]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_request.c
drm/i915: Switch the global i915.semaphores check to a local predicate
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35         return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40         /* The timeline struct (as part of the ppgtt underneath a context)
41          * may be freed when the request is no longer in use by the GPU.
42          * We could extend the life of a context to beyond that of all
43          * fences, possibly keeping the hw resource around indefinitely,
44          * or we just give them a false name. Since
45          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46          * lie seems justifiable.
47          */
48         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49                 return "signaled";
50
51         return to_request(fence)->timeline->common->name;
52 }
53
54 static bool i915_fence_signaled(struct dma_fence *fence)
55 {
56         return i915_gem_request_completed(to_request(fence));
57 }
58
59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 {
61         if (i915_fence_signaled(fence))
62                 return false;
63
64         intel_engine_enable_signaling(to_request(fence), true);
65         return true;
66 }
67
68 static signed long i915_fence_wait(struct dma_fence *fence,
69                                    bool interruptible,
70                                    signed long timeout)
71 {
72         return i915_wait_request(to_request(fence), interruptible, timeout);
73 }
74
75 static void i915_fence_release(struct dma_fence *fence)
76 {
77         struct drm_i915_gem_request *req = to_request(fence);
78
79         /* The request is put onto a RCU freelist (i.e. the address
80          * is immediately reused), mark the fences as being freed now.
81          * Otherwise the debugobjects for the fences are only marked as
82          * freed when the slab cache itself is freed, and so we would get
83          * caught trying to reuse dead objects.
84          */
85         i915_sw_fence_fini(&req->submit);
86
87         kmem_cache_free(req->i915->requests, req);
88 }
89
90 const struct dma_fence_ops i915_fence_ops = {
91         .get_driver_name = i915_fence_get_driver_name,
92         .get_timeline_name = i915_fence_get_timeline_name,
93         .enable_signaling = i915_fence_enable_signaling,
94         .signaled = i915_fence_signaled,
95         .wait = i915_fence_wait,
96         .release = i915_fence_release,
97 };
98
99 static inline void
100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
101 {
102         struct drm_i915_file_private *file_priv;
103
104         file_priv = request->file_priv;
105         if (!file_priv)
106                 return;
107
108         spin_lock(&file_priv->mm.lock);
109         if (request->file_priv) {
110                 list_del(&request->client_link);
111                 request->file_priv = NULL;
112         }
113         spin_unlock(&file_priv->mm.lock);
114 }
115
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124                      struct i915_dependency *dep)
125 {
126         kmem_cache_free(i915->dependencies, dep);
127 }
128
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131                                struct i915_priotree *signal,
132                                struct i915_dependency *dep,
133                                unsigned long flags)
134 {
135         INIT_LIST_HEAD(&dep->dfs_link);
136         list_add(&dep->wait_link, &signal->waiters_list);
137         list_add(&dep->signal_link, &pt->signalers_list);
138         dep->signaler = signal;
139         dep->flags = flags;
140 }
141
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144                              struct i915_priotree *pt,
145                              struct i915_priotree *signal)
146 {
147         struct i915_dependency *dep;
148
149         dep = i915_dependency_alloc(i915);
150         if (!dep)
151                 return -ENOMEM;
152
153         __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154         return 0;
155 }
156
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160         struct i915_dependency *dep, *next;
161
162         GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
163
164         /* Everyone we depended upon (the fences we wait to be signaled)
165          * should retire before us and remove themselves from our list.
166          * However, retirement is run independently on each timeline and
167          * so we may be called out-of-order.
168          */
169         list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170                 list_del(&dep->wait_link);
171                 if (dep->flags & I915_DEPENDENCY_ALLOC)
172                         i915_dependency_free(i915, dep);
173         }
174
175         /* Remove ourselves from everyone who depends upon us */
176         list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177                 list_del(&dep->signal_link);
178                 if (dep->flags & I915_DEPENDENCY_ALLOC)
179                         i915_dependency_free(i915, dep);
180         }
181 }
182
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
185 {
186         INIT_LIST_HEAD(&pt->signalers_list);
187         INIT_LIST_HEAD(&pt->waiters_list);
188         RB_CLEAR_NODE(&pt->node);
189         pt->priority = INT_MIN;
190 }
191
192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
193 {
194         struct intel_engine_cs *engine;
195         enum intel_engine_id id;
196         int ret;
197
198         /* Carefully retire all requests without writing to the rings */
199         ret = i915_gem_wait_for_idle(i915,
200                                      I915_WAIT_INTERRUPTIBLE |
201                                      I915_WAIT_LOCKED);
202         if (ret)
203                 return ret;
204
205         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206         for_each_engine(engine, i915, id) {
207                 struct i915_gem_timeline *timeline;
208                 struct intel_timeline *tl = engine->timeline;
209
210                 if (!i915_seqno_passed(seqno, tl->seqno)) {
211                         /* spin until threads are complete */
212                         while (intel_breadcrumbs_busy(engine))
213                                 cond_resched();
214                 }
215
216                 /* Finally reset hw state */
217                 intel_engine_init_global_seqno(engine, seqno);
218                 tl->seqno = seqno;
219
220                 list_for_each_entry(timeline, &i915->gt.timelines, link)
221                         memset(timeline->engine[id].global_sync, 0,
222                                sizeof(timeline->engine[id].global_sync));
223         }
224
225         return 0;
226 }
227
228 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
229 {
230         struct drm_i915_private *dev_priv = to_i915(dev);
231
232         lockdep_assert_held(&dev_priv->drm.struct_mutex);
233
234         if (seqno == 0)
235                 return -EINVAL;
236
237         /* HWS page needs to be set less than what we
238          * will inject to ring
239          */
240         return reset_all_global_seqno(dev_priv, seqno - 1);
241 }
242
243 static int reserve_seqno(struct intel_engine_cs *engine)
244 {
245         u32 active = ++engine->timeline->inflight_seqnos;
246         u32 seqno = engine->timeline->seqno;
247         int ret;
248
249         /* Reservation is fine until we need to wrap around */
250         if (likely(!add_overflows(seqno, active)))
251                 return 0;
252
253         ret = reset_all_global_seqno(engine->i915, 0);
254         if (ret) {
255                 engine->timeline->inflight_seqnos--;
256                 return ret;
257         }
258
259         return 0;
260 }
261
262 static void unreserve_seqno(struct intel_engine_cs *engine)
263 {
264         GEM_BUG_ON(!engine->timeline->inflight_seqnos);
265         engine->timeline->inflight_seqnos--;
266 }
267
268 void i915_gem_retire_noop(struct i915_gem_active *active,
269                           struct drm_i915_gem_request *request)
270 {
271         /* Space left intentionally blank */
272 }
273
274 static void advance_ring(struct drm_i915_gem_request *request)
275 {
276         unsigned int tail;
277
278         /* We know the GPU must have read the request to have
279          * sent us the seqno + interrupt, so use the position
280          * of tail of the request to update the last known position
281          * of the GPU head.
282          *
283          * Note this requires that we are always called in request
284          * completion order.
285          */
286         if (list_is_last(&request->ring_link, &request->ring->request_list)) {
287                 /* We may race here with execlists resubmitting this request
288                  * as we retire it. The resubmission will move the ring->tail
289                  * forwards (to request->wa_tail). We either read the
290                  * current value that was written to hw, or the value that
291                  * is just about to be. Either works, if we miss the last two
292                  * noops - they are safe to be replayed on a reset.
293                  */
294                 tail = READ_ONCE(request->ring->tail);
295         } else {
296                 tail = request->postfix;
297         }
298         list_del(&request->ring_link);
299
300         request->ring->head = tail;
301 }
302
303 static void free_capture_list(struct drm_i915_gem_request *request)
304 {
305         struct i915_gem_capture_list *capture;
306
307         capture = request->capture_list;
308         while (capture) {
309                 struct i915_gem_capture_list *next = capture->next;
310
311                 kfree(capture);
312                 capture = next;
313         }
314 }
315
316 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
317 {
318         struct intel_engine_cs *engine = request->engine;
319         struct i915_gem_active *active, *next;
320
321         lockdep_assert_held(&request->i915->drm.struct_mutex);
322         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
323         GEM_BUG_ON(!i915_gem_request_completed(request));
324         GEM_BUG_ON(!request->i915->gt.active_requests);
325
326         trace_i915_gem_request_retire(request);
327
328         spin_lock_irq(&engine->timeline->lock);
329         list_del_init(&request->link);
330         spin_unlock_irq(&engine->timeline->lock);
331
332         if (!--request->i915->gt.active_requests) {
333                 GEM_BUG_ON(!request->i915->gt.awake);
334                 mod_delayed_work(request->i915->wq,
335                                  &request->i915->gt.idle_work,
336                                  msecs_to_jiffies(100));
337         }
338         unreserve_seqno(request->engine);
339         advance_ring(request);
340
341         free_capture_list(request);
342
343         /* Walk through the active list, calling retire on each. This allows
344          * objects to track their GPU activity and mark themselves as idle
345          * when their *last* active request is completed (updating state
346          * tracking lists for eviction, active references for GEM, etc).
347          *
348          * As the ->retire() may free the node, we decouple it first and
349          * pass along the auxiliary information (to avoid dereferencing
350          * the node after the callback).
351          */
352         list_for_each_entry_safe(active, next, &request->active_list, link) {
353                 /* In microbenchmarks or focusing upon time inside the kernel,
354                  * we may spend an inordinate amount of time simply handling
355                  * the retirement of requests and processing their callbacks.
356                  * Of which, this loop itself is particularly hot due to the
357                  * cache misses when jumping around the list of i915_gem_active.
358                  * So we try to keep this loop as streamlined as possible and
359                  * also prefetch the next i915_gem_active to try and hide
360                  * the likely cache miss.
361                  */
362                 prefetchw(next);
363
364                 INIT_LIST_HEAD(&active->link);
365                 RCU_INIT_POINTER(active->request, NULL);
366
367                 active->retire(active, request);
368         }
369
370         i915_gem_request_remove_from_client(request);
371
372         /* Retirement decays the ban score as it is a sign of ctx progress */
373         if (request->ctx->ban_score > 0)
374                 request->ctx->ban_score--;
375
376         /* The backing object for the context is done after switching to the
377          * *next* context. Therefore we cannot retire the previous context until
378          * the next context has already started running. However, since we
379          * cannot take the required locks at i915_gem_request_submit() we
380          * defer the unpinning of the active context to now, retirement of
381          * the subsequent request.
382          */
383         if (engine->last_retired_context)
384                 engine->context_unpin(engine, engine->last_retired_context);
385         engine->last_retired_context = request->ctx;
386
387         dma_fence_signal(&request->fence);
388
389         i915_priotree_fini(request->i915, &request->priotree);
390         i915_gem_request_put(request);
391 }
392
393 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
394 {
395         struct intel_engine_cs *engine = req->engine;
396         struct drm_i915_gem_request *tmp;
397
398         lockdep_assert_held(&req->i915->drm.struct_mutex);
399         GEM_BUG_ON(!i915_gem_request_completed(req));
400
401         if (list_empty(&req->link))
402                 return;
403
404         do {
405                 tmp = list_first_entry(&engine->timeline->requests,
406                                        typeof(*tmp), link);
407
408                 i915_gem_request_retire(tmp);
409         } while (tmp != req);
410 }
411
412 static u32 timeline_get_seqno(struct intel_timeline *tl)
413 {
414         return ++tl->seqno;
415 }
416
417 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
418 {
419         struct intel_engine_cs *engine = request->engine;
420         struct intel_timeline *timeline;
421         u32 seqno;
422
423         GEM_BUG_ON(!irqs_disabled());
424         lockdep_assert_held(&engine->timeline->lock);
425
426         trace_i915_gem_request_execute(request);
427
428         /* Transfer from per-context onto the global per-engine timeline */
429         timeline = engine->timeline;
430         GEM_BUG_ON(timeline == request->timeline);
431
432         seqno = timeline_get_seqno(timeline);
433         GEM_BUG_ON(!seqno);
434         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
435
436         /* We may be recursing from the signal callback of another i915 fence */
437         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
438         request->global_seqno = seqno;
439         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
440                 intel_engine_enable_signaling(request, false);
441         spin_unlock(&request->lock);
442
443         engine->emit_breadcrumb(request,
444                                 request->ring->vaddr + request->postfix);
445
446         spin_lock(&request->timeline->lock);
447         list_move_tail(&request->link, &timeline->requests);
448         spin_unlock(&request->timeline->lock);
449
450         wake_up_all(&request->execute);
451 }
452
453 void i915_gem_request_submit(struct drm_i915_gem_request *request)
454 {
455         struct intel_engine_cs *engine = request->engine;
456         unsigned long flags;
457
458         /* Will be called from irq-context when using foreign fences. */
459         spin_lock_irqsave(&engine->timeline->lock, flags);
460
461         __i915_gem_request_submit(request);
462
463         spin_unlock_irqrestore(&engine->timeline->lock, flags);
464 }
465
466 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
467 {
468         struct intel_engine_cs *engine = request->engine;
469         struct intel_timeline *timeline;
470
471         GEM_BUG_ON(!irqs_disabled());
472         lockdep_assert_held(&engine->timeline->lock);
473
474         /* Only unwind in reverse order, required so that the per-context list
475          * is kept in seqno/ring order.
476          */
477         GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
478         engine->timeline->seqno--;
479
480         /* We may be recursing from the signal callback of another i915 fence */
481         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
482         request->global_seqno = 0;
483         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
484                 intel_engine_cancel_signaling(request);
485         spin_unlock(&request->lock);
486
487         /* Transfer back from the global per-engine timeline to per-context */
488         timeline = request->timeline;
489         GEM_BUG_ON(timeline == engine->timeline);
490
491         spin_lock(&timeline->lock);
492         list_move(&request->link, &timeline->requests);
493         spin_unlock(&timeline->lock);
494
495         /* We don't need to wake_up any waiters on request->execute, they
496          * will get woken by any other event or us re-adding this request
497          * to the engine timeline (__i915_gem_request_submit()). The waiters
498          * should be quite adapt at finding that the request now has a new
499          * global_seqno to the one they went to sleep on.
500          */
501 }
502
503 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
504 {
505         struct intel_engine_cs *engine = request->engine;
506         unsigned long flags;
507
508         /* Will be called from irq-context when using foreign fences. */
509         spin_lock_irqsave(&engine->timeline->lock, flags);
510
511         __i915_gem_request_unsubmit(request);
512
513         spin_unlock_irqrestore(&engine->timeline->lock, flags);
514 }
515
516 static int __i915_sw_fence_call
517 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
518 {
519         struct drm_i915_gem_request *request =
520                 container_of(fence, typeof(*request), submit);
521
522         switch (state) {
523         case FENCE_COMPLETE:
524                 trace_i915_gem_request_submit(request);
525                 request->engine->submit_request(request);
526                 break;
527
528         case FENCE_FREE:
529                 i915_gem_request_put(request);
530                 break;
531         }
532
533         return NOTIFY_DONE;
534 }
535
536 /**
537  * i915_gem_request_alloc - allocate a request structure
538  *
539  * @engine: engine that we wish to issue the request on.
540  * @ctx: context that the request will be associated with.
541  *       This can be NULL if the request is not directly related to
542  *       any specific user context, in which case this function will
543  *       choose an appropriate context to use.
544  *
545  * Returns a pointer to the allocated request if successful,
546  * or an error code if not.
547  */
548 struct drm_i915_gem_request *
549 i915_gem_request_alloc(struct intel_engine_cs *engine,
550                        struct i915_gem_context *ctx)
551 {
552         struct drm_i915_private *dev_priv = engine->i915;
553         struct drm_i915_gem_request *req;
554         int ret;
555
556         lockdep_assert_held(&dev_priv->drm.struct_mutex);
557
558         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
559          * EIO if the GPU is already wedged.
560          */
561         if (i915_terminally_wedged(&dev_priv->gpu_error))
562                 return ERR_PTR(-EIO);
563
564         /* Pinning the contexts may generate requests in order to acquire
565          * GGTT space, so do this first before we reserve a seqno for
566          * ourselves.
567          */
568         ret = engine->context_pin(engine, ctx);
569         if (ret)
570                 return ERR_PTR(ret);
571
572         ret = reserve_seqno(engine);
573         if (ret)
574                 goto err_unpin;
575
576         /* Move the oldest request to the slab-cache (if not in use!) */
577         req = list_first_entry_or_null(&engine->timeline->requests,
578                                        typeof(*req), link);
579         if (req && i915_gem_request_completed(req))
580                 i915_gem_request_retire(req);
581
582         /* Beware: Dragons be flying overhead.
583          *
584          * We use RCU to look up requests in flight. The lookups may
585          * race with the request being allocated from the slab freelist.
586          * That is the request we are writing to here, may be in the process
587          * of being read by __i915_gem_active_get_rcu(). As such,
588          * we have to be very careful when overwriting the contents. During
589          * the RCU lookup, we change chase the request->engine pointer,
590          * read the request->global_seqno and increment the reference count.
591          *
592          * The reference count is incremented atomically. If it is zero,
593          * the lookup knows the request is unallocated and complete. Otherwise,
594          * it is either still in use, or has been reallocated and reset
595          * with dma_fence_init(). This increment is safe for release as we
596          * check that the request we have a reference to and matches the active
597          * request.
598          *
599          * Before we increment the refcount, we chase the request->engine
600          * pointer. We must not call kmem_cache_zalloc() or else we set
601          * that pointer to NULL and cause a crash during the lookup. If
602          * we see the request is completed (based on the value of the
603          * old engine and seqno), the lookup is complete and reports NULL.
604          * If we decide the request is not completed (new engine or seqno),
605          * then we grab a reference and double check that it is still the
606          * active request - which it won't be and restart the lookup.
607          *
608          * Do not use kmem_cache_zalloc() here!
609          */
610         req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
611         if (!req) {
612                 ret = -ENOMEM;
613                 goto err_unreserve;
614         }
615
616         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
617         GEM_BUG_ON(req->timeline == engine->timeline);
618
619         spin_lock_init(&req->lock);
620         dma_fence_init(&req->fence,
621                        &i915_fence_ops,
622                        &req->lock,
623                        req->timeline->fence_context,
624                        timeline_get_seqno(req->timeline));
625
626         /* We bump the ref for the fence chain */
627         i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
628         init_waitqueue_head(&req->execute);
629
630         i915_priotree_init(&req->priotree);
631
632         INIT_LIST_HEAD(&req->active_list);
633         req->i915 = dev_priv;
634         req->engine = engine;
635         req->ctx = ctx;
636
637         /* No zalloc, must clear what we need by hand */
638         req->global_seqno = 0;
639         req->file_priv = NULL;
640         req->batch = NULL;
641         req->capture_list = NULL;
642
643         /*
644          * Reserve space in the ring buffer for all the commands required to
645          * eventually emit this request. This is to guarantee that the
646          * i915_add_request() call can't fail. Note that the reserve may need
647          * to be redone if the request is not actually submitted straight
648          * away, e.g. because a GPU scheduler has deferred it.
649          */
650         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
651         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
652
653         ret = engine->request_alloc(req);
654         if (ret)
655                 goto err_ctx;
656
657         /* Record the position of the start of the request so that
658          * should we detect the updated seqno part-way through the
659          * GPU processing the request, we never over-estimate the
660          * position of the head.
661          */
662         req->head = req->ring->emit;
663
664         /* Check that we didn't interrupt ourselves with a new request */
665         GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
666         return req;
667
668 err_ctx:
669         /* Make sure we didn't add ourselves to external state before freeing */
670         GEM_BUG_ON(!list_empty(&req->active_list));
671         GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
672         GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
673
674         kmem_cache_free(dev_priv->requests, req);
675 err_unreserve:
676         unreserve_seqno(engine);
677 err_unpin:
678         engine->context_unpin(engine, ctx);
679         return ERR_PTR(ret);
680 }
681
682 static int
683 i915_gem_request_await_request(struct drm_i915_gem_request *to,
684                                struct drm_i915_gem_request *from)
685 {
686         u32 seqno;
687         int ret;
688
689         GEM_BUG_ON(to == from);
690         GEM_BUG_ON(to->timeline == from->timeline);
691
692         if (i915_gem_request_completed(from))
693                 return 0;
694
695         if (to->engine->schedule) {
696                 ret = i915_priotree_add_dependency(to->i915,
697                                                    &to->priotree,
698                                                    &from->priotree);
699                 if (ret < 0)
700                         return ret;
701         }
702
703         if (to->engine == from->engine) {
704                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
705                                                        &from->submit,
706                                                        GFP_KERNEL);
707                 return ret < 0 ? ret : 0;
708         }
709
710         seqno = i915_gem_request_global_seqno(from);
711         if (!seqno)
712                 goto await_dma_fence;
713
714         if (!to->engine->semaphore.sync_to) {
715                 if (!__i915_gem_request_started(from, seqno))
716                         goto await_dma_fence;
717
718                 if (!__i915_spin_request(from, seqno, TASK_INTERRUPTIBLE, 2))
719                         goto await_dma_fence;
720         } else {
721                 GEM_BUG_ON(!from->engine->semaphore.signal);
722
723                 if (seqno <= to->timeline->global_sync[from->engine->id])
724                         return 0;
725
726                 trace_i915_gem_ring_sync_to(to, from);
727                 ret = to->engine->semaphore.sync_to(to, from);
728                 if (ret)
729                         return ret;
730
731                 to->timeline->global_sync[from->engine->id] = seqno;
732         }
733
734         return 0;
735
736 await_dma_fence:
737         ret = i915_sw_fence_await_dma_fence(&to->submit,
738                                             &from->fence, 0,
739                                             GFP_KERNEL);
740         return ret < 0 ? ret : 0;
741 }
742
743 int
744 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
745                                  struct dma_fence *fence)
746 {
747         struct dma_fence **child = &fence;
748         unsigned int nchild = 1;
749         int ret;
750
751         /* Note that if the fence-array was created in signal-on-any mode,
752          * we should *not* decompose it into its individual fences. However,
753          * we don't currently store which mode the fence-array is operating
754          * in. Fortunately, the only user of signal-on-any is private to
755          * amdgpu and we should not see any incoming fence-array from
756          * sync-file being in signal-on-any mode.
757          */
758         if (dma_fence_is_array(fence)) {
759                 struct dma_fence_array *array = to_dma_fence_array(fence);
760
761                 child = array->fences;
762                 nchild = array->num_fences;
763                 GEM_BUG_ON(!nchild);
764         }
765
766         do {
767                 fence = *child++;
768                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
769                         continue;
770
771                 /*
772                  * Requests on the same timeline are explicitly ordered, along
773                  * with their dependencies, by i915_add_request() which ensures
774                  * that requests are submitted in-order through each ring.
775                  */
776                 if (fence->context == req->fence.context)
777                         continue;
778
779                 /* Squash repeated waits to the same timelines */
780                 if (fence->context != req->i915->mm.unordered_timeline &&
781                     intel_timeline_sync_is_later(req->timeline, fence))
782                         continue;
783
784                 if (dma_fence_is_i915(fence))
785                         ret = i915_gem_request_await_request(req,
786                                                              to_request(fence));
787                 else
788                         ret = i915_sw_fence_await_dma_fence(&req->submit, fence,
789                                                             I915_FENCE_TIMEOUT,
790                                                             GFP_KERNEL);
791                 if (ret < 0)
792                         return ret;
793
794                 /* Record the latest fence used against each timeline */
795                 if (fence->context != req->i915->mm.unordered_timeline)
796                         intel_timeline_sync_set(req->timeline, fence);
797         } while (--nchild);
798
799         return 0;
800 }
801
802 /**
803  * i915_gem_request_await_object - set this request to (async) wait upon a bo
804  *
805  * @to: request we are wishing to use
806  * @obj: object which may be in use on another ring.
807  *
808  * This code is meant to abstract object synchronization with the GPU.
809  * Conceptually we serialise writes between engines inside the GPU.
810  * We only allow one engine to write into a buffer at any time, but
811  * multiple readers. To ensure each has a coherent view of memory, we must:
812  *
813  * - If there is an outstanding write request to the object, the new
814  *   request must wait for it to complete (either CPU or in hw, requests
815  *   on the same ring will be naturally ordered).
816  *
817  * - If we are a write request (pending_write_domain is set), the new
818  *   request must wait for outstanding read requests to complete.
819  *
820  * Returns 0 if successful, else propagates up the lower layer error.
821  */
822 int
823 i915_gem_request_await_object(struct drm_i915_gem_request *to,
824                               struct drm_i915_gem_object *obj,
825                               bool write)
826 {
827         struct dma_fence *excl;
828         int ret = 0;
829
830         if (write) {
831                 struct dma_fence **shared;
832                 unsigned int count, i;
833
834                 ret = reservation_object_get_fences_rcu(obj->resv,
835                                                         &excl, &count, &shared);
836                 if (ret)
837                         return ret;
838
839                 for (i = 0; i < count; i++) {
840                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
841                         if (ret)
842                                 break;
843
844                         dma_fence_put(shared[i]);
845                 }
846
847                 for (; i < count; i++)
848                         dma_fence_put(shared[i]);
849                 kfree(shared);
850         } else {
851                 excl = reservation_object_get_excl_rcu(obj->resv);
852         }
853
854         if (excl) {
855                 if (ret == 0)
856                         ret = i915_gem_request_await_dma_fence(to, excl);
857
858                 dma_fence_put(excl);
859         }
860
861         return ret;
862 }
863
864 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
865 {
866         struct drm_i915_private *dev_priv = engine->i915;
867
868         if (dev_priv->gt.awake)
869                 return;
870
871         GEM_BUG_ON(!dev_priv->gt.active_requests);
872
873         intel_runtime_pm_get_noresume(dev_priv);
874         dev_priv->gt.awake = true;
875
876         intel_enable_gt_powersave(dev_priv);
877         i915_update_gfx_val(dev_priv);
878         if (INTEL_GEN(dev_priv) >= 6)
879                 gen6_rps_busy(dev_priv);
880
881         queue_delayed_work(dev_priv->wq,
882                            &dev_priv->gt.retire_work,
883                            round_jiffies_up_relative(HZ));
884 }
885
886 /*
887  * NB: This function is not allowed to fail. Doing so would mean the the
888  * request is not being tracked for completion but the work itself is
889  * going to happen on the hardware. This would be a Bad Thing(tm).
890  */
891 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
892 {
893         struct intel_engine_cs *engine = request->engine;
894         struct intel_ring *ring = request->ring;
895         struct intel_timeline *timeline = request->timeline;
896         struct drm_i915_gem_request *prev;
897         u32 *cs;
898         int err;
899
900         lockdep_assert_held(&request->i915->drm.struct_mutex);
901         trace_i915_gem_request_add(request);
902
903         /* Make sure that no request gazumped us - if it was allocated after
904          * our i915_gem_request_alloc() and called __i915_add_request() before
905          * us, the timeline will hold its seqno which is later than ours.
906          */
907         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
908
909         /*
910          * To ensure that this call will not fail, space for its emissions
911          * should already have been reserved in the ring buffer. Let the ring
912          * know that it is time to use that space up.
913          */
914         request->reserved_space = 0;
915
916         /*
917          * Emit any outstanding flushes - execbuf can fail to emit the flush
918          * after having emitted the batchbuffer command. Hence we need to fix
919          * things up similar to emitting the lazy request. The difference here
920          * is that the flush _must_ happen before the next request, no matter
921          * what.
922          */
923         if (flush_caches) {
924                 err = engine->emit_flush(request, EMIT_FLUSH);
925
926                 /* Not allowed to fail! */
927                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
928         }
929
930         /* Record the position of the start of the breadcrumb so that
931          * should we detect the updated seqno part-way through the
932          * GPU processing the request, we never over-estimate the
933          * position of the ring's HEAD.
934          */
935         cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
936         GEM_BUG_ON(IS_ERR(cs));
937         request->postfix = intel_ring_offset(request, cs);
938
939         /* Seal the request and mark it as pending execution. Note that
940          * we may inspect this state, without holding any locks, during
941          * hangcheck. Hence we apply the barrier to ensure that we do not
942          * see a more recent value in the hws than we are tracking.
943          */
944
945         prev = i915_gem_active_raw(&timeline->last_request,
946                                    &request->i915->drm.struct_mutex);
947         if (prev) {
948                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
949                                              &request->submitq);
950                 if (engine->schedule)
951                         __i915_priotree_add_dependency(&request->priotree,
952                                                        &prev->priotree,
953                                                        &request->dep,
954                                                        0);
955         }
956
957         spin_lock_irq(&timeline->lock);
958         list_add_tail(&request->link, &timeline->requests);
959         spin_unlock_irq(&timeline->lock);
960
961         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
962         i915_gem_active_set(&timeline->last_request, request);
963
964         list_add_tail(&request->ring_link, &ring->request_list);
965         request->emitted_jiffies = jiffies;
966
967         if (!request->i915->gt.active_requests++)
968                 i915_gem_mark_busy(engine);
969
970         /* Let the backend know a new request has arrived that may need
971          * to adjust the existing execution schedule due to a high priority
972          * request - i.e. we may want to preempt the current request in order
973          * to run a high priority dependency chain *before* we can execute this
974          * request.
975          *
976          * This is called before the request is ready to run so that we can
977          * decide whether to preempt the entire chain so that it is ready to
978          * run at the earliest possible convenience.
979          */
980         if (engine->schedule)
981                 engine->schedule(request, request->ctx->priority);
982
983         local_bh_disable();
984         i915_sw_fence_commit(&request->submit);
985         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
986 }
987
988 static unsigned long local_clock_us(unsigned int *cpu)
989 {
990         unsigned long t;
991
992         /* Cheaply and approximately convert from nanoseconds to microseconds.
993          * The result and subsequent calculations are also defined in the same
994          * approximate microseconds units. The principal source of timing
995          * error here is from the simple truncation.
996          *
997          * Note that local_clock() is only defined wrt to the current CPU;
998          * the comparisons are no longer valid if we switch CPUs. Instead of
999          * blocking preemption for the entire busywait, we can detect the CPU
1000          * switch and use that as indicator of system load and a reason to
1001          * stop busywaiting, see busywait_stop().
1002          */
1003         *cpu = get_cpu();
1004         t = local_clock() >> 10;
1005         put_cpu();
1006
1007         return t;
1008 }
1009
1010 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1011 {
1012         unsigned int this_cpu;
1013
1014         if (time_after(local_clock_us(&this_cpu), timeout))
1015                 return true;
1016
1017         return this_cpu != cpu;
1018 }
1019
1020 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1021                          u32 seqno, int state, unsigned long timeout_us)
1022 {
1023         struct intel_engine_cs *engine = req->engine;
1024         unsigned int irq, cpu;
1025
1026         /* When waiting for high frequency requests, e.g. during synchronous
1027          * rendering split between the CPU and GPU, the finite amount of time
1028          * required to set up the irq and wait upon it limits the response
1029          * rate. By busywaiting on the request completion for a short while we
1030          * can service the high frequency waits as quick as possible. However,
1031          * if it is a slow request, we want to sleep as quickly as possible.
1032          * The tradeoff between waiting and sleeping is roughly the time it
1033          * takes to sleep on a request, on the order of a microsecond.
1034          */
1035
1036         irq = atomic_read(&engine->irq_count);
1037         timeout_us += local_clock_us(&cpu);
1038         do {
1039                 if (seqno != i915_gem_request_global_seqno(req))
1040                         break;
1041
1042                 if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
1043                                       seqno))
1044                         return true;
1045
1046                 /* Seqno are meant to be ordered *before* the interrupt. If
1047                  * we see an interrupt without a corresponding seqno advance,
1048                  * assume we won't see one in the near future but require
1049                  * the engine->seqno_barrier() to fixup coherency.
1050                  */
1051                 if (atomic_read(&engine->irq_count) != irq)
1052                         break;
1053
1054                 if (signal_pending_state(state, current))
1055                         break;
1056
1057                 if (busywait_stop(timeout_us, cpu))
1058                         break;
1059
1060                 cpu_relax();
1061         } while (!need_resched());
1062
1063         return false;
1064 }
1065
1066 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1067 {
1068         if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1069                 return false;
1070
1071         __set_current_state(TASK_RUNNING);
1072         i915_reset(request->i915);
1073         return true;
1074 }
1075
1076 /**
1077  * i915_wait_request - wait until execution of request has finished
1078  * @req: the request to wait upon
1079  * @flags: how to wait
1080  * @timeout: how long to wait in jiffies
1081  *
1082  * i915_wait_request() waits for the request to be completed, for a
1083  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1084  * unbounded wait).
1085  *
1086  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1087  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1088  * must not specify that the wait is locked.
1089  *
1090  * Returns the remaining time (in jiffies) if the request completed, which may
1091  * be zero or -ETIME if the request is unfinished after the timeout expires.
1092  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1093  * pending before the request completes.
1094  */
1095 long i915_wait_request(struct drm_i915_gem_request *req,
1096                        unsigned int flags,
1097                        long timeout)
1098 {
1099         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1100                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1101         wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1102         DEFINE_WAIT_FUNC(reset, default_wake_function);
1103         DEFINE_WAIT_FUNC(exec, default_wake_function);
1104         struct intel_wait wait;
1105
1106         might_sleep();
1107 #if IS_ENABLED(CONFIG_LOCKDEP)
1108         GEM_BUG_ON(debug_locks &&
1109                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1110                    !!(flags & I915_WAIT_LOCKED));
1111 #endif
1112         GEM_BUG_ON(timeout < 0);
1113
1114         if (i915_gem_request_completed(req))
1115                 return timeout;
1116
1117         if (!timeout)
1118                 return -ETIME;
1119
1120         trace_i915_gem_request_wait_begin(req, flags);
1121
1122         add_wait_queue(&req->execute, &exec);
1123         if (flags & I915_WAIT_LOCKED)
1124                 add_wait_queue(errq, &reset);
1125
1126         intel_wait_init(&wait, req);
1127
1128 restart:
1129         do {
1130                 set_current_state(state);
1131                 if (intel_wait_update_request(&wait, req))
1132                         break;
1133
1134                 if (flags & I915_WAIT_LOCKED &&
1135                     __i915_wait_request_check_and_reset(req))
1136                         continue;
1137
1138                 if (signal_pending_state(state, current)) {
1139                         timeout = -ERESTARTSYS;
1140                         goto complete;
1141                 }
1142
1143                 if (!timeout) {
1144                         timeout = -ETIME;
1145                         goto complete;
1146                 }
1147
1148                 timeout = io_schedule_timeout(timeout);
1149         } while (1);
1150
1151         GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1152         GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1153
1154         /* Optimistic short spin before touching IRQs */
1155         if (i915_spin_request(req, state, 5))
1156                 goto complete;
1157
1158         set_current_state(state);
1159         if (intel_engine_add_wait(req->engine, &wait))
1160                 /* In order to check that we haven't missed the interrupt
1161                  * as we enabled it, we need to kick ourselves to do a
1162                  * coherent check on the seqno before we sleep.
1163                  */
1164                 goto wakeup;
1165
1166         if (flags & I915_WAIT_LOCKED)
1167                 __i915_wait_request_check_and_reset(req);
1168
1169         for (;;) {
1170                 if (signal_pending_state(state, current)) {
1171                         timeout = -ERESTARTSYS;
1172                         break;
1173                 }
1174
1175                 if (!timeout) {
1176                         timeout = -ETIME;
1177                         break;
1178                 }
1179
1180                 timeout = io_schedule_timeout(timeout);
1181
1182                 if (intel_wait_complete(&wait) &&
1183                     intel_wait_check_request(&wait, req))
1184                         break;
1185
1186                 set_current_state(state);
1187
1188 wakeup:
1189                 /* Carefully check if the request is complete, giving time
1190                  * for the seqno to be visible following the interrupt.
1191                  * We also have to check in case we are kicked by the GPU
1192                  * reset in order to drop the struct_mutex.
1193                  */
1194                 if (__i915_request_irq_complete(req))
1195                         break;
1196
1197                 /* If the GPU is hung, and we hold the lock, reset the GPU
1198                  * and then check for completion. On a full reset, the engine's
1199                  * HW seqno will be advanced passed us and we are complete.
1200                  * If we do a partial reset, we have to wait for the GPU to
1201                  * resume and update the breadcrumb.
1202                  *
1203                  * If we don't hold the mutex, we can just wait for the worker
1204                  * to come along and update the breadcrumb (either directly
1205                  * itself, or indirectly by recovering the GPU).
1206                  */
1207                 if (flags & I915_WAIT_LOCKED &&
1208                     __i915_wait_request_check_and_reset(req))
1209                         continue;
1210
1211                 /* Only spin if we know the GPU is processing this request */
1212                 if (i915_spin_request(req, state, 2))
1213                         break;
1214
1215                 if (!intel_wait_check_request(&wait, req)) {
1216                         intel_engine_remove_wait(req->engine, &wait);
1217                         goto restart;
1218                 }
1219         }
1220
1221         intel_engine_remove_wait(req->engine, &wait);
1222 complete:
1223         __set_current_state(TASK_RUNNING);
1224         if (flags & I915_WAIT_LOCKED)
1225                 remove_wait_queue(errq, &reset);
1226         remove_wait_queue(&req->execute, &exec);
1227         trace_i915_gem_request_wait_end(req);
1228
1229         return timeout;
1230 }
1231
1232 static void engine_retire_requests(struct intel_engine_cs *engine)
1233 {
1234         struct drm_i915_gem_request *request, *next;
1235         u32 seqno = intel_engine_get_seqno(engine);
1236         LIST_HEAD(retire);
1237
1238         spin_lock_irq(&engine->timeline->lock);
1239         list_for_each_entry_safe(request, next,
1240                                  &engine->timeline->requests, link) {
1241                 if (!i915_seqno_passed(seqno, request->global_seqno))
1242                         break;
1243
1244                 list_move_tail(&request->link, &retire);
1245         }
1246         spin_unlock_irq(&engine->timeline->lock);
1247
1248         list_for_each_entry_safe(request, next, &retire, link)
1249                 i915_gem_request_retire(request);
1250 }
1251
1252 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1253 {
1254         struct intel_engine_cs *engine;
1255         enum intel_engine_id id;
1256
1257         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1258
1259         if (!dev_priv->gt.active_requests)
1260                 return;
1261
1262         for_each_engine(engine, dev_priv, id)
1263                 engine_retire_requests(engine);
1264 }
1265
1266 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1267 #include "selftests/mock_request.c"
1268 #include "selftests/i915_gem_request.c"
1269 #endif