]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
tile: expect new initramfs name from hypervisor file system
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 /**
42  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43  * @intel_dp: DP struct
44  *
45  * If a CPU or PCH DP output is attached to an eDP panel, this function
46  * will return true, and false otherwise.
47  */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 /**
56  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57  * @intel_dp: DP struct
58  *
59  * Returns true if the given DP struct corresponds to a PCH DP port attached
60  * to an eDP panel, false otherwise.  Helpful for determining whether we
61  * may need FDI resources for a given DP output or not.
62  */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65         return intel_dp->is_pch_edp;
66 }
67
68 /**
69  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70  * @intel_dp: DP struct
71  *
72  * Returns true if the given DP struct corresponds to a CPU eDP port.
73  */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78
79 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
80 {
81         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
83         return intel_dig_port->base.base.dev;
84 }
85
86 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87 {
88         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
89 }
90
91 /**
92  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93  * @encoder: DRM encoder
94  *
95  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
96  * by intel_display.c.
97  */
98 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99 {
100         struct intel_dp *intel_dp;
101
102         if (!encoder)
103                 return false;
104
105         intel_dp = enc_to_intel_dp(encoder);
106
107         return is_pch_edp(intel_dp);
108 }
109
110 static void intel_dp_link_down(struct intel_dp *intel_dp);
111
112 void
113 intel_edp_link_config(struct intel_encoder *intel_encoder,
114                        int *lane_num, int *link_bw)
115 {
116         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
117
118         *lane_num = intel_dp->lane_count;
119         *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
120 }
121
122 int
123 intel_edp_target_clock(struct intel_encoder *intel_encoder,
124                        struct drm_display_mode *mode)
125 {
126         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
127         struct intel_connector *intel_connector = intel_dp->attached_connector;
128
129         if (intel_connector->panel.fixed_mode)
130                 return intel_connector->panel.fixed_mode->clock;
131         else
132                 return mode->clock;
133 }
134
135 static int
136 intel_dp_max_link_bw(struct intel_dp *intel_dp)
137 {
138         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
139
140         switch (max_link_bw) {
141         case DP_LINK_BW_1_62:
142         case DP_LINK_BW_2_7:
143                 break;
144         default:
145                 max_link_bw = DP_LINK_BW_1_62;
146                 break;
147         }
148         return max_link_bw;
149 }
150
151 /*
152  * The units on the numbers in the next two are... bizarre.  Examples will
153  * make it clearer; this one parallels an example in the eDP spec.
154  *
155  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
156  *
157  *     270000 * 1 * 8 / 10 == 216000
158  *
159  * The actual data capacity of that configuration is 2.16Gbit/s, so the
160  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
161  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
162  * 119000.  At 18bpp that's 2142000 kilobits per second.
163  *
164  * Thus the strange-looking division by 10 in intel_dp_link_required, to
165  * get the result in decakilobits instead of kilobits.
166  */
167
168 static int
169 intel_dp_link_required(int pixel_clock, int bpp)
170 {
171         return (pixel_clock * bpp + 9) / 10;
172 }
173
174 static int
175 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
176 {
177         return (max_link_clock * max_lanes * 8) / 10;
178 }
179
180 static bool
181 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
182                           struct drm_display_mode *mode,
183                           bool adjust_mode)
184 {
185         int max_link_clock =
186                 drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
187         int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
188         int max_rate, mode_rate;
189
190         mode_rate = intel_dp_link_required(mode->clock, 24);
191         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
192
193         if (mode_rate > max_rate) {
194                 mode_rate = intel_dp_link_required(mode->clock, 18);
195                 if (mode_rate > max_rate)
196                         return false;
197
198                 if (adjust_mode)
199                         mode->private_flags
200                                 |= INTEL_MODE_DP_FORCE_6BPC;
201
202                 return true;
203         }
204
205         return true;
206 }
207
208 static int
209 intel_dp_mode_valid(struct drm_connector *connector,
210                     struct drm_display_mode *mode)
211 {
212         struct intel_dp *intel_dp = intel_attached_dp(connector);
213         struct intel_connector *intel_connector = to_intel_connector(connector);
214         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
215
216         if (is_edp(intel_dp) && fixed_mode) {
217                 if (mode->hdisplay > fixed_mode->hdisplay)
218                         return MODE_PANEL;
219
220                 if (mode->vdisplay > fixed_mode->vdisplay)
221                         return MODE_PANEL;
222         }
223
224         if (!intel_dp_adjust_dithering(intel_dp, mode, false))
225                 return MODE_CLOCK_HIGH;
226
227         if (mode->clock < 10000)
228                 return MODE_CLOCK_LOW;
229
230         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231                 return MODE_H_ILLEGAL;
232
233         return MODE_OK;
234 }
235
236 static uint32_t
237 pack_aux(uint8_t *src, int src_bytes)
238 {
239         int     i;
240         uint32_t v = 0;
241
242         if (src_bytes > 4)
243                 src_bytes = 4;
244         for (i = 0; i < src_bytes; i++)
245                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
246         return v;
247 }
248
249 static void
250 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252         int i;
253         if (dst_bytes > 4)
254                 dst_bytes = 4;
255         for (i = 0; i < dst_bytes; i++)
256                 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263         struct drm_i915_private *dev_priv = dev->dev_private;
264         uint32_t clkcfg;
265
266         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267         if (IS_VALLEYVIEW(dev))
268                 return 200;
269
270         clkcfg = I915_READ(CLKCFG);
271         switch (clkcfg & CLKCFG_FSB_MASK) {
272         case CLKCFG_FSB_400:
273                 return 100;
274         case CLKCFG_FSB_533:
275                 return 133;
276         case CLKCFG_FSB_667:
277                 return 166;
278         case CLKCFG_FSB_800:
279                 return 200;
280         case CLKCFG_FSB_1067:
281                 return 266;
282         case CLKCFG_FSB_1333:
283                 return 333;
284         /* these two are just a guess; one of them might be right */
285         case CLKCFG_FSB_1600:
286         case CLKCFG_FSB_1600_ALT:
287                 return 400;
288         default:
289                 return 133;
290         }
291 }
292
293 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
294 {
295         struct drm_device *dev = intel_dp_to_dev(intel_dp);
296         struct drm_i915_private *dev_priv = dev->dev_private;
297
298         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
299 }
300
301 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
302 {
303         struct drm_device *dev = intel_dp_to_dev(intel_dp);
304         struct drm_i915_private *dev_priv = dev->dev_private;
305
306         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
307 }
308
309 static void
310 intel_dp_check_edp(struct intel_dp *intel_dp)
311 {
312         struct drm_device *dev = intel_dp_to_dev(intel_dp);
313         struct drm_i915_private *dev_priv = dev->dev_private;
314
315         if (!is_edp(intel_dp))
316                 return;
317         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
319                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320                               I915_READ(PCH_PP_STATUS),
321                               I915_READ(PCH_PP_CONTROL));
322         }
323 }
324
325 static uint32_t
326 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
327 {
328         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329         struct drm_device *dev = intel_dig_port->base.base.dev;
330         struct drm_i915_private *dev_priv = dev->dev_private;
331         uint32_t ch_ctl = intel_dp->output_reg + 0x10;
332         uint32_t status;
333         bool done;
334
335         if (IS_HASWELL(dev)) {
336                 switch (intel_dig_port->port) {
337                 case PORT_A:
338                         ch_ctl = DPA_AUX_CH_CTL;
339                         break;
340                 case PORT_B:
341                         ch_ctl = PCH_DPB_AUX_CH_CTL;
342                         break;
343                 case PORT_C:
344                         ch_ctl = PCH_DPC_AUX_CH_CTL;
345                         break;
346                 case PORT_D:
347                         ch_ctl = PCH_DPD_AUX_CH_CTL;
348                         break;
349                 default:
350                         BUG();
351                 }
352         }
353
354 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
355         if (has_aux_irq)
356                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
357                                           msecs_to_jiffies(10));
358         else
359                 done = wait_for_atomic(C, 10) == 0;
360         if (!done)
361                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
362                           has_aux_irq);
363 #undef C
364
365         return status;
366 }
367
368 static int
369 intel_dp_aux_ch(struct intel_dp *intel_dp,
370                 uint8_t *send, int send_bytes,
371                 uint8_t *recv, int recv_size)
372 {
373         uint32_t output_reg = intel_dp->output_reg;
374         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
375         struct drm_device *dev = intel_dig_port->base.base.dev;
376         struct drm_i915_private *dev_priv = dev->dev_private;
377         uint32_t ch_ctl = output_reg + 0x10;
378         uint32_t ch_data = ch_ctl + 4;
379         int i, ret, recv_bytes;
380         uint32_t status;
381         uint32_t aux_clock_divider;
382         int try, precharge;
383         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
384
385         /* dp aux is extremely sensitive to irq latency, hence request the
386          * lowest possible wakeup latency and so prevent the cpu from going into
387          * deep sleep states.
388          */
389         pm_qos_update_request(&dev_priv->pm_qos, 0);
390
391         if (IS_HASWELL(dev)) {
392                 switch (intel_dig_port->port) {
393                 case PORT_A:
394                         ch_ctl = DPA_AUX_CH_CTL;
395                         ch_data = DPA_AUX_CH_DATA1;
396                         break;
397                 case PORT_B:
398                         ch_ctl = PCH_DPB_AUX_CH_CTL;
399                         ch_data = PCH_DPB_AUX_CH_DATA1;
400                         break;
401                 case PORT_C:
402                         ch_ctl = PCH_DPC_AUX_CH_CTL;
403                         ch_data = PCH_DPC_AUX_CH_DATA1;
404                         break;
405                 case PORT_D:
406                         ch_ctl = PCH_DPD_AUX_CH_CTL;
407                         ch_data = PCH_DPD_AUX_CH_DATA1;
408                         break;
409                 default:
410                         BUG();
411                 }
412         }
413
414         intel_dp_check_edp(intel_dp);
415         /* The clock divider is based off the hrawclk,
416          * and would like to run at 2MHz. So, take the
417          * hrawclk value and divide by 2 and use that
418          *
419          * Note that PCH attached eDP panels should use a 125MHz input
420          * clock divider.
421          */
422         if (is_cpu_edp(intel_dp)) {
423                 if (HAS_DDI(dev))
424                         aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
425                 else if (IS_VALLEYVIEW(dev))
426                         aux_clock_divider = 100;
427                 else if (IS_GEN6(dev) || IS_GEN7(dev))
428                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
429                 else
430                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
431         } else if (HAS_PCH_SPLIT(dev))
432                 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
433         else
434                 aux_clock_divider = intel_hrawclk(dev) / 2;
435
436         if (IS_GEN6(dev))
437                 precharge = 3;
438         else
439                 precharge = 5;
440
441         /* Try to wait for any previous AUX channel activity */
442         for (try = 0; try < 3; try++) {
443                 status = I915_READ_NOTRACE(ch_ctl);
444                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
445                         break;
446                 msleep(1);
447         }
448
449         if (try == 3) {
450                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
451                      I915_READ(ch_ctl));
452                 ret = -EBUSY;
453                 goto out;
454         }
455
456         /* Must try at least 3 times according to DP spec */
457         for (try = 0; try < 5; try++) {
458                 /* Load the send data into the aux channel data registers */
459                 for (i = 0; i < send_bytes; i += 4)
460                         I915_WRITE(ch_data + i,
461                                    pack_aux(send + i, send_bytes - i));
462
463                 /* Send the command and wait for it to complete */
464                 I915_WRITE(ch_ctl,
465                            DP_AUX_CH_CTL_SEND_BUSY |
466                            (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
467                            DP_AUX_CH_CTL_TIME_OUT_400us |
468                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
469                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
470                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
471                            DP_AUX_CH_CTL_DONE |
472                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
473                            DP_AUX_CH_CTL_RECEIVE_ERROR);
474
475                 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
476
477                 /* Clear done status and any errors */
478                 I915_WRITE(ch_ctl,
479                            status |
480                            DP_AUX_CH_CTL_DONE |
481                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
482                            DP_AUX_CH_CTL_RECEIVE_ERROR);
483
484                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
485                               DP_AUX_CH_CTL_RECEIVE_ERROR))
486                         continue;
487                 if (status & DP_AUX_CH_CTL_DONE)
488                         break;
489         }
490
491         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
492                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
493                 ret = -EBUSY;
494                 goto out;
495         }
496
497         /* Check for timeout or receive error.
498          * Timeouts occur when the sink is not connected
499          */
500         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
501                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
502                 ret = -EIO;
503                 goto out;
504         }
505
506         /* Timeouts occur when the device isn't connected, so they're
507          * "normal" -- don't fill the kernel log with these */
508         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
509                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
510                 ret = -ETIMEDOUT;
511                 goto out;
512         }
513
514         /* Unload any bytes sent back from the other side */
515         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
516                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
517         if (recv_bytes > recv_size)
518                 recv_bytes = recv_size;
519
520         for (i = 0; i < recv_bytes; i += 4)
521                 unpack_aux(I915_READ(ch_data + i),
522                            recv + i, recv_bytes - i);
523
524         ret = recv_bytes;
525 out:
526         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
527
528         return ret;
529 }
530
531 /* Write data to the aux channel in native mode */
532 static int
533 intel_dp_aux_native_write(struct intel_dp *intel_dp,
534                           uint16_t address, uint8_t *send, int send_bytes)
535 {
536         int ret;
537         uint8_t msg[20];
538         int msg_bytes;
539         uint8_t ack;
540
541         intel_dp_check_edp(intel_dp);
542         if (send_bytes > 16)
543                 return -1;
544         msg[0] = AUX_NATIVE_WRITE << 4;
545         msg[1] = address >> 8;
546         msg[2] = address & 0xff;
547         msg[3] = send_bytes - 1;
548         memcpy(&msg[4], send, send_bytes);
549         msg_bytes = send_bytes + 4;
550         for (;;) {
551                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
552                 if (ret < 0)
553                         return ret;
554                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
555                         break;
556                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
557                         udelay(100);
558                 else
559                         return -EIO;
560         }
561         return send_bytes;
562 }
563
564 /* Write a single byte to the aux channel in native mode */
565 static int
566 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
567                             uint16_t address, uint8_t byte)
568 {
569         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
570 }
571
572 /* read bytes from a native aux channel */
573 static int
574 intel_dp_aux_native_read(struct intel_dp *intel_dp,
575                          uint16_t address, uint8_t *recv, int recv_bytes)
576 {
577         uint8_t msg[4];
578         int msg_bytes;
579         uint8_t reply[20];
580         int reply_bytes;
581         uint8_t ack;
582         int ret;
583
584         intel_dp_check_edp(intel_dp);
585         msg[0] = AUX_NATIVE_READ << 4;
586         msg[1] = address >> 8;
587         msg[2] = address & 0xff;
588         msg[3] = recv_bytes - 1;
589
590         msg_bytes = 4;
591         reply_bytes = recv_bytes + 1;
592
593         for (;;) {
594                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
595                                       reply, reply_bytes);
596                 if (ret == 0)
597                         return -EPROTO;
598                 if (ret < 0)
599                         return ret;
600                 ack = reply[0];
601                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
602                         memcpy(recv, reply + 1, ret - 1);
603                         return ret - 1;
604                 }
605                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
606                         udelay(100);
607                 else
608                         return -EIO;
609         }
610 }
611
612 static int
613 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
614                     uint8_t write_byte, uint8_t *read_byte)
615 {
616         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
617         struct intel_dp *intel_dp = container_of(adapter,
618                                                 struct intel_dp,
619                                                 adapter);
620         uint16_t address = algo_data->address;
621         uint8_t msg[5];
622         uint8_t reply[2];
623         unsigned retry;
624         int msg_bytes;
625         int reply_bytes;
626         int ret;
627
628         intel_dp_check_edp(intel_dp);
629         /* Set up the command byte */
630         if (mode & MODE_I2C_READ)
631                 msg[0] = AUX_I2C_READ << 4;
632         else
633                 msg[0] = AUX_I2C_WRITE << 4;
634
635         if (!(mode & MODE_I2C_STOP))
636                 msg[0] |= AUX_I2C_MOT << 4;
637
638         msg[1] = address >> 8;
639         msg[2] = address;
640
641         switch (mode) {
642         case MODE_I2C_WRITE:
643                 msg[3] = 0;
644                 msg[4] = write_byte;
645                 msg_bytes = 5;
646                 reply_bytes = 1;
647                 break;
648         case MODE_I2C_READ:
649                 msg[3] = 0;
650                 msg_bytes = 4;
651                 reply_bytes = 2;
652                 break;
653         default:
654                 msg_bytes = 3;
655                 reply_bytes = 1;
656                 break;
657         }
658
659         for (retry = 0; retry < 5; retry++) {
660                 ret = intel_dp_aux_ch(intel_dp,
661                                       msg, msg_bytes,
662                                       reply, reply_bytes);
663                 if (ret < 0) {
664                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
665                         return ret;
666                 }
667
668                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
669                 case AUX_NATIVE_REPLY_ACK:
670                         /* I2C-over-AUX Reply field is only valid
671                          * when paired with AUX ACK.
672                          */
673                         break;
674                 case AUX_NATIVE_REPLY_NACK:
675                         DRM_DEBUG_KMS("aux_ch native nack\n");
676                         return -EREMOTEIO;
677                 case AUX_NATIVE_REPLY_DEFER:
678                         udelay(100);
679                         continue;
680                 default:
681                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
682                                   reply[0]);
683                         return -EREMOTEIO;
684                 }
685
686                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
687                 case AUX_I2C_REPLY_ACK:
688                         if (mode == MODE_I2C_READ) {
689                                 *read_byte = reply[1];
690                         }
691                         return reply_bytes - 1;
692                 case AUX_I2C_REPLY_NACK:
693                         DRM_DEBUG_KMS("aux_i2c nack\n");
694                         return -EREMOTEIO;
695                 case AUX_I2C_REPLY_DEFER:
696                         DRM_DEBUG_KMS("aux_i2c defer\n");
697                         udelay(100);
698                         break;
699                 default:
700                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
701                         return -EREMOTEIO;
702                 }
703         }
704
705         DRM_ERROR("too many retries, giving up\n");
706         return -EREMOTEIO;
707 }
708
709 static int
710 intel_dp_i2c_init(struct intel_dp *intel_dp,
711                   struct intel_connector *intel_connector, const char *name)
712 {
713         int     ret;
714
715         DRM_DEBUG_KMS("i2c_init %s\n", name);
716         intel_dp->algo.running = false;
717         intel_dp->algo.address = 0;
718         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
719
720         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
721         intel_dp->adapter.owner = THIS_MODULE;
722         intel_dp->adapter.class = I2C_CLASS_DDC;
723         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
724         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
725         intel_dp->adapter.algo_data = &intel_dp->algo;
726         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
727
728         ironlake_edp_panel_vdd_on(intel_dp);
729         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
730         ironlake_edp_panel_vdd_off(intel_dp, false);
731         return ret;
732 }
733
734 bool
735 intel_dp_mode_fixup(struct drm_encoder *encoder,
736                     const struct drm_display_mode *mode,
737                     struct drm_display_mode *adjusted_mode)
738 {
739         struct drm_device *dev = encoder->dev;
740         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
741         struct intel_connector *intel_connector = intel_dp->attached_connector;
742         int lane_count, clock;
743         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
744         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
745         int bpp, mode_rate;
746         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
747
748         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
749                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
750                                        adjusted_mode);
751                 intel_pch_panel_fitting(dev,
752                                         intel_connector->panel.fitting_mode,
753                                         mode, adjusted_mode);
754         }
755
756         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
757                 return false;
758
759         DRM_DEBUG_KMS("DP link computation with max lane count %i "
760                       "max bw %02x pixel clock %iKHz\n",
761                       max_lane_count, bws[max_clock], adjusted_mode->clock);
762
763         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
764                 return false;
765
766         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
767
768         if (intel_dp->color_range_auto) {
769                 /*
770                  * See:
771                  * CEA-861-E - 5.1 Default Encoding Parameters
772                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
773                  */
774                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
775                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
776                 else
777                         intel_dp->color_range = 0;
778         }
779
780         if (intel_dp->color_range)
781                 adjusted_mode->private_flags |= INTEL_MODE_LIMITED_COLOR_RANGE;
782
783         mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
784
785         for (clock = 0; clock <= max_clock; clock++) {
786                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
787                         int link_bw_clock =
788                                 drm_dp_bw_code_to_link_rate(bws[clock]);
789                         int link_avail = intel_dp_max_data_rate(link_bw_clock,
790                                                                 lane_count);
791
792                         if (mode_rate <= link_avail) {
793                                 intel_dp->link_bw = bws[clock];
794                                 intel_dp->lane_count = lane_count;
795                                 adjusted_mode->clock = link_bw_clock;
796                                 DRM_DEBUG_KMS("DP link bw %02x lane "
797                                                 "count %d clock %d bpp %d\n",
798                                        intel_dp->link_bw, intel_dp->lane_count,
799                                        adjusted_mode->clock, bpp);
800                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
801                                               mode_rate, link_avail);
802                                 return true;
803                         }
804                 }
805         }
806
807         return false;
808 }
809
810 void
811 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
812                  struct drm_display_mode *adjusted_mode)
813 {
814         struct drm_device *dev = crtc->dev;
815         struct intel_encoder *intel_encoder;
816         struct intel_dp *intel_dp;
817         struct drm_i915_private *dev_priv = dev->dev_private;
818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
819         int lane_count = 4;
820         struct intel_link_m_n m_n;
821         int pipe = intel_crtc->pipe;
822         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
823
824         /*
825          * Find the lane count in the intel_encoder private
826          */
827         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
828                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
829
830                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
831                     intel_encoder->type == INTEL_OUTPUT_EDP)
832                 {
833                         lane_count = intel_dp->lane_count;
834                         break;
835                 }
836         }
837
838         /*
839          * Compute the GMCH and Link ratios. The '3' here is
840          * the number of bytes_per_pixel post-LUT, which we always
841          * set up for 8-bits of R/G/B, or 3 bytes total.
842          */
843         intel_link_compute_m_n(intel_crtc->bpp, lane_count,
844                                mode->clock, adjusted_mode->clock, &m_n);
845
846         if (IS_HASWELL(dev)) {
847                 I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
848                            TU_SIZE(m_n.tu) | m_n.gmch_m);
849                 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
850                 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
851                 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
852         } else if (HAS_PCH_SPLIT(dev)) {
853                 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
854                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
855                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
856                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
857         } else if (IS_VALLEYVIEW(dev)) {
858                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
859                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
860                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
861                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
862         } else {
863                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
864                            TU_SIZE(m_n.tu) | m_n.gmch_m);
865                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
866                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
867                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
868         }
869 }
870
871 void intel_dp_init_link_config(struct intel_dp *intel_dp)
872 {
873         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
874         intel_dp->link_configuration[0] = intel_dp->link_bw;
875         intel_dp->link_configuration[1] = intel_dp->lane_count;
876         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
877         /*
878          * Check for DPCD version > 1.1 and enhanced framing support
879          */
880         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
881             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
882                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
883         }
884 }
885
886 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
887 {
888         struct drm_device *dev = crtc->dev;
889         struct drm_i915_private *dev_priv = dev->dev_private;
890         u32 dpa_ctl;
891
892         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
893         dpa_ctl = I915_READ(DP_A);
894         dpa_ctl &= ~DP_PLL_FREQ_MASK;
895
896         if (clock < 200000) {
897                 /* For a long time we've carried around a ILK-DevA w/a for the
898                  * 160MHz clock. If we're really unlucky, it's still required.
899                  */
900                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
901                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
902         } else {
903                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
904         }
905
906         I915_WRITE(DP_A, dpa_ctl);
907
908         POSTING_READ(DP_A);
909         udelay(500);
910 }
911
912 static void
913 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
914                   struct drm_display_mode *adjusted_mode)
915 {
916         struct drm_device *dev = encoder->dev;
917         struct drm_i915_private *dev_priv = dev->dev_private;
918         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
919         struct drm_crtc *crtc = encoder->crtc;
920         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
921
922         /*
923          * There are four kinds of DP registers:
924          *
925          *      IBX PCH
926          *      SNB CPU
927          *      IVB CPU
928          *      CPT PCH
929          *
930          * IBX PCH and CPU are the same for almost everything,
931          * except that the CPU DP PLL is configured in this
932          * register
933          *
934          * CPT PCH is quite different, having many bits moved
935          * to the TRANS_DP_CTL register instead. That
936          * configuration happens (oddly) in ironlake_pch_enable
937          */
938
939         /* Preserve the BIOS-computed detected bit. This is
940          * supposed to be read-only.
941          */
942         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
943
944         /* Handle DP bits in common between all three register formats */
945         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
946
947         switch (intel_dp->lane_count) {
948         case 1:
949                 intel_dp->DP |= DP_PORT_WIDTH_1;
950                 break;
951         case 2:
952                 intel_dp->DP |= DP_PORT_WIDTH_2;
953                 break;
954         case 4:
955                 intel_dp->DP |= DP_PORT_WIDTH_4;
956                 break;
957         }
958         if (intel_dp->has_audio) {
959                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
960                                  pipe_name(intel_crtc->pipe));
961                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
962                 intel_write_eld(encoder, adjusted_mode);
963         }
964
965         intel_dp_init_link_config(intel_dp);
966
967         /* Split out the IBX/CPU vs CPT settings */
968
969         if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
970                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
971                         intel_dp->DP |= DP_SYNC_HS_HIGH;
972                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
973                         intel_dp->DP |= DP_SYNC_VS_HIGH;
974                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
975
976                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
977                         intel_dp->DP |= DP_ENHANCED_FRAMING;
978
979                 intel_dp->DP |= intel_crtc->pipe << 29;
980
981                 /* don't miss out required setting for eDP */
982                 if (adjusted_mode->clock < 200000)
983                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
984                 else
985                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
986         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
987                 if (!HAS_PCH_SPLIT(dev))
988                         intel_dp->DP |= intel_dp->color_range;
989
990                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
991                         intel_dp->DP |= DP_SYNC_HS_HIGH;
992                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
993                         intel_dp->DP |= DP_SYNC_VS_HIGH;
994                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
995
996                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
997                         intel_dp->DP |= DP_ENHANCED_FRAMING;
998
999                 if (intel_crtc->pipe == 1)
1000                         intel_dp->DP |= DP_PIPEB_SELECT;
1001
1002                 if (is_cpu_edp(intel_dp)) {
1003                         /* don't miss out required setting for eDP */
1004                         if (adjusted_mode->clock < 200000)
1005                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1006                         else
1007                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1008                 }
1009         } else {
1010                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1011         }
1012
1013         if (is_cpu_edp(intel_dp))
1014                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
1015 }
1016
1017 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1018 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1019
1020 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1021 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1022
1023 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1024 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1025
1026 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1027                                        u32 mask,
1028                                        u32 value)
1029 {
1030         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1031         struct drm_i915_private *dev_priv = dev->dev_private;
1032
1033         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1034                       mask, value,
1035                       I915_READ(PCH_PP_STATUS),
1036                       I915_READ(PCH_PP_CONTROL));
1037
1038         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
1039                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1040                           I915_READ(PCH_PP_STATUS),
1041                           I915_READ(PCH_PP_CONTROL));
1042         }
1043 }
1044
1045 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1046 {
1047         DRM_DEBUG_KMS("Wait for panel power on\n");
1048         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1049 }
1050
1051 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1052 {
1053         DRM_DEBUG_KMS("Wait for panel power off time\n");
1054         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1055 }
1056
1057 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1058 {
1059         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1060         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1061 }
1062
1063
1064 /* Read the current pp_control value, unlocking the register if it
1065  * is locked
1066  */
1067
1068 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1069 {
1070         u32     control = I915_READ(PCH_PP_CONTROL);
1071
1072         control &= ~PANEL_UNLOCK_MASK;
1073         control |= PANEL_UNLOCK_REGS;
1074         return control;
1075 }
1076
1077 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1078 {
1079         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1080         struct drm_i915_private *dev_priv = dev->dev_private;
1081         u32 pp;
1082
1083         if (!is_edp(intel_dp))
1084                 return;
1085         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1086
1087         WARN(intel_dp->want_panel_vdd,
1088              "eDP VDD already requested on\n");
1089
1090         intel_dp->want_panel_vdd = true;
1091
1092         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1093                 DRM_DEBUG_KMS("eDP VDD already on\n");
1094                 return;
1095         }
1096
1097         if (!ironlake_edp_have_panel_power(intel_dp))
1098                 ironlake_wait_panel_power_cycle(intel_dp);
1099
1100         pp = ironlake_get_pp_control(dev_priv);
1101         pp |= EDP_FORCE_VDD;
1102         I915_WRITE(PCH_PP_CONTROL, pp);
1103         POSTING_READ(PCH_PP_CONTROL);
1104         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1105                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1106
1107         /*
1108          * If the panel wasn't on, delay before accessing aux channel
1109          */
1110         if (!ironlake_edp_have_panel_power(intel_dp)) {
1111                 DRM_DEBUG_KMS("eDP was not running\n");
1112                 msleep(intel_dp->panel_power_up_delay);
1113         }
1114 }
1115
1116 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1117 {
1118         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1119         struct drm_i915_private *dev_priv = dev->dev_private;
1120         u32 pp;
1121
1122         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1123
1124         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1125                 pp = ironlake_get_pp_control(dev_priv);
1126                 pp &= ~EDP_FORCE_VDD;
1127                 I915_WRITE(PCH_PP_CONTROL, pp);
1128                 POSTING_READ(PCH_PP_CONTROL);
1129
1130                 /* Make sure sequencer is idle before allowing subsequent activity */
1131                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1132                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1133
1134                 msleep(intel_dp->panel_power_down_delay);
1135         }
1136 }
1137
1138 static void ironlake_panel_vdd_work(struct work_struct *__work)
1139 {
1140         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1141                                                  struct intel_dp, panel_vdd_work);
1142         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1143
1144         mutex_lock(&dev->mode_config.mutex);
1145         ironlake_panel_vdd_off_sync(intel_dp);
1146         mutex_unlock(&dev->mode_config.mutex);
1147 }
1148
1149 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1150 {
1151         if (!is_edp(intel_dp))
1152                 return;
1153
1154         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1155         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1156
1157         intel_dp->want_panel_vdd = false;
1158
1159         if (sync) {
1160                 ironlake_panel_vdd_off_sync(intel_dp);
1161         } else {
1162                 /*
1163                  * Queue the timer to fire a long
1164                  * time from now (relative to the power down delay)
1165                  * to keep the panel power up across a sequence of operations
1166                  */
1167                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1168                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1169         }
1170 }
1171
1172 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1173 {
1174         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1175         struct drm_i915_private *dev_priv = dev->dev_private;
1176         u32 pp;
1177
1178         if (!is_edp(intel_dp))
1179                 return;
1180
1181         DRM_DEBUG_KMS("Turn eDP power on\n");
1182
1183         if (ironlake_edp_have_panel_power(intel_dp)) {
1184                 DRM_DEBUG_KMS("eDP power already on\n");
1185                 return;
1186         }
1187
1188         ironlake_wait_panel_power_cycle(intel_dp);
1189
1190         pp = ironlake_get_pp_control(dev_priv);
1191         if (IS_GEN5(dev)) {
1192                 /* ILK workaround: disable reset around power sequence */
1193                 pp &= ~PANEL_POWER_RESET;
1194                 I915_WRITE(PCH_PP_CONTROL, pp);
1195                 POSTING_READ(PCH_PP_CONTROL);
1196         }
1197
1198         pp |= POWER_TARGET_ON;
1199         if (!IS_GEN5(dev))
1200                 pp |= PANEL_POWER_RESET;
1201
1202         I915_WRITE(PCH_PP_CONTROL, pp);
1203         POSTING_READ(PCH_PP_CONTROL);
1204
1205         ironlake_wait_panel_on(intel_dp);
1206
1207         if (IS_GEN5(dev)) {
1208                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1209                 I915_WRITE(PCH_PP_CONTROL, pp);
1210                 POSTING_READ(PCH_PP_CONTROL);
1211         }
1212 }
1213
1214 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1215 {
1216         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1217         struct drm_i915_private *dev_priv = dev->dev_private;
1218         u32 pp;
1219
1220         if (!is_edp(intel_dp))
1221                 return;
1222
1223         DRM_DEBUG_KMS("Turn eDP power off\n");
1224
1225         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1226
1227         pp = ironlake_get_pp_control(dev_priv);
1228         /* We need to switch off panel power _and_ force vdd, for otherwise some
1229          * panels get very unhappy and cease to work. */
1230         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1231         I915_WRITE(PCH_PP_CONTROL, pp);
1232         POSTING_READ(PCH_PP_CONTROL);
1233
1234         intel_dp->want_panel_vdd = false;
1235
1236         ironlake_wait_panel_off(intel_dp);
1237 }
1238
1239 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1240 {
1241         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1242         struct drm_device *dev = intel_dig_port->base.base.dev;
1243         struct drm_i915_private *dev_priv = dev->dev_private;
1244         int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1245         u32 pp;
1246
1247         if (!is_edp(intel_dp))
1248                 return;
1249
1250         DRM_DEBUG_KMS("\n");
1251         /*
1252          * If we enable the backlight right away following a panel power
1253          * on, we may see slight flicker as the panel syncs with the eDP
1254          * link.  So delay a bit to make sure the image is solid before
1255          * allowing it to appear.
1256          */
1257         msleep(intel_dp->backlight_on_delay);
1258         pp = ironlake_get_pp_control(dev_priv);
1259         pp |= EDP_BLC_ENABLE;
1260         I915_WRITE(PCH_PP_CONTROL, pp);
1261         POSTING_READ(PCH_PP_CONTROL);
1262
1263         intel_panel_enable_backlight(dev, pipe);
1264 }
1265
1266 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1267 {
1268         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1269         struct drm_i915_private *dev_priv = dev->dev_private;
1270         u32 pp;
1271
1272         if (!is_edp(intel_dp))
1273                 return;
1274
1275         intel_panel_disable_backlight(dev);
1276
1277         DRM_DEBUG_KMS("\n");
1278         pp = ironlake_get_pp_control(dev_priv);
1279         pp &= ~EDP_BLC_ENABLE;
1280         I915_WRITE(PCH_PP_CONTROL, pp);
1281         POSTING_READ(PCH_PP_CONTROL);
1282         msleep(intel_dp->backlight_off_delay);
1283 }
1284
1285 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1286 {
1287         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1288         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1289         struct drm_device *dev = crtc->dev;
1290         struct drm_i915_private *dev_priv = dev->dev_private;
1291         u32 dpa_ctl;
1292
1293         assert_pipe_disabled(dev_priv,
1294                              to_intel_crtc(crtc)->pipe);
1295
1296         DRM_DEBUG_KMS("\n");
1297         dpa_ctl = I915_READ(DP_A);
1298         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1299         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1300
1301         /* We don't adjust intel_dp->DP while tearing down the link, to
1302          * facilitate link retraining (e.g. after hotplug). Hence clear all
1303          * enable bits here to ensure that we don't enable too much. */
1304         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1305         intel_dp->DP |= DP_PLL_ENABLE;
1306         I915_WRITE(DP_A, intel_dp->DP);
1307         POSTING_READ(DP_A);
1308         udelay(200);
1309 }
1310
1311 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1312 {
1313         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1314         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1315         struct drm_device *dev = crtc->dev;
1316         struct drm_i915_private *dev_priv = dev->dev_private;
1317         u32 dpa_ctl;
1318
1319         assert_pipe_disabled(dev_priv,
1320                              to_intel_crtc(crtc)->pipe);
1321
1322         dpa_ctl = I915_READ(DP_A);
1323         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1324              "dp pll off, should be on\n");
1325         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1326
1327         /* We can't rely on the value tracked for the DP register in
1328          * intel_dp->DP because link_down must not change that (otherwise link
1329          * re-training will fail. */
1330         dpa_ctl &= ~DP_PLL_ENABLE;
1331         I915_WRITE(DP_A, dpa_ctl);
1332         POSTING_READ(DP_A);
1333         udelay(200);
1334 }
1335
1336 /* If the sink supports it, try to set the power state appropriately */
1337 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1338 {
1339         int ret, i;
1340
1341         /* Should have a valid DPCD by this point */
1342         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1343                 return;
1344
1345         if (mode != DRM_MODE_DPMS_ON) {
1346                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1347                                                   DP_SET_POWER_D3);
1348                 if (ret != 1)
1349                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1350         } else {
1351                 /*
1352                  * When turning on, we need to retry for 1ms to give the sink
1353                  * time to wake up.
1354                  */
1355                 for (i = 0; i < 3; i++) {
1356                         ret = intel_dp_aux_native_write_1(intel_dp,
1357                                                           DP_SET_POWER,
1358                                                           DP_SET_POWER_D0);
1359                         if (ret == 1)
1360                                 break;
1361                         msleep(1);
1362                 }
1363         }
1364 }
1365
1366 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1367                                   enum pipe *pipe)
1368 {
1369         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1370         struct drm_device *dev = encoder->base.dev;
1371         struct drm_i915_private *dev_priv = dev->dev_private;
1372         u32 tmp = I915_READ(intel_dp->output_reg);
1373
1374         if (!(tmp & DP_PORT_EN))
1375                 return false;
1376
1377         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1378                 *pipe = PORT_TO_PIPE_CPT(tmp);
1379         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1380                 *pipe = PORT_TO_PIPE(tmp);
1381         } else {
1382                 u32 trans_sel;
1383                 u32 trans_dp;
1384                 int i;
1385
1386                 switch (intel_dp->output_reg) {
1387                 case PCH_DP_B:
1388                         trans_sel = TRANS_DP_PORT_SEL_B;
1389                         break;
1390                 case PCH_DP_C:
1391                         trans_sel = TRANS_DP_PORT_SEL_C;
1392                         break;
1393                 case PCH_DP_D:
1394                         trans_sel = TRANS_DP_PORT_SEL_D;
1395                         break;
1396                 default:
1397                         return true;
1398                 }
1399
1400                 for_each_pipe(i) {
1401                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1402                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1403                                 *pipe = i;
1404                                 return true;
1405                         }
1406                 }
1407
1408                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1409                               intel_dp->output_reg);
1410         }
1411
1412         return true;
1413 }
1414
1415 static void intel_disable_dp(struct intel_encoder *encoder)
1416 {
1417         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1418
1419         /* Make sure the panel is off before trying to change the mode. But also
1420          * ensure that we have vdd while we switch off the panel. */
1421         ironlake_edp_panel_vdd_on(intel_dp);
1422         ironlake_edp_backlight_off(intel_dp);
1423         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1424         ironlake_edp_panel_off(intel_dp);
1425
1426         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1427         if (!is_cpu_edp(intel_dp))
1428                 intel_dp_link_down(intel_dp);
1429 }
1430
1431 static void intel_post_disable_dp(struct intel_encoder *encoder)
1432 {
1433         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1434
1435         if (is_cpu_edp(intel_dp)) {
1436                 intel_dp_link_down(intel_dp);
1437                 ironlake_edp_pll_off(intel_dp);
1438         }
1439 }
1440
1441 static void intel_enable_dp(struct intel_encoder *encoder)
1442 {
1443         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1444         struct drm_device *dev = encoder->base.dev;
1445         struct drm_i915_private *dev_priv = dev->dev_private;
1446         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1447
1448         if (WARN_ON(dp_reg & DP_PORT_EN))
1449                 return;
1450
1451         ironlake_edp_panel_vdd_on(intel_dp);
1452         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1453         intel_dp_start_link_train(intel_dp);
1454         ironlake_edp_panel_on(intel_dp);
1455         ironlake_edp_panel_vdd_off(intel_dp, true);
1456         intel_dp_complete_link_train(intel_dp);
1457         ironlake_edp_backlight_on(intel_dp);
1458 }
1459
1460 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1461 {
1462         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1463
1464         if (is_cpu_edp(intel_dp))
1465                 ironlake_edp_pll_on(intel_dp);
1466 }
1467
1468 /*
1469  * Native read with retry for link status and receiver capability reads for
1470  * cases where the sink may still be asleep.
1471  */
1472 static bool
1473 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1474                                uint8_t *recv, int recv_bytes)
1475 {
1476         int ret, i;
1477
1478         /*
1479          * Sinks are *supposed* to come up within 1ms from an off state,
1480          * but we're also supposed to retry 3 times per the spec.
1481          */
1482         for (i = 0; i < 3; i++) {
1483                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1484                                                recv_bytes);
1485                 if (ret == recv_bytes)
1486                         return true;
1487                 msleep(1);
1488         }
1489
1490         return false;
1491 }
1492
1493 /*
1494  * Fetch AUX CH registers 0x202 - 0x207 which contain
1495  * link status information
1496  */
1497 static bool
1498 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1499 {
1500         return intel_dp_aux_native_read_retry(intel_dp,
1501                                               DP_LANE0_1_STATUS,
1502                                               link_status,
1503                                               DP_LINK_STATUS_SIZE);
1504 }
1505
1506 #if 0
1507 static char     *voltage_names[] = {
1508         "0.4V", "0.6V", "0.8V", "1.2V"
1509 };
1510 static char     *pre_emph_names[] = {
1511         "0dB", "3.5dB", "6dB", "9.5dB"
1512 };
1513 static char     *link_train_names[] = {
1514         "pattern 1", "pattern 2", "idle", "off"
1515 };
1516 #endif
1517
1518 /*
1519  * These are source-specific values; current Intel hardware supports
1520  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1521  */
1522
1523 static uint8_t
1524 intel_dp_voltage_max(struct intel_dp *intel_dp)
1525 {
1526         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1527
1528         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1529                 return DP_TRAIN_VOLTAGE_SWING_800;
1530         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1531                 return DP_TRAIN_VOLTAGE_SWING_1200;
1532         else
1533                 return DP_TRAIN_VOLTAGE_SWING_800;
1534 }
1535
1536 static uint8_t
1537 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1538 {
1539         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1540
1541         if (IS_HASWELL(dev)) {
1542                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1543                 case DP_TRAIN_VOLTAGE_SWING_400:
1544                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1545                 case DP_TRAIN_VOLTAGE_SWING_600:
1546                         return DP_TRAIN_PRE_EMPHASIS_6;
1547                 case DP_TRAIN_VOLTAGE_SWING_800:
1548                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1549                 case DP_TRAIN_VOLTAGE_SWING_1200:
1550                 default:
1551                         return DP_TRAIN_PRE_EMPHASIS_0;
1552                 }
1553         } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1554                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1555                 case DP_TRAIN_VOLTAGE_SWING_400:
1556                         return DP_TRAIN_PRE_EMPHASIS_6;
1557                 case DP_TRAIN_VOLTAGE_SWING_600:
1558                 case DP_TRAIN_VOLTAGE_SWING_800:
1559                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1560                 default:
1561                         return DP_TRAIN_PRE_EMPHASIS_0;
1562                 }
1563         } else {
1564                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1565                 case DP_TRAIN_VOLTAGE_SWING_400:
1566                         return DP_TRAIN_PRE_EMPHASIS_6;
1567                 case DP_TRAIN_VOLTAGE_SWING_600:
1568                         return DP_TRAIN_PRE_EMPHASIS_6;
1569                 case DP_TRAIN_VOLTAGE_SWING_800:
1570                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1571                 case DP_TRAIN_VOLTAGE_SWING_1200:
1572                 default:
1573                         return DP_TRAIN_PRE_EMPHASIS_0;
1574                 }
1575         }
1576 }
1577
1578 static void
1579 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1580 {
1581         uint8_t v = 0;
1582         uint8_t p = 0;
1583         int lane;
1584         uint8_t voltage_max;
1585         uint8_t preemph_max;
1586
1587         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1588                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1589                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1590
1591                 if (this_v > v)
1592                         v = this_v;
1593                 if (this_p > p)
1594                         p = this_p;
1595         }
1596
1597         voltage_max = intel_dp_voltage_max(intel_dp);
1598         if (v >= voltage_max)
1599                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1600
1601         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1602         if (p >= preemph_max)
1603                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1604
1605         for (lane = 0; lane < 4; lane++)
1606                 intel_dp->train_set[lane] = v | p;
1607 }
1608
1609 static uint32_t
1610 intel_gen4_signal_levels(uint8_t train_set)
1611 {
1612         uint32_t        signal_levels = 0;
1613
1614         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1615         case DP_TRAIN_VOLTAGE_SWING_400:
1616         default:
1617                 signal_levels |= DP_VOLTAGE_0_4;
1618                 break;
1619         case DP_TRAIN_VOLTAGE_SWING_600:
1620                 signal_levels |= DP_VOLTAGE_0_6;
1621                 break;
1622         case DP_TRAIN_VOLTAGE_SWING_800:
1623                 signal_levels |= DP_VOLTAGE_0_8;
1624                 break;
1625         case DP_TRAIN_VOLTAGE_SWING_1200:
1626                 signal_levels |= DP_VOLTAGE_1_2;
1627                 break;
1628         }
1629         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1630         case DP_TRAIN_PRE_EMPHASIS_0:
1631         default:
1632                 signal_levels |= DP_PRE_EMPHASIS_0;
1633                 break;
1634         case DP_TRAIN_PRE_EMPHASIS_3_5:
1635                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1636                 break;
1637         case DP_TRAIN_PRE_EMPHASIS_6:
1638                 signal_levels |= DP_PRE_EMPHASIS_6;
1639                 break;
1640         case DP_TRAIN_PRE_EMPHASIS_9_5:
1641                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1642                 break;
1643         }
1644         return signal_levels;
1645 }
1646
1647 /* Gen6's DP voltage swing and pre-emphasis control */
1648 static uint32_t
1649 intel_gen6_edp_signal_levels(uint8_t train_set)
1650 {
1651         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1652                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1653         switch (signal_levels) {
1654         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1655         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1656                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1657         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1658                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1659         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1660         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1661                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1662         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1663         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1664                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1665         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1666         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1667                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1668         default:
1669                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1670                               "0x%x\n", signal_levels);
1671                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1672         }
1673 }
1674
1675 /* Gen7's DP voltage swing and pre-emphasis control */
1676 static uint32_t
1677 intel_gen7_edp_signal_levels(uint8_t train_set)
1678 {
1679         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1680                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1681         switch (signal_levels) {
1682         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1683                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1684         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1685                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1686         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1687                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1688
1689         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1690                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1691         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1692                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1693
1694         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1695                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1696         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1697                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1698
1699         default:
1700                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1701                               "0x%x\n", signal_levels);
1702                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1703         }
1704 }
1705
1706 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1707 static uint32_t
1708 intel_hsw_signal_levels(uint8_t train_set)
1709 {
1710         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1711                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1712         switch (signal_levels) {
1713         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1714                 return DDI_BUF_EMP_400MV_0DB_HSW;
1715         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1716                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1717         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1718                 return DDI_BUF_EMP_400MV_6DB_HSW;
1719         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1720                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1721
1722         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1723                 return DDI_BUF_EMP_600MV_0DB_HSW;
1724         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1725                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1726         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1727                 return DDI_BUF_EMP_600MV_6DB_HSW;
1728
1729         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1730                 return DDI_BUF_EMP_800MV_0DB_HSW;
1731         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1732                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1733         default:
1734                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1735                               "0x%x\n", signal_levels);
1736                 return DDI_BUF_EMP_400MV_0DB_HSW;
1737         }
1738 }
1739
1740 /* Properly updates "DP" with the correct signal levels. */
1741 static void
1742 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1743 {
1744         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1745         struct drm_device *dev = intel_dig_port->base.base.dev;
1746         uint32_t signal_levels, mask;
1747         uint8_t train_set = intel_dp->train_set[0];
1748
1749         if (IS_HASWELL(dev)) {
1750                 signal_levels = intel_hsw_signal_levels(train_set);
1751                 mask = DDI_BUF_EMP_MASK;
1752         } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1753                 signal_levels = intel_gen7_edp_signal_levels(train_set);
1754                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1755         } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1756                 signal_levels = intel_gen6_edp_signal_levels(train_set);
1757                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1758         } else {
1759                 signal_levels = intel_gen4_signal_levels(train_set);
1760                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1761         }
1762
1763         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1764
1765         *DP = (*DP & ~mask) | signal_levels;
1766 }
1767
1768 static bool
1769 intel_dp_set_link_train(struct intel_dp *intel_dp,
1770                         uint32_t dp_reg_value,
1771                         uint8_t dp_train_pat)
1772 {
1773         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1774         struct drm_device *dev = intel_dig_port->base.base.dev;
1775         struct drm_i915_private *dev_priv = dev->dev_private;
1776         enum port port = intel_dig_port->port;
1777         int ret;
1778         uint32_t temp;
1779
1780         if (IS_HASWELL(dev)) {
1781                 temp = I915_READ(DP_TP_CTL(port));
1782
1783                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1784                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1785                 else
1786                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1787
1788                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1789                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1790                 case DP_TRAINING_PATTERN_DISABLE:
1791
1792                         if (port != PORT_A) {
1793                                 temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1794                                 I915_WRITE(DP_TP_CTL(port), temp);
1795
1796                                 if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1797                                               DP_TP_STATUS_IDLE_DONE), 1))
1798                                         DRM_ERROR("Timed out waiting for DP idle patterns\n");
1799
1800                                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1801                         }
1802
1803                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1804
1805                         break;
1806                 case DP_TRAINING_PATTERN_1:
1807                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1808                         break;
1809                 case DP_TRAINING_PATTERN_2:
1810                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1811                         break;
1812                 case DP_TRAINING_PATTERN_3:
1813                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1814                         break;
1815                 }
1816                 I915_WRITE(DP_TP_CTL(port), temp);
1817
1818         } else if (HAS_PCH_CPT(dev) &&
1819                    (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1820                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1821
1822                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1823                 case DP_TRAINING_PATTERN_DISABLE:
1824                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1825                         break;
1826                 case DP_TRAINING_PATTERN_1:
1827                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1828                         break;
1829                 case DP_TRAINING_PATTERN_2:
1830                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1831                         break;
1832                 case DP_TRAINING_PATTERN_3:
1833                         DRM_ERROR("DP training pattern 3 not supported\n");
1834                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1835                         break;
1836                 }
1837
1838         } else {
1839                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1840
1841                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1842                 case DP_TRAINING_PATTERN_DISABLE:
1843                         dp_reg_value |= DP_LINK_TRAIN_OFF;
1844                         break;
1845                 case DP_TRAINING_PATTERN_1:
1846                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1847                         break;
1848                 case DP_TRAINING_PATTERN_2:
1849                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1850                         break;
1851                 case DP_TRAINING_PATTERN_3:
1852                         DRM_ERROR("DP training pattern 3 not supported\n");
1853                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1854                         break;
1855                 }
1856         }
1857
1858         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1859         POSTING_READ(intel_dp->output_reg);
1860
1861         intel_dp_aux_native_write_1(intel_dp,
1862                                     DP_TRAINING_PATTERN_SET,
1863                                     dp_train_pat);
1864
1865         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1866             DP_TRAINING_PATTERN_DISABLE) {
1867                 ret = intel_dp_aux_native_write(intel_dp,
1868                                                 DP_TRAINING_LANE0_SET,
1869                                                 intel_dp->train_set,
1870                                                 intel_dp->lane_count);
1871                 if (ret != intel_dp->lane_count)
1872                         return false;
1873         }
1874
1875         return true;
1876 }
1877
1878 /* Enable corresponding port and start training pattern 1 */
1879 void
1880 intel_dp_start_link_train(struct intel_dp *intel_dp)
1881 {
1882         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1883         struct drm_device *dev = encoder->dev;
1884         int i;
1885         uint8_t voltage;
1886         bool clock_recovery = false;
1887         int voltage_tries, loop_tries;
1888         uint32_t DP = intel_dp->DP;
1889
1890         if (HAS_DDI(dev))
1891                 intel_ddi_prepare_link_retrain(encoder);
1892
1893         /* Write the link configuration data */
1894         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1895                                   intel_dp->link_configuration,
1896                                   DP_LINK_CONFIGURATION_SIZE);
1897
1898         DP |= DP_PORT_EN;
1899
1900         memset(intel_dp->train_set, 0, 4);
1901         voltage = 0xff;
1902         voltage_tries = 0;
1903         loop_tries = 0;
1904         clock_recovery = false;
1905         for (;;) {
1906                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1907                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1908
1909                 intel_dp_set_signal_levels(intel_dp, &DP);
1910
1911                 /* Set training pattern 1 */
1912                 if (!intel_dp_set_link_train(intel_dp, DP,
1913                                              DP_TRAINING_PATTERN_1 |
1914                                              DP_LINK_SCRAMBLING_DISABLE))
1915                         break;
1916
1917                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1918                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1919                         DRM_ERROR("failed to get link status\n");
1920                         break;
1921                 }
1922
1923                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1924                         DRM_DEBUG_KMS("clock recovery OK\n");
1925                         clock_recovery = true;
1926                         break;
1927                 }
1928
1929                 /* Check to see if we've tried the max voltage */
1930                 for (i = 0; i < intel_dp->lane_count; i++)
1931                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1932                                 break;
1933                 if (i == intel_dp->lane_count && voltage_tries == 5) {
1934                         ++loop_tries;
1935                         if (loop_tries == 5) {
1936                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1937                                 break;
1938                         }
1939                         memset(intel_dp->train_set, 0, 4);
1940                         voltage_tries = 0;
1941                         continue;
1942                 }
1943
1944                 /* Check to see if we've tried the same voltage 5 times */
1945                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1946                         ++voltage_tries;
1947                         if (voltage_tries == 5) {
1948                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1949                                 break;
1950                         }
1951                 } else
1952                         voltage_tries = 0;
1953                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1954
1955                 /* Compute new intel_dp->train_set as requested by target */
1956                 intel_get_adjust_train(intel_dp, link_status);
1957         }
1958
1959         intel_dp->DP = DP;
1960 }
1961
1962 void
1963 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1964 {
1965         bool channel_eq = false;
1966         int tries, cr_tries;
1967         uint32_t DP = intel_dp->DP;
1968
1969         /* channel equalization */
1970         tries = 0;
1971         cr_tries = 0;
1972         channel_eq = false;
1973         for (;;) {
1974                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1975
1976                 if (cr_tries > 5) {
1977                         DRM_ERROR("failed to train DP, aborting\n");
1978                         intel_dp_link_down(intel_dp);
1979                         break;
1980                 }
1981
1982                 intel_dp_set_signal_levels(intel_dp, &DP);
1983
1984                 /* channel eq pattern */
1985                 if (!intel_dp_set_link_train(intel_dp, DP,
1986                                              DP_TRAINING_PATTERN_2 |
1987                                              DP_LINK_SCRAMBLING_DISABLE))
1988                         break;
1989
1990                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1991                 if (!intel_dp_get_link_status(intel_dp, link_status))
1992                         break;
1993
1994                 /* Make sure clock is still ok */
1995                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1996                         intel_dp_start_link_train(intel_dp);
1997                         cr_tries++;
1998                         continue;
1999                 }
2000
2001                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2002                         channel_eq = true;
2003                         break;
2004                 }
2005
2006                 /* Try 5 times, then try clock recovery if that fails */
2007                 if (tries > 5) {
2008                         intel_dp_link_down(intel_dp);
2009                         intel_dp_start_link_train(intel_dp);
2010                         tries = 0;
2011                         cr_tries++;
2012                         continue;
2013                 }
2014
2015                 /* Compute new intel_dp->train_set as requested by target */
2016                 intel_get_adjust_train(intel_dp, link_status);
2017                 ++tries;
2018         }
2019
2020         if (channel_eq)
2021                 DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
2022
2023         intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
2024 }
2025
2026 static void
2027 intel_dp_link_down(struct intel_dp *intel_dp)
2028 {
2029         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2030         struct drm_device *dev = intel_dig_port->base.base.dev;
2031         struct drm_i915_private *dev_priv = dev->dev_private;
2032         struct intel_crtc *intel_crtc =
2033                 to_intel_crtc(intel_dig_port->base.base.crtc);
2034         uint32_t DP = intel_dp->DP;
2035
2036         /*
2037          * DDI code has a strict mode set sequence and we should try to respect
2038          * it, otherwise we might hang the machine in many different ways. So we
2039          * really should be disabling the port only on a complete crtc_disable
2040          * sequence. This function is just called under two conditions on DDI
2041          * code:
2042          * - Link train failed while doing crtc_enable, and on this case we
2043          *   really should respect the mode set sequence and wait for a
2044          *   crtc_disable.
2045          * - Someone turned the monitor off and intel_dp_check_link_status
2046          *   called us. We don't need to disable the whole port on this case, so
2047          *   when someone turns the monitor on again,
2048          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2049          *   train.
2050          */
2051         if (HAS_DDI(dev))
2052                 return;
2053
2054         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2055                 return;
2056
2057         DRM_DEBUG_KMS("\n");
2058
2059         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2060                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2061                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2062         } else {
2063                 DP &= ~DP_LINK_TRAIN_MASK;
2064                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2065         }
2066         POSTING_READ(intel_dp->output_reg);
2067
2068         /* We don't really know why we're doing this */
2069         intel_wait_for_vblank(dev, intel_crtc->pipe);
2070
2071         if (HAS_PCH_IBX(dev) &&
2072             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2073                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2074
2075                 /* Hardware workaround: leaving our transcoder select
2076                  * set to transcoder B while it's off will prevent the
2077                  * corresponding HDMI output on transcoder A.
2078                  *
2079                  * Combine this with another hardware workaround:
2080                  * transcoder select bit can only be cleared while the
2081                  * port is enabled.
2082                  */
2083                 DP &= ~DP_PIPEB_SELECT;
2084                 I915_WRITE(intel_dp->output_reg, DP);
2085
2086                 /* Changes to enable or select take place the vblank
2087                  * after being written.
2088                  */
2089                 if (WARN_ON(crtc == NULL)) {
2090                         /* We should never try to disable a port without a crtc
2091                          * attached. For paranoia keep the code around for a
2092                          * bit. */
2093                         POSTING_READ(intel_dp->output_reg);
2094                         msleep(50);
2095                 } else
2096                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2097         }
2098
2099         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2100         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2101         POSTING_READ(intel_dp->output_reg);
2102         msleep(intel_dp->panel_power_down_delay);
2103 }
2104
2105 static bool
2106 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2107 {
2108         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2109
2110         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2111                                            sizeof(intel_dp->dpcd)) == 0)
2112                 return false; /* aux transfer failed */
2113
2114         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2115                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2116         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2117
2118         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2119                 return false; /* DPCD not present */
2120
2121         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2122               DP_DWN_STRM_PORT_PRESENT))
2123                 return true; /* native DP sink */
2124
2125         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2126                 return true; /* no per-port downstream info */
2127
2128         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2129                                            intel_dp->downstream_ports,
2130                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2131                 return false; /* downstream port status fetch failed */
2132
2133         return true;
2134 }
2135
2136 static void
2137 intel_dp_probe_oui(struct intel_dp *intel_dp)
2138 {
2139         u8 buf[3];
2140
2141         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2142                 return;
2143
2144         ironlake_edp_panel_vdd_on(intel_dp);
2145
2146         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2147                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2148                               buf[0], buf[1], buf[2]);
2149
2150         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2151                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2152                               buf[0], buf[1], buf[2]);
2153
2154         ironlake_edp_panel_vdd_off(intel_dp, false);
2155 }
2156
2157 static bool
2158 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2159 {
2160         int ret;
2161
2162         ret = intel_dp_aux_native_read_retry(intel_dp,
2163                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2164                                              sink_irq_vector, 1);
2165         if (!ret)
2166                 return false;
2167
2168         return true;
2169 }
2170
2171 static void
2172 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2173 {
2174         /* NAK by default */
2175         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2176 }
2177
2178 /*
2179  * According to DP spec
2180  * 5.1.2:
2181  *  1. Read DPCD
2182  *  2. Configure link according to Receiver Capabilities
2183  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2184  *  4. Check link status on receipt of hot-plug interrupt
2185  */
2186
2187 void
2188 intel_dp_check_link_status(struct intel_dp *intel_dp)
2189 {
2190         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2191         u8 sink_irq_vector;
2192         u8 link_status[DP_LINK_STATUS_SIZE];
2193
2194         if (!intel_encoder->connectors_active)
2195                 return;
2196
2197         if (WARN_ON(!intel_encoder->base.crtc))
2198                 return;
2199
2200         /* Try to read receiver status if the link appears to be up */
2201         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2202                 intel_dp_link_down(intel_dp);
2203                 return;
2204         }
2205
2206         /* Now read the DPCD to see if it's actually running */
2207         if (!intel_dp_get_dpcd(intel_dp)) {
2208                 intel_dp_link_down(intel_dp);
2209                 return;
2210         }
2211
2212         /* Try to read the source of the interrupt */
2213         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2214             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2215                 /* Clear interrupt source */
2216                 intel_dp_aux_native_write_1(intel_dp,
2217                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2218                                             sink_irq_vector);
2219
2220                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2221                         intel_dp_handle_test_request(intel_dp);
2222                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2223                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2224         }
2225
2226         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2227                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2228                               drm_get_encoder_name(&intel_encoder->base));
2229                 intel_dp_start_link_train(intel_dp);
2230                 intel_dp_complete_link_train(intel_dp);
2231         }
2232 }
2233
2234 /* XXX this is probably wrong for multiple downstream ports */
2235 static enum drm_connector_status
2236 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2237 {
2238         uint8_t *dpcd = intel_dp->dpcd;
2239         bool hpd;
2240         uint8_t type;
2241
2242         if (!intel_dp_get_dpcd(intel_dp))
2243                 return connector_status_disconnected;
2244
2245         /* if there's no downstream port, we're done */
2246         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2247                 return connector_status_connected;
2248
2249         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2250         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2251         if (hpd) {
2252                 uint8_t reg;
2253                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2254                                                     &reg, 1))
2255                         return connector_status_unknown;
2256                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2257                                               : connector_status_disconnected;
2258         }
2259
2260         /* If no HPD, poke DDC gently */
2261         if (drm_probe_ddc(&intel_dp->adapter))
2262                 return connector_status_connected;
2263
2264         /* Well we tried, say unknown for unreliable port types */
2265         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2266         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2267                 return connector_status_unknown;
2268
2269         /* Anything else is out of spec, warn and ignore */
2270         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2271         return connector_status_disconnected;
2272 }
2273
2274 static enum drm_connector_status
2275 ironlake_dp_detect(struct intel_dp *intel_dp)
2276 {
2277         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2278         struct drm_i915_private *dev_priv = dev->dev_private;
2279         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2280         enum drm_connector_status status;
2281
2282         /* Can't disconnect eDP, but you can close the lid... */
2283         if (is_edp(intel_dp)) {
2284                 status = intel_panel_detect(dev);
2285                 if (status == connector_status_unknown)
2286                         status = connector_status_connected;
2287                 return status;
2288         }
2289
2290         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2291                 return connector_status_disconnected;
2292
2293         return intel_dp_detect_dpcd(intel_dp);
2294 }
2295
2296 static enum drm_connector_status
2297 g4x_dp_detect(struct intel_dp *intel_dp)
2298 {
2299         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2300         struct drm_i915_private *dev_priv = dev->dev_private;
2301         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2302         uint32_t bit;
2303
2304         switch (intel_dig_port->port) {
2305         case PORT_B:
2306                 bit = PORTB_HOTPLUG_LIVE_STATUS;
2307                 break;
2308         case PORT_C:
2309                 bit = PORTC_HOTPLUG_LIVE_STATUS;
2310                 break;
2311         case PORT_D:
2312                 bit = PORTD_HOTPLUG_LIVE_STATUS;
2313                 break;
2314         default:
2315                 return connector_status_unknown;
2316         }
2317
2318         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2319                 return connector_status_disconnected;
2320
2321         return intel_dp_detect_dpcd(intel_dp);
2322 }
2323
2324 static struct edid *
2325 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2326 {
2327         struct intel_connector *intel_connector = to_intel_connector(connector);
2328
2329         /* use cached edid if we have one */
2330         if (intel_connector->edid) {
2331                 struct edid *edid;
2332                 int size;
2333
2334                 /* invalid edid */
2335                 if (IS_ERR(intel_connector->edid))
2336                         return NULL;
2337
2338                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2339                 edid = kmalloc(size, GFP_KERNEL);
2340                 if (!edid)
2341                         return NULL;
2342
2343                 memcpy(edid, intel_connector->edid, size);
2344                 return edid;
2345         }
2346
2347         return drm_get_edid(connector, adapter);
2348 }
2349
2350 static int
2351 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2352 {
2353         struct intel_connector *intel_connector = to_intel_connector(connector);
2354
2355         /* use cached edid if we have one */
2356         if (intel_connector->edid) {
2357                 /* invalid edid */
2358                 if (IS_ERR(intel_connector->edid))
2359                         return 0;
2360
2361                 return intel_connector_update_modes(connector,
2362                                                     intel_connector->edid);
2363         }
2364
2365         return intel_ddc_get_modes(connector, adapter);
2366 }
2367
2368 static enum drm_connector_status
2369 intel_dp_detect(struct drm_connector *connector, bool force)
2370 {
2371         struct intel_dp *intel_dp = intel_attached_dp(connector);
2372         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2373         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2374         struct drm_device *dev = connector->dev;
2375         enum drm_connector_status status;
2376         struct edid *edid = NULL;
2377
2378         intel_dp->has_audio = false;
2379
2380         if (HAS_PCH_SPLIT(dev))
2381                 status = ironlake_dp_detect(intel_dp);
2382         else
2383                 status = g4x_dp_detect(intel_dp);
2384
2385         if (status != connector_status_connected)
2386                 return status;
2387
2388         intel_dp_probe_oui(intel_dp);
2389
2390         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2391                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2392         } else {
2393                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2394                 if (edid) {
2395                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2396                         kfree(edid);
2397                 }
2398         }
2399
2400         if (intel_encoder->type != INTEL_OUTPUT_EDP)
2401                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2402         return connector_status_connected;
2403 }
2404
2405 static int intel_dp_get_modes(struct drm_connector *connector)
2406 {
2407         struct intel_dp *intel_dp = intel_attached_dp(connector);
2408         struct intel_connector *intel_connector = to_intel_connector(connector);
2409         struct drm_device *dev = connector->dev;
2410         int ret;
2411
2412         /* We should parse the EDID data and find out if it has an audio sink
2413          */
2414
2415         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2416         if (ret)
2417                 return ret;
2418
2419         /* if eDP has no EDID, fall back to fixed mode */
2420         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2421                 struct drm_display_mode *mode;
2422                 mode = drm_mode_duplicate(dev,
2423                                           intel_connector->panel.fixed_mode);
2424                 if (mode) {
2425                         drm_mode_probed_add(connector, mode);
2426                         return 1;
2427                 }
2428         }
2429         return 0;
2430 }
2431
2432 static bool
2433 intel_dp_detect_audio(struct drm_connector *connector)
2434 {
2435         struct intel_dp *intel_dp = intel_attached_dp(connector);
2436         struct edid *edid;
2437         bool has_audio = false;
2438
2439         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2440         if (edid) {
2441                 has_audio = drm_detect_monitor_audio(edid);
2442                 kfree(edid);
2443         }
2444
2445         return has_audio;
2446 }
2447
2448 static int
2449 intel_dp_set_property(struct drm_connector *connector,
2450                       struct drm_property *property,
2451                       uint64_t val)
2452 {
2453         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2454         struct intel_connector *intel_connector = to_intel_connector(connector);
2455         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2456         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2457         int ret;
2458
2459         ret = drm_object_property_set_value(&connector->base, property, val);
2460         if (ret)
2461                 return ret;
2462
2463         if (property == dev_priv->force_audio_property) {
2464                 int i = val;
2465                 bool has_audio;
2466
2467                 if (i == intel_dp->force_audio)
2468                         return 0;
2469
2470                 intel_dp->force_audio = i;
2471
2472                 if (i == HDMI_AUDIO_AUTO)
2473                         has_audio = intel_dp_detect_audio(connector);
2474                 else
2475                         has_audio = (i == HDMI_AUDIO_ON);
2476
2477                 if (has_audio == intel_dp->has_audio)
2478                         return 0;
2479
2480                 intel_dp->has_audio = has_audio;
2481                 goto done;
2482         }
2483
2484         if (property == dev_priv->broadcast_rgb_property) {
2485                 switch (val) {
2486                 case INTEL_BROADCAST_RGB_AUTO:
2487                         intel_dp->color_range_auto = true;
2488                         break;
2489                 case INTEL_BROADCAST_RGB_FULL:
2490                         intel_dp->color_range_auto = false;
2491                         intel_dp->color_range = 0;
2492                         break;
2493                 case INTEL_BROADCAST_RGB_LIMITED:
2494                         intel_dp->color_range_auto = false;
2495                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
2496                         break;
2497                 default:
2498                         return -EINVAL;
2499                 }
2500                 goto done;
2501         }
2502
2503         if (is_edp(intel_dp) &&
2504             property == connector->dev->mode_config.scaling_mode_property) {
2505                 if (val == DRM_MODE_SCALE_NONE) {
2506                         DRM_DEBUG_KMS("no scaling not supported\n");
2507                         return -EINVAL;
2508                 }
2509
2510                 if (intel_connector->panel.fitting_mode == val) {
2511                         /* the eDP scaling property is not changed */
2512                         return 0;
2513                 }
2514                 intel_connector->panel.fitting_mode = val;
2515
2516                 goto done;
2517         }
2518
2519         return -EINVAL;
2520
2521 done:
2522         if (intel_encoder->base.crtc)
2523                 intel_crtc_restore_mode(intel_encoder->base.crtc);
2524
2525         return 0;
2526 }
2527
2528 static void
2529 intel_dp_destroy(struct drm_connector *connector)
2530 {
2531         struct drm_device *dev = connector->dev;
2532         struct intel_dp *intel_dp = intel_attached_dp(connector);
2533         struct intel_connector *intel_connector = to_intel_connector(connector);
2534
2535         if (!IS_ERR_OR_NULL(intel_connector->edid))
2536                 kfree(intel_connector->edid);
2537
2538         if (is_edp(intel_dp)) {
2539                 intel_panel_destroy_backlight(dev);
2540                 intel_panel_fini(&intel_connector->panel);
2541         }
2542
2543         drm_sysfs_connector_remove(connector);
2544         drm_connector_cleanup(connector);
2545         kfree(connector);
2546 }
2547
2548 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2549 {
2550         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2551         struct intel_dp *intel_dp = &intel_dig_port->dp;
2552
2553         i2c_del_adapter(&intel_dp->adapter);
2554         drm_encoder_cleanup(encoder);
2555         if (is_edp(intel_dp)) {
2556                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2557                 ironlake_panel_vdd_off_sync(intel_dp);
2558         }
2559         kfree(intel_dig_port);
2560 }
2561
2562 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2563         .mode_fixup = intel_dp_mode_fixup,
2564         .mode_set = intel_dp_mode_set,
2565 };
2566
2567 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2568         .dpms = intel_connector_dpms,
2569         .detect = intel_dp_detect,
2570         .fill_modes = drm_helper_probe_single_connector_modes,
2571         .set_property = intel_dp_set_property,
2572         .destroy = intel_dp_destroy,
2573 };
2574
2575 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2576         .get_modes = intel_dp_get_modes,
2577         .mode_valid = intel_dp_mode_valid,
2578         .best_encoder = intel_best_encoder,
2579 };
2580
2581 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2582         .destroy = intel_dp_encoder_destroy,
2583 };
2584
2585 static void
2586 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2587 {
2588         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2589
2590         intel_dp_check_link_status(intel_dp);
2591 }
2592
2593 /* Return which DP Port should be selected for Transcoder DP control */
2594 int
2595 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2596 {
2597         struct drm_device *dev = crtc->dev;
2598         struct intel_encoder *intel_encoder;
2599         struct intel_dp *intel_dp;
2600
2601         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2602                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
2603
2604                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2605                     intel_encoder->type == INTEL_OUTPUT_EDP)
2606                         return intel_dp->output_reg;
2607         }
2608
2609         return -1;
2610 }
2611
2612 /* check the VBT to see whether the eDP is on DP-D port */
2613 bool intel_dpd_is_edp(struct drm_device *dev)
2614 {
2615         struct drm_i915_private *dev_priv = dev->dev_private;
2616         struct child_device_config *p_child;
2617         int i;
2618
2619         if (!dev_priv->child_dev_num)
2620                 return false;
2621
2622         for (i = 0; i < dev_priv->child_dev_num; i++) {
2623                 p_child = dev_priv->child_dev + i;
2624
2625                 if (p_child->dvo_port == PORT_IDPD &&
2626                     p_child->device_type == DEVICE_TYPE_eDP)
2627                         return true;
2628         }
2629         return false;
2630 }
2631
2632 static void
2633 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2634 {
2635         struct intel_connector *intel_connector = to_intel_connector(connector);
2636
2637         intel_attach_force_audio_property(connector);
2638         intel_attach_broadcast_rgb_property(connector);
2639         intel_dp->color_range_auto = true;
2640
2641         if (is_edp(intel_dp)) {
2642                 drm_mode_create_scaling_mode_property(connector->dev);
2643                 drm_object_attach_property(
2644                         &connector->base,
2645                         connector->dev->mode_config.scaling_mode_property,
2646                         DRM_MODE_SCALE_ASPECT);
2647                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2648         }
2649 }
2650
2651 static void
2652 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2653                                     struct intel_dp *intel_dp,
2654                                     struct edp_power_seq *out)
2655 {
2656         struct drm_i915_private *dev_priv = dev->dev_private;
2657         struct edp_power_seq cur, vbt, spec, final;
2658         u32 pp_on, pp_off, pp_div, pp;
2659
2660         /* Workaround: Need to write PP_CONTROL with the unlock key as
2661          * the very first thing. */
2662         pp = ironlake_get_pp_control(dev_priv);
2663         I915_WRITE(PCH_PP_CONTROL, pp);
2664
2665         pp_on = I915_READ(PCH_PP_ON_DELAYS);
2666         pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2667         pp_div = I915_READ(PCH_PP_DIVISOR);
2668
2669         /* Pull timing values out of registers */
2670         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2671                 PANEL_POWER_UP_DELAY_SHIFT;
2672
2673         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2674                 PANEL_LIGHT_ON_DELAY_SHIFT;
2675
2676         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2677                 PANEL_LIGHT_OFF_DELAY_SHIFT;
2678
2679         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2680                 PANEL_POWER_DOWN_DELAY_SHIFT;
2681
2682         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2683                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2684
2685         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2686                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2687
2688         vbt = dev_priv->edp.pps;
2689
2690         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2691          * our hw here, which are all in 100usec. */
2692         spec.t1_t3 = 210 * 10;
2693         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2694         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2695         spec.t10 = 500 * 10;
2696         /* This one is special and actually in units of 100ms, but zero
2697          * based in the hw (so we need to add 100 ms). But the sw vbt
2698          * table multiplies it with 1000 to make it in units of 100usec,
2699          * too. */
2700         spec.t11_t12 = (510 + 100) * 10;
2701
2702         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2703                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2704
2705         /* Use the max of the register settings and vbt. If both are
2706          * unset, fall back to the spec limits. */
2707 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
2708                                        spec.field : \
2709                                        max(cur.field, vbt.field))
2710         assign_final(t1_t3);
2711         assign_final(t8);
2712         assign_final(t9);
2713         assign_final(t10);
2714         assign_final(t11_t12);
2715 #undef assign_final
2716
2717 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
2718         intel_dp->panel_power_up_delay = get_delay(t1_t3);
2719         intel_dp->backlight_on_delay = get_delay(t8);
2720         intel_dp->backlight_off_delay = get_delay(t9);
2721         intel_dp->panel_power_down_delay = get_delay(t10);
2722         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2723 #undef get_delay
2724
2725         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2726                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2727                       intel_dp->panel_power_cycle_delay);
2728
2729         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2730                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2731
2732         if (out)
2733                 *out = final;
2734 }
2735
2736 static void
2737 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2738                                               struct intel_dp *intel_dp,
2739                                               struct edp_power_seq *seq)
2740 {
2741         struct drm_i915_private *dev_priv = dev->dev_private;
2742         u32 pp_on, pp_off, pp_div;
2743
2744         /* And finally store the new values in the power sequencer. */
2745         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2746                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2747         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2748                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2749         /* Compute the divisor for the pp clock, simply match the Bspec
2750          * formula. */
2751         pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2752                         << PP_REFERENCE_DIVIDER_SHIFT;
2753         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2754                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
2755
2756         /* Haswell doesn't have any port selection bits for the panel
2757          * power sequencer any more. */
2758         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2759                 if (is_cpu_edp(intel_dp))
2760                         pp_on |= PANEL_POWER_PORT_DP_A;
2761                 else
2762                         pp_on |= PANEL_POWER_PORT_DP_D;
2763         }
2764
2765         I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2766         I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2767         I915_WRITE(PCH_PP_DIVISOR, pp_div);
2768
2769         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2770                       I915_READ(PCH_PP_ON_DELAYS),
2771                       I915_READ(PCH_PP_OFF_DELAYS),
2772                       I915_READ(PCH_PP_DIVISOR));
2773 }
2774
2775 void
2776 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2777                         struct intel_connector *intel_connector)
2778 {
2779         struct drm_connector *connector = &intel_connector->base;
2780         struct intel_dp *intel_dp = &intel_dig_port->dp;
2781         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2782         struct drm_device *dev = intel_encoder->base.dev;
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784         struct drm_display_mode *fixed_mode = NULL;
2785         struct edp_power_seq power_seq = { 0 };
2786         enum port port = intel_dig_port->port;
2787         const char *name = NULL;
2788         int type;
2789
2790         /* Preserve the current hw state. */
2791         intel_dp->DP = I915_READ(intel_dp->output_reg);
2792         intel_dp->attached_connector = intel_connector;
2793
2794         if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2795                 if (intel_dpd_is_edp(dev))
2796                         intel_dp->is_pch_edp = true;
2797
2798         /*
2799          * FIXME : We need to initialize built-in panels before external panels.
2800          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2801          */
2802         if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2803                 type = DRM_MODE_CONNECTOR_eDP;
2804                 intel_encoder->type = INTEL_OUTPUT_EDP;
2805         } else if (port == PORT_A || is_pch_edp(intel_dp)) {
2806                 type = DRM_MODE_CONNECTOR_eDP;
2807                 intel_encoder->type = INTEL_OUTPUT_EDP;
2808         } else {
2809                 /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2810                  * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2811                  * rewrite it.
2812                  */
2813                 type = DRM_MODE_CONNECTOR_DisplayPort;
2814         }
2815
2816         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2817         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2818
2819         connector->polled = DRM_CONNECTOR_POLL_HPD;
2820         connector->interlace_allowed = true;
2821         connector->doublescan_allowed = 0;
2822
2823         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2824                           ironlake_panel_vdd_work);
2825
2826         intel_connector_attach_encoder(intel_connector, intel_encoder);
2827         drm_sysfs_connector_add(connector);
2828
2829         if (HAS_DDI(dev))
2830                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2831         else
2832                 intel_connector->get_hw_state = intel_connector_get_hw_state;
2833
2834
2835         /* Set up the DDC bus. */
2836         switch (port) {
2837         case PORT_A:
2838                 name = "DPDDC-A";
2839                 break;
2840         case PORT_B:
2841                 dev_priv->hotplug_supported_mask |= PORTB_HOTPLUG_INT_STATUS;
2842                 name = "DPDDC-B";
2843                 break;
2844         case PORT_C:
2845                 dev_priv->hotplug_supported_mask |= PORTC_HOTPLUG_INT_STATUS;
2846                 name = "DPDDC-C";
2847                 break;
2848         case PORT_D:
2849                 dev_priv->hotplug_supported_mask |= PORTD_HOTPLUG_INT_STATUS;
2850                 name = "DPDDC-D";
2851                 break;
2852         default:
2853                 WARN(1, "Invalid port %c\n", port_name(port));
2854                 break;
2855         }
2856
2857         if (is_edp(intel_dp))
2858                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2859
2860         intel_dp_i2c_init(intel_dp, intel_connector, name);
2861
2862         /* Cache DPCD and EDID for edp. */
2863         if (is_edp(intel_dp)) {
2864                 bool ret;
2865                 struct drm_display_mode *scan;
2866                 struct edid *edid;
2867
2868                 ironlake_edp_panel_vdd_on(intel_dp);
2869                 ret = intel_dp_get_dpcd(intel_dp);
2870                 ironlake_edp_panel_vdd_off(intel_dp, false);
2871
2872                 if (ret) {
2873                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2874                                 dev_priv->no_aux_handshake =
2875                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2876                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2877                 } else {
2878                         /* if this fails, presume the device is a ghost */
2879                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2880                         intel_dp_encoder_destroy(&intel_encoder->base);
2881                         intel_dp_destroy(connector);
2882                         return;
2883                 }
2884
2885                 /* We now know it's not a ghost, init power sequence regs. */
2886                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2887                                                               &power_seq);
2888
2889                 ironlake_edp_panel_vdd_on(intel_dp);
2890                 edid = drm_get_edid(connector, &intel_dp->adapter);
2891                 if (edid) {
2892                         if (drm_add_edid_modes(connector, edid)) {
2893                                 drm_mode_connector_update_edid_property(connector, edid);
2894                                 drm_edid_to_eld(connector, edid);
2895                         } else {
2896                                 kfree(edid);
2897                                 edid = ERR_PTR(-EINVAL);
2898                         }
2899                 } else {
2900                         edid = ERR_PTR(-ENOENT);
2901                 }
2902                 intel_connector->edid = edid;
2903
2904                 /* prefer fixed mode from EDID if available */
2905                 list_for_each_entry(scan, &connector->probed_modes, head) {
2906                         if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2907                                 fixed_mode = drm_mode_duplicate(dev, scan);
2908                                 break;
2909                         }
2910                 }
2911
2912                 /* fallback to VBT if available for eDP */
2913                 if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2914                         fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2915                         if (fixed_mode)
2916                                 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2917                 }
2918
2919                 ironlake_edp_panel_vdd_off(intel_dp, false);
2920         }
2921
2922         if (is_edp(intel_dp)) {
2923                 intel_panel_init(&intel_connector->panel, fixed_mode);
2924                 intel_panel_setup_backlight(connector);
2925         }
2926
2927         intel_dp_add_properties(intel_dp, connector);
2928
2929         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2930          * 0xd.  Failure to do so will result in spurious interrupts being
2931          * generated on the port when a cable is not attached.
2932          */
2933         if (IS_G4X(dev) && !IS_GM45(dev)) {
2934                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2935                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2936         }
2937 }
2938
2939 void
2940 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2941 {
2942         struct intel_digital_port *intel_dig_port;
2943         struct intel_encoder *intel_encoder;
2944         struct drm_encoder *encoder;
2945         struct intel_connector *intel_connector;
2946
2947         intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2948         if (!intel_dig_port)
2949                 return;
2950
2951         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2952         if (!intel_connector) {
2953                 kfree(intel_dig_port);
2954                 return;
2955         }
2956
2957         intel_encoder = &intel_dig_port->base;
2958         encoder = &intel_encoder->base;
2959
2960         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2961                          DRM_MODE_ENCODER_TMDS);
2962         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2963
2964         intel_encoder->enable = intel_enable_dp;
2965         intel_encoder->pre_enable = intel_pre_enable_dp;
2966         intel_encoder->disable = intel_disable_dp;
2967         intel_encoder->post_disable = intel_post_disable_dp;
2968         intel_encoder->get_hw_state = intel_dp_get_hw_state;
2969
2970         intel_dig_port->port = port;
2971         intel_dig_port->dp.output_reg = output_reg;
2972
2973         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2974         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2975         intel_encoder->cloneable = false;
2976         intel_encoder->hot_plug = intel_dp_hot_plug;
2977
2978         intel_dp_init_connector(intel_dig_port, intel_connector);
2979 }