]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
gpu: ipu-v3: Kconfig: Remove SOC_IMX6SL from IMX_IPUV3_CORE Kconfig
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32
33 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
34 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
35
36 bool intel_enable_ppgtt(struct drm_device *dev, bool full)
37 {
38         if (i915.enable_ppgtt == 0)
39                 return false;
40
41         if (i915.enable_ppgtt == 1 && full)
42                 return false;
43
44         return true;
45 }
46
47 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
48 {
49         if (enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
50                 return 0;
51
52         if (enable_ppgtt == 1)
53                 return 1;
54
55         if (enable_ppgtt == 2 && HAS_PPGTT(dev))
56                 return 2;
57
58 #ifdef CONFIG_INTEL_IOMMU
59         /* Disable ppgtt on SNB if VT-d is on. */
60         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
61                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
62                 return 0;
63         }
64 #endif
65
66         /* Early VLV doesn't have this */
67         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
68             dev->pdev->revision < 0xb) {
69                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
70                 return 0;
71         }
72
73         return HAS_ALIASING_PPGTT(dev) ? 1 : 0;
74 }
75
76
77 static void ppgtt_bind_vma(struct i915_vma *vma,
78                            enum i915_cache_level cache_level,
79                            u32 flags);
80 static void ppgtt_unbind_vma(struct i915_vma *vma);
81 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
82
83 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
84                                              enum i915_cache_level level,
85                                              bool valid)
86 {
87         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
88         pte |= addr;
89
90         switch (level) {
91         case I915_CACHE_NONE:
92                 pte |= PPAT_UNCACHED_INDEX;
93                 break;
94         case I915_CACHE_WT:
95                 pte |= PPAT_DISPLAY_ELLC_INDEX;
96                 break;
97         default:
98                 pte |= PPAT_CACHED_INDEX;
99                 break;
100         }
101
102         return pte;
103 }
104
105 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
106                                              dma_addr_t addr,
107                                              enum i915_cache_level level)
108 {
109         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
110         pde |= addr;
111         if (level != I915_CACHE_NONE)
112                 pde |= PPAT_CACHED_PDE_INDEX;
113         else
114                 pde |= PPAT_UNCACHED_INDEX;
115         return pde;
116 }
117
118 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
119                                      enum i915_cache_level level,
120                                      bool valid, u32 unused)
121 {
122         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
123         pte |= GEN6_PTE_ADDR_ENCODE(addr);
124
125         switch (level) {
126         case I915_CACHE_L3_LLC:
127         case I915_CACHE_LLC:
128                 pte |= GEN6_PTE_CACHE_LLC;
129                 break;
130         case I915_CACHE_NONE:
131                 pte |= GEN6_PTE_UNCACHED;
132                 break;
133         default:
134                 WARN_ON(1);
135         }
136
137         return pte;
138 }
139
140 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
141                                      enum i915_cache_level level,
142                                      bool valid, u32 unused)
143 {
144         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
145         pte |= GEN6_PTE_ADDR_ENCODE(addr);
146
147         switch (level) {
148         case I915_CACHE_L3_LLC:
149                 pte |= GEN7_PTE_CACHE_L3_LLC;
150                 break;
151         case I915_CACHE_LLC:
152                 pte |= GEN6_PTE_CACHE_LLC;
153                 break;
154         case I915_CACHE_NONE:
155                 pte |= GEN6_PTE_UNCACHED;
156                 break;
157         default:
158                 WARN_ON(1);
159         }
160
161         return pte;
162 }
163
164 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
165                                      enum i915_cache_level level,
166                                      bool valid, u32 flags)
167 {
168         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
169         pte |= GEN6_PTE_ADDR_ENCODE(addr);
170
171         /* Mark the page as writeable.  Other platforms don't have a
172          * setting for read-only/writable, so this matches that behavior.
173          */
174         if (!(flags & PTE_READ_ONLY))
175                 pte |= BYT_PTE_WRITEABLE;
176
177         if (level != I915_CACHE_NONE)
178                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
179
180         return pte;
181 }
182
183 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
184                                      enum i915_cache_level level,
185                                      bool valid, u32 unused)
186 {
187         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
188         pte |= HSW_PTE_ADDR_ENCODE(addr);
189
190         if (level != I915_CACHE_NONE)
191                 pte |= HSW_WB_LLC_AGE3;
192
193         return pte;
194 }
195
196 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
197                                       enum i915_cache_level level,
198                                       bool valid, u32 unused)
199 {
200         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
201         pte |= HSW_PTE_ADDR_ENCODE(addr);
202
203         switch (level) {
204         case I915_CACHE_NONE:
205                 break;
206         case I915_CACHE_WT:
207                 pte |= HSW_WT_ELLC_LLC_AGE3;
208                 break;
209         default:
210                 pte |= HSW_WB_ELLC_LLC_AGE3;
211                 break;
212         }
213
214         return pte;
215 }
216
217 /* Broadwell Page Directory Pointer Descriptors */
218 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
219                            uint64_t val, bool synchronous)
220 {
221         struct drm_i915_private *dev_priv = ring->dev->dev_private;
222         int ret;
223
224         BUG_ON(entry >= 4);
225
226         if (synchronous) {
227                 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
228                 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
229                 return 0;
230         }
231
232         ret = intel_ring_begin(ring, 6);
233         if (ret)
234                 return ret;
235
236         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
237         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
238         intel_ring_emit(ring, (u32)(val >> 32));
239         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
240         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
241         intel_ring_emit(ring, (u32)(val));
242         intel_ring_advance(ring);
243
244         return 0;
245 }
246
247 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
248                           struct intel_engine_cs *ring,
249                           bool synchronous)
250 {
251         int i, ret;
252
253         /* bit of a hack to find the actual last used pd */
254         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
255
256         for (i = used_pd - 1; i >= 0; i--) {
257                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
258                 ret = gen8_write_pdp(ring, i, addr, synchronous);
259                 if (ret)
260                         return ret;
261         }
262
263         return 0;
264 }
265
266 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
267                                    uint64_t start,
268                                    uint64_t length,
269                                    bool use_scratch)
270 {
271         struct i915_hw_ppgtt *ppgtt =
272                 container_of(vm, struct i915_hw_ppgtt, base);
273         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
274         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
275         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
276         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
277         unsigned num_entries = length >> PAGE_SHIFT;
278         unsigned last_pte, i;
279
280         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
281                                       I915_CACHE_LLC, use_scratch);
282
283         while (num_entries) {
284                 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
285
286                 last_pte = pte + num_entries;
287                 if (last_pte > GEN8_PTES_PER_PAGE)
288                         last_pte = GEN8_PTES_PER_PAGE;
289
290                 pt_vaddr = kmap_atomic(page_table);
291
292                 for (i = pte; i < last_pte; i++) {
293                         pt_vaddr[i] = scratch_pte;
294                         num_entries--;
295                 }
296
297                 if (!HAS_LLC(ppgtt->base.dev))
298                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
299                 kunmap_atomic(pt_vaddr);
300
301                 pte = 0;
302                 if (++pde == GEN8_PDES_PER_PAGE) {
303                         pdpe++;
304                         pde = 0;
305                 }
306         }
307 }
308
309 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
310                                       struct sg_table *pages,
311                                       uint64_t start,
312                                       enum i915_cache_level cache_level, u32 unused)
313 {
314         struct i915_hw_ppgtt *ppgtt =
315                 container_of(vm, struct i915_hw_ppgtt, base);
316         gen8_gtt_pte_t *pt_vaddr;
317         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
318         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
319         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
320         struct sg_page_iter sg_iter;
321
322         pt_vaddr = NULL;
323
324         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
325                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
326                         break;
327
328                 if (pt_vaddr == NULL)
329                         pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
330
331                 pt_vaddr[pte] =
332                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
333                                         cache_level, true);
334                 if (++pte == GEN8_PTES_PER_PAGE) {
335                         if (!HAS_LLC(ppgtt->base.dev))
336                                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
337                         kunmap_atomic(pt_vaddr);
338                         pt_vaddr = NULL;
339                         if (++pde == GEN8_PDES_PER_PAGE) {
340                                 pdpe++;
341                                 pde = 0;
342                         }
343                         pte = 0;
344                 }
345         }
346         if (pt_vaddr) {
347                 if (!HAS_LLC(ppgtt->base.dev))
348                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
349                 kunmap_atomic(pt_vaddr);
350         }
351 }
352
353 static void gen8_free_page_tables(struct page **pt_pages)
354 {
355         int i;
356
357         if (pt_pages == NULL)
358                 return;
359
360         for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
361                 if (pt_pages[i])
362                         __free_pages(pt_pages[i], 0);
363 }
364
365 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
366 {
367         int i;
368
369         for (i = 0; i < ppgtt->num_pd_pages; i++) {
370                 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
371                 kfree(ppgtt->gen8_pt_pages[i]);
372                 kfree(ppgtt->gen8_pt_dma_addr[i]);
373         }
374
375         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
376 }
377
378 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
379 {
380         struct pci_dev *hwdev = ppgtt->base.dev->pdev;
381         int i, j;
382
383         for (i = 0; i < ppgtt->num_pd_pages; i++) {
384                 /* TODO: In the future we'll support sparse mappings, so this
385                  * will have to change. */
386                 if (!ppgtt->pd_dma_addr[i])
387                         continue;
388
389                 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
390                                PCI_DMA_BIDIRECTIONAL);
391
392                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
393                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
394                         if (addr)
395                                 pci_unmap_page(hwdev, addr, PAGE_SIZE,
396                                                PCI_DMA_BIDIRECTIONAL);
397                 }
398         }
399 }
400
401 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
402 {
403         struct i915_hw_ppgtt *ppgtt =
404                 container_of(vm, struct i915_hw_ppgtt, base);
405
406         list_del(&vm->global_link);
407         drm_mm_takedown(&vm->mm);
408
409         gen8_ppgtt_unmap_pages(ppgtt);
410         gen8_ppgtt_free(ppgtt);
411 }
412
413 static struct page **__gen8_alloc_page_tables(void)
414 {
415         struct page **pt_pages;
416         int i;
417
418         pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
419         if (!pt_pages)
420                 return ERR_PTR(-ENOMEM);
421
422         for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
423                 pt_pages[i] = alloc_page(GFP_KERNEL);
424                 if (!pt_pages[i])
425                         goto bail;
426         }
427
428         return pt_pages;
429
430 bail:
431         gen8_free_page_tables(pt_pages);
432         kfree(pt_pages);
433         return ERR_PTR(-ENOMEM);
434 }
435
436 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
437                                            const int max_pdp)
438 {
439         struct page **pt_pages[GEN8_LEGACY_PDPS];
440         int i, ret;
441
442         for (i = 0; i < max_pdp; i++) {
443                 pt_pages[i] = __gen8_alloc_page_tables();
444                 if (IS_ERR(pt_pages[i])) {
445                         ret = PTR_ERR(pt_pages[i]);
446                         goto unwind_out;
447                 }
448         }
449
450         /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
451          * "atomic" - for cleanup purposes.
452          */
453         for (i = 0; i < max_pdp; i++)
454                 ppgtt->gen8_pt_pages[i] = pt_pages[i];
455
456         return 0;
457
458 unwind_out:
459         while (i--) {
460                 gen8_free_page_tables(pt_pages[i]);
461                 kfree(pt_pages[i]);
462         }
463
464         return ret;
465 }
466
467 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
468 {
469         int i;
470
471         for (i = 0; i < ppgtt->num_pd_pages; i++) {
472                 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
473                                                      sizeof(dma_addr_t),
474                                                      GFP_KERNEL);
475                 if (!ppgtt->gen8_pt_dma_addr[i])
476                         return -ENOMEM;
477         }
478
479         return 0;
480 }
481
482 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
483                                                 const int max_pdp)
484 {
485         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
486         if (!ppgtt->pd_pages)
487                 return -ENOMEM;
488
489         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
490         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
491
492         return 0;
493 }
494
495 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
496                             const int max_pdp)
497 {
498         int ret;
499
500         ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
501         if (ret)
502                 return ret;
503
504         ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
505         if (ret) {
506                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
507                 return ret;
508         }
509
510         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
511
512         ret = gen8_ppgtt_allocate_dma(ppgtt);
513         if (ret)
514                 gen8_ppgtt_free(ppgtt);
515
516         return ret;
517 }
518
519 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
520                                              const int pd)
521 {
522         dma_addr_t pd_addr;
523         int ret;
524
525         pd_addr = pci_map_page(ppgtt->base.dev->pdev,
526                                &ppgtt->pd_pages[pd], 0,
527                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
528
529         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
530         if (ret)
531                 return ret;
532
533         ppgtt->pd_dma_addr[pd] = pd_addr;
534
535         return 0;
536 }
537
538 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
539                                         const int pd,
540                                         const int pt)
541 {
542         dma_addr_t pt_addr;
543         struct page *p;
544         int ret;
545
546         p = ppgtt->gen8_pt_pages[pd][pt];
547         pt_addr = pci_map_page(ppgtt->base.dev->pdev,
548                                p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
549         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
550         if (ret)
551                 return ret;
552
553         ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
554
555         return 0;
556 }
557
558 /**
559  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
560  * with a net effect resembling a 2-level page table in normal x86 terms. Each
561  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
562  * space.
563  *
564  * FIXME: split allocation into smaller pieces. For now we only ever do this
565  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
566  * TODO: Do something with the size parameter
567  */
568 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
569 {
570         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
571         const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
572         int i, j, ret;
573
574         if (size % (1<<30))
575                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
576
577         /* 1. Do all our allocations for page directories and page tables. */
578         ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
579         if (ret)
580                 return ret;
581
582         /*
583          * 2. Create DMA mappings for the page directories and page tables.
584          */
585         for (i = 0; i < max_pdp; i++) {
586                 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
587                 if (ret)
588                         goto bail;
589
590                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
591                         ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
592                         if (ret)
593                                 goto bail;
594                 }
595         }
596
597         /*
598          * 3. Map all the page directory entires to point to the page tables
599          * we've allocated.
600          *
601          * For now, the PPGTT helper functions all require that the PDEs are
602          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
603          * will never need to touch the PDEs again.
604          */
605         for (i = 0; i < max_pdp; i++) {
606                 gen8_ppgtt_pde_t *pd_vaddr;
607                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
608                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
609                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
610                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
611                                                       I915_CACHE_LLC);
612                 }
613                 if (!HAS_LLC(ppgtt->base.dev))
614                         drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
615                 kunmap_atomic(pd_vaddr);
616         }
617
618         ppgtt->enable = gen8_ppgtt_enable;
619         ppgtt->switch_mm = gen8_mm_switch;
620         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
621         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
622         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
623         ppgtt->base.start = 0;
624         ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
625
626         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
627
628         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
629                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
630         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
631                          ppgtt->num_pd_entries,
632                          (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
633         return 0;
634
635 bail:
636         gen8_ppgtt_unmap_pages(ppgtt);
637         gen8_ppgtt_free(ppgtt);
638         return ret;
639 }
640
641 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
642 {
643         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
644         struct i915_address_space *vm = &ppgtt->base;
645         gen6_gtt_pte_t __iomem *pd_addr;
646         gen6_gtt_pte_t scratch_pte;
647         uint32_t pd_entry;
648         int pte, pde;
649
650         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
651
652         pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
653                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
654
655         seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
656                    ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
657         for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
658                 u32 expected;
659                 gen6_gtt_pte_t *pt_vaddr;
660                 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
661                 pd_entry = readl(pd_addr + pde);
662                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
663
664                 if (pd_entry != expected)
665                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
666                                    pde,
667                                    pd_entry,
668                                    expected);
669                 seq_printf(m, "\tPDE: %x\n", pd_entry);
670
671                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
672                 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
673                         unsigned long va =
674                                 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
675                                 (pte * PAGE_SIZE);
676                         int i;
677                         bool found = false;
678                         for (i = 0; i < 4; i++)
679                                 if (pt_vaddr[pte + i] != scratch_pte)
680                                         found = true;
681                         if (!found)
682                                 continue;
683
684                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
685                         for (i = 0; i < 4; i++) {
686                                 if (pt_vaddr[pte + i] != scratch_pte)
687                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
688                                 else
689                                         seq_puts(m, "  SCRATCH ");
690                         }
691                         seq_puts(m, "\n");
692                 }
693                 kunmap_atomic(pt_vaddr);
694         }
695 }
696
697 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
698 {
699         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
700         gen6_gtt_pte_t __iomem *pd_addr;
701         uint32_t pd_entry;
702         int i;
703
704         WARN_ON(ppgtt->pd_offset & 0x3f);
705         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
706                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
707         for (i = 0; i < ppgtt->num_pd_entries; i++) {
708                 dma_addr_t pt_addr;
709
710                 pt_addr = ppgtt->pt_dma_addr[i];
711                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
712                 pd_entry |= GEN6_PDE_VALID;
713
714                 writel(pd_entry, pd_addr + i);
715         }
716         readl(pd_addr);
717 }
718
719 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
720 {
721         BUG_ON(ppgtt->pd_offset & 0x3f);
722
723         return (ppgtt->pd_offset / 64) << 16;
724 }
725
726 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
727                          struct intel_engine_cs *ring,
728                          bool synchronous)
729 {
730         struct drm_device *dev = ppgtt->base.dev;
731         struct drm_i915_private *dev_priv = dev->dev_private;
732         int ret;
733
734         /* If we're in reset, we can assume the GPU is sufficiently idle to
735          * manually frob these bits. Ideally we could use the ring functions,
736          * except our error handling makes it quite difficult (can't use
737          * intel_ring_begin, ring->flush, or intel_ring_advance)
738          *
739          * FIXME: We should try not to special case reset
740          */
741         if (synchronous ||
742             i915_reset_in_progress(&dev_priv->gpu_error)) {
743                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
744                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
745                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
746                 POSTING_READ(RING_PP_DIR_BASE(ring));
747                 return 0;
748         }
749
750         /* NB: TLBs must be flushed and invalidated before a switch */
751         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
752         if (ret)
753                 return ret;
754
755         ret = intel_ring_begin(ring, 6);
756         if (ret)
757                 return ret;
758
759         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
760         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
761         intel_ring_emit(ring, PP_DIR_DCLV_2G);
762         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
763         intel_ring_emit(ring, get_pd_offset(ppgtt));
764         intel_ring_emit(ring, MI_NOOP);
765         intel_ring_advance(ring);
766
767         return 0;
768 }
769
770 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
771                           struct intel_engine_cs *ring,
772                           bool synchronous)
773 {
774         struct drm_device *dev = ppgtt->base.dev;
775         struct drm_i915_private *dev_priv = dev->dev_private;
776         int ret;
777
778         /* If we're in reset, we can assume the GPU is sufficiently idle to
779          * manually frob these bits. Ideally we could use the ring functions,
780          * except our error handling makes it quite difficult (can't use
781          * intel_ring_begin, ring->flush, or intel_ring_advance)
782          *
783          * FIXME: We should try not to special case reset
784          */
785         if (synchronous ||
786             i915_reset_in_progress(&dev_priv->gpu_error)) {
787                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
788                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
789                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
790                 POSTING_READ(RING_PP_DIR_BASE(ring));
791                 return 0;
792         }
793
794         /* NB: TLBs must be flushed and invalidated before a switch */
795         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
796         if (ret)
797                 return ret;
798
799         ret = intel_ring_begin(ring, 6);
800         if (ret)
801                 return ret;
802
803         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
804         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
805         intel_ring_emit(ring, PP_DIR_DCLV_2G);
806         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
807         intel_ring_emit(ring, get_pd_offset(ppgtt));
808         intel_ring_emit(ring, MI_NOOP);
809         intel_ring_advance(ring);
810
811         /* XXX: RCS is the only one to auto invalidate the TLBs? */
812         if (ring->id != RCS) {
813                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
814                 if (ret)
815                         return ret;
816         }
817
818         return 0;
819 }
820
821 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
822                           struct intel_engine_cs *ring,
823                           bool synchronous)
824 {
825         struct drm_device *dev = ppgtt->base.dev;
826         struct drm_i915_private *dev_priv = dev->dev_private;
827
828         if (!synchronous)
829                 return 0;
830
831         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
832         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
833
834         POSTING_READ(RING_PP_DIR_DCLV(ring));
835
836         return 0;
837 }
838
839 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
840 {
841         struct drm_device *dev = ppgtt->base.dev;
842         struct drm_i915_private *dev_priv = dev->dev_private;
843         struct intel_engine_cs *ring;
844         int j, ret;
845
846         for_each_ring(ring, dev_priv, j) {
847                 I915_WRITE(RING_MODE_GEN7(ring),
848                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
849
850                 /* We promise to do a switch later with FULL PPGTT. If this is
851                  * aliasing, this is the one and only switch we'll do */
852                 if (USES_FULL_PPGTT(dev))
853                         continue;
854
855                 ret = ppgtt->switch_mm(ppgtt, ring, true);
856                 if (ret)
857                         goto err_out;
858         }
859
860         return 0;
861
862 err_out:
863         for_each_ring(ring, dev_priv, j)
864                 I915_WRITE(RING_MODE_GEN7(ring),
865                            _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
866         return ret;
867 }
868
869 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
870 {
871         struct drm_device *dev = ppgtt->base.dev;
872         struct drm_i915_private *dev_priv = dev->dev_private;
873         struct intel_engine_cs *ring;
874         uint32_t ecochk, ecobits;
875         int i;
876
877         ecobits = I915_READ(GAC_ECO_BITS);
878         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
879
880         ecochk = I915_READ(GAM_ECOCHK);
881         if (IS_HASWELL(dev)) {
882                 ecochk |= ECOCHK_PPGTT_WB_HSW;
883         } else {
884                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
885                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
886         }
887         I915_WRITE(GAM_ECOCHK, ecochk);
888
889         for_each_ring(ring, dev_priv, i) {
890                 int ret;
891                 /* GFX_MODE is per-ring on gen7+ */
892                 I915_WRITE(RING_MODE_GEN7(ring),
893                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
894
895                 /* We promise to do a switch later with FULL PPGTT. If this is
896                  * aliasing, this is the one and only switch we'll do */
897                 if (USES_FULL_PPGTT(dev))
898                         continue;
899
900                 ret = ppgtt->switch_mm(ppgtt, ring, true);
901                 if (ret)
902                         return ret;
903         }
904
905         return 0;
906 }
907
908 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
909 {
910         struct drm_device *dev = ppgtt->base.dev;
911         struct drm_i915_private *dev_priv = dev->dev_private;
912         struct intel_engine_cs *ring;
913         uint32_t ecochk, gab_ctl, ecobits;
914         int i;
915
916         ecobits = I915_READ(GAC_ECO_BITS);
917         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
918                    ECOBITS_PPGTT_CACHE64B);
919
920         gab_ctl = I915_READ(GAB_CTL);
921         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
922
923         ecochk = I915_READ(GAM_ECOCHK);
924         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
925
926         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
927
928         for_each_ring(ring, dev_priv, i) {
929                 int ret = ppgtt->switch_mm(ppgtt, ring, true);
930                 if (ret)
931                         return ret;
932         }
933
934         return 0;
935 }
936
937 /* PPGTT support for Sandybdrige/Gen6 and later */
938 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
939                                    uint64_t start,
940                                    uint64_t length,
941                                    bool use_scratch)
942 {
943         struct i915_hw_ppgtt *ppgtt =
944                 container_of(vm, struct i915_hw_ppgtt, base);
945         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
946         unsigned first_entry = start >> PAGE_SHIFT;
947         unsigned num_entries = length >> PAGE_SHIFT;
948         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
949         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
950         unsigned last_pte, i;
951
952         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
953
954         while (num_entries) {
955                 last_pte = first_pte + num_entries;
956                 if (last_pte > I915_PPGTT_PT_ENTRIES)
957                         last_pte = I915_PPGTT_PT_ENTRIES;
958
959                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
960
961                 for (i = first_pte; i < last_pte; i++)
962                         pt_vaddr[i] = scratch_pte;
963
964                 kunmap_atomic(pt_vaddr);
965
966                 num_entries -= last_pte - first_pte;
967                 first_pte = 0;
968                 act_pt++;
969         }
970 }
971
972 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
973                                       struct sg_table *pages,
974                                       uint64_t start,
975                                       enum i915_cache_level cache_level, u32 flags)
976 {
977         struct i915_hw_ppgtt *ppgtt =
978                 container_of(vm, struct i915_hw_ppgtt, base);
979         gen6_gtt_pte_t *pt_vaddr;
980         unsigned first_entry = start >> PAGE_SHIFT;
981         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
982         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
983         struct sg_page_iter sg_iter;
984
985         pt_vaddr = NULL;
986         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
987                 if (pt_vaddr == NULL)
988                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
989
990                 pt_vaddr[act_pte] =
991                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
992                                        cache_level, true, flags);
993
994                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
995                         kunmap_atomic(pt_vaddr);
996                         pt_vaddr = NULL;
997                         act_pt++;
998                         act_pte = 0;
999                 }
1000         }
1001         if (pt_vaddr)
1002                 kunmap_atomic(pt_vaddr);
1003 }
1004
1005 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
1006 {
1007         int i;
1008
1009         if (ppgtt->pt_dma_addr) {
1010                 for (i = 0; i < ppgtt->num_pd_entries; i++)
1011                         pci_unmap_page(ppgtt->base.dev->pdev,
1012                                        ppgtt->pt_dma_addr[i],
1013                                        4096, PCI_DMA_BIDIRECTIONAL);
1014         }
1015 }
1016
1017 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1018 {
1019         int i;
1020
1021         kfree(ppgtt->pt_dma_addr);
1022         for (i = 0; i < ppgtt->num_pd_entries; i++)
1023                 __free_page(ppgtt->pt_pages[i]);
1024         kfree(ppgtt->pt_pages);
1025 }
1026
1027 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1028 {
1029         struct i915_hw_ppgtt *ppgtt =
1030                 container_of(vm, struct i915_hw_ppgtt, base);
1031
1032         list_del(&vm->global_link);
1033         drm_mm_takedown(&ppgtt->base.mm);
1034         drm_mm_remove_node(&ppgtt->node);
1035
1036         gen6_ppgtt_unmap_pages(ppgtt);
1037         gen6_ppgtt_free(ppgtt);
1038 }
1039
1040 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1041 {
1042         struct drm_device *dev = ppgtt->base.dev;
1043         struct drm_i915_private *dev_priv = dev->dev_private;
1044         bool retried = false;
1045         int ret;
1046
1047         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1048          * allocator works in address space sizes, so it's multiplied by page
1049          * size. We allocate at the top of the GTT to avoid fragmentation.
1050          */
1051         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1052 alloc:
1053         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1054                                                   &ppgtt->node, GEN6_PD_SIZE,
1055                                                   GEN6_PD_ALIGN, 0,
1056                                                   0, dev_priv->gtt.base.total,
1057                                                   DRM_MM_TOPDOWN);
1058         if (ret == -ENOSPC && !retried) {
1059                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1060                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1061                                                I915_CACHE_NONE,
1062                                                0, dev_priv->gtt.base.total,
1063                                                0);
1064                 if (ret)
1065                         return ret;
1066
1067                 retried = true;
1068                 goto alloc;
1069         }
1070
1071         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1072                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1073
1074         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1075         return ret;
1076 }
1077
1078 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1079 {
1080         int i;
1081
1082         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1083                                   GFP_KERNEL);
1084
1085         if (!ppgtt->pt_pages)
1086                 return -ENOMEM;
1087
1088         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1089                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1090                 if (!ppgtt->pt_pages[i]) {
1091                         gen6_ppgtt_free(ppgtt);
1092                         return -ENOMEM;
1093                 }
1094         }
1095
1096         return 0;
1097 }
1098
1099 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1100 {
1101         int ret;
1102
1103         ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1104         if (ret)
1105                 return ret;
1106
1107         ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1108         if (ret) {
1109                 drm_mm_remove_node(&ppgtt->node);
1110                 return ret;
1111         }
1112
1113         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1114                                      GFP_KERNEL);
1115         if (!ppgtt->pt_dma_addr) {
1116                 drm_mm_remove_node(&ppgtt->node);
1117                 gen6_ppgtt_free(ppgtt);
1118                 return -ENOMEM;
1119         }
1120
1121         return 0;
1122 }
1123
1124 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1125 {
1126         struct drm_device *dev = ppgtt->base.dev;
1127         int i;
1128
1129         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1130                 dma_addr_t pt_addr;
1131
1132                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1133                                        PCI_DMA_BIDIRECTIONAL);
1134
1135                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1136                         gen6_ppgtt_unmap_pages(ppgtt);
1137                         return -EIO;
1138                 }
1139
1140                 ppgtt->pt_dma_addr[i] = pt_addr;
1141         }
1142
1143         return 0;
1144 }
1145
1146 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1147 {
1148         struct drm_device *dev = ppgtt->base.dev;
1149         struct drm_i915_private *dev_priv = dev->dev_private;
1150         int ret;
1151
1152         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1153         if (IS_GEN6(dev)) {
1154                 ppgtt->enable = gen6_ppgtt_enable;
1155                 ppgtt->switch_mm = gen6_mm_switch;
1156         } else if (IS_HASWELL(dev)) {
1157                 ppgtt->enable = gen7_ppgtt_enable;
1158                 ppgtt->switch_mm = hsw_mm_switch;
1159         } else if (IS_GEN7(dev)) {
1160                 ppgtt->enable = gen7_ppgtt_enable;
1161                 ppgtt->switch_mm = gen7_mm_switch;
1162         } else
1163                 BUG();
1164
1165         ret = gen6_ppgtt_alloc(ppgtt);
1166         if (ret)
1167                 return ret;
1168
1169         ret = gen6_ppgtt_setup_page_tables(ppgtt);
1170         if (ret) {
1171                 gen6_ppgtt_free(ppgtt);
1172                 return ret;
1173         }
1174
1175         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1176         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1177         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1178         ppgtt->base.start = 0;
1179         ppgtt->base.total =  ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1180         ppgtt->debug_dump = gen6_dump_ppgtt;
1181
1182         ppgtt->pd_offset =
1183                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1184
1185         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1186
1187         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1188                          ppgtt->node.size >> 20,
1189                          ppgtt->node.start / PAGE_SIZE);
1190
1191         return 0;
1192 }
1193
1194 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1195 {
1196         struct drm_i915_private *dev_priv = dev->dev_private;
1197         int ret = 0;
1198
1199         ppgtt->base.dev = dev;
1200         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1201
1202         if (INTEL_INFO(dev)->gen < 8)
1203                 ret = gen6_ppgtt_init(ppgtt);
1204         else if (IS_GEN8(dev))
1205                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1206         else
1207                 BUG();
1208
1209         if (!ret) {
1210                 struct drm_i915_private *dev_priv = dev->dev_private;
1211                 kref_init(&ppgtt->ref);
1212                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1213                             ppgtt->base.total);
1214                 i915_init_vm(dev_priv, &ppgtt->base);
1215                 if (INTEL_INFO(dev)->gen < 8) {
1216                         gen6_write_pdes(ppgtt);
1217                         DRM_DEBUG("Adding PPGTT at offset %x\n",
1218                                   ppgtt->pd_offset << 10);
1219                 }
1220         }
1221
1222         return ret;
1223 }
1224
1225 static void
1226 ppgtt_bind_vma(struct i915_vma *vma,
1227                enum i915_cache_level cache_level,
1228                u32 flags)
1229 {
1230         /* Currently applicable only to VLV */
1231         if (vma->obj->gt_ro)
1232                 flags |= PTE_READ_ONLY;
1233
1234         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1235                                 cache_level, flags);
1236 }
1237
1238 static void ppgtt_unbind_vma(struct i915_vma *vma)
1239 {
1240         vma->vm->clear_range(vma->vm,
1241                              vma->node.start,
1242                              vma->obj->base.size,
1243                              true);
1244 }
1245
1246 extern int intel_iommu_gfx_mapped;
1247 /* Certain Gen5 chipsets require require idling the GPU before
1248  * unmapping anything from the GTT when VT-d is enabled.
1249  */
1250 static inline bool needs_idle_maps(struct drm_device *dev)
1251 {
1252 #ifdef CONFIG_INTEL_IOMMU
1253         /* Query intel_iommu to see if we need the workaround. Presumably that
1254          * was loaded first.
1255          */
1256         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1257                 return true;
1258 #endif
1259         return false;
1260 }
1261
1262 static bool do_idling(struct drm_i915_private *dev_priv)
1263 {
1264         bool ret = dev_priv->mm.interruptible;
1265
1266         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1267                 dev_priv->mm.interruptible = false;
1268                 if (i915_gpu_idle(dev_priv->dev)) {
1269                         DRM_ERROR("Couldn't idle GPU\n");
1270                         /* Wait a bit, in hopes it avoids the hang */
1271                         udelay(10);
1272                 }
1273         }
1274
1275         return ret;
1276 }
1277
1278 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1279 {
1280         if (unlikely(dev_priv->gtt.do_idle_maps))
1281                 dev_priv->mm.interruptible = interruptible;
1282 }
1283
1284 void i915_check_and_clear_faults(struct drm_device *dev)
1285 {
1286         struct drm_i915_private *dev_priv = dev->dev_private;
1287         struct intel_engine_cs *ring;
1288         int i;
1289
1290         if (INTEL_INFO(dev)->gen < 6)
1291                 return;
1292
1293         for_each_ring(ring, dev_priv, i) {
1294                 u32 fault_reg;
1295                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1296                 if (fault_reg & RING_FAULT_VALID) {
1297                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1298                                          "\tAddr: 0x%08lx\\n"
1299                                          "\tAddress space: %s\n"
1300                                          "\tSource ID: %d\n"
1301                                          "\tType: %d\n",
1302                                          fault_reg & PAGE_MASK,
1303                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1304                                          RING_FAULT_SRCID(fault_reg),
1305                                          RING_FAULT_FAULT_TYPE(fault_reg));
1306                         I915_WRITE(RING_FAULT_REG(ring),
1307                                    fault_reg & ~RING_FAULT_VALID);
1308                 }
1309         }
1310         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1311 }
1312
1313 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1314 {
1315         struct drm_i915_private *dev_priv = dev->dev_private;
1316
1317         /* Don't bother messing with faults pre GEN6 as we have little
1318          * documentation supporting that it's a good idea.
1319          */
1320         if (INTEL_INFO(dev)->gen < 6)
1321                 return;
1322
1323         i915_check_and_clear_faults(dev);
1324
1325         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1326                                        dev_priv->gtt.base.start,
1327                                        dev_priv->gtt.base.total,
1328                                        true);
1329 }
1330
1331 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1332 {
1333         struct drm_i915_private *dev_priv = dev->dev_private;
1334         struct drm_i915_gem_object *obj;
1335         struct i915_address_space *vm;
1336
1337         i915_check_and_clear_faults(dev);
1338
1339         /* First fill our portion of the GTT with scratch pages */
1340         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1341                                        dev_priv->gtt.base.start,
1342                                        dev_priv->gtt.base.total,
1343                                        true);
1344
1345         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1346                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1347                                                            &dev_priv->gtt.base);
1348                 if (!vma)
1349                         continue;
1350
1351                 i915_gem_clflush_object(obj, obj->pin_display);
1352                 /* The bind_vma code tries to be smart about tracking mappings.
1353                  * Unfortunately above, we've just wiped out the mappings
1354                  * without telling our object about it. So we need to fake it.
1355                  */
1356                 obj->has_global_gtt_mapping = 0;
1357                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1358         }
1359
1360
1361         if (INTEL_INFO(dev)->gen >= 8) {
1362                 if (IS_CHERRYVIEW(dev))
1363                         chv_setup_private_ppat(dev_priv);
1364                 else
1365                         bdw_setup_private_ppat(dev_priv);
1366
1367                 return;
1368         }
1369
1370         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1371                 /* TODO: Perhaps it shouldn't be gen6 specific */
1372                 if (i915_is_ggtt(vm)) {
1373                         if (dev_priv->mm.aliasing_ppgtt)
1374                                 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1375                         continue;
1376                 }
1377
1378                 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1379         }
1380
1381         i915_gem_chipset_flush(dev);
1382 }
1383
1384 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1385 {
1386         if (obj->has_dma_mapping)
1387                 return 0;
1388
1389         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1390                         obj->pages->sgl, obj->pages->nents,
1391                         PCI_DMA_BIDIRECTIONAL))
1392                 return -ENOSPC;
1393
1394         return 0;
1395 }
1396
1397 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1398 {
1399 #ifdef writeq
1400         writeq(pte, addr);
1401 #else
1402         iowrite32((u32)pte, addr);
1403         iowrite32(pte >> 32, addr + 4);
1404 #endif
1405 }
1406
1407 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1408                                      struct sg_table *st,
1409                                      uint64_t start,
1410                                      enum i915_cache_level level, u32 unused)
1411 {
1412         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1413         unsigned first_entry = start >> PAGE_SHIFT;
1414         gen8_gtt_pte_t __iomem *gtt_entries =
1415                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1416         int i = 0;
1417         struct sg_page_iter sg_iter;
1418         dma_addr_t addr = 0; /* shut up gcc */
1419
1420         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1421                 addr = sg_dma_address(sg_iter.sg) +
1422                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1423                 gen8_set_pte(&gtt_entries[i],
1424                              gen8_pte_encode(addr, level, true));
1425                 i++;
1426         }
1427
1428         /*
1429          * XXX: This serves as a posting read to make sure that the PTE has
1430          * actually been updated. There is some concern that even though
1431          * registers and PTEs are within the same BAR that they are potentially
1432          * of NUMA access patterns. Therefore, even with the way we assume
1433          * hardware should work, we must keep this posting read for paranoia.
1434          */
1435         if (i != 0)
1436                 WARN_ON(readq(&gtt_entries[i-1])
1437                         != gen8_pte_encode(addr, level, true));
1438
1439         /* This next bit makes the above posting read even more important. We
1440          * want to flush the TLBs only after we're certain all the PTE updates
1441          * have finished.
1442          */
1443         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1444         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1445 }
1446
1447 /*
1448  * Binds an object into the global gtt with the specified cache level. The object
1449  * will be accessible to the GPU via commands whose operands reference offsets
1450  * within the global GTT as well as accessible by the GPU through the GMADR
1451  * mapped BAR (dev_priv->mm.gtt->gtt).
1452  */
1453 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1454                                      struct sg_table *st,
1455                                      uint64_t start,
1456                                      enum i915_cache_level level, u32 flags)
1457 {
1458         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1459         unsigned first_entry = start >> PAGE_SHIFT;
1460         gen6_gtt_pte_t __iomem *gtt_entries =
1461                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1462         int i = 0;
1463         struct sg_page_iter sg_iter;
1464         dma_addr_t addr = 0;
1465
1466         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1467                 addr = sg_page_iter_dma_address(&sg_iter);
1468                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1469                 i++;
1470         }
1471
1472         /* XXX: This serves as a posting read to make sure that the PTE has
1473          * actually been updated. There is some concern that even though
1474          * registers and PTEs are within the same BAR that they are potentially
1475          * of NUMA access patterns. Therefore, even with the way we assume
1476          * hardware should work, we must keep this posting read for paranoia.
1477          */
1478         if (i != 0) {
1479                 unsigned long gtt = readl(&gtt_entries[i-1]);
1480                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1481         }
1482
1483         /* This next bit makes the above posting read even more important. We
1484          * want to flush the TLBs only after we're certain all the PTE updates
1485          * have finished.
1486          */
1487         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1488         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1489 }
1490
1491 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1492                                   uint64_t start,
1493                                   uint64_t length,
1494                                   bool use_scratch)
1495 {
1496         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1497         unsigned first_entry = start >> PAGE_SHIFT;
1498         unsigned num_entries = length >> PAGE_SHIFT;
1499         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1500                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1501         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1502         int i;
1503
1504         if (WARN(num_entries > max_entries,
1505                  "First entry = %d; Num entries = %d (max=%d)\n",
1506                  first_entry, num_entries, max_entries))
1507                 num_entries = max_entries;
1508
1509         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1510                                       I915_CACHE_LLC,
1511                                       use_scratch);
1512         for (i = 0; i < num_entries; i++)
1513                 gen8_set_pte(&gtt_base[i], scratch_pte);
1514         readl(gtt_base);
1515 }
1516
1517 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1518                                   uint64_t start,
1519                                   uint64_t length,
1520                                   bool use_scratch)
1521 {
1522         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1523         unsigned first_entry = start >> PAGE_SHIFT;
1524         unsigned num_entries = length >> PAGE_SHIFT;
1525         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1526                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1527         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1528         int i;
1529
1530         if (WARN(num_entries > max_entries,
1531                  "First entry = %d; Num entries = %d (max=%d)\n",
1532                  first_entry, num_entries, max_entries))
1533                 num_entries = max_entries;
1534
1535         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1536
1537         for (i = 0; i < num_entries; i++)
1538                 iowrite32(scratch_pte, &gtt_base[i]);
1539         readl(gtt_base);
1540 }
1541
1542
1543 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1544                                enum i915_cache_level cache_level,
1545                                u32 unused)
1546 {
1547         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1548         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1549                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1550
1551         BUG_ON(!i915_is_ggtt(vma->vm));
1552         intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1553         vma->obj->has_global_gtt_mapping = 1;
1554 }
1555
1556 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1557                                   uint64_t start,
1558                                   uint64_t length,
1559                                   bool unused)
1560 {
1561         unsigned first_entry = start >> PAGE_SHIFT;
1562         unsigned num_entries = length >> PAGE_SHIFT;
1563         intel_gtt_clear_range(first_entry, num_entries);
1564 }
1565
1566 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1567 {
1568         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1569         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1570
1571         BUG_ON(!i915_is_ggtt(vma->vm));
1572         vma->obj->has_global_gtt_mapping = 0;
1573         intel_gtt_clear_range(first, size);
1574 }
1575
1576 static void ggtt_bind_vma(struct i915_vma *vma,
1577                           enum i915_cache_level cache_level,
1578                           u32 flags)
1579 {
1580         struct drm_device *dev = vma->vm->dev;
1581         struct drm_i915_private *dev_priv = dev->dev_private;
1582         struct drm_i915_gem_object *obj = vma->obj;
1583
1584         /* Currently applicable only to VLV */
1585         if (obj->gt_ro)
1586                 flags |= PTE_READ_ONLY;
1587
1588         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1589          * or we have a global mapping already but the cacheability flags have
1590          * changed, set the global PTEs.
1591          *
1592          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1593          * instead if none of the above hold true.
1594          *
1595          * NB: A global mapping should only be needed for special regions like
1596          * "gtt mappable", SNB errata, or if specified via special execbuf
1597          * flags. At all other times, the GPU will use the aliasing PPGTT.
1598          */
1599         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1600                 if (!obj->has_global_gtt_mapping ||
1601                     (cache_level != obj->cache_level)) {
1602                         vma->vm->insert_entries(vma->vm, obj->pages,
1603                                                 vma->node.start,
1604                                                 cache_level, flags);
1605                         obj->has_global_gtt_mapping = 1;
1606                 }
1607         }
1608
1609         if (dev_priv->mm.aliasing_ppgtt &&
1610             (!obj->has_aliasing_ppgtt_mapping ||
1611              (cache_level != obj->cache_level))) {
1612                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1613                 appgtt->base.insert_entries(&appgtt->base,
1614                                             vma->obj->pages,
1615                                             vma->node.start,
1616                                             cache_level, flags);
1617                 vma->obj->has_aliasing_ppgtt_mapping = 1;
1618         }
1619 }
1620
1621 static void ggtt_unbind_vma(struct i915_vma *vma)
1622 {
1623         struct drm_device *dev = vma->vm->dev;
1624         struct drm_i915_private *dev_priv = dev->dev_private;
1625         struct drm_i915_gem_object *obj = vma->obj;
1626
1627         if (obj->has_global_gtt_mapping) {
1628                 vma->vm->clear_range(vma->vm,
1629                                      vma->node.start,
1630                                      obj->base.size,
1631                                      true);
1632                 obj->has_global_gtt_mapping = 0;
1633         }
1634
1635         if (obj->has_aliasing_ppgtt_mapping) {
1636                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1637                 appgtt->base.clear_range(&appgtt->base,
1638                                          vma->node.start,
1639                                          obj->base.size,
1640                                          true);
1641                 obj->has_aliasing_ppgtt_mapping = 0;
1642         }
1643 }
1644
1645 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1646 {
1647         struct drm_device *dev = obj->base.dev;
1648         struct drm_i915_private *dev_priv = dev->dev_private;
1649         bool interruptible;
1650
1651         interruptible = do_idling(dev_priv);
1652
1653         if (!obj->has_dma_mapping)
1654                 dma_unmap_sg(&dev->pdev->dev,
1655                              obj->pages->sgl, obj->pages->nents,
1656                              PCI_DMA_BIDIRECTIONAL);
1657
1658         undo_idling(dev_priv, interruptible);
1659 }
1660
1661 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1662                                   unsigned long color,
1663                                   unsigned long *start,
1664                                   unsigned long *end)
1665 {
1666         if (node->color != color)
1667                 *start += 4096;
1668
1669         if (!list_empty(&node->node_list)) {
1670                 node = list_entry(node->node_list.next,
1671                                   struct drm_mm_node,
1672                                   node_list);
1673                 if (node->allocated && node->color != color)
1674                         *end -= 4096;
1675         }
1676 }
1677
1678 void i915_gem_setup_global_gtt(struct drm_device *dev,
1679                                unsigned long start,
1680                                unsigned long mappable_end,
1681                                unsigned long end)
1682 {
1683         /* Let GEM Manage all of the aperture.
1684          *
1685          * However, leave one page at the end still bound to the scratch page.
1686          * There are a number of places where the hardware apparently prefetches
1687          * past the end of the object, and we've seen multiple hangs with the
1688          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1689          * aperture.  One page should be enough to keep any prefetching inside
1690          * of the aperture.
1691          */
1692         struct drm_i915_private *dev_priv = dev->dev_private;
1693         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1694         struct drm_mm_node *entry;
1695         struct drm_i915_gem_object *obj;
1696         unsigned long hole_start, hole_end;
1697
1698         BUG_ON(mappable_end > end);
1699
1700         /* Subtract the guard page ... */
1701         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1702         if (!HAS_LLC(dev))
1703                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1704
1705         /* Mark any preallocated objects as occupied */
1706         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1707                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1708                 int ret;
1709                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1710                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1711
1712                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1713                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1714                 if (ret)
1715                         DRM_DEBUG_KMS("Reservation failed\n");
1716                 obj->has_global_gtt_mapping = 1;
1717         }
1718
1719         dev_priv->gtt.base.start = start;
1720         dev_priv->gtt.base.total = end - start;
1721
1722         /* Clear any non-preallocated blocks */
1723         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1724                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1725                               hole_start, hole_end);
1726                 ggtt_vm->clear_range(ggtt_vm, hole_start,
1727                                      hole_end - hole_start, true);
1728         }
1729
1730         /* And finally clear the reserved guard page */
1731         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1732 }
1733
1734 void i915_gem_init_global_gtt(struct drm_device *dev)
1735 {
1736         struct drm_i915_private *dev_priv = dev->dev_private;
1737         unsigned long gtt_size, mappable_size;
1738
1739         gtt_size = dev_priv->gtt.base.total;
1740         mappable_size = dev_priv->gtt.mappable_end;
1741
1742         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1743 }
1744
1745 static int setup_scratch_page(struct drm_device *dev)
1746 {
1747         struct drm_i915_private *dev_priv = dev->dev_private;
1748         struct page *page;
1749         dma_addr_t dma_addr;
1750
1751         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1752         if (page == NULL)
1753                 return -ENOMEM;
1754         get_page(page);
1755         set_pages_uc(page, 1);
1756
1757 #ifdef CONFIG_INTEL_IOMMU
1758         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1759                                 PCI_DMA_BIDIRECTIONAL);
1760         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1761                 return -EINVAL;
1762 #else
1763         dma_addr = page_to_phys(page);
1764 #endif
1765         dev_priv->gtt.base.scratch.page = page;
1766         dev_priv->gtt.base.scratch.addr = dma_addr;
1767
1768         return 0;
1769 }
1770
1771 static void teardown_scratch_page(struct drm_device *dev)
1772 {
1773         struct drm_i915_private *dev_priv = dev->dev_private;
1774         struct page *page = dev_priv->gtt.base.scratch.page;
1775
1776         set_pages_wb(page, 1);
1777         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1778                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1779         put_page(page);
1780         __free_page(page);
1781 }
1782
1783 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1784 {
1785         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1786         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1787         return snb_gmch_ctl << 20;
1788 }
1789
1790 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1791 {
1792         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1793         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1794         if (bdw_gmch_ctl)
1795                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1796
1797 #ifdef CONFIG_X86_32
1798         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
1799         if (bdw_gmch_ctl > 4)
1800                 bdw_gmch_ctl = 4;
1801 #endif
1802
1803         return bdw_gmch_ctl << 20;
1804 }
1805
1806 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1807 {
1808         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1809         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1810
1811         if (gmch_ctrl)
1812                 return 1 << (20 + gmch_ctrl);
1813
1814         return 0;
1815 }
1816
1817 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1818 {
1819         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1820         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1821         return snb_gmch_ctl << 25; /* 32 MB units */
1822 }
1823
1824 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1825 {
1826         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1827         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1828         return bdw_gmch_ctl << 25; /* 32 MB units */
1829 }
1830
1831 static size_t chv_get_stolen_size(u16 gmch_ctrl)
1832 {
1833         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
1834         gmch_ctrl &= SNB_GMCH_GMS_MASK;
1835
1836         /*
1837          * 0x0  to 0x10: 32MB increments starting at 0MB
1838          * 0x11 to 0x16: 4MB increments starting at 8MB
1839          * 0x17 to 0x1d: 4MB increments start at 36MB
1840          */
1841         if (gmch_ctrl < 0x11)
1842                 return gmch_ctrl << 25;
1843         else if (gmch_ctrl < 0x17)
1844                 return (gmch_ctrl - 0x11 + 2) << 22;
1845         else
1846                 return (gmch_ctrl - 0x17 + 9) << 22;
1847 }
1848
1849 static int ggtt_probe_common(struct drm_device *dev,
1850                              size_t gtt_size)
1851 {
1852         struct drm_i915_private *dev_priv = dev->dev_private;
1853         phys_addr_t gtt_phys_addr;
1854         int ret;
1855
1856         /* For Modern GENs the PTEs and register space are split in the BAR */
1857         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1858                 (pci_resource_len(dev->pdev, 0) / 2);
1859
1860         dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1861         if (!dev_priv->gtt.gsm) {
1862                 DRM_ERROR("Failed to map the gtt page table\n");
1863                 return -ENOMEM;
1864         }
1865
1866         ret = setup_scratch_page(dev);
1867         if (ret) {
1868                 DRM_ERROR("Scratch setup failed\n");
1869                 /* iounmap will also get called at remove, but meh */
1870                 iounmap(dev_priv->gtt.gsm);
1871         }
1872
1873         return ret;
1874 }
1875
1876 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1877  * bits. When using advanced contexts each context stores its own PAT, but
1878  * writing this data shouldn't be harmful even in those cases. */
1879 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
1880 {
1881         uint64_t pat;
1882
1883         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1884               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1885               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1886               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1887               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1888               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1889               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1890               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1891
1892         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1893          * write would work. */
1894         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1895         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1896 }
1897
1898 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
1899 {
1900         uint64_t pat;
1901
1902         /*
1903          * Map WB on BDW to snooped on CHV.
1904          *
1905          * Only the snoop bit has meaning for CHV, the rest is
1906          * ignored.
1907          *
1908          * Note that the harware enforces snooping for all page
1909          * table accesses. The snoop bit is actually ignored for
1910          * PDEs.
1911          */
1912         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1913               GEN8_PPAT(1, 0) |
1914               GEN8_PPAT(2, 0) |
1915               GEN8_PPAT(3, 0) |
1916               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1917               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1918               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1919               GEN8_PPAT(7, CHV_PPAT_SNOOP);
1920
1921         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1922         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1923 }
1924
1925 static int gen8_gmch_probe(struct drm_device *dev,
1926                            size_t *gtt_total,
1927                            size_t *stolen,
1928                            phys_addr_t *mappable_base,
1929                            unsigned long *mappable_end)
1930 {
1931         struct drm_i915_private *dev_priv = dev->dev_private;
1932         unsigned int gtt_size;
1933         u16 snb_gmch_ctl;
1934         int ret;
1935
1936         /* TODO: We're not aware of mappable constraints on gen8 yet */
1937         *mappable_base = pci_resource_start(dev->pdev, 2);
1938         *mappable_end = pci_resource_len(dev->pdev, 2);
1939
1940         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1941                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1942
1943         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1944
1945         if (IS_CHERRYVIEW(dev)) {
1946                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
1947                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
1948         } else {
1949                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1950                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1951         }
1952
1953         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1954
1955         if (IS_CHERRYVIEW(dev))
1956                 chv_setup_private_ppat(dev_priv);
1957         else
1958                 bdw_setup_private_ppat(dev_priv);
1959
1960         ret = ggtt_probe_common(dev, gtt_size);
1961
1962         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1963         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1964
1965         return ret;
1966 }
1967
1968 static int gen6_gmch_probe(struct drm_device *dev,
1969                            size_t *gtt_total,
1970                            size_t *stolen,
1971                            phys_addr_t *mappable_base,
1972                            unsigned long *mappable_end)
1973 {
1974         struct drm_i915_private *dev_priv = dev->dev_private;
1975         unsigned int gtt_size;
1976         u16 snb_gmch_ctl;
1977         int ret;
1978
1979         *mappable_base = pci_resource_start(dev->pdev, 2);
1980         *mappable_end = pci_resource_len(dev->pdev, 2);
1981
1982         /* 64/512MB is the current min/max we actually know of, but this is just
1983          * a coarse sanity check.
1984          */
1985         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1986                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1987                           dev_priv->gtt.mappable_end);
1988                 return -ENXIO;
1989         }
1990
1991         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1992                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1993         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1994
1995         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1996
1997         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1998         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1999
2000         ret = ggtt_probe_common(dev, gtt_size);
2001
2002         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2003         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2004
2005         return ret;
2006 }
2007
2008 static void gen6_gmch_remove(struct i915_address_space *vm)
2009 {
2010
2011         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2012
2013         if (drm_mm_initialized(&vm->mm)) {
2014                 drm_mm_takedown(&vm->mm);
2015                 list_del(&vm->global_link);
2016         }
2017         iounmap(gtt->gsm);
2018         teardown_scratch_page(vm->dev);
2019 }
2020
2021 static int i915_gmch_probe(struct drm_device *dev,
2022                            size_t *gtt_total,
2023                            size_t *stolen,
2024                            phys_addr_t *mappable_base,
2025                            unsigned long *mappable_end)
2026 {
2027         struct drm_i915_private *dev_priv = dev->dev_private;
2028         int ret;
2029
2030         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2031         if (!ret) {
2032                 DRM_ERROR("failed to set up gmch\n");
2033                 return -EIO;
2034         }
2035
2036         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2037
2038         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2039         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2040
2041         if (unlikely(dev_priv->gtt.do_idle_maps))
2042                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2043
2044         return 0;
2045 }
2046
2047 static void i915_gmch_remove(struct i915_address_space *vm)
2048 {
2049         if (drm_mm_initialized(&vm->mm)) {
2050                 drm_mm_takedown(&vm->mm);
2051                 list_del(&vm->global_link);
2052         }
2053         intel_gmch_remove();
2054 }
2055
2056 int i915_gem_gtt_init(struct drm_device *dev)
2057 {
2058         struct drm_i915_private *dev_priv = dev->dev_private;
2059         struct i915_gtt *gtt = &dev_priv->gtt;
2060         int ret;
2061
2062         if (INTEL_INFO(dev)->gen <= 5) {
2063                 gtt->gtt_probe = i915_gmch_probe;
2064                 gtt->base.cleanup = i915_gmch_remove;
2065         } else if (INTEL_INFO(dev)->gen < 8) {
2066                 gtt->gtt_probe = gen6_gmch_probe;
2067                 gtt->base.cleanup = gen6_gmch_remove;
2068                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2069                         gtt->base.pte_encode = iris_pte_encode;
2070                 else if (IS_HASWELL(dev))
2071                         gtt->base.pte_encode = hsw_pte_encode;
2072                 else if (IS_VALLEYVIEW(dev))
2073                         gtt->base.pte_encode = byt_pte_encode;
2074                 else if (INTEL_INFO(dev)->gen >= 7)
2075                         gtt->base.pte_encode = ivb_pte_encode;
2076                 else
2077                         gtt->base.pte_encode = snb_pte_encode;
2078         } else {
2079                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2080                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2081         }
2082
2083         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2084                              &gtt->mappable_base, &gtt->mappable_end);
2085         if (ret)
2086                 return ret;
2087
2088         gtt->base.dev = dev;
2089
2090         /* GMADR is the PCI mmio aperture into the global GTT. */
2091         DRM_INFO("Memory usable by graphics device = %zdM\n",
2092                  gtt->base.total >> 20);
2093         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2094         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2095 #ifdef CONFIG_INTEL_IOMMU
2096         if (intel_iommu_gfx_mapped)
2097                 DRM_INFO("VT-d active for gfx access\n");
2098 #endif
2099         /*
2100          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2101          * user's requested state against the hardware/driver capabilities.  We
2102          * do this now so that we can print out any log messages once rather
2103          * than every time we check intel_enable_ppgtt().
2104          */
2105         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2106         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2107
2108         return 0;
2109 }
2110
2111 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2112                                               struct i915_address_space *vm)
2113 {
2114         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2115         if (vma == NULL)
2116                 return ERR_PTR(-ENOMEM);
2117
2118         INIT_LIST_HEAD(&vma->vma_link);
2119         INIT_LIST_HEAD(&vma->mm_list);
2120         INIT_LIST_HEAD(&vma->exec_list);
2121         vma->vm = vm;
2122         vma->obj = obj;
2123
2124         switch (INTEL_INFO(vm->dev)->gen) {
2125         case 8:
2126         case 7:
2127         case 6:
2128                 if (i915_is_ggtt(vm)) {
2129                         vma->unbind_vma = ggtt_unbind_vma;
2130                         vma->bind_vma = ggtt_bind_vma;
2131                 } else {
2132                         vma->unbind_vma = ppgtt_unbind_vma;
2133                         vma->bind_vma = ppgtt_bind_vma;
2134                 }
2135                 break;
2136         case 5:
2137         case 4:
2138         case 3:
2139         case 2:
2140                 BUG_ON(!i915_is_ggtt(vm));
2141                 vma->unbind_vma = i915_ggtt_unbind_vma;
2142                 vma->bind_vma = i915_ggtt_bind_vma;
2143                 break;
2144         default:
2145                 BUG();
2146         }
2147
2148         /* Keep GGTT vmas first to make debug easier */
2149         if (i915_is_ggtt(vm))
2150                 list_add(&vma->vma_link, &obj->vma_list);
2151         else
2152                 list_add_tail(&vma->vma_link, &obj->vma_list);
2153
2154         return vma;
2155 }
2156
2157 struct i915_vma *
2158 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2159                                   struct i915_address_space *vm)
2160 {
2161         struct i915_vma *vma;
2162
2163         vma = i915_gem_obj_to_vma(obj, vm);
2164         if (!vma)
2165                 vma = __i915_gem_vma_create(obj, vm);
2166
2167         return vma;
2168 }