]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_request.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29
30 #include "i915_drv.h"
31
32 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
33 {
34         return "i915";
35 }
36
37 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
38 {
39         return to_request(fence)->timeline->common->name;
40 }
41
42 static bool i915_fence_signaled(struct dma_fence *fence)
43 {
44         return i915_gem_request_completed(to_request(fence));
45 }
46
47 static bool i915_fence_enable_signaling(struct dma_fence *fence)
48 {
49         if (i915_fence_signaled(fence))
50                 return false;
51
52         intel_engine_enable_signaling(to_request(fence));
53         return true;
54 }
55
56 static signed long i915_fence_wait(struct dma_fence *fence,
57                                    bool interruptible,
58                                    signed long timeout)
59 {
60         return i915_wait_request(to_request(fence), interruptible, timeout);
61 }
62
63 static void i915_fence_release(struct dma_fence *fence)
64 {
65         struct drm_i915_gem_request *req = to_request(fence);
66
67         /* The request is put onto a RCU freelist (i.e. the address
68          * is immediately reused), mark the fences as being freed now.
69          * Otherwise the debugobjects for the fences are only marked as
70          * freed when the slab cache itself is freed, and so we would get
71          * caught trying to reuse dead objects.
72          */
73         i915_sw_fence_fini(&req->submit);
74         i915_sw_fence_fini(&req->execute);
75
76         kmem_cache_free(req->i915->requests, req);
77 }
78
79 const struct dma_fence_ops i915_fence_ops = {
80         .get_driver_name = i915_fence_get_driver_name,
81         .get_timeline_name = i915_fence_get_timeline_name,
82         .enable_signaling = i915_fence_enable_signaling,
83         .signaled = i915_fence_signaled,
84         .wait = i915_fence_wait,
85         .release = i915_fence_release,
86 };
87
88 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
89                                    struct drm_file *file)
90 {
91         struct drm_i915_private *dev_private;
92         struct drm_i915_file_private *file_priv;
93
94         WARN_ON(!req || !file || req->file_priv);
95
96         if (!req || !file)
97                 return -EINVAL;
98
99         if (req->file_priv)
100                 return -EINVAL;
101
102         dev_private = req->i915;
103         file_priv = file->driver_priv;
104
105         spin_lock(&file_priv->mm.lock);
106         req->file_priv = file_priv;
107         list_add_tail(&req->client_list, &file_priv->mm.request_list);
108         spin_unlock(&file_priv->mm.lock);
109
110         return 0;
111 }
112
113 static inline void
114 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
115 {
116         struct drm_i915_file_private *file_priv = request->file_priv;
117
118         if (!file_priv)
119                 return;
120
121         spin_lock(&file_priv->mm.lock);
122         list_del(&request->client_list);
123         request->file_priv = NULL;
124         spin_unlock(&file_priv->mm.lock);
125 }
126
127 static struct i915_dependency *
128 i915_dependency_alloc(struct drm_i915_private *i915)
129 {
130         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
131 }
132
133 static void
134 i915_dependency_free(struct drm_i915_private *i915,
135                      struct i915_dependency *dep)
136 {
137         kmem_cache_free(i915->dependencies, dep);
138 }
139
140 static void
141 __i915_priotree_add_dependency(struct i915_priotree *pt,
142                                struct i915_priotree *signal,
143                                struct i915_dependency *dep,
144                                unsigned long flags)
145 {
146         INIT_LIST_HEAD(&dep->dfs_link);
147         list_add(&dep->wait_link, &signal->waiters_list);
148         list_add(&dep->signal_link, &pt->signalers_list);
149         dep->signaler = signal;
150         dep->flags = flags;
151 }
152
153 static int
154 i915_priotree_add_dependency(struct drm_i915_private *i915,
155                              struct i915_priotree *pt,
156                              struct i915_priotree *signal)
157 {
158         struct i915_dependency *dep;
159
160         dep = i915_dependency_alloc(i915);
161         if (!dep)
162                 return -ENOMEM;
163
164         __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
165         return 0;
166 }
167
168 static void
169 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
170 {
171         struct i915_dependency *dep, *next;
172
173         GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
174
175         /* Everyone we depended upon (the fences we wait to be signaled)
176          * should retire before us and remove themselves from our list.
177          * However, retirement is run independently on each timeline and
178          * so we may be called out-of-order.
179          */
180         list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
181                 list_del(&dep->wait_link);
182                 if (dep->flags & I915_DEPENDENCY_ALLOC)
183                         i915_dependency_free(i915, dep);
184         }
185
186         /* Remove ourselves from everyone who depends upon us */
187         list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
188                 list_del(&dep->signal_link);
189                 if (dep->flags & I915_DEPENDENCY_ALLOC)
190                         i915_dependency_free(i915, dep);
191         }
192 }
193
194 static void
195 i915_priotree_init(struct i915_priotree *pt)
196 {
197         INIT_LIST_HEAD(&pt->signalers_list);
198         INIT_LIST_HEAD(&pt->waiters_list);
199         RB_CLEAR_NODE(&pt->node);
200         pt->priority = INT_MIN;
201 }
202
203 void i915_gem_retire_noop(struct i915_gem_active *active,
204                           struct drm_i915_gem_request *request)
205 {
206         /* Space left intentionally blank */
207 }
208
209 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
210 {
211         struct intel_engine_cs *engine = request->engine;
212         struct i915_gem_active *active, *next;
213
214         lockdep_assert_held(&request->i915->drm.struct_mutex);
215         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
216         GEM_BUG_ON(!i915_sw_fence_signaled(&request->execute));
217         GEM_BUG_ON(!i915_gem_request_completed(request));
218         GEM_BUG_ON(!request->i915->gt.active_requests);
219
220         trace_i915_gem_request_retire(request);
221
222         spin_lock_irq(&engine->timeline->lock);
223         list_del_init(&request->link);
224         spin_unlock_irq(&engine->timeline->lock);
225
226         /* We know the GPU must have read the request to have
227          * sent us the seqno + interrupt, so use the position
228          * of tail of the request to update the last known position
229          * of the GPU head.
230          *
231          * Note this requires that we are always called in request
232          * completion order.
233          */
234         list_del(&request->ring_link);
235         request->ring->last_retired_head = request->postfix;
236         if (!--request->i915->gt.active_requests) {
237                 GEM_BUG_ON(!request->i915->gt.awake);
238                 mod_delayed_work(request->i915->wq,
239                                  &request->i915->gt.idle_work,
240                                  msecs_to_jiffies(100));
241         }
242
243         /* Walk through the active list, calling retire on each. This allows
244          * objects to track their GPU activity and mark themselves as idle
245          * when their *last* active request is completed (updating state
246          * tracking lists for eviction, active references for GEM, etc).
247          *
248          * As the ->retire() may free the node, we decouple it first and
249          * pass along the auxiliary information (to avoid dereferencing
250          * the node after the callback).
251          */
252         list_for_each_entry_safe(active, next, &request->active_list, link) {
253                 /* In microbenchmarks or focusing upon time inside the kernel,
254                  * we may spend an inordinate amount of time simply handling
255                  * the retirement of requests and processing their callbacks.
256                  * Of which, this loop itself is particularly hot due to the
257                  * cache misses when jumping around the list of i915_gem_active.
258                  * So we try to keep this loop as streamlined as possible and
259                  * also prefetch the next i915_gem_active to try and hide
260                  * the likely cache miss.
261                  */
262                 prefetchw(next);
263
264                 INIT_LIST_HEAD(&active->link);
265                 RCU_INIT_POINTER(active->request, NULL);
266
267                 active->retire(active, request);
268         }
269
270         i915_gem_request_remove_from_client(request);
271
272         /* Retirement decays the ban score as it is a sign of ctx progress */
273         if (request->ctx->ban_score > 0)
274                 request->ctx->ban_score--;
275
276         /* The backing object for the context is done after switching to the
277          * *next* context. Therefore we cannot retire the previous context until
278          * the next context has already started running. However, since we
279          * cannot take the required locks at i915_gem_request_submit() we
280          * defer the unpinning of the active context to now, retirement of
281          * the subsequent request.
282          */
283         if (engine->last_retired_context)
284                 engine->context_unpin(engine, engine->last_retired_context);
285         engine->last_retired_context = request->ctx;
286
287         dma_fence_signal(&request->fence);
288
289         i915_priotree_fini(request->i915, &request->priotree);
290         i915_gem_request_put(request);
291 }
292
293 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
294 {
295         struct intel_engine_cs *engine = req->engine;
296         struct drm_i915_gem_request *tmp;
297
298         lockdep_assert_held(&req->i915->drm.struct_mutex);
299         GEM_BUG_ON(!i915_gem_request_completed(req));
300
301         if (list_empty(&req->link))
302                 return;
303
304         do {
305                 tmp = list_first_entry(&engine->timeline->requests,
306                                        typeof(*tmp), link);
307
308                 i915_gem_request_retire(tmp);
309         } while (tmp != req);
310 }
311
312 static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
313 {
314         struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
315         struct intel_engine_cs *engine;
316         enum intel_engine_id id;
317         int ret;
318
319         /* Carefully retire all requests without writing to the rings */
320         ret = i915_gem_wait_for_idle(i915,
321                                      I915_WAIT_INTERRUPTIBLE |
322                                      I915_WAIT_LOCKED);
323         if (ret)
324                 return ret;
325
326         i915_gem_retire_requests(i915);
327         GEM_BUG_ON(i915->gt.active_requests > 1);
328
329         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
330         if (!i915_seqno_passed(seqno, atomic_read(&timeline->seqno))) {
331                 while (intel_breadcrumbs_busy(i915))
332                         cond_resched(); /* spin until threads are complete */
333         }
334         atomic_set(&timeline->seqno, seqno);
335
336         /* Finally reset hw state */
337         for_each_engine(engine, i915, id)
338                 intel_engine_init_global_seqno(engine, seqno);
339
340         list_for_each_entry(timeline, &i915->gt.timelines, link) {
341                 for_each_engine(engine, i915, id) {
342                         struct intel_timeline *tl = &timeline->engine[id];
343
344                         memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
345                 }
346         }
347
348         return 0;
349 }
350
351 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
352 {
353         struct drm_i915_private *dev_priv = to_i915(dev);
354
355         lockdep_assert_held(&dev_priv->drm.struct_mutex);
356
357         if (seqno == 0)
358                 return -EINVAL;
359
360         /* HWS page needs to be set less than what we
361          * will inject to ring
362          */
363         return i915_gem_init_global_seqno(dev_priv, seqno - 1);
364 }
365
366 static int reserve_global_seqno(struct drm_i915_private *i915)
367 {
368         u32 active_requests = ++i915->gt.active_requests;
369         u32 seqno = atomic_read(&i915->gt.global_timeline.seqno);
370         int ret;
371
372         /* Reservation is fine until we need to wrap around */
373         if (likely(seqno + active_requests > seqno))
374                 return 0;
375
376         ret = i915_gem_init_global_seqno(i915, 0);
377         if (ret) {
378                 i915->gt.active_requests--;
379                 return ret;
380         }
381
382         return 0;
383 }
384
385 static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
386 {
387         /* seqno only incremented under a mutex */
388         return ++tl->seqno.counter;
389 }
390
391 static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
392 {
393         return atomic_inc_return(&tl->seqno);
394 }
395
396 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
397 {
398         struct intel_engine_cs *engine = request->engine;
399         struct intel_timeline *timeline;
400         u32 seqno;
401
402         /* Transfer from per-context onto the global per-engine timeline */
403         timeline = engine->timeline;
404         GEM_BUG_ON(timeline == request->timeline);
405         assert_spin_locked(&timeline->lock);
406
407         seqno = timeline_get_seqno(timeline->common);
408         GEM_BUG_ON(!seqno);
409         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
410
411         GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
412         request->previous_seqno = timeline->last_submitted_seqno;
413         timeline->last_submitted_seqno = seqno;
414
415         /* We may be recursing from the signal callback of another i915 fence */
416         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
417         request->global_seqno = seqno;
418         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
419                 intel_engine_enable_signaling(request);
420         spin_unlock(&request->lock);
421
422         GEM_BUG_ON(!request->global_seqno);
423         engine->emit_breadcrumb(request,
424                                 request->ring->vaddr + request->postfix);
425
426         spin_lock(&request->timeline->lock);
427         list_move_tail(&request->link, &timeline->requests);
428         spin_unlock(&request->timeline->lock);
429
430         i915_sw_fence_commit(&request->execute);
431 }
432
433 void i915_gem_request_submit(struct drm_i915_gem_request *request)
434 {
435         struct intel_engine_cs *engine = request->engine;
436         unsigned long flags;
437
438         /* Will be called from irq-context when using foreign fences. */
439         spin_lock_irqsave(&engine->timeline->lock, flags);
440
441         __i915_gem_request_submit(request);
442
443         spin_unlock_irqrestore(&engine->timeline->lock, flags);
444 }
445
446 static int __i915_sw_fence_call
447 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
448 {
449         struct drm_i915_gem_request *request =
450                 container_of(fence, typeof(*request), submit);
451
452         switch (state) {
453         case FENCE_COMPLETE:
454                 request->engine->submit_request(request);
455                 break;
456
457         case FENCE_FREE:
458                 i915_gem_request_put(request);
459                 break;
460         }
461
462         return NOTIFY_DONE;
463 }
464
465 static int __i915_sw_fence_call
466 execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
467 {
468         struct drm_i915_gem_request *request =
469                 container_of(fence, typeof(*request), execute);
470
471         switch (state) {
472         case FENCE_COMPLETE:
473                 break;
474
475         case FENCE_FREE:
476                 i915_gem_request_put(request);
477                 break;
478         }
479
480         return NOTIFY_DONE;
481 }
482
483 /**
484  * i915_gem_request_alloc - allocate a request structure
485  *
486  * @engine: engine that we wish to issue the request on.
487  * @ctx: context that the request will be associated with.
488  *       This can be NULL if the request is not directly related to
489  *       any specific user context, in which case this function will
490  *       choose an appropriate context to use.
491  *
492  * Returns a pointer to the allocated request if successful,
493  * or an error code if not.
494  */
495 struct drm_i915_gem_request *
496 i915_gem_request_alloc(struct intel_engine_cs *engine,
497                        struct i915_gem_context *ctx)
498 {
499         struct drm_i915_private *dev_priv = engine->i915;
500         struct drm_i915_gem_request *req;
501         int ret;
502
503         lockdep_assert_held(&dev_priv->drm.struct_mutex);
504
505         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
506          * EIO if the GPU is already wedged.
507          */
508         if (i915_terminally_wedged(&dev_priv->gpu_error))
509                 return ERR_PTR(-EIO);
510
511         /* Pinning the contexts may generate requests in order to acquire
512          * GGTT space, so do this first before we reserve a seqno for
513          * ourselves.
514          */
515         ret = engine->context_pin(engine, ctx);
516         if (ret)
517                 return ERR_PTR(ret);
518
519         ret = reserve_global_seqno(dev_priv);
520         if (ret)
521                 goto err_unpin;
522
523         /* Move the oldest request to the slab-cache (if not in use!) */
524         req = list_first_entry_or_null(&engine->timeline->requests,
525                                        typeof(*req), link);
526         if (req && __i915_gem_request_completed(req))
527                 i915_gem_request_retire(req);
528
529         /* Beware: Dragons be flying overhead.
530          *
531          * We use RCU to look up requests in flight. The lookups may
532          * race with the request being allocated from the slab freelist.
533          * That is the request we are writing to here, may be in the process
534          * of being read by __i915_gem_active_get_rcu(). As such,
535          * we have to be very careful when overwriting the contents. During
536          * the RCU lookup, we change chase the request->engine pointer,
537          * read the request->global_seqno and increment the reference count.
538          *
539          * The reference count is incremented atomically. If it is zero,
540          * the lookup knows the request is unallocated and complete. Otherwise,
541          * it is either still in use, or has been reallocated and reset
542          * with dma_fence_init(). This increment is safe for release as we
543          * check that the request we have a reference to and matches the active
544          * request.
545          *
546          * Before we increment the refcount, we chase the request->engine
547          * pointer. We must not call kmem_cache_zalloc() or else we set
548          * that pointer to NULL and cause a crash during the lookup. If
549          * we see the request is completed (based on the value of the
550          * old engine and seqno), the lookup is complete and reports NULL.
551          * If we decide the request is not completed (new engine or seqno),
552          * then we grab a reference and double check that it is still the
553          * active request - which it won't be and restart the lookup.
554          *
555          * Do not use kmem_cache_zalloc() here!
556          */
557         req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
558         if (!req) {
559                 ret = -ENOMEM;
560                 goto err_unreserve;
561         }
562
563         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
564         GEM_BUG_ON(req->timeline == engine->timeline);
565
566         spin_lock_init(&req->lock);
567         dma_fence_init(&req->fence,
568                        &i915_fence_ops,
569                        &req->lock,
570                        req->timeline->fence_context,
571                        __timeline_get_seqno(req->timeline->common));
572
573         /* We bump the ref for the fence chain */
574         i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
575         i915_sw_fence_init(&i915_gem_request_get(req)->execute, execute_notify);
576
577         /* Ensure that the execute fence completes after the submit fence -
578          * as we complete the execute fence from within the submit fence
579          * callback, its completion would otherwise be visible first.
580          */
581         i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
582
583         i915_priotree_init(&req->priotree);
584
585         INIT_LIST_HEAD(&req->active_list);
586         req->i915 = dev_priv;
587         req->engine = engine;
588         req->ctx = ctx;
589
590         /* No zalloc, must clear what we need by hand */
591         req->global_seqno = 0;
592         req->file_priv = NULL;
593         req->batch = NULL;
594
595         /*
596          * Reserve space in the ring buffer for all the commands required to
597          * eventually emit this request. This is to guarantee that the
598          * i915_add_request() call can't fail. Note that the reserve may need
599          * to be redone if the request is not actually submitted straight
600          * away, e.g. because a GPU scheduler has deferred it.
601          */
602         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
603         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
604
605         ret = engine->request_alloc(req);
606         if (ret)
607                 goto err_ctx;
608
609         /* Record the position of the start of the request so that
610          * should we detect the updated seqno part-way through the
611          * GPU processing the request, we never over-estimate the
612          * position of the head.
613          */
614         req->head = req->ring->tail;
615
616         return req;
617
618 err_ctx:
619         /* Make sure we didn't add ourselves to external state before freeing */
620         GEM_BUG_ON(!list_empty(&req->active_list));
621         GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
622         GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
623
624         kmem_cache_free(dev_priv->requests, req);
625 err_unreserve:
626         dev_priv->gt.active_requests--;
627 err_unpin:
628         engine->context_unpin(engine, ctx);
629         return ERR_PTR(ret);
630 }
631
632 static int
633 i915_gem_request_await_request(struct drm_i915_gem_request *to,
634                                struct drm_i915_gem_request *from)
635 {
636         int ret;
637
638         GEM_BUG_ON(to == from);
639
640         if (to->engine->schedule) {
641                 ret = i915_priotree_add_dependency(to->i915,
642                                                    &to->priotree,
643                                                    &from->priotree);
644                 if (ret < 0)
645                         return ret;
646         }
647
648         if (to->timeline == from->timeline)
649                 return 0;
650
651         if (to->engine == from->engine) {
652                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
653                                                        &from->submit,
654                                                        GFP_KERNEL);
655                 return ret < 0 ? ret : 0;
656         }
657
658         if (!from->global_seqno) {
659                 ret = i915_sw_fence_await_dma_fence(&to->submit,
660                                                     &from->fence, 0,
661                                                     GFP_KERNEL);
662                 return ret < 0 ? ret : 0;
663         }
664
665         if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
666                 return 0;
667
668         trace_i915_gem_ring_sync_to(to, from);
669         if (!i915.semaphores) {
670                 if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
671                         ret = i915_sw_fence_await_dma_fence(&to->submit,
672                                                             &from->fence, 0,
673                                                             GFP_KERNEL);
674                         if (ret < 0)
675                                 return ret;
676                 }
677         } else {
678                 ret = to->engine->semaphore.sync_to(to, from);
679                 if (ret)
680                         return ret;
681         }
682
683         to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
684         return 0;
685 }
686
687 int
688 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
689                                  struct dma_fence *fence)
690 {
691         struct dma_fence_array *array;
692         int ret;
693         int i;
694
695         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
696                 return 0;
697
698         if (dma_fence_is_i915(fence))
699                 return i915_gem_request_await_request(req, to_request(fence));
700
701         if (!dma_fence_is_array(fence)) {
702                 ret = i915_sw_fence_await_dma_fence(&req->submit,
703                                                     fence, I915_FENCE_TIMEOUT,
704                                                     GFP_KERNEL);
705                 return ret < 0 ? ret : 0;
706         }
707
708         /* Note that if the fence-array was created in signal-on-any mode,
709          * we should *not* decompose it into its individual fences. However,
710          * we don't currently store which mode the fence-array is operating
711          * in. Fortunately, the only user of signal-on-any is private to
712          * amdgpu and we should not see any incoming fence-array from
713          * sync-file being in signal-on-any mode.
714          */
715
716         array = to_dma_fence_array(fence);
717         for (i = 0; i < array->num_fences; i++) {
718                 struct dma_fence *child = array->fences[i];
719
720                 if (dma_fence_is_i915(child))
721                         ret = i915_gem_request_await_request(req,
722                                                              to_request(child));
723                 else
724                         ret = i915_sw_fence_await_dma_fence(&req->submit,
725                                                             child, I915_FENCE_TIMEOUT,
726                                                             GFP_KERNEL);
727                 if (ret < 0)
728                         return ret;
729         }
730
731         return 0;
732 }
733
734 /**
735  * i915_gem_request_await_object - set this request to (async) wait upon a bo
736  *
737  * @to: request we are wishing to use
738  * @obj: object which may be in use on another ring.
739  *
740  * This code is meant to abstract object synchronization with the GPU.
741  * Conceptually we serialise writes between engines inside the GPU.
742  * We only allow one engine to write into a buffer at any time, but
743  * multiple readers. To ensure each has a coherent view of memory, we must:
744  *
745  * - If there is an outstanding write request to the object, the new
746  *   request must wait for it to complete (either CPU or in hw, requests
747  *   on the same ring will be naturally ordered).
748  *
749  * - If we are a write request (pending_write_domain is set), the new
750  *   request must wait for outstanding read requests to complete.
751  *
752  * Returns 0 if successful, else propagates up the lower layer error.
753  */
754 int
755 i915_gem_request_await_object(struct drm_i915_gem_request *to,
756                               struct drm_i915_gem_object *obj,
757                               bool write)
758 {
759         struct dma_fence *excl;
760         int ret = 0;
761
762         if (write) {
763                 struct dma_fence **shared;
764                 unsigned int count, i;
765
766                 ret = reservation_object_get_fences_rcu(obj->resv,
767                                                         &excl, &count, &shared);
768                 if (ret)
769                         return ret;
770
771                 for (i = 0; i < count; i++) {
772                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
773                         if (ret)
774                                 break;
775
776                         dma_fence_put(shared[i]);
777                 }
778
779                 for (; i < count; i++)
780                         dma_fence_put(shared[i]);
781                 kfree(shared);
782         } else {
783                 excl = reservation_object_get_excl_rcu(obj->resv);
784         }
785
786         if (excl) {
787                 if (ret == 0)
788                         ret = i915_gem_request_await_dma_fence(to, excl);
789
790                 dma_fence_put(excl);
791         }
792
793         return ret;
794 }
795
796 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
797 {
798         struct drm_i915_private *dev_priv = engine->i915;
799
800         if (dev_priv->gt.awake)
801                 return;
802
803         GEM_BUG_ON(!dev_priv->gt.active_requests);
804
805         intel_runtime_pm_get_noresume(dev_priv);
806         dev_priv->gt.awake = true;
807
808         intel_enable_gt_powersave(dev_priv);
809         i915_update_gfx_val(dev_priv);
810         if (INTEL_GEN(dev_priv) >= 6)
811                 gen6_rps_busy(dev_priv);
812
813         queue_delayed_work(dev_priv->wq,
814                            &dev_priv->gt.retire_work,
815                            round_jiffies_up_relative(HZ));
816 }
817
818 /*
819  * NB: This function is not allowed to fail. Doing so would mean the the
820  * request is not being tracked for completion but the work itself is
821  * going to happen on the hardware. This would be a Bad Thing(tm).
822  */
823 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
824 {
825         struct intel_engine_cs *engine = request->engine;
826         struct intel_ring *ring = request->ring;
827         struct intel_timeline *timeline = request->timeline;
828         struct drm_i915_gem_request *prev;
829         int err;
830
831         lockdep_assert_held(&request->i915->drm.struct_mutex);
832         trace_i915_gem_request_add(request);
833
834         /* Make sure that no request gazumped us - if it was allocated after
835          * our i915_gem_request_alloc() and called __i915_add_request() before
836          * us, the timeline will hold its seqno which is later than ours.
837          */
838         GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
839                                      request->fence.seqno));
840
841         /*
842          * To ensure that this call will not fail, space for its emissions
843          * should already have been reserved in the ring buffer. Let the ring
844          * know that it is time to use that space up.
845          */
846         request->reserved_space = 0;
847
848         /*
849          * Emit any outstanding flushes - execbuf can fail to emit the flush
850          * after having emitted the batchbuffer command. Hence we need to fix
851          * things up similar to emitting the lazy request. The difference here
852          * is that the flush _must_ happen before the next request, no matter
853          * what.
854          */
855         if (flush_caches) {
856                 err = engine->emit_flush(request, EMIT_FLUSH);
857
858                 /* Not allowed to fail! */
859                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
860         }
861
862         /* Record the position of the start of the breadcrumb so that
863          * should we detect the updated seqno part-way through the
864          * GPU processing the request, we never over-estimate the
865          * position of the ring's HEAD.
866          */
867         err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
868         GEM_BUG_ON(err);
869         request->postfix = ring->tail;
870         ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
871
872         /* Seal the request and mark it as pending execution. Note that
873          * we may inspect this state, without holding any locks, during
874          * hangcheck. Hence we apply the barrier to ensure that we do not
875          * see a more recent value in the hws than we are tracking.
876          */
877
878         prev = i915_gem_active_raw(&timeline->last_request,
879                                    &request->i915->drm.struct_mutex);
880         if (prev) {
881                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
882                                              &request->submitq);
883                 if (engine->schedule)
884                         __i915_priotree_add_dependency(&request->priotree,
885                                                        &prev->priotree,
886                                                        &request->dep,
887                                                        0);
888         }
889
890         spin_lock_irq(&timeline->lock);
891         list_add_tail(&request->link, &timeline->requests);
892         spin_unlock_irq(&timeline->lock);
893
894         GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
895                                      request->fence.seqno));
896
897         timeline->last_submitted_seqno = request->fence.seqno;
898         i915_gem_active_set(&timeline->last_request, request);
899
900         list_add_tail(&request->ring_link, &ring->request_list);
901         request->emitted_jiffies = jiffies;
902
903         i915_gem_mark_busy(engine);
904
905         /* Let the backend know a new request has arrived that may need
906          * to adjust the existing execution schedule due to a high priority
907          * request - i.e. we may want to preempt the current request in order
908          * to run a high priority dependency chain *before* we can execute this
909          * request.
910          *
911          * This is called before the request is ready to run so that we can
912          * decide whether to preempt the entire chain so that it is ready to
913          * run at the earliest possible convenience.
914          */
915         if (engine->schedule)
916                 engine->schedule(request, request->ctx->priority);
917
918         local_bh_disable();
919         i915_sw_fence_commit(&request->submit);
920         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
921 }
922
923 static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
924 {
925         unsigned long flags;
926
927         spin_lock_irqsave(&q->lock, flags);
928         if (list_empty(&wait->task_list))
929                 __add_wait_queue(q, wait);
930         spin_unlock_irqrestore(&q->lock, flags);
931 }
932
933 static unsigned long local_clock_us(unsigned int *cpu)
934 {
935         unsigned long t;
936
937         /* Cheaply and approximately convert from nanoseconds to microseconds.
938          * The result and subsequent calculations are also defined in the same
939          * approximate microseconds units. The principal source of timing
940          * error here is from the simple truncation.
941          *
942          * Note that local_clock() is only defined wrt to the current CPU;
943          * the comparisons are no longer valid if we switch CPUs. Instead of
944          * blocking preemption for the entire busywait, we can detect the CPU
945          * switch and use that as indicator of system load and a reason to
946          * stop busywaiting, see busywait_stop().
947          */
948         *cpu = get_cpu();
949         t = local_clock() >> 10;
950         put_cpu();
951
952         return t;
953 }
954
955 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
956 {
957         unsigned int this_cpu;
958
959         if (time_after(local_clock_us(&this_cpu), timeout))
960                 return true;
961
962         return this_cpu != cpu;
963 }
964
965 bool __i915_spin_request(const struct drm_i915_gem_request *req,
966                          int state, unsigned long timeout_us)
967 {
968         unsigned int cpu;
969
970         /* When waiting for high frequency requests, e.g. during synchronous
971          * rendering split between the CPU and GPU, the finite amount of time
972          * required to set up the irq and wait upon it limits the response
973          * rate. By busywaiting on the request completion for a short while we
974          * can service the high frequency waits as quick as possible. However,
975          * if it is a slow request, we want to sleep as quickly as possible.
976          * The tradeoff between waiting and sleeping is roughly the time it
977          * takes to sleep on a request, on the order of a microsecond.
978          */
979
980         timeout_us += local_clock_us(&cpu);
981         do {
982                 if (__i915_gem_request_completed(req))
983                         return true;
984
985                 if (signal_pending_state(state, current))
986                         break;
987
988                 if (busywait_stop(timeout_us, cpu))
989                         break;
990
991                 cpu_relax();
992         } while (!need_resched());
993
994         return false;
995 }
996
997 static long
998 __i915_request_wait_for_execute(struct drm_i915_gem_request *request,
999                                 unsigned int flags,
1000                                 long timeout)
1001 {
1002         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1003                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1004         wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
1005         DEFINE_WAIT(reset);
1006         DEFINE_WAIT(wait);
1007
1008         if (flags & I915_WAIT_LOCKED)
1009                 add_wait_queue(q, &reset);
1010
1011         do {
1012                 prepare_to_wait(&request->execute.wait, &wait, state);
1013
1014                 if (i915_sw_fence_done(&request->execute))
1015                         break;
1016
1017                 if (flags & I915_WAIT_LOCKED &&
1018                     i915_reset_in_progress(&request->i915->gpu_error)) {
1019                         __set_current_state(TASK_RUNNING);
1020                         i915_reset(request->i915);
1021                         reset_wait_queue(q, &reset);
1022                         continue;
1023                 }
1024
1025                 if (signal_pending_state(state, current)) {
1026                         timeout = -ERESTARTSYS;
1027                         break;
1028                 }
1029
1030                 if (!timeout) {
1031                         timeout = -ETIME;
1032                         break;
1033                 }
1034
1035                 timeout = io_schedule_timeout(timeout);
1036         } while (1);
1037         finish_wait(&request->execute.wait, &wait);
1038
1039         if (flags & I915_WAIT_LOCKED)
1040                 remove_wait_queue(q, &reset);
1041
1042         return timeout;
1043 }
1044
1045 /**
1046  * i915_wait_request - wait until execution of request has finished
1047  * @req: the request to wait upon
1048  * @flags: how to wait
1049  * @timeout: how long to wait in jiffies
1050  *
1051  * i915_wait_request() waits for the request to be completed, for a
1052  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1053  * unbounded wait).
1054  *
1055  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1056  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1057  * must not specify that the wait is locked.
1058  *
1059  * Returns the remaining time (in jiffies) if the request completed, which may
1060  * be zero or -ETIME if the request is unfinished after the timeout expires.
1061  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1062  * pending before the request completes.
1063  */
1064 long i915_wait_request(struct drm_i915_gem_request *req,
1065                        unsigned int flags,
1066                        long timeout)
1067 {
1068         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1069                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1070         DEFINE_WAIT(reset);
1071         struct intel_wait wait;
1072
1073         might_sleep();
1074 #if IS_ENABLED(CONFIG_LOCKDEP)
1075         GEM_BUG_ON(debug_locks &&
1076                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1077                    !!(flags & I915_WAIT_LOCKED));
1078 #endif
1079         GEM_BUG_ON(timeout < 0);
1080
1081         if (i915_gem_request_completed(req))
1082                 return timeout;
1083
1084         if (!timeout)
1085                 return -ETIME;
1086
1087         trace_i915_gem_request_wait_begin(req);
1088
1089         if (!i915_sw_fence_done(&req->execute)) {
1090                 timeout = __i915_request_wait_for_execute(req, flags, timeout);
1091                 if (timeout < 0)
1092                         goto complete;
1093
1094                 GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1095         }
1096         GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1097         GEM_BUG_ON(!req->global_seqno);
1098
1099         /* Optimistic short spin before touching IRQs */
1100         if (i915_spin_request(req, state, 5))
1101                 goto complete;
1102
1103         set_current_state(state);
1104         if (flags & I915_WAIT_LOCKED)
1105                 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1106
1107         intel_wait_init(&wait, req->global_seqno);
1108         if (intel_engine_add_wait(req->engine, &wait))
1109                 /* In order to check that we haven't missed the interrupt
1110                  * as we enabled it, we need to kick ourselves to do a
1111                  * coherent check on the seqno before we sleep.
1112                  */
1113                 goto wakeup;
1114
1115         for (;;) {
1116                 if (signal_pending_state(state, current)) {
1117                         timeout = -ERESTARTSYS;
1118                         break;
1119                 }
1120
1121                 if (!timeout) {
1122                         timeout = -ETIME;
1123                         break;
1124                 }
1125
1126                 timeout = io_schedule_timeout(timeout);
1127
1128                 if (intel_wait_complete(&wait))
1129                         break;
1130
1131                 set_current_state(state);
1132
1133 wakeup:
1134                 /* Carefully check if the request is complete, giving time
1135                  * for the seqno to be visible following the interrupt.
1136                  * We also have to check in case we are kicked by the GPU
1137                  * reset in order to drop the struct_mutex.
1138                  */
1139                 if (__i915_request_irq_complete(req))
1140                         break;
1141
1142                 /* If the GPU is hung, and we hold the lock, reset the GPU
1143                  * and then check for completion. On a full reset, the engine's
1144                  * HW seqno will be advanced passed us and we are complete.
1145                  * If we do a partial reset, we have to wait for the GPU to
1146                  * resume and update the breadcrumb.
1147                  *
1148                  * If we don't hold the mutex, we can just wait for the worker
1149                  * to come along and update the breadcrumb (either directly
1150                  * itself, or indirectly by recovering the GPU).
1151                  */
1152                 if (flags & I915_WAIT_LOCKED &&
1153                     i915_reset_in_progress(&req->i915->gpu_error)) {
1154                         __set_current_state(TASK_RUNNING);
1155                         i915_reset(req->i915);
1156                         reset_wait_queue(&req->i915->gpu_error.wait_queue,
1157                                          &reset);
1158                         continue;
1159                 }
1160
1161                 /* Only spin if we know the GPU is processing this request */
1162                 if (i915_spin_request(req, state, 2))
1163                         break;
1164         }
1165
1166         intel_engine_remove_wait(req->engine, &wait);
1167         if (flags & I915_WAIT_LOCKED)
1168                 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1169         __set_current_state(TASK_RUNNING);
1170
1171 complete:
1172         trace_i915_gem_request_wait_end(req);
1173
1174         return timeout;
1175 }
1176
1177 static void engine_retire_requests(struct intel_engine_cs *engine)
1178 {
1179         struct drm_i915_gem_request *request, *next;
1180
1181         list_for_each_entry_safe(request, next,
1182                                  &engine->timeline->requests, link) {
1183                 if (!__i915_gem_request_completed(request))
1184                         return;
1185
1186                 i915_gem_request_retire(request);
1187         }
1188 }
1189
1190 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1191 {
1192         struct intel_engine_cs *engine;
1193         enum intel_engine_id id;
1194
1195         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1196
1197         if (!dev_priv->gt.active_requests)
1198                 return;
1199
1200         for_each_engine(engine, dev_priv, id)
1201                 engine_retire_requests(engine);
1202 }