978
1979         /* reserve 0 for non-seqno */
1980         if (dev_priv->next_seqno == 0) {
1981                 int ret = i915_gem_handle_seqno_wrap(dev);
1982                 if (ret)
1983                         return ret;
1984
1985                 dev_priv->next_seqno = 1;
1986         }
1987
1988         *seqno = dev_priv->next_seqno++;
1989         return 0;
1990 }
1991
1992 int
1993 i915_add_request(struct intel_ring_buffer *ring,
1994                  struct drm_file *file,
1995                  u32 *out_seqno)
1996 {
1997         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1998         struct drm_i915_gem_request *request;
1999         u32 request_ring_position;
2000         int was_empty;
2001         int ret;
2002
2003         /*
2004          * Emit any outstanding flushes - execbuf can fail to emit the flush
2005          * after having emitted the batchbuffer command. Hence we need to fix
2006          * things up similar to emitting the lazy request. The difference here
2007          * is that the flush _must_ happen before the next request, no matter
2008          * what.
2009          */
2010         ret = intel_ring_flush_all_caches(ring);
2011         if (ret)
2012                 return ret;
2013
2014         request = kmalloc(sizeof(*request), GFP_KERNEL);
2015         if (request == NULL)
2016                 return -ENOMEM;
2017
2018
2019         /* Record the position of the start of the request so that
2020          * should we detect the updated seqno part-way through the
2021          * GPU processing the request, we never over-estimate the
2022          * position of the head.
2023          */
2024         request_ring_position = intel_ring_get_tail(ring);
2025
2026         ret = ring->add_request(ring);
2027         if (ret) {
2028                 kfree(request);
2029                 return ret;
2030         }
2031
2032         request->seqno = intel_ring_get_seqno(ring);
2033         request->ring = ring;
2034         request->tail = request_ring_position;
2035         request->emitted_jiffies = jiffies;
2036         was_empty = list_empty(&ring->request_list);
2037         list_add_tail(&request->list, &ring->request_list);
2038         request->file_priv = NULL;
2039
2040         if (file) {
2041                 struct drm_i915_file_private *file_priv = file->driver_priv;
2042
2043                 spin_lock(&file_priv->mm.lock);
2044                 request->file_priv = file_priv;
2045                 list_add_tail(&request->client_list,
2046                               &file_priv->mm.request_list);
2047                 spin_unlock(&file_priv->mm.lock);
2048         }
2049
2050         trace_i915_gem_request_add(ring, request->seqno);
2051         ring->outstanding_lazy_request = 0;
2052
2053         if (!dev_priv->mm.suspended) {
2054                 if (i915_enable_hangcheck) {
2055                         mod_timer(&dev_priv->hangcheck_timer,
2056                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2057                 }
2058                 if (was_empty) {
2059                         queue_delayed_work(dev_priv->wq,
2060                                            &dev_priv->mm.retire_work,
2061                                            round_jiffies_up_relative(HZ));
2062                         intel_mark_busy(dev_priv->dev);
2063                 }
2064         }
2065
2066         if (out_seqno)
2067                 *out_seqno = request->seqno;
2068         return 0;
2069 }
2070
2071 static inline void
2072 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2073 {
2074         struct drm_i915_file_private *file_priv = request->file_priv;
2075
2076         if (!file_priv)
2077                 return;
2078
2079         spin_lock(&file_priv->mm.lock);
2080         if (request->file_priv) {
2081                 list_del(&request->client_list);
2082                 request->file_priv = NULL;
2083         }
2084         spin_unlock(&file_priv->mm.lock);
2085 }
2086
2087 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2088                                       struct intel_ring_buffer *ring)
2089 {
2090         while (!list_empty(&ring->request_list)) {
2091                 struct drm_i915_gem_request *request;
2092
2093                 request = list_first_entry(&ring->request_list,
2094                                            struct drm_i915_gem_request,
2095                                            list);
2096
2097                 list_del(&request->list);
2098                 i915_gem_request_remove_from_client(request);
2099                 kfree(request);
2100         }
2101
2102         while (!list_empty(&ring->active_list)) {
2103                 struct drm_i915_gem_object *obj;
2104
2105                 obj = list_first_entry(&ring->active_list,
2106                                        struct drm_i915_gem_object,
2107                                        ring_list);
2108
2109                 i915_gem_object_move_to_inactive(obj);
2110         }
2111 }
2112
2113 static void i915_gem_reset_fences(struct drm_device *dev)
2114 {
2115         struct drm_i915_private *dev_priv = dev->dev_private;
2116         int i;
2117
2118         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2119                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2120
2121                 i915_gem_write_fence(dev, i, NULL);
2122
2123                 if (reg->obj)
2124                         i915_gem_object_fence_lost(reg->obj);
2125
2126                 reg->pin_count = 0;
2127                 reg->obj = NULL;
2128                 INIT_LIST_HEAD(&reg->lru_list);
2129         }
2130
2131         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2132 }
2133
2134 void i915_gem_reset(struct drm_device *dev)
2135 {
2136         struct drm_i915_private *dev_priv = dev->dev_private;
2137         struct drm_i915_gem_object *obj;
2138         struct intel_ring_buffer *ring;
2139         int i;
2140
2141         for_each_ring(ring, dev_priv, i)
2142                 i915_gem_reset_ring_lists(dev_priv, ring);
2143
2144         /* Move everything out of the GPU domains to ensure we do any
2145          * necessary invalidation upon reuse.
2146          */
2147         list_for_each_entry(obj,
2148                             &dev_priv->mm.inactive_list,
2149                             mm_list)
2150         {
2151                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2152         }
2153
2154         /* The fence registers are invalidated so clear them out */
2155         i915_gem_reset_fences(dev);
2156 }
2157
2158 /**
2159  * This function clears the request list as sequence numbers are passed.
2160  */
2161 void
2162 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2163 {
2164         uint32_t seqno;
2165
2166         if (list_empty(&ring->request_list))
2167                 return;
2168
2169         WARN_ON(i915_verify_lists(ring->dev));
2170
2171         seqno = ring->get_seqno(ring, true);
2172
2173         while (!list_empty(&ring->request_list)) {
2174                 struct drm_i915_gem_request *request;
2175
2176                 request = list_first_entry(&ring->request_list,
2177                                            struct drm_i915_gem_request,
2178                                            list);
2179
2180                 if (!i915_seqno_passed(seqno, request->seqno))
2181                         break;
2182
2183                 trace_i915_gem_request_retire(ring, request->seqno);
2184                 /* We know the GPU must have read the request to have
2185                  * sent us the seqno + interrupt, so use the position
2186                  * of tail of the request to update the last known position
2187                  * of the GPU head.
2188                  */
2189                 ring->last_retired_head = request->tail;
2190
2191                 list_del(&request->list);
2192                 i915_gem_request_remove_from_client(request);
2193                 kfree(request);
2194         }
2195
2196         /* Move any buffers on the active list that are no longer referenced
2197          * by the ringbuffer to the flushing/inactive lists as appropriate.
2198          */
2199         while (!list_empty(&ring->active_list)) {
2200                 struct drm_i915_gem_object *obj;
2201
2202                 obj = list_first_entry(&ring->active_list,
2203                                       struct drm_i915_gem_object,
2204                                       ring_list);
2205
2206                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2207                         break;
2208
2209                 i915_gem_object_move_to_inactive(obj);
2210         }
2211
2212         if (unlikely(ring->trace_irq_seqno &&
2213                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2214                 ring->irq_put(ring);
2215                 ring->trace_irq_seqno = 0;
2216         }
2217
2218         WARN_ON(i915_verify_lists(ring->dev));
2219 }
2220
2221 void
2222 i915_gem_retire_requests(struct drm_device *dev)
2223 {
2224         drm_i915_private_t *dev_priv = dev->dev_private;
2225         struct intel_ring_buffer *ring;
2226         int i;
2227
2228         for_each_ring(ring, dev_priv, i)
2229                 i915_gem_retire_requests_ring(ring);
2230 }
2231
2232 static void
2233 i915_gem_retire_work_handler(struct work_struct *work)
2234 {
2235         drm_i915_private_t *dev_priv;
2236         struct drm_device *dev;
2237         struct intel_ring_buffer *ring;
2238         bool idle;
2239         int i;
2240
2241         dev_priv = container_of(work, drm_i915_private_t,
2242                                 mm.retire_work.work);
2243         dev = dev_priv->dev;
2244
2245         /* Come back later if the device is busy... */
2246         if (!mutex_trylock(&dev->struct_mutex)) {
2247                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2248                                    round_jiffies_up_relative(HZ));
2249                 return;
2250         }
2251
2252         i915_gem_retire_requests(dev);
2253
2254         /* Send a periodic flush down the ring so we don't hold onto GEM
2255          * objects indefinitely.
2256          */
2257         idle = true;
2258         for_each_ring(ring, dev_priv, i) {
2259                 if (ring->gpu_caches_dirty)
2260                         i915_add_request(ring, NULL, NULL);
2261
2262                 idle &= list_empty(&ring->request_list);
2263         }
2264
2265         if (!dev_priv->mm.suspended && !idle)
2266                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2267                                    round_jiffies_up_relative(HZ));
2268         if (idle)
2269                 intel_mark_idle(dev);
2270
2271         mutex_unlock(&dev->struct_mutex);
2272 }
2273
2274 /**
2275  * Ensures that an object will eventually get non-busy by flushing any required
2276  * write domains, emitting any outstanding lazy request and retiring and
2277  * completed requests.
2278  */
2279 static int
2280 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2281 {
2282         int ret;
2283
2284         if (obj->active) {
2285                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2286                 if (ret)
2287                         return ret;
2288
2289                 i915_gem_retire_requests_ring(obj->ring);
2290         }
2291
2292         return 0;
2293 }
2294
2295 /**
2296  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2297  * @DRM_IOCTL_ARGS: standard ioctl arguments
2298  *
2299  * Returns 0 if successful, else an error is returned with the remaining time in
2300  * the timeout parameter.
2301  *  -ETIME: object is still busy after timeout
2302  *  -ERESTARTSYS: signal interrupted the wait
2303  *  -ENONENT: object doesn't exist
2304  * Also possible, but rare:
2305  *  -EAGAIN: GPU wedged
2306  *  -ENOMEM: damn
2307  *  -ENODEV: Internal IRQ fail
2308  *  -E?: The add request failed
2309  *
2310  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2311  * non-zero timeout parameter the wait ioctl will wait for the given number of
2312  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2313  * without holding struct_mutex the object may become re-busied before this
2314  * function completes. A similar but shorter * race condition exists in the busy
2315  * ioctl
2316  */
2317 int
2318 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2319 {
2320         struct drm_i915_gem_wait *args = data;
2321         struct drm_i915_gem_object *obj;
2322         struct intel_ring_buffer *ring = NULL;
2323         struct timespec timeout_stack, *timeout = NULL;
2324         u32 seqno = 0;
2325         int ret = 0;
2326
2327         if (args->timeout_ns >= 0) {
2328                 timeout_stack = ns_to_timespec(args->timeout_ns);
2329                 timeout = &timeout_stack;
2330         }
2331
2332         ret = i915_mutex_lock_interruptible(dev);
2333         if (ret)
2334                 return ret;
2335
2336         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2337         if (&obj->base == NULL) {
2338                 mutex_unlock(&dev->struct_mutex);
2339                 return -ENOENT;
2340         }
2341
2342         /* Need to make sure the object gets inactive eventually. */
2343         ret = i915_gem_object_flush_active(obj);
2344         if (ret)
2345                 goto out;
2346
2347         if (obj->active) {
2348                 seqno = obj->last_read_seqno;
2349                 ring = obj->ring;
2350         }
2351
2352         if (seqno == 0)
2353                  goto out;
2354
2355         /* Do this after OLR check to make sure we make forward progress polling
2356          * on this IOCTL with a 0 timeout (like busy ioctl)
2357          */
2358         if (!args->timeout_ns) {
2359                 ret = -ETIME;
2360                 goto out;
2361         }
2362
2363         drm_gem_object_unreference(&obj->base);
2364         mutex_unlock(&dev->struct_mutex);
2365
2366         ret = __wait_seqno(ring, seqno, true, timeout);
2367         if (timeout) {
2368                 WARN_ON(!timespec_valid(timeout));
2369                 args->timeout_ns = timespec_to_ns(timeout);
2370         }
2371         return ret;
2372
2373 out:
2374         drm_gem_object_unreference(&obj->base);
2375         mutex_unlock(&dev->struct_mutex);
2376         return ret;
2377 }
2378
2379 /**
2380  * i915_gem_object_sync - sync an object to a ring.
2381  *
2382  * @obj: object which may be in use on another ring.
2383  * @to: ring we wish to use the object on. May be NULL.
2384  *
2385  * This code is meant to abstract object synchronization with the GPU.
2386  * Calling with NULL implies synchronizing the object with the CPU
2387  * rather than a particular GPU ring.
2388  *
2389  * Returns 0 if successful, else propagates up the lower layer error.
2390  */
2391 int
2392 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2393                      struct intel_ring_buffer *to)
2394 {
2395         struct intel_ring_buffer *from = obj->ring;
2396         u32 seqno;
2397         int ret, idx;
2398
2399         if (from == NULL || to == from)
2400                 return 0;
2401
2402         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2403                 return i915_gem_object_wait_rendering(obj, false);
2404
2405         idx = intel_ring_sync_index(from, to);
2406
2407         seqno = obj->last_read_seqno;
2408         if (seqno <= from->sync_seqno[idx])
2409                 return 0;
2410
2411         ret = i915_gem_check_olr(obj->ring, seqno);
2412         if (ret)
2413                 return ret;
2414
2415         ret = to->sync_to(to, from, seqno);
2416         if (!ret)
2417                 /* We use last_read_seqno because sync_to()
2418                  * might have just caused seqno wrap under
2419                  * the radar.
2420                  */
2421                 from->sync_seqno[idx] = obj->last_read_seqno;
2422
2423         return ret;
2424 }
2425
2426 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2427 {
2428         u32 old_write_domain, old_read_domains;
2429
2430         /* Act a barrier for all accesses through the GTT */
2431         mb();
2432
2433         /* Force a pagefault for domain tracking on next user access */
2434         i915_gem_release_mmap(obj);
2435
2436         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2437                 return;
2438
2439         old_read_domains = obj->base.read_domains;
2440         old_write_domain = obj->base.write_domain;
2441
2442         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2443         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2444
2445         trace_i915_gem_object_change_domain(obj,
2446                                             old_read_domains,
2447                                             old_write_domain);
2448 }
2449
2450 /**
2451  * Unbinds an object from the GTT aperture.
2452  */
2453 int
2454 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2455 {
2456         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2457         int ret = 0;
2458
2459         if (obj->gtt_space == NULL)
2460                 return 0;
2461
2462         if (obj->pin_count)
2463                 return -EBUSY;
2464
2465         BUG_ON(obj->pages == NULL);
2466
2467         ret = i915_gem_object_finish_gpu(obj);
2468         if (ret)
2469                 return ret;
2470         /* Continue on if we fail due to EIO, the GPU is hung so we
2471          * should be safe and we need to cleanup or else we might
2472          * cause memory corruption through use-after-free.
2473          */
2474
2475         i915_gem_object_finish_gtt(obj);
2476
2477         /* release the fence reg _after_ flushing */
2478         ret = i915_gem_object_put_fence(obj);
2479         if (ret)
2480                 return ret;
2481
2482         trace_i915_gem_object_unbind(obj);
2483
2484         if (obj->has_global_gtt_mapping)
2485                 i915_gem_gtt_unbind_object(obj);
2486         if (obj->has_aliasing_ppgtt_mapping) {
2487                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2488                 obj->has_aliasing_ppgtt_mapping = 0;
2489         }
2490         i915_gem_gtt_finish_object(obj);
2491
2492         list_del(&obj->mm_list);
2493         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2494         /* Avoid an unnecessary call to unbind on rebind. */
2495         obj->map_and_fenceable = true;
2496
2497         drm_mm_put_block(obj->gtt_space);
2498         obj->gtt_space = NULL;
2499         obj->gtt_offset = 0;
2500
2501         return 0;
2502 }
2503
2504 int i915_gpu_idle(struct drm_device *dev)
2505 {
2506         drm_i915_private_t *dev_priv = dev->dev_private;
2507         struct intel_ring_buffer *ring;
2508         int ret, i;
2509
2510         /* Flush everything onto the inactive list. */
2511         for_each_ring(ring, dev_priv, i) {
2512                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2513                 if (ret)
2514                         return ret;
2515
2516                 ret = intel_ring_idle(ring);
2517                 if (ret)
2518                         return ret;
2519         }
2520
2521         return 0;
2522 }
2523
2524 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2525                                         struct drm_i915_gem_object *obj)
2526 {
2527         drm_i915_private_t *dev_priv = dev->dev_private;
2528         uint64_t val;
2529
2530         if (obj) {
2531                 u32 size = obj->gtt_space->size;
2532
2533                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2534                                  0xfffff000) << 32;
2535                 val |= obj->gtt_offset & 0xfffff000;
2536                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2537                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2538
2539                 if (obj->tiling_mode == I915_TILING_Y)
2540                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2541                 val |= I965_FENCE_REG_VALID;
2542         } else
2543                 val = 0;
2544
2545         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2546         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2547 }
2548
2549 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2550                                  struct drm_i915_gem_object *obj)
2551 {
2552         drm_i915_private_t *dev_priv = dev->dev_private;
2553         uint64_t val;
2554
2555         if (obj) {
2556                 u32 size = obj->gtt_space->size;
2557
2558                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2559                                  0xfffff000) << 32;
2560                 val |= obj->gtt_offset & 0xfffff000;
2561                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2562                 if (obj->tiling_mode == I915_TILING_Y)
2563                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2564                 val |= I965_FENCE_REG_VALID;
2565         } else
2566                 val = 0;
2567
2568         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2569         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2570 }
2571
2572 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2573                                  struct drm_i915_gem_object *obj)
2574 {
2575         drm_i915_private_t *dev_priv = dev->dev_private;
2576         u32 val;
2577
2578         if (obj) {
2579                 u32 size = obj->gtt_space->size;
2580                 int pitch_val;
2581                 int tile_width;
2582
2583                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2584                      (size & -size) != size ||
2585                      (obj->gtt_offset & (size - 1)),
2586                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2587                      obj->gtt_offset, obj->map_and_fenceable, size);
2588
2589                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2590                         tile_width = 128;
2591                 else
2592                         tile_width = 512;
2593
2594                 /* Note: pitch better be a power of two tile widths */
2595                 pitch_val = obj->stride / tile_width;
2596                 pitch_val = ffs(pitch_val) - 1;
2597
2598                 val = obj->gtt_offset;
2599                 if (obj->tiling_mode == I915_TILING_Y)
2600                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2601                 val |= I915_FENCE_SIZE_BITS(size);
2602                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2603                 val |= I830_FENCE_REG_VALID;
2604         } else
2605                 val = 0;
2606
2607         if (reg < 8)
2608                 reg = FENCE_REG_830_0 + reg * 4;
2609         else
2610                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2611
2612         I915_WRITE(reg, val);
2613         POSTING_READ(reg);
2614 }
2615
2616 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2617                                 struct drm_i915_gem_object *obj)
2618 {
2619         drm_i915_private_t *dev_priv = dev->dev_private;
2620         uint32_t val;
2621
2622         if (obj) {
2623                 u32 size = obj->gtt_space->size;
2624                 uint32_t pitch_val;
2625
2626                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2627                      (size & -size) != size ||
2628                      (obj->gtt_offset & (size - 1)),
2629                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2630                      obj->gtt_offset, size);
2631
2632                 pitch_val = obj->stride / 128;
2633                 pitch_val = ffs(pitch_val) - 1;
2634
2635                 val = obj->gtt_offset;
2636                 if (obj->tiling_mode == I915_TILING_Y)
2637                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2638                 val |= I830_FENCE_SIZE_BITS(size);
2639                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2640                 val |= I830_FENCE_REG_VALID;
2641         } else
2642                 val = 0;
2643
2644         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2645         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2646 }
2647
2648 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2649                                  struct drm_i915_gem_object *obj)
2650 {
2651         switch (INTEL_INFO(dev)->gen) {
2652         case 7:
2653         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2654         case 5:
2655         case 4: i965_write_fence_reg(dev, reg, obj); break;
2656         case 3: i915_write_fence_reg(dev, reg, obj); break;
2657         case 2: i830_write_fence_reg(dev, reg, obj); break;
2658         default: break;
2659         }
2660 }
2661
2662 static inline int fence_number(struct drm_i915_private *dev_priv,
2663                                struct drm_i915_fence_reg *fence)
2664 {
2665         return fence - dev_priv->fence_regs;
2666 }
2667
2668 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2669                                          struct drm_i915_fence_reg *fence,
2670                                          bool enable)
2671 {
2672         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2673         int reg = fence_number(dev_priv, fence);
2674
2675         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2676
2677         if (enable) {
2678                 obj->fence_reg = reg;
2679                 fence->obj = obj;
2680                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2681         } else {
2682                 obj->fence_reg = I915_FENCE_REG_NONE;
2683                 fence->obj = NULL;
2684                 list_del_init(&fence->lru_list);
2685         }
2686 }
2687
2688 static int
2689 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2690 {
2691         if (obj->last_fenced_seqno) {
2692                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2693                 if (ret)
2694                         return ret;
2695
2696                 obj->last_fenced_seqno = 0;
2697         }
2698
2699         /* Ensure that all CPU reads are completed before installing a fence
2700          * and all writes before removing the fence.
2701          */
2702         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2703                 mb();
2704
2705         obj->fenced_gpu_access = false;
2706         return 0;
2707 }
2708
2709 int
2710 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2711 {
2712         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2713         int ret;
2714
2715         ret = i915_gem_object_flush_fence(obj);
2716         if (ret)
2717                 return ret;
2718
2719         if (obj->fence_reg == I915_FENCE_REG_NONE)
2720                 return 0;
2721
2722         i915_gem_object_update_fence(obj,
2723                                      &dev_priv->fence_regs[obj->fence_reg],
2724                                      false);
2725         i915_gem_object_fence_lost(obj);
2726
2727         return 0;
2728 }
2729
2730 static struct drm_i915_fence_reg *
2731 i915_find_fence_reg(struct drm_device *dev)
2732 {
2733         struct drm_i915_private *dev_priv = dev->dev_private;
2734         struct drm_i915_fence_reg *reg, *avail;
2735         int i;
2736
2737         /* First try to find a free reg */
2738         avail = NULL;
2739         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2740                 reg = &dev_priv->fence_regs[i];
2741                 if (!reg->obj)
2742                         return reg;
2743
2744                 if (!reg->pin_count)
2745                         avail = reg;
2746         }
2747
2748         if (avail == NULL)
2749                 return NULL;
2750
2751         /* None available, try to steal one or wait for a user to finish */
2752         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2753                 if (reg->pin_count)
2754                         continue;
2755
2756                 return reg;
2757         }
2758
2759         return NULL;
2760 }
2761
2762 /**
2763  * i915_gem_object_get_fence - set up fencing for an object
2764  * @obj: object to map through a fence reg
2765  *
2766  * When mapping objects through the GTT, userspace wants to be able to write
2767  * to them without having to worry about swizzling if the object is tiled.
2768  * This function walks the fence regs looking for a free one for @obj,
2769  * stealing one if it can't find any.
2770  *
2771  * It then sets up the reg based on the object's properties: address, pitch
2772  * and tiling format.
2773  *
2774  * For an untiled surface, this removes any existing fence.
2775  */
2776 int
2777 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2778 {
2779         struct drm_device *dev = obj->base.dev;
2780         struct drm_i915_private *dev_priv = dev->dev_private;
2781         bool enable = obj->tiling_mode != I915_TILING_NONE;
2782         struct drm_i915_fence_reg *reg;
2783         int ret;
2784
2785         /* Have we updated the tiling parameters upon the object and so
2786          * will need to serialise the write to the associated fence register?
2787          */
2788         if (obj->fence_dirty) {
2789                 ret = i915_gem_object_flush_fence(obj);
2790                 if (ret)
2791                         return ret;
2792         }
2793
2794         /* Just update our place in the LRU if our fence is getting reused. */
2795         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2796                 reg = &dev_priv->fence_regs[obj->fence_reg];
2797                 if (!obj->fence_dirty) {
2798                         list_move_tail(&reg->lru_list,
2799                                        &dev_priv->mm.fence_list);
2800                         return 0;
2801                 }
2802         } else if (enable) {
2803                 reg = i915_find_fence_reg(dev);
2804                 if (reg == NULL)
2805                         return -EDEADLK;
2806
2807                 if (reg->obj) {
2808                         struct drm_i915_gem_object *old = reg->obj;
2809
2810                         ret = i915_gem_object_flush_fence(old);
2811                         if (ret)
2812                                 return ret;
2813
2814                         i915_gem_object_fence_lost(old);
2815                 }
2816         } else
2817                 return 0;
2818
2819         i915_gem_object_update_fence(obj, reg, enable);
2820         obj->fence_dirty = false;
2821
2822         return 0;
2823 }
2824
2825 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2826                                      struct drm_mm_node *gtt_space,
2827                                      unsigned long cache_level)
2828 {
2829         struct drm_mm_node *other;
2830
2831         /* On non-LLC machines we have to be careful when putting differing
2832          * types of snoopable memory together to avoid the prefetcher
2833          * crossing memory domains and dieing.
2834          */
2835         if (HAS_LLC(dev))
2836                 return true;
2837
2838         if (gtt_space == NULL)
2839                 return true;
2840
2841         if (list_empty(&gtt_space->node_list))
2842                 return true;
2843
2844         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2845         if (other->allocated && !other->hole_follows && other->color != cache_level)
2846                 return false;
2847
2848         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2849         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2850                 return false;
2851
2852         return true;
2853 }
2854
2855 static void i915_gem_verify_gtt(struct drm_device *dev)
2856 {
2857 #if WATCH_GTT
2858         struct drm_i915_private *dev_priv = dev->dev_private;
2859         struct drm_i915_gem_object *obj;
2860         int err = 0;
2861
2862         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2863                 if (obj->gtt_space == NULL) {
2864                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2865                         err++;
2866                         continue;
2867                 }
2868
2869                 if (obj->cache_level != obj->gtt_space->color) {
2870                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2871                                obj->gtt_space->start,
2872                                obj->gtt_space->start + obj->gtt_space->size,
2873                                obj->cache_level,
2874                                obj->gtt_space->color);
2875                         err++;
2876                         continue;
2877                 }
2878
2879                 if (!i915_gem_valid_gtt_space(dev,
2880                                               obj->gtt_space,
2881                                               obj->cache_level)) {
2882                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2883                                obj->gtt_space->start,
2884                                obj->gtt_space->start + obj->gtt_space->size,
2885                                obj->cache_level);
2886                         err++;
2887                         continue;
2888                 }
2889         }
2890
2891         WARN_ON(err);
2892 #endif
2893 }
2894
2895 /**
2896  * Finds free space in the GTT aperture and binds the object there.
2897  */
2898 static int
2899 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2900                             unsigned alignment,
2901                             bool map_and_fenceable,
2902                             bool nonblocking)
2903 {
2904         struct drm_device *dev = obj->base.dev;
2905         drm_i915_private_t *dev_priv = dev->dev_private;
2906         struct drm_mm_node *node;
2907         u32 size, fence_size, fence_alignment, unfenced_alignment;
2908         bool mappable, fenceable;
2909         int ret;
2910
2911         if (obj->madv != I915_MADV_WILLNEED) {
2912                 DRM_ERROR("Attempting to bind a purgeable object\n");
2913                 return -EINVAL;
2914         }
2915
2916         fence_size = i915_gem_get_gtt_size(dev,
2917                                            obj->base.size,
2918                                            obj->tiling_mode);
2919         fence_alignment = i915_gem_get_gtt_alignment(dev,
2920                                                      obj->base.size,
2921                                                      obj->tiling_mode);
2922         unfenced_alignment =
2923                 i915_gem_get_unfenced_gtt_alignment(dev,
2924                                                     obj->base.size,
2925                                                     obj->tiling_mode);
2926
2927         if (alignment == 0)
2928                 alignment = map_and_fenceable ? fence_alignment :
2929                                                 unfenced_alignment;
2930         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2931                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2932                 return -EINVAL;
2933         }
2934
2935         size = map_and_fenceable ? fence_size : obj->base.size;
2936
2937         /* If the object is bigger than the entire aperture, reject it early
2938          * before evicting everything in a vain attempt to find space.
2939          */
2940         if (obj->base.size >
2941             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2942                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2943                 return -E2BIG;
2944         }
2945
2946         ret = i915_gem_object_get_pages(obj);
2947         if (ret)
2948                 return ret;
2949
2950         i915_gem_object_pin_pages(obj);
2951
2952         node = kzalloc(sizeof(*node), GFP_KERNEL);
2953         if (node == NULL) {
2954                 i915_gem_object_unpin_pages(obj);
2955                 return -ENOMEM;
2956         }
2957
2958  search_free:
2959         if (map_and_fenceable)
2960                 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2961                                                           size, alignment, obj->cache_level,
2962                                                           0, dev_priv->mm.gtt_mappable_end);
2963         else
2964                 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2965                                                  size, alignment, obj->cache_level);
2966         if (ret) {
2967                 ret = i915_gem_evict_something(dev, size, alignment,
2968                                                obj->cache_level,
2969                                                map_and_fenceable,
2970                                                nonblocking);
2971                 if (ret == 0)
2972                         goto search_free;
2973
2974                 i915_gem_object_unpin_pages(obj);
2975                 kfree(node);
2976                 return ret;
2977         }
2978         if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2979                 i915_gem_object_unpin_pages(obj);
2980                 drm_mm_put_block(node);
2981                 return -EINVAL;
2982         }
2983
2984         ret = i915_gem_gtt_prepare_object(obj);
2985         if (ret) {
2986                 i915_gem_object_unpin_pages(obj);
2987                 drm_mm_put_block(node);
2988                 return ret;
2989         }
2990
2991         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2992         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2993
2994         obj->gtt_space = node;
2995         obj->gtt_offset = node->start;
2996
2997         fenceable =
2998                 node->size == fence_size &&
2999                 (node->start & (fence_alignment - 1)) == 0;
3000
3001         mappable =
3002                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3003
3004         obj->map_and_fenceable = mappable && fenceable;
3005
3006         i915_gem_object_unpin_pages(obj);
3007         trace_i915_gem_object_bind(obj, map_and_fenceable);
3008         i915_gem_verify_gtt(dev);
3009         return 0;
3010 }
3011
3012 void
3013 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3014 {
3015         /* If we don't have a page list set up, then we're not pinned
3016          * to GPU, and we can ignore the cache flush because it'll happen
3017          * again at bind time.
3018          */
3019         if (obj->pages == NULL)
3020                 return;
3021
3022         /* If the GPU is snooping the contents of the CPU cache,
3023          * we do not need to manually clear the CPU cache lines.  However,
3024          * the caches are only snooped when the render cache is
3025          * flushed/invalidated.  As we always have to emit invalidations
3026          * and flushes when moving into and out of the RENDER domain, correct
3027          * snooping behaviour occurs naturally as the result of our domain
3028          * tracking.
3029          */
3030         if (obj->cache_level != I915_CACHE_NONE)
3031                 return;
3032
3033         trace_i915_gem_object_clflush(obj);
3034
3035         drm_clflush_sg(obj->pages);
3036 }
3037
3038 /** Flushes the GTT write domain for the object if it's dirty. */
3039 static void
3040 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3041 {
3042         uint32_t old_write_domain;
3043
3044         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3045                 return;
3046
3047         /* No actual flushing is required for the GTT write domain.  Writes
3048          * to it immediately go to main memory as far as we know, so there's
3049          * no chipset flush.  It also doesn't land in render cache.
3050          *
3051          * However, we do have to enforce the order so that all writes through
3052          * the GTT land before any writes to the device, such as updates to
3053          * the GATT itself.
3054          */
3055         wmb();
3056
3057         old_write_domain = obj->base.write_domain;
3058         obj->base.write_domain = 0;
3059
3060         trace_i915_gem_object_change_domain(obj,
3061                                             obj->base.read_domains,
3062                                             old_write_domain);
3063 }
3064
3065 /** Flushes the CPU write domain for the object if it's dirty. */
3066 static void
3067 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3068 {
3069         uint32_t old_write_domain;
3070
3071         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3072                 return;
3073
3074         i915_gem_clflush_object(obj);
3075         i915_gem_chipset_flush(obj->base.dev);
3076         old_write_domain = obj->base.write_domain;
3077         obj->base.write_domain = 0;
3078
3079         trace_i915_gem_object_change_domain(obj,
3080                                             obj->base.read_domains,
3081                                             old_write_domain);
3082 }
3083
3084 /**
3085  * Moves a single object to the GTT read, and possibly write domain.
3086  *
3087  * This function returns when the move is complete, including waiting on
3088  * flushes to occur.
3089  */
3090 int
3091 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3092 {
3093         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3094         uint32_t old_write_domain, old_read_domains;
3095         int ret;
3096
3097         /* Not valid to be called on unbound objects. */
3098         if (obj->gtt_space == NULL)
3099                 return -EINVAL;
3100
3101         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3102                 return 0;
3103
3104         ret = i915_gem_object_wait_rendering(obj, !write);
3105         if (ret)
3106                 return ret;
3107
3108         i915_gem_object_flush_cpu_write_domain(obj);
3109
3110         old_write_domain = obj->base.write_domain;
3111         old_read_domains = obj->base.read_domains;
3112
3113         /* It should now be out of any other write domains, and we can update
3114          * the domain values for our changes.
3115          */
3116         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3117         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3118         if (write) {
3119                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3120                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3121                 obj->dirty = 1;
3122         }
3123
3124         trace_i915_gem_object_change_domain(obj,
3125                                             old_read_domains,
3126                                             old_write_domain);
3127
3128         /* And bump the LRU for this access */
3129         if (i915_gem_object_is_inactive(obj))
3130                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3131
3132         return 0;
3133 }
3134
3135 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3136                                     enum i915_cache_level cache_level)
3137 {
3138         struct drm_device *dev = obj->base.dev;
3139         drm_i915_private_t *dev_priv = dev->dev_private;
3140         int ret;
3141
3142         if (obj->cache_level == cache_level)
3143                 return 0;
3144
3145         if (obj->pin_count) {
3146                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3147                 return -EBUSY;
3148         }
3149
3150         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3151                 ret = i915_gem_object_unbind(obj);
3152                 if (ret)
3153                         return ret;
3154         }
3155
3156         if (obj->gtt_space) {
3157                 ret = i915_gem_object_finish_gpu(obj);
3158                 if (ret)
3159                         return ret;
3160
3161                 i915_gem_object_finish_gtt(obj);
3162
3163                 /* Before SandyBridge, you could not use tiling or fence
3164                  * registers with snooped memory, so relinquish any fences
3165                  * currently pointing to our region in the aperture.
3166                  */
3167                 if (INTEL_INFO(dev)->gen < 6) {
3168                         ret = i915_gem_object_put_fence(obj);
3169                         if (ret)
3170                                 return ret;
3171                 }
3172
3173                 if (obj->has_global_gtt_mapping)
3174                         i915_gem_gtt_bind_object(obj, cache_level);
3175                 if (obj->has_aliasing_ppgtt_mapping)
3176                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3177                                                obj, cache_level);
3178
3179                 obj->gtt_space->color = cache_level;
3180         }
3181
3182         if (cache_level == I915_CACHE_NONE) {
3183                 u32 old_read_domains, old_write_domain;
3184
3185                 /* If we're coming from LLC cached, then we haven't
3186                  * actually been tracking whether the data is in the
3187                  * CPU cache or not, since we only allow one bit set
3188                  * in obj->write_domain and have been skipping the clflushes.
3189                  * Just set it to the CPU cache for now.
3190                  */
3191                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3192                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3193
3194                 old_read_domains = obj->base.read_domains;
3195                 old_write_domain = obj->base.write_domain;
3196
3197                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3198                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3199
3200                 trace_i915_gem_object_change_domain(obj,
3201                                                     old_read_domains,
3202                                                     old_write_domain);
3203         }
3204
3205         obj->cache_level = cache_level;
3206         i915_gem_verify_gtt(dev);
3207         return 0;
3208 }
3209
3210 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3211                                struct drm_file *file)
3212 {
3213         struct drm_i915_gem_caching *args = data;
3214         struct drm_i915_gem_object *obj;
3215         int ret;
3216
3217         ret = i915_mutex_lock_interruptible(dev);
3218         if (ret)
3219                 return ret;
3220
3221         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3222         if (&obj->base == NULL) {
3223                 ret = -ENOENT;
3224                 goto unlock;
3225         }
3226
3227         args->caching = obj->cache_level != I915_CACHE_NONE;
3228
3229         drm_gem_object_unreference(&obj->base);
3230 unlock:
3231         mutex_unlock(&dev->struct_mutex);
3232         return ret;
3233 }
3234
3235 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3236                                struct drm_file *file)
3237 {
3238         struct drm_i915_gem_caching *args = data;
3239         struct drm_i915_gem_object *obj;
3240         enum i915_cache_level level;
3241         int ret;
3242
3243         switch (args->caching) {
3244         case I915_CACHING_NONE:
3245                 level = I915_CACHE_NONE;
3246                 break;
3247         case I915_CACHING_CACHED:
3248                 level = I915_CACHE_LLC;
3249                 break;
3250         default:
3251                 return -EINVAL;
3252         }
3253
3254         ret = i915_mutex_lock_interruptible(dev);
3255         if (ret)
3256                 return ret;
3257
3258         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3259         if (&obj->base == NULL) {
3260                 ret = -ENOENT;
3261                 goto unlock;
3262         }
3263
3264         ret = i915_gem_object_set_cache_level(obj, level);
3265
3266         drm_gem_object_unreference(&obj->base);
3267 unlock:
3268         mutex_unlock(&dev->struct_mutex);
3269         return ret;
3270 }
3271
3272 /*
3273  * Prepare buffer for display plane (scanout, cursors, etc).
3274  * Can be called from an uninterruptible phase (modesetting) and allows
3275  * any flushes to be pipelined (for pageflips).
3276  */
3277 int
3278 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3279                                      u32 alignment,
3280                                      struct intel_ring_buffer *pipelined)
3281 {
3282         u32 old_read_domains, old_write_domain;
3283         int ret;
3284
3285         if (pipelined != obj->ring) {
3286                 ret = i915_gem_object_sync(obj, pipelined);
3287                 if (ret)
3288                         return ret;
3289         }
3290
3291         /* The display engine is not coherent with the LLC cache on gen6.  As
3292          * a result, we make sure that the pinning that is about to occur is
3293          * done with uncached PTEs. This is lowest common denominator for all
3294          * chipsets.
3295          *
3296          * However for gen6+, we could do better by using the GFDT bit instead
3297          * of uncaching, which would allow us to flush all the LLC-cached data
3298          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3299          */
3300         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3301         if (ret)
3302                 return ret;
3303
3304         /* As the user may map the buffer once pinned in the display plane
3305          * (e.g. libkms for the bootup splash), we have to ensure that we
3306          * always use map_and_fenceable for all scanout buffers.
3307          */
3308         ret = i915_gem_object_pin(obj, alignment, true, false);
3309         if (ret)
3310                 return ret;
3311
3312         i915_gem_object_flush_cpu_write_domain(obj);
3313
3314         old_write_domain = obj->base.write_domain;
3315         old_read_domains = obj->base.read_domains;
3316
3317         /* It should now be out of any other write domains, and we can update
3318          * the domain values for our changes.
3319          */
3320         obj->base.write_domain = 0;
3321         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3322
3323         trace_i915_gem_object_change_domain(obj,
3324                                             old_read_domains,
3325                                             old_write_domain);
3326
3327         return 0;
3328 }
3329
3330 int
3331 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3332 {
3333         int ret;
3334
3335         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3336                 return 0;
3337
3338         ret = i915_gem_object_wait_rendering(obj, false);
3339         if (ret)
3340                 return ret;
3341
3342         /* Ensure that we invalidate the GPU's caches and TLBs. */
3343         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3344         return 0;
3345 }
3346
3347 /**
3348  * Moves a single object to the CPU read, and possibly write domain.
3349  *
3350  * This function returns when the move is complete, including waiting on
3351  * flushes to occur.
3352  */
3353 int
3354 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3355 {
3356         uint32_t old_write_domain, old_read_domains;
3357         int ret;
3358
3359         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3360                 return 0;
3361
3362         ret = i915_gem_object_wait_rendering(obj, !write);
3363         if (ret)
3364                 return ret;
3365
3366         i915_gem_object_flush_gtt_write_domain(obj);
3367
3368         old_write_domain = obj->base.write_domain;
3369         old_read_domains = obj->base.read_domains;
3370
3371         /* Flush the CPU cache if it's still invalid. */
3372         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3373                 i915_gem_clflush_object(obj);
3374
3375                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3376         }
3377
3378         /* It should now be out of any other write domains, and we can update
3379          * the domain values for our changes.
3380          */
3381         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3382
3383         /* If we're writing through the CPU, then the GPU read domains will
3384          * need to be invalidated at next use.
3385          */
3386         if (write) {
3387                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3388                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3389         }
3390
3391         trace_i915_gem_object_change_domain(obj,
3392                                             old_read_domains,
3393                                             old_write_domain);
3394
3395         return 0;
3396 }
3397
3398 /* Throttle our rendering by waiting until the ring has completed our requests
3399  * emitted over 20 msec ago.
3400  *
3401  * Note that if we were to use the current jiffies each time around the loop,
3402  * we wouldn't escape the function with any frames outstanding if the time to
3403  * render a frame was over 20ms.
3404  *
3405  * This should get us reasonable parallelism between CPU and GPU but also
3406  * relatively low latency when blocking on a particular request to finish.
3407  */
3408 static int
3409 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3410 {
3411         struct drm_i915_private *dev_priv = dev->dev_private;
3412         struct drm_i915_file_private *file_priv = file->driver_priv;
3413         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3414         struct drm_i915_gem_request *request;
3415         struct intel_ring_buffer *ring = NULL;
3416         u32 seqno = 0;
3417         int ret;
3418
3419         if (atomic_read(&dev_priv->mm.wedged))
3420                 return -EIO;
3421
3422         spin_lock(&file_priv->mm.lock);
3423         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3424                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3425                         break;
3426
3427                 ring = request->ring;
3428                 seqno = request->seqno;
3429         }
3430         spin_unlock(&file_priv->mm.lock);
3431
3432         if (seqno == 0)
3433                 return 0;
3434
3435         ret = __wait_seqno(ring, seqno, true, NULL);
3436         if (ret == 0)
3437                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3438
3439         return ret;
3440 }
3441
3442 int
3443 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3444                     uint32_t alignment,
3445                     bool map_and_fenceable,
3446                     bool nonblocking)
3447 {
3448         int ret;
3449
3450         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3451                 return -EBUSY;
3452
3453         if (obj->gtt_space != NULL) {
3454                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3455                     (map_and_fenceable && !obj->map_and_fenceable)) {
3456                         WARN(obj->pin_count,
3457                              "bo is already pinned with incorrect alignment:"
3458                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3459                              " obj->map_and_fenceable=%d\n",
3460                              obj->gtt_offset, alignment,
3461                              map_and_fenceable,
3462                              obj->map_and_fenceable);
3463                         ret = i915_gem_object_unbind(obj);
3464                         if (ret)
3465                                 return ret;
3466                 }
3467         }
3468
3469         if (obj->gtt_space == NULL) {
3470                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3471
3472                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3473                                                   map_and_fenceable,
3474                                                   nonblocking);
3475                 if (ret)
3476                         return ret;
3477
3478                 if (!dev_priv->mm.aliasing_ppgtt)
3479                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3480         }
3481
3482         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3483                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3484
3485         obj->pin_count++;
3486         obj->pin_mappable |= map_and_fenceable;
3487
3488         return 0;
3489 }
3490
3491 void
3492 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3493 {
3494         BUG_ON(obj->pin_count == 0);
3495         BUG_ON(obj->gtt_space == NULL);
3496
3497         if (--obj->pin_count == 0)
3498                 obj->pin_mappable = false;
3499 }
3500
3501 int
3502 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3503                    struct drm_file *file)
3504 {
3505         struct drm_i915_gem_pin *args = data;
3506         struct drm_i915_gem_object *obj;
3507         int ret;
3508
3509         ret = i915_mutex_lock_interruptible(dev);
3510         if (ret)
3511                 return ret;
3512
3513         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3514         if (&obj->base == NULL) {
3515                 ret = -ENOENT;
3516                 goto unlock;
3517         }
3518
3519         if (obj->madv != I915_MADV_WILLNEED) {
3520                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3521                 ret = -EINVAL;
3522                 goto out;
3523         }
3524
3525         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3526                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3527                           args->handle);
3528                 ret = -EINVAL;
3529                 goto out;
3530         }
3531
3532         if (obj->user_pin_count == 0) {
3533                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3534                 if (ret)
3535                         goto out;
3536         }
3537
3538         obj->user_pin_count++;
3539         obj->pin_filp = file;
3540
3541         /* XXX - flush the CPU caches for pinned objects
3542          * as the X server doesn't manage domains yet
3543          */
3544         i915_gem_object_flush_cpu_write_domain(obj);
3545         args->offset = obj->gtt_offset;
3546 out:
3547         drm_gem_object_unreference(&obj->base);
3548 unlock:
3549         mutex_unlock(&dev->struct_mutex);
3550         return ret;
3551 }
3552
3553 int
3554 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3555                      struct drm_file *file)
3556 {
3557         struct drm_i915_gem_pin *args = data;
3558         struct drm_i915_gem_object *obj;
3559         int ret;
3560
3561         ret = i915_mutex_lock_interruptible(dev);
3562         if (ret)
3563                 return ret;
3564
3565         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3566         if (&obj->base == NULL) {
3567                 ret = -ENOENT;
3568                 goto unlock;
3569         }
3570
3571         if (obj->pin_filp != file) {
3572                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3573                           args->handle);
3574                 ret = -EINVAL;
3575                 goto out;
3576         }
3577         obj->user_pin_count--;
3578         if (obj->user_pin_count == 0) {
3579                 obj->pin_filp = NULL;
3580                 i915_gem_object_unpin(obj);
3581         }
3582
3583 out:
3584         drm_gem_object_unreference(&obj->base);
3585 unlock:
3586         mutex_unlock(&dev->struct_mutex);
3587         return ret;
3588 }
3589
3590 int
3591 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3592                     struct drm_file *file)
3593 {
3594         struct drm_i915_gem_busy *args = data;
3595         struct drm_i915_gem_object *obj;
3596         int ret;
3597
3598         ret = i915_mutex_lock_interruptible(dev);
3599         if (ret)
3600                 return ret;
3601
3602         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3603         if (&obj->base == NULL) {
3604                 ret = -ENOENT;
3605                 goto unlock;
3606         }
3607
3608         /* Count all active objects as busy, even if they are currently not used
3609          * by the gpu. Users of this interface expect objects to eventually
3610          * become non-busy without any further actions, therefore emit any
3611          * necessary flushes here.
3612          */
3613         ret = i915_gem_object_flush_active(obj);
3614
3615         args->busy = obj->active;
3616         if (obj->ring) {
3617                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3618                 args->busy |= intel_ring_flag(obj->ring) << 16;
3619         }
3620
3621         drm_gem_object_unreference(&obj->base);
3622 unlock:
3623         mutex_unlock(&dev->struct_mutex);
3624         return ret;
3625 }
3626
3627 int
3628 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3629                         struct drm_file *file_priv)
3630 {
3631         return i915_gem_ring_throttle(dev, file_priv);
3632 }
3633
3634 int
3635 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3636                        struct drm_file *file_priv)
3637 {
3638         struct drm_i915_gem_madvise *args = data;
3639         struct drm_i915_gem_object *obj;
3640         int ret;
3641
3642         switch (args->madv) {
3643         case I915_MADV_DONTNEED:
3644         case I915_MADV_WILLNEED:
3645             break;
3646         default:
3647             return -EINVAL;
3648         }
3649
3650         ret = i915_mutex_lock_interruptible(dev);
3651         if (ret)
3652                 return ret;
3653
3654         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3655         if (&obj->base == NULL) {
3656                 ret = -ENOENT;
3657                 goto unlock;
3658         }
3659
3660         if (obj->pin_count) {
3661                 ret = -EINVAL;
3662                 goto out;
3663         }
3664
3665         if (obj->madv != __I915_MADV_PURGED)
3666                 obj->madv = args->madv;
3667
3668         /* if the object is no longer attached, discard its backing storage */
3669         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3670                 i915_gem_object_truncate(obj);
3671
3672         args->retained = obj->madv != __I915_MADV_PURGED;
3673
3674 out:
3675         drm_gem_object_unreference(&obj->base);
3676 unlock:
3677         mutex_unlock(&dev->struct_mutex);
3678         return ret;
3679 }
3680
3681 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3682                           const struct drm_i915_gem_object_ops *ops)
3683 {
3684         INIT_LIST_HEAD(&obj->mm_list);
3685         INIT_LIST_HEAD(&obj->gtt_list);
3686         INIT_LIST_HEAD(&obj->ring_list);
3687         INIT_LIST_HEAD(&obj->exec_list);
3688
3689         obj->ops = ops;
3690
3691         obj->fence_reg = I915_FENCE_REG_NONE;
3692         obj->madv = I915_MADV_WILLNEED;
3693         /* Avoid an unnecessary call to unbind on the first bind. */
3694         obj->map_and_fenceable = true;
3695
3696         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3697 }
3698
3699 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3700         .get_pages = i915_gem_object_get_pages_gtt,
3701         .put_pages = i915_gem_object_put_pages_gtt,
3702 };
3703
3704 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3705                                                   size_t size)
3706 {
3707         struct drm_i915_gem_object *obj;
3708         struct address_space *mapping;
3709         u32 mask;
3710
3711         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3712         if (obj == NULL)
3713                 return NULL;
3714
3715         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3716                 kfree(obj);
3717                 return NULL;
3718         }
3719
3720         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3721         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3722                 /* 965gm cannot relocate objects above 4GiB. */
3723                 mask &= ~__GFP_HIGHMEM;
3724                 mask |= __GFP_DMA32;
3725         }
3726
3727         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3728         mapping_set_gfp_mask(mapping, mask);
3729
3730         i915_gem_object_init(obj, &i915_gem_object_ops);
3731
3732         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3733         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3734
3735         if (HAS_LLC(dev)) {
3736                 /* On some devices, we can have the GPU use the LLC (the CPU
3737                  * cache) for about a 10% performance improvement
3738                  * compared to uncached.  Graphics requests other than
3739                  * display scanout are coherent with the CPU in
3740                  * accessing this cache.  This means in this mode we
3741                  * don't need to clflush on the CPU side, and on the
3742                  * GPU side we only need to flush internal caches to
3743                  * get data visible to the CPU.
3744                  *
3745                  * However, we maintain the display planes as UC, and so
3746                  * need to rebind when first used as such.
3747                  */
3748                 obj->cache_level = I915_CACHE_LLC;
3749         } else
3750                 obj->cache_level = I915_CACHE_NONE;
3751
3752         return obj;
3753 }
3754
3755 int i915_gem_init_object(struct drm_gem_object *obj)
3756 {
3757         BUG();
3758
3759         return 0;
3760 }
3761
3762 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3763 {
3764         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3765         struct drm_device *dev = obj->base.dev;
3766         drm_i915_private_t *dev_priv = dev->dev_private;
3767
3768         trace_i915_gem_object_destroy(obj);
3769
3770         if (obj->phys_obj)
3771                 i915_gem_detach_phys_object(dev, obj);
3772
3773         obj->pin_count = 0;
3774         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3775                 bool was_interruptible;
3776
3777                 was_interruptible = dev_priv->mm.interruptible;
3778                 dev_priv->mm.interruptible = false;
3779
3780                 WARN_ON(i915_gem_object_unbind(obj));
3781
3782                 dev_priv->mm.interruptible = was_interruptible;
3783         }
3784
3785         obj->pages_pin_count = 0;
3786         i915_gem_object_put_pages(obj);
3787         i915_gem_object_free_mmap_offset(obj);
3788
3789         BUG_ON(obj->pages);
3790
3791         if (obj->base.import_attach)
3792                 drm_prime_gem_destroy(&obj->base, NULL);
3793
3794         drm_gem_object_release(&obj->base);
3795         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3796
3797         kfree(obj->bit_17);
3798         kfree(obj);
3799 }
3800
3801 int
3802 i915_gem_idle(struct drm_device *dev)
3803 {
3804         drm_i915_private_t *dev_priv = dev->dev_private;
3805         int ret;
3806
3807         mutex_lock(&dev->struct_mutex);
3808
3809         if (dev_priv->mm.suspended) {
3810                 mutex_unlock(&dev->struct_mutex);
3811                 return 0;
3812         }
3813
3814         ret = i915_gpu_idle(dev);
3815         if (ret) {
3816                 mutex_unlock(&dev->struct_mutex);
3817                 return ret;
3818         }
3819         i915_gem_retire_requests(dev);
3820
3821         /* Under UMS, be paranoid and evict. */
3822         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3823                 i915_gem_evict_everything(dev);
3824
3825         i915_gem_reset_fences(dev);
3826
3827         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3828          * We need to replace this with a semaphore, or something.
3829          * And not confound mm.suspended!
3830          */
3831         dev_priv->mm.suspended = 1;
3832         del_timer_sync(&dev_priv->hangcheck_timer);
3833
3834         i915_kernel_lost_context(dev);
3835         i915_gem_cleanup_ringbuffer(dev);
3836
3837         mutex_unlock(&dev->struct_mutex);
3838
3839         /* Cancel the retire work handler, which should be idle now. */
3840         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3841
3842         return 0;
3843 }
3844
3845 void i915_gem_l3_remap(struct drm_device *dev)
3846 {
3847         drm_i915_private_t *dev_priv = dev->dev_private;
3848         u32 misccpctl;
3849         int i;
3850
3851         if (!IS_IVYBRIDGE(dev))
3852                 return;
3853
3854         if (!dev_priv->l3_parity.remap_info)
3855                 return;
3856
3857         misccpctl = I915_READ(GEN7_MISCCPCTL);
3858         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3859         POSTING_READ(GEN7_MISCCPCTL);
3860
3861         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3862                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3863                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3864                         DRM_DEBUG("0x%x was already programmed to %x\n",
3865                                   GEN7_L3LOG_BASE + i, remap);
3866                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3867                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3868                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3869         }
3870
3871         /* Make sure all the writes land before disabling dop clock gating */
3872         POSTING_READ(GEN7_L3LOG_BASE);
3873
3874         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3875 }
3876
3877 void i915_gem_init_swizzling(struct drm_device *dev)
3878 {
3879         drm_i915_private_t *dev_priv = dev->dev_private;
3880
3881         if (INTEL_INFO(dev)->gen < 5 ||
3882             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3883                 return;
3884
3885         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3886                                  DISP_TILE_SURFACE_SWIZZLING);
3887
3888         if (IS_GEN5(dev))
3889                 return;
3890
3891         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3892         if (IS_GEN6(dev))
3893                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3894         else
3895                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3896 }
3897
3898 static bool
3899 intel_enable_blt(struct drm_device *dev)
3900 {
3901         if (!HAS_BLT(dev))
3902                 return false;
3903
3904         /* The blitter was dysfunctional on early prototypes */
3905         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3906                 DRM_INFO("BLT not supported on this pre-production hardware;"
3907                          " graphics performance will be degraded.\n");
3908                 return false;
3909         }
3910
3911         return true;
3912 }
3913
3914 int
3915 i915_gem_init_hw(struct drm_device *dev)
3916 {
3917         drm_i915_private_t *dev_priv = dev->dev_private;
3918         int ret;
3919
3920         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3921                 return -EIO;
3922
3923         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3924                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3925
3926         i915_gem_l3_remap(dev);
3927
3928         i915_gem_init_swizzling(dev);
3929
3930         ret = intel_init_render_ring_buffer(dev);
3931         if (ret)
3932                 return ret;
3933
3934         if (HAS_BSD(dev)) {
3935                 ret = intel_init_bsd_ring_buffer(dev);
3936                 if (ret)
3937                         goto cleanup_render_ring;
3938         }
3939
3940         if (intel_enable_blt(dev)) {
3941                 ret = intel_init_blt_ring_buffer(dev);
3942                 if (ret)
3943                         goto cleanup_bsd_ring;
3944         }
3945
3946         dev_priv->next_seqno = 1;
3947
3948         /*
3949          * XXX: There was some w/a described somewhere suggesting loading
3950          * contexts before PPGTT.
3951          */
3952         i915_gem_context_init(dev);
3953         i915_gem_init_ppgtt(dev);
3954
3955         return 0;
3956
3957 cleanup_bsd_ring:
3958         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3959 cleanup_render_ring:
3960         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3961         return ret;
3962 }
3963
3964 static bool
3965 intel_enable_ppgtt(struct drm_device *dev)
3966 {
3967         if (i915_enable_ppgtt >= 0)
3968                 return i915_enable_ppgtt;
3969
3970 #ifdef CONFIG_INTEL_IOMMU
3971         /* Disable ppgtt on SNB if VT-d is on. */
3972         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3973                 return false;
3974 #endif
3975
3976         return true;
3977 }
3978
3979 int i915_gem_init(struct drm_device *dev)
3980 {
3981         struct drm_i915_private *dev_priv = dev->dev_private;
3982         unsigned long gtt_size, mappable_size;
3983         int ret;
3984
3985         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3986         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3987
3988         mutex_lock(&dev->struct_mutex);
3989         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3990                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3991                  * aperture accordingly when using aliasing ppgtt. */
3992                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3993
3994                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3995
3996                 ret = i915_gem_init_aliasing_ppgtt(dev);
3997                 if (ret) {
3998                         mutex_unlock(&dev->struct_mutex);
3999                         return ret;
4000                 }
4001         } else {
4002                 /* Let GEM Manage all of the aperture.
4003                  *
4004                  * However, leave one page at the end still bound to the scratch
4005                  * page.  There are a number of places where the hardware
4006                  * apparently prefetches past the end of the object, and we've
4007                  * seen multiple hangs with the GPU head pointer stuck in a
4008                  * batchbuffer bound at the last page of the aperture.  One page
4009                  * should be enough to keep any prefetching inside of the
4010                  * aperture.
4011                  */
4012                 i915_gem_init_global_gtt(dev, 0, mappable_size,
4013                                          gtt_size);
4014         }
4015
4016         ret = i915_gem_init_hw(dev);
4017         mutex_unlock(&dev->struct_mutex);
4018         if (ret) {
4019                 i915_gem_cleanup_aliasing_ppgtt(dev);
4020                 return ret;
4021         }
4022
4023         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4024         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4025                 dev_priv->dri1.allow_batchbuffer = 1;
4026         return 0;
4027 }
4028
4029 void
4030 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4031 {
4032         drm_i915_private_t *dev_priv = dev->dev_private;
4033         struct intel_ring_buffer *ring;
4034         int i;
4035
4036         for_each_ring(ring, dev_priv, i)
4037                 intel_cleanup_ring_buffer(ring);
4038 }
4039
4040 int
4041 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4042                        struct drm_file *file_priv)
4043 {
4044         drm_i915_private_t *dev_priv = dev->dev_private;
4045         int ret;
4046
4047         if (drm_core_check_feature(dev, DRIVER_MODESET))
4048                 return 0;
4049
4050         if (atomic_read(&dev_priv->mm.wedged)) {
4051                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4052                 atomic_set(&dev_priv->mm.wedged, 0);
4053         }
4054
4055         mutex_lock(&dev->struct_mutex);
4056         dev_priv->mm.suspended = 0;
4057
4058         ret = i915_gem_init_hw(dev);
4059         if (ret != 0) {
4060                 mutex_unlock(&dev->struct_mutex);
4061                 return ret;
4062         }
4063
4064         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4065         mutex_unlock(&dev->struct_mutex);
4066
4067         ret = drm_irq_install(dev);
4068         if (ret)
4069                 goto cleanup_ringbuffer;
4070
4071         return 0;
4072
4073 cleanup_ringbuffer:
4074         mutex_lock(&dev->struct_mutex);
4075         i915_gem_cleanup_ringbuffer(dev);
4076         dev_priv->mm.suspended = 1;
4077         mutex_unlock(&dev->struct_mutex);
4078
4079         return ret;
4080 }
4081
4082 int
4083 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4084                        struct drm_file *file_priv)
4085 {
4086         if (drm_core_check_feature(dev, DRIVER_MODESET))
4087                 return 0;
4088
4089         drm_irq_uninstall(dev);
4090         return i915_gem_idle(dev);
4091 }
4092
4093 void
4094 i915_gem_lastclose(struct drm_device *dev)
4095 {
4096         int ret;
4097
4098         if (drm_core_check_feature(dev, DRIVER_MODESET))
4099                 return;
4100
4101         ret = i915_gem_idle(dev);
4102         if (ret)
4103                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4104 }
4105
4106 static void
4107 init_ring_lists(struct intel_ring_buffer *ring)
4108 {
4109         INIT_LIST_HEAD(&ring->active_list);
4110         INIT_LIST_HEAD(&ring->request_list);
4111 }
4112
4113 void
4114 i915_gem_load(struct drm_device *dev)
4115 {
4116         int i;
4117         drm_i915_private_t *dev_priv = dev->dev_private;
4118
4119         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4120         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4121         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4122         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4123         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4124         for (i = 0; i < I915_NUM_RINGS; i++)
4125                 init_ring_lists(&dev_priv->ring[i]);
4126         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4127                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4128         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4129                           i915_gem_retire_work_handler);
4130         init_completion(&dev_priv->error_completion);
4131
4132         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4133         if (IS_GEN3(dev)) {
4134                 I915_WRITE(MI_ARB_STATE,
4135                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4136         }
4137
4138         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4139
4140         /* Old X drivers will take 0-2 for front, back, depth buffers */
4141         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4142                 dev_priv->fence_reg_start = 3;
4143
4144         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4145                 dev_priv->num_fence_regs = 16;
4146         else
4147                 dev_priv->num_fence_regs = 8;
4148
4149         /* Initialize fence registers to zero */
4150         i915_gem_reset_fences(dev);
4151
4152         i915_gem_detect_bit_6_swizzle(dev);
4153         init_waitqueue_head(&dev_priv->pending_flip_queue);
4154
4155         dev_priv->mm.interruptible = true;
4156
4157         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4158         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4159         register_shrinker(&dev_priv->mm.inactive_shrinker);
4160 }
4161
4162 /*
4163  * Create a physically contiguous memory object for this object
4164  * e.g. for cursor + overlay regs
4165  */
4166 static int i915_gem_init_phys_object(struct drm_device *dev,
4167                                      int id, int size, int align)
4168 {
4169         drm_i915_private_t *dev_priv = dev->dev_private;
4170         struct drm_i915_gem_phys_object *phys_obj;
4171         int ret;
4172
4173         if (dev_priv->mm.phys_objs[id - 1] || !size)
4174                 return 0;
4175
4176         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4177         if (!phys_obj)
4178                 return -ENOMEM;
4179
4180         phys_obj->id = id;
4181
4182         phys_obj->handle = drm_pci_alloc(dev, size, align);
4183         if (!phys_obj->handle) {
4184                 ret = -ENOMEM;
4185                 goto kfree_obj;
4186         }
4187 #ifdef CONFIG_X86
4188         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4189 #endif
4190
4191         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4192
4193         return 0;
4194 kfree_obj:
4195         kfree(phys_obj);
4196         return ret;
4197 }
4198
4199 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4200 {
4201         drm_i915_private_t *dev_priv = dev->dev_private;
4202         struct drm_i915_gem_phys_object *phys_obj;
4203
4204         if (!dev_priv->mm.phys_objs[id - 1])
4205                 return;
4206
4207         phys_obj = dev_priv->mm.phys_objs[id - 1];
4208         if (phys_obj->cur_obj) {
4209                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4210         }
4211
4212 #ifdef CONFIG_X86
4213         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4214 #endif
4215         drm_pci_free(dev, phys_obj->handle);
4216         kfree(phys_obj);
4217         dev_priv->mm.phys_objs[id - 1] = NULL;
4218 }
4219
4220 void i915_gem_free_all_phys_object(struct drm_device *dev)
4221 {
4222         int i;
4223
4224         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4225                 i915_gem_free_phys_object(dev, i);
4226 }
4227
4228 void i915_gem_detach_phys_object(struct drm_device *dev,
4229                                  struct drm_i915_gem_object *obj)
4230 {
4231         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4232         char *vaddr;
4233         int i;
4234         int page_count;
4235
4236         if (!obj->phys_obj)
4237                 return;
4238         vaddr = obj->phys_obj->handle->vaddr;
4239
4240         page_count = obj->base.size / PAGE_SIZE;
4241         for (i = 0; i < page_count; i++) {
4242                 struct page *page = shmem_read_mapping_page(mapping, i);
4243                 if (!IS_ERR(page)) {
4244                         char *dst = kmap_atomic(page);
4245                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4246                         kunmap_atomic(dst);
4247
4248                         drm_clflush_pages(&page, 1);
4249
4250                         set_page_dirty(page);
4251                         mark_page_accessed(page);
4252                         page_cache_release(page);
4253                 }
4254         }
4255         i915_gem_chipset_flush(dev);
4256
4257         obj->phys_obj->cur_obj = NULL;
4258         obj->phys_obj = NULL;
4259 }
4260
4261 int
4262 i915_gem_attach_phys_object(struct drm_device *dev,
4263                             struct drm_i915_gem_object *obj,
4264                             int id,
4265                             int align)
4266 {
4267         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4268         drm_i915_private_t *dev_priv = dev->dev_private;
4269         int ret = 0;
4270         int page_count;
4271         int i;
4272
4273         if (id > I915_MAX_PHYS_OBJECT)
4274                 return -EINVAL;
4275
4276         if (obj->phys_obj) {
4277                 if (obj->phys_obj->id == id)
4278                         return 0;
4279                 i915_gem_detach_phys_object(dev, obj);
4280         }
4281
4282         /* create a new object */
4283         if (!dev_priv->mm.phys_objs[id - 1]) {
4284                 ret = i915_gem_init_phys_object(dev, id,
4285                                                 obj->base.size, align);
4286                 if (ret) {
4287                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4288                                   id, obj->base.size);
4289                         return ret;
4290                 }
4291         }
4292
4293         /* bind to the object */
4294         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4295         obj->phys_obj->cur_obj = obj;
4296
4297         page_count = obj->base.size / PAGE_SIZE;
4298
4299         for (i = 0; i < page_count; i++) {
4300                 struct page *page;
4301                 char *dst, *src;
4302
4303                 page = shmem_read_mapping_page(mapping, i);
4304                 if (IS_ERR(page))
4305                         return PTR_ERR(page);
4306
4307                 src = kmap_atomic(page);
4308                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4309                 memcpy(dst, src, PAGE_SIZE);
4310                 kunmap_atomic(src);
4311
4312                 mark_page_accessed(page);
4313                 page_cache_release(page);
4314         }
4315
4316         return 0;
4317 }
4318
4319 static int
4320 i915_gem_phys_pwrite(struct drm_device *dev,
4321                      struct drm_i915_gem_object *obj,
4322                      struct drm_i915_gem_pwrite *args,
4323                      struct drm_file *file_priv)
4324 {
4325         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4326         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4327
4328         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4329                 unsigned long unwritten;
4330
4331                 /* The physical object once assigned is fixed for the lifetime
4332                  * of the obj, so we can safely drop the lock and continue
4333                  * to access vaddr.
4334                  */
4335                 mutex_unlock(&dev->struct_mutex);
4336                 unwritten = copy_from_user(vaddr, user_data, args->size);
4337                 mutex_lock(&dev->struct_mutex);
4338                 if (unwritten)
4339                         return -EFAULT;
4340         }
4341
4342         i915_gem_chipset_flush(dev);
4343         return 0;
4344 }
4345
4346 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4347 {
4348         struct drm_i915_file_private *file_priv = file->driver_priv;
4349
4350         /* Clean up our request list when the client is going away, so that
4351          * later retire_requests won't dereference our soon-to-be-gone
4352          * file_priv.
4353          */
4354         spin_lock(&file_priv->mm.lock);
4355         while (!list_empty(&file_priv->mm.request_list)) {
4356                 struct drm_i915_gem_request *request;
4357
4358                 request = list_first_entry(&file_priv->mm.request_list,
4359                                            struct drm_i915_gem_request,
4360                                            client_list);
4361                 list_del(&request->client_list);
4362                 request->file_priv = NULL;
4363         }
4364         spin_unlock(&file_priv->mm.lock);
4365 }
4366
4367 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4368 {
4369         if (!mutex_is_locked(mutex))
4370                 return false;
4371
4372 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4373         return mutex->owner == task;
4374 #else
4375         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4376         return false;
4377 #endif
4378 }
4379
4380 static int
4381 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4382 {
4383         struct drm_i915_private *dev_priv =
4384                 container_of(shrinker,
4385                              struct drm_i915_private,
4386                              mm.inactive_shrinker);
4387         struct drm_device *dev = dev_priv->dev;
4388         struct drm_i915_gem_object *obj;
4389         int nr_to_scan = sc->nr_to_scan;
4390         bool unlock = true;
4391         int cnt;
4392
4393         if (!mutex_trylock(&dev->struct_mutex)) {
4394                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4395                         return 0;
4396
4397                 if (dev_priv->mm.shrinker_no_lock_stealing)
4398                         return 0;
4399
4400                 unlock = false;
4401         }
4402
4403         if (nr_to_scan) {
4404                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4405                 if (nr_to_scan > 0)
4406                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4407                                                         false);
4408                 if (nr_to_scan > 0)
4409                         i915_gem_shrink_all(dev_priv);
4410         }
4411
4412         cnt = 0;
4413         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4414                 if (obj->pages_pin_count == 0)
4415                         cnt += obj->base.size >> PAGE_SHIFT;
4416         list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4417                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4418                         cnt += obj->base.size >> PAGE_SHIFT;
4419
4420         if (unlock)
4421                 mutex_unlock(&dev->struct_mutex);
4422         return cnt;
4423 }