]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Don't copy sink rates either
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 struct dp_link_dpll {
45         int link_bw;
46         struct dpll dpll;
47 };
48
49 static const struct dp_link_dpll gen4_dpll[] = {
50         { DP_LINK_BW_1_62,
51                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
52         { DP_LINK_BW_2_7,
53                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
54 };
55
56 static const struct dp_link_dpll pch_dpll[] = {
57         { DP_LINK_BW_1_62,
58                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
59         { DP_LINK_BW_2_7,
60                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
61 };
62
63 static const struct dp_link_dpll vlv_dpll[] = {
64         { DP_LINK_BW_1_62,
65                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
66         { DP_LINK_BW_2_7,
67                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
68 };
69
70 /*
71  * CHV supports eDP 1.4 that have  more link rates.
72  * Below only provides the fixed rate but exclude variable rate.
73  */
74 static const struct dp_link_dpll chv_dpll[] = {
75         /*
76          * CHV requires to program fractional division for m2.
77          * m2 is stored in fixed point format using formula below
78          * (m2_int << 22) | m2_fraction
79          */
80         { DP_LINK_BW_1_62,      /* m2_int = 32, m2_fraction = 1677722 */
81                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
82         { DP_LINK_BW_2_7,       /* m2_int = 27, m2_fraction = 0 */
83                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
84         { DP_LINK_BW_5_4,       /* m2_int = 27, m2_fraction = 0 */
85                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
86 };
87 /* Skylake supports following rates */
88 static const int gen9_rates[] = { 162000, 216000, 270000,
89                                   324000, 432000, 540000 };
90 static const int default_rates[] = { 162000, 270000, 540000 };
91
92 /**
93  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
94  * @intel_dp: DP struct
95  *
96  * If a CPU or PCH DP output is attached to an eDP panel, this function
97  * will return true, and false otherwise.
98  */
99 static bool is_edp(struct intel_dp *intel_dp)
100 {
101         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102
103         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
104 }
105
106 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
107 {
108         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
109
110         return intel_dig_port->base.base.dev;
111 }
112
113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114 {
115         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
116 }
117
118 static void intel_dp_link_down(struct intel_dp *intel_dp);
119 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
120 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
121 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
122 static void vlv_steal_power_sequencer(struct drm_device *dev,
123                                       enum pipe pipe);
124
125 int
126 intel_dp_max_link_bw(struct intel_dp *intel_dp)
127 {
128         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
129         struct drm_device *dev = intel_dp->attached_connector->base.dev;
130
131         switch (max_link_bw) {
132         case DP_LINK_BW_1_62:
133         case DP_LINK_BW_2_7:
134                 break;
135         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
136                 if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
137                         /* WaDisableHBR2:skl */
138                         max_link_bw = DP_LINK_BW_2_7;
139                 else if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
140                      INTEL_INFO(dev)->gen >= 8) &&
141                     intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
142                         max_link_bw = DP_LINK_BW_5_4;
143                 else
144                         max_link_bw = DP_LINK_BW_2_7;
145                 break;
146         default:
147                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
148                      max_link_bw);
149                 max_link_bw = DP_LINK_BW_1_62;
150                 break;
151         }
152         return max_link_bw;
153 }
154
155 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
156 {
157         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
158         struct drm_device *dev = intel_dig_port->base.base.dev;
159         u8 source_max, sink_max;
160
161         source_max = 4;
162         if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
163             (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
164                 source_max = 2;
165
166         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
167
168         return min(source_max, sink_max);
169 }
170
171 /*
172  * The units on the numbers in the next two are... bizarre.  Examples will
173  * make it clearer; this one parallels an example in the eDP spec.
174  *
175  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
176  *
177  *     270000 * 1 * 8 / 10 == 216000
178  *
179  * The actual data capacity of that configuration is 2.16Gbit/s, so the
180  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
181  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
182  * 119000.  At 18bpp that's 2142000 kilobits per second.
183  *
184  * Thus the strange-looking division by 10 in intel_dp_link_required, to
185  * get the result in decakilobits instead of kilobits.
186  */
187
188 static int
189 intel_dp_link_required(int pixel_clock, int bpp)
190 {
191         return (pixel_clock * bpp + 9) / 10;
192 }
193
194 static int
195 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
196 {
197         return (max_link_clock * max_lanes * 8) / 10;
198 }
199
200 static enum drm_mode_status
201 intel_dp_mode_valid(struct drm_connector *connector,
202                     struct drm_display_mode *mode)
203 {
204         struct intel_dp *intel_dp = intel_attached_dp(connector);
205         struct intel_connector *intel_connector = to_intel_connector(connector);
206         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
207         int target_clock = mode->clock;
208         int max_rate, mode_rate, max_lanes, max_link_clock;
209
210         if (is_edp(intel_dp) && fixed_mode) {
211                 if (mode->hdisplay > fixed_mode->hdisplay)
212                         return MODE_PANEL;
213
214                 if (mode->vdisplay > fixed_mode->vdisplay)
215                         return MODE_PANEL;
216
217                 target_clock = fixed_mode->clock;
218         }
219
220         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
221         max_lanes = intel_dp_max_lane_count(intel_dp);
222
223         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
224         mode_rate = intel_dp_link_required(target_clock, 18);
225
226         if (mode_rate > max_rate)
227                 return MODE_CLOCK_HIGH;
228
229         if (mode->clock < 10000)
230                 return MODE_CLOCK_LOW;
231
232         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
233                 return MODE_H_ILLEGAL;
234
235         return MODE_OK;
236 }
237
238 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
239 {
240         int     i;
241         uint32_t v = 0;
242
243         if (src_bytes > 4)
244                 src_bytes = 4;
245         for (i = 0; i < src_bytes; i++)
246                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
247         return v;
248 }
249
250 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252         int i;
253         if (dst_bytes > 4)
254                 dst_bytes = 4;
255         for (i = 0; i < dst_bytes; i++)
256                 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263         struct drm_i915_private *dev_priv = dev->dev_private;
264         uint32_t clkcfg;
265
266         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267         if (IS_VALLEYVIEW(dev))
268                 return 200;
269
270         clkcfg = I915_READ(CLKCFG);
271         switch (clkcfg & CLKCFG_FSB_MASK) {
272         case CLKCFG_FSB_400:
273                 return 100;
274         case CLKCFG_FSB_533:
275                 return 133;
276         case CLKCFG_FSB_667:
277                 return 166;
278         case CLKCFG_FSB_800:
279                 return 200;
280         case CLKCFG_FSB_1067:
281                 return 266;
282         case CLKCFG_FSB_1333:
283                 return 333;
284         /* these two are just a guess; one of them might be right */
285         case CLKCFG_FSB_1600:
286         case CLKCFG_FSB_1600_ALT:
287                 return 400;
288         default:
289                 return 133;
290         }
291 }
292
293 static void
294 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
295                                     struct intel_dp *intel_dp);
296 static void
297 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
298                                               struct intel_dp *intel_dp);
299
300 static void pps_lock(struct intel_dp *intel_dp)
301 {
302         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
303         struct intel_encoder *encoder = &intel_dig_port->base;
304         struct drm_device *dev = encoder->base.dev;
305         struct drm_i915_private *dev_priv = dev->dev_private;
306         enum intel_display_power_domain power_domain;
307
308         /*
309          * See vlv_power_sequencer_reset() why we need
310          * a power domain reference here.
311          */
312         power_domain = intel_display_port_power_domain(encoder);
313         intel_display_power_get(dev_priv, power_domain);
314
315         mutex_lock(&dev_priv->pps_mutex);
316 }
317
318 static void pps_unlock(struct intel_dp *intel_dp)
319 {
320         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
321         struct intel_encoder *encoder = &intel_dig_port->base;
322         struct drm_device *dev = encoder->base.dev;
323         struct drm_i915_private *dev_priv = dev->dev_private;
324         enum intel_display_power_domain power_domain;
325
326         mutex_unlock(&dev_priv->pps_mutex);
327
328         power_domain = intel_display_port_power_domain(encoder);
329         intel_display_power_put(dev_priv, power_domain);
330 }
331
332 static void
333 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
334 {
335         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
336         struct drm_device *dev = intel_dig_port->base.base.dev;
337         struct drm_i915_private *dev_priv = dev->dev_private;
338         enum pipe pipe = intel_dp->pps_pipe;
339         bool pll_enabled;
340         uint32_t DP;
341
342         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
343                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
344                  pipe_name(pipe), port_name(intel_dig_port->port)))
345                 return;
346
347         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
348                       pipe_name(pipe), port_name(intel_dig_port->port));
349
350         /* Preserve the BIOS-computed detected bit. This is
351          * supposed to be read-only.
352          */
353         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
354         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
355         DP |= DP_PORT_WIDTH(1);
356         DP |= DP_LINK_TRAIN_PAT_1;
357
358         if (IS_CHERRYVIEW(dev))
359                 DP |= DP_PIPE_SELECT_CHV(pipe);
360         else if (pipe == PIPE_B)
361                 DP |= DP_PIPEB_SELECT;
362
363         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
364
365         /*
366          * The DPLL for the pipe must be enabled for this to work.
367          * So enable temporarily it if it's not already enabled.
368          */
369         if (!pll_enabled)
370                 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
371                                  &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
372
373         /*
374          * Similar magic as in intel_dp_enable_port().
375          * We _must_ do this port enable + disable trick
376          * to make this power seqeuencer lock onto the port.
377          * Otherwise even VDD force bit won't work.
378          */
379         I915_WRITE(intel_dp->output_reg, DP);
380         POSTING_READ(intel_dp->output_reg);
381
382         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
383         POSTING_READ(intel_dp->output_reg);
384
385         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
386         POSTING_READ(intel_dp->output_reg);
387
388         if (!pll_enabled)
389                 vlv_force_pll_off(dev, pipe);
390 }
391
392 static enum pipe
393 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
394 {
395         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
396         struct drm_device *dev = intel_dig_port->base.base.dev;
397         struct drm_i915_private *dev_priv = dev->dev_private;
398         struct intel_encoder *encoder;
399         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
400         enum pipe pipe;
401
402         lockdep_assert_held(&dev_priv->pps_mutex);
403
404         /* We should never land here with regular DP ports */
405         WARN_ON(!is_edp(intel_dp));
406
407         if (intel_dp->pps_pipe != INVALID_PIPE)
408                 return intel_dp->pps_pipe;
409
410         /*
411          * We don't have power sequencer currently.
412          * Pick one that's not used by other ports.
413          */
414         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
415                             base.head) {
416                 struct intel_dp *tmp;
417
418                 if (encoder->type != INTEL_OUTPUT_EDP)
419                         continue;
420
421                 tmp = enc_to_intel_dp(&encoder->base);
422
423                 if (tmp->pps_pipe != INVALID_PIPE)
424                         pipes &= ~(1 << tmp->pps_pipe);
425         }
426
427         /*
428          * Didn't find one. This should not happen since there
429          * are two power sequencers and up to two eDP ports.
430          */
431         if (WARN_ON(pipes == 0))
432                 pipe = PIPE_A;
433         else
434                 pipe = ffs(pipes) - 1;
435
436         vlv_steal_power_sequencer(dev, pipe);
437         intel_dp->pps_pipe = pipe;
438
439         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440                       pipe_name(intel_dp->pps_pipe),
441                       port_name(intel_dig_port->port));
442
443         /* init power sequencer on this pipe and port */
444         intel_dp_init_panel_power_sequencer(dev, intel_dp);
445         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447         /*
448          * Even vdd force doesn't work until we've made
449          * the power sequencer lock in on the port.
450          */
451         vlv_power_sequencer_kick(intel_dp);
452
453         return intel_dp->pps_pipe;
454 }
455
456 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
457                                enum pipe pipe);
458
459 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
460                                enum pipe pipe)
461 {
462         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
463 }
464
465 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
466                                 enum pipe pipe)
467 {
468         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
469 }
470
471 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
472                          enum pipe pipe)
473 {
474         return true;
475 }
476
477 static enum pipe
478 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
479                      enum port port,
480                      vlv_pipe_check pipe_check)
481 {
482         enum pipe pipe;
483
484         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
485                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
486                         PANEL_PORT_SELECT_MASK;
487
488                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
489                         continue;
490
491                 if (!pipe_check(dev_priv, pipe))
492                         continue;
493
494                 return pipe;
495         }
496
497         return INVALID_PIPE;
498 }
499
500 static void
501 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
502 {
503         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
504         struct drm_device *dev = intel_dig_port->base.base.dev;
505         struct drm_i915_private *dev_priv = dev->dev_private;
506         enum port port = intel_dig_port->port;
507
508         lockdep_assert_held(&dev_priv->pps_mutex);
509
510         /* try to find a pipe with this port selected */
511         /* first pick one where the panel is on */
512         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
513                                                   vlv_pipe_has_pp_on);
514         /* didn't find one? pick one where vdd is on */
515         if (intel_dp->pps_pipe == INVALID_PIPE)
516                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
517                                                           vlv_pipe_has_vdd_on);
518         /* didn't find one? pick one with just the correct port */
519         if (intel_dp->pps_pipe == INVALID_PIPE)
520                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
521                                                           vlv_pipe_any);
522
523         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
524         if (intel_dp->pps_pipe == INVALID_PIPE) {
525                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
526                               port_name(port));
527                 return;
528         }
529
530         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
531                       port_name(port), pipe_name(intel_dp->pps_pipe));
532
533         intel_dp_init_panel_power_sequencer(dev, intel_dp);
534         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
535 }
536
537 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
538 {
539         struct drm_device *dev = dev_priv->dev;
540         struct intel_encoder *encoder;
541
542         if (WARN_ON(!IS_VALLEYVIEW(dev)))
543                 return;
544
545         /*
546          * We can't grab pps_mutex here due to deadlock with power_domain
547          * mutex when power_domain functions are called while holding pps_mutex.
548          * That also means that in order to use pps_pipe the code needs to
549          * hold both a power domain reference and pps_mutex, and the power domain
550          * reference get/put must be done while _not_ holding pps_mutex.
551          * pps_{lock,unlock}() do these steps in the correct order, so one
552          * should use them always.
553          */
554
555         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
556                 struct intel_dp *intel_dp;
557
558                 if (encoder->type != INTEL_OUTPUT_EDP)
559                         continue;
560
561                 intel_dp = enc_to_intel_dp(&encoder->base);
562                 intel_dp->pps_pipe = INVALID_PIPE;
563         }
564 }
565
566 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
567 {
568         struct drm_device *dev = intel_dp_to_dev(intel_dp);
569
570         if (HAS_PCH_SPLIT(dev))
571                 return PCH_PP_CONTROL;
572         else
573                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
574 }
575
576 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
577 {
578         struct drm_device *dev = intel_dp_to_dev(intel_dp);
579
580         if (HAS_PCH_SPLIT(dev))
581                 return PCH_PP_STATUS;
582         else
583                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
584 }
585
586 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
587    This function only applicable when panel PM state is not to be tracked */
588 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
589                               void *unused)
590 {
591         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
592                                                  edp_notifier);
593         struct drm_device *dev = intel_dp_to_dev(intel_dp);
594         struct drm_i915_private *dev_priv = dev->dev_private;
595         u32 pp_div;
596         u32 pp_ctrl_reg, pp_div_reg;
597
598         if (!is_edp(intel_dp) || code != SYS_RESTART)
599                 return 0;
600
601         pps_lock(intel_dp);
602
603         if (IS_VALLEYVIEW(dev)) {
604                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
605
606                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
607                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
608                 pp_div = I915_READ(pp_div_reg);
609                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
610
611                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
612                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
613                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
614                 msleep(intel_dp->panel_power_cycle_delay);
615         }
616
617         pps_unlock(intel_dp);
618
619         return 0;
620 }
621
622 static bool edp_have_panel_power(struct intel_dp *intel_dp)
623 {
624         struct drm_device *dev = intel_dp_to_dev(intel_dp);
625         struct drm_i915_private *dev_priv = dev->dev_private;
626
627         lockdep_assert_held(&dev_priv->pps_mutex);
628
629         if (IS_VALLEYVIEW(dev) &&
630             intel_dp->pps_pipe == INVALID_PIPE)
631                 return false;
632
633         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
634 }
635
636 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
637 {
638         struct drm_device *dev = intel_dp_to_dev(intel_dp);
639         struct drm_i915_private *dev_priv = dev->dev_private;
640
641         lockdep_assert_held(&dev_priv->pps_mutex);
642
643         if (IS_VALLEYVIEW(dev) &&
644             intel_dp->pps_pipe == INVALID_PIPE)
645                 return false;
646
647         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
648 }
649
650 static void
651 intel_dp_check_edp(struct intel_dp *intel_dp)
652 {
653         struct drm_device *dev = intel_dp_to_dev(intel_dp);
654         struct drm_i915_private *dev_priv = dev->dev_private;
655
656         if (!is_edp(intel_dp))
657                 return;
658
659         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
660                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
661                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
662                               I915_READ(_pp_stat_reg(intel_dp)),
663                               I915_READ(_pp_ctrl_reg(intel_dp)));
664         }
665 }
666
667 static uint32_t
668 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
669 {
670         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
671         struct drm_device *dev = intel_dig_port->base.base.dev;
672         struct drm_i915_private *dev_priv = dev->dev_private;
673         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
674         uint32_t status;
675         bool done;
676
677 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
678         if (has_aux_irq)
679                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
680                                           msecs_to_jiffies_timeout(10));
681         else
682                 done = wait_for_atomic(C, 10) == 0;
683         if (!done)
684                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
685                           has_aux_irq);
686 #undef C
687
688         return status;
689 }
690
691 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
692 {
693         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
694         struct drm_device *dev = intel_dig_port->base.base.dev;
695
696         /*
697          * The clock divider is based off the hrawclk, and would like to run at
698          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
699          */
700         return index ? 0 : intel_hrawclk(dev) / 2;
701 }
702
703 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
704 {
705         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
706         struct drm_device *dev = intel_dig_port->base.base.dev;
707
708         if (index)
709                 return 0;
710
711         if (intel_dig_port->port == PORT_A) {
712                 if (IS_GEN6(dev) || IS_GEN7(dev))
713                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
714                 else
715                         return 225; /* eDP input clock at 450Mhz */
716         } else {
717                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
718         }
719 }
720
721 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
722 {
723         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
724         struct drm_device *dev = intel_dig_port->base.base.dev;
725         struct drm_i915_private *dev_priv = dev->dev_private;
726
727         if (intel_dig_port->port == PORT_A) {
728                 if (index)
729                         return 0;
730                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
731         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
732                 /* Workaround for non-ULT HSW */
733                 switch (index) {
734                 case 0: return 63;
735                 case 1: return 72;
736                 default: return 0;
737                 }
738         } else  {
739                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
740         }
741 }
742
743 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
744 {
745         return index ? 0 : 100;
746 }
747
748 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
749 {
750         /*
751          * SKL doesn't need us to program the AUX clock divider (Hardware will
752          * derive the clock from CDCLK automatically). We still implement the
753          * get_aux_clock_divider vfunc to plug-in into the existing code.
754          */
755         return index ? 0 : 1;
756 }
757
758 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
759                                       bool has_aux_irq,
760                                       int send_bytes,
761                                       uint32_t aux_clock_divider)
762 {
763         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
764         struct drm_device *dev = intel_dig_port->base.base.dev;
765         uint32_t precharge, timeout;
766
767         if (IS_GEN6(dev))
768                 precharge = 3;
769         else
770                 precharge = 5;
771
772         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
773                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
774         else
775                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
776
777         return DP_AUX_CH_CTL_SEND_BUSY |
778                DP_AUX_CH_CTL_DONE |
779                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
780                DP_AUX_CH_CTL_TIME_OUT_ERROR |
781                timeout |
782                DP_AUX_CH_CTL_RECEIVE_ERROR |
783                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
784                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
785                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
786 }
787
788 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
789                                       bool has_aux_irq,
790                                       int send_bytes,
791                                       uint32_t unused)
792 {
793         return DP_AUX_CH_CTL_SEND_BUSY |
794                DP_AUX_CH_CTL_DONE |
795                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
796                DP_AUX_CH_CTL_TIME_OUT_ERROR |
797                DP_AUX_CH_CTL_TIME_OUT_1600us |
798                DP_AUX_CH_CTL_RECEIVE_ERROR |
799                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
800                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
801 }
802
803 static int
804 intel_dp_aux_ch(struct intel_dp *intel_dp,
805                 const uint8_t *send, int send_bytes,
806                 uint8_t *recv, int recv_size)
807 {
808         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
809         struct drm_device *dev = intel_dig_port->base.base.dev;
810         struct drm_i915_private *dev_priv = dev->dev_private;
811         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
812         uint32_t ch_data = ch_ctl + 4;
813         uint32_t aux_clock_divider;
814         int i, ret, recv_bytes;
815         uint32_t status;
816         int try, clock = 0;
817         bool has_aux_irq = HAS_AUX_IRQ(dev);
818         bool vdd;
819
820         pps_lock(intel_dp);
821
822         /*
823          * We will be called with VDD already enabled for dpcd/edid/oui reads.
824          * In such cases we want to leave VDD enabled and it's up to upper layers
825          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
826          * ourselves.
827          */
828         vdd = edp_panel_vdd_on(intel_dp);
829
830         /* dp aux is extremely sensitive to irq latency, hence request the
831          * lowest possible wakeup latency and so prevent the cpu from going into
832          * deep sleep states.
833          */
834         pm_qos_update_request(&dev_priv->pm_qos, 0);
835
836         intel_dp_check_edp(intel_dp);
837
838         intel_aux_display_runtime_get(dev_priv);
839
840         /* Try to wait for any previous AUX channel activity */
841         for (try = 0; try < 3; try++) {
842                 status = I915_READ_NOTRACE(ch_ctl);
843                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
844                         break;
845                 msleep(1);
846         }
847
848         if (try == 3) {
849                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
850                      I915_READ(ch_ctl));
851                 ret = -EBUSY;
852                 goto out;
853         }
854
855         /* Only 5 data registers! */
856         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
857                 ret = -E2BIG;
858                 goto out;
859         }
860
861         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
862                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
863                                                           has_aux_irq,
864                                                           send_bytes,
865                                                           aux_clock_divider);
866
867                 /* Must try at least 3 times according to DP spec */
868                 for (try = 0; try < 5; try++) {
869                         /* Load the send data into the aux channel data registers */
870                         for (i = 0; i < send_bytes; i += 4)
871                                 I915_WRITE(ch_data + i,
872                                            intel_dp_pack_aux(send + i,
873                                                              send_bytes - i));
874
875                         /* Send the command and wait for it to complete */
876                         I915_WRITE(ch_ctl, send_ctl);
877
878                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
879
880                         /* Clear done status and any errors */
881                         I915_WRITE(ch_ctl,
882                                    status |
883                                    DP_AUX_CH_CTL_DONE |
884                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
885                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
886
887                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
888                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
889                                 continue;
890                         if (status & DP_AUX_CH_CTL_DONE)
891                                 break;
892                 }
893                 if (status & DP_AUX_CH_CTL_DONE)
894                         break;
895         }
896
897         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
898                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
899                 ret = -EBUSY;
900                 goto out;
901         }
902
903         /* Check for timeout or receive error.
904          * Timeouts occur when the sink is not connected
905          */
906         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
907                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
908                 ret = -EIO;
909                 goto out;
910         }
911
912         /* Timeouts occur when the device isn't connected, so they're
913          * "normal" -- don't fill the kernel log with these */
914         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
915                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
916                 ret = -ETIMEDOUT;
917                 goto out;
918         }
919
920         /* Unload any bytes sent back from the other side */
921         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
922                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
923         if (recv_bytes > recv_size)
924                 recv_bytes = recv_size;
925
926         for (i = 0; i < recv_bytes; i += 4)
927                 intel_dp_unpack_aux(I915_READ(ch_data + i),
928                                     recv + i, recv_bytes - i);
929
930         ret = recv_bytes;
931 out:
932         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
933         intel_aux_display_runtime_put(dev_priv);
934
935         if (vdd)
936                 edp_panel_vdd_off(intel_dp, false);
937
938         pps_unlock(intel_dp);
939
940         return ret;
941 }
942
943 #define BARE_ADDRESS_SIZE       3
944 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
945 static ssize_t
946 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
947 {
948         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
949         uint8_t txbuf[20], rxbuf[20];
950         size_t txsize, rxsize;
951         int ret;
952
953         txbuf[0] = msg->request << 4;
954         txbuf[1] = msg->address >> 8;
955         txbuf[2] = msg->address & 0xff;
956         txbuf[3] = msg->size - 1;
957
958         switch (msg->request & ~DP_AUX_I2C_MOT) {
959         case DP_AUX_NATIVE_WRITE:
960         case DP_AUX_I2C_WRITE:
961                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
962                 rxsize = 1;
963
964                 if (WARN_ON(txsize > 20))
965                         return -E2BIG;
966
967                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
968
969                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
970                 if (ret > 0) {
971                         msg->reply = rxbuf[0] >> 4;
972
973                         /* Return payload size. */
974                         ret = msg->size;
975                 }
976                 break;
977
978         case DP_AUX_NATIVE_READ:
979         case DP_AUX_I2C_READ:
980                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
981                 rxsize = msg->size + 1;
982
983                 if (WARN_ON(rxsize > 20))
984                         return -E2BIG;
985
986                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
987                 if (ret > 0) {
988                         msg->reply = rxbuf[0] >> 4;
989                         /*
990                          * Assume happy day, and copy the data. The caller is
991                          * expected to check msg->reply before touching it.
992                          *
993                          * Return payload size.
994                          */
995                         ret--;
996                         memcpy(msg->buffer, rxbuf + 1, ret);
997                 }
998                 break;
999
1000         default:
1001                 ret = -EINVAL;
1002                 break;
1003         }
1004
1005         return ret;
1006 }
1007
1008 static void
1009 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1010 {
1011         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1012         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1013         enum port port = intel_dig_port->port;
1014         const char *name = NULL;
1015         int ret;
1016
1017         switch (port) {
1018         case PORT_A:
1019                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1020                 name = "DPDDC-A";
1021                 break;
1022         case PORT_B:
1023                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1024                 name = "DPDDC-B";
1025                 break;
1026         case PORT_C:
1027                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1028                 name = "DPDDC-C";
1029                 break;
1030         case PORT_D:
1031                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1032                 name = "DPDDC-D";
1033                 break;
1034         default:
1035                 BUG();
1036         }
1037
1038         /*
1039          * The AUX_CTL register is usually DP_CTL + 0x10.
1040          *
1041          * On Haswell and Broadwell though:
1042          *   - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1043          *   - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1044          *
1045          * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1046          */
1047         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1048                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1049
1050         intel_dp->aux.name = name;
1051         intel_dp->aux.dev = dev->dev;
1052         intel_dp->aux.transfer = intel_dp_aux_transfer;
1053
1054         DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1055                       connector->base.kdev->kobj.name);
1056
1057         ret = drm_dp_aux_register(&intel_dp->aux);
1058         if (ret < 0) {
1059                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1060                           name, ret);
1061                 return;
1062         }
1063
1064         ret = sysfs_create_link(&connector->base.kdev->kobj,
1065                                 &intel_dp->aux.ddc.dev.kobj,
1066                                 intel_dp->aux.ddc.dev.kobj.name);
1067         if (ret < 0) {
1068                 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1069                 drm_dp_aux_unregister(&intel_dp->aux);
1070         }
1071 }
1072
1073 static void
1074 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1075 {
1076         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1077
1078         if (!intel_connector->mst_port)
1079                 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1080                                   intel_dp->aux.ddc.dev.kobj.name);
1081         intel_connector_unregister(intel_connector);
1082 }
1083
1084 static void
1085 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_clock)
1086 {
1087         u32 ctrl1;
1088
1089         pipe_config->ddi_pll_sel = SKL_DPLL0;
1090         pipe_config->dpll_hw_state.cfgcr1 = 0;
1091         pipe_config->dpll_hw_state.cfgcr2 = 0;
1092
1093         ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1094         switch (link_clock / 2) {
1095         case 81000:
1096                 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810,
1097                                               SKL_DPLL0);
1098                 break;
1099         case 135000:
1100                 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350,
1101                                               SKL_DPLL0);
1102                 break;
1103         case 270000:
1104                 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700,
1105                                               SKL_DPLL0);
1106                 break;
1107         case 162000:
1108                 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1620,
1109                                               SKL_DPLL0);
1110                 break;
1111         /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1112         results in CDCLK change. Need to handle the change of CDCLK by
1113         disabling pipes and re-enabling them */
1114         case 108000:
1115                 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1080,
1116                                               SKL_DPLL0);
1117                 break;
1118         case 216000:
1119                 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2160,
1120                                               SKL_DPLL0);
1121                 break;
1122
1123         }
1124         pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1125 }
1126
1127 static void
1128 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw)
1129 {
1130         switch (link_bw) {
1131         case DP_LINK_BW_1_62:
1132                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1133                 break;
1134         case DP_LINK_BW_2_7:
1135                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1136                 break;
1137         case DP_LINK_BW_5_4:
1138                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1139                 break;
1140         }
1141 }
1142
1143 static int
1144 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1145 {
1146         if (intel_dp->num_supported_rates) {
1147                 *sink_rates = intel_dp->supported_rates;
1148                 return intel_dp->num_supported_rates;
1149         }
1150
1151         *sink_rates = default_rates;
1152
1153         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1154 }
1155
1156 static int
1157 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1158 {
1159         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1160
1161         if (INTEL_INFO(dev)->gen >= 9) {
1162                 *source_rates = gen9_rates;
1163                 return ARRAY_SIZE(gen9_rates);
1164         }
1165
1166         *source_rates = default_rates;
1167
1168         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1169 }
1170
1171 static void
1172 intel_dp_set_clock(struct intel_encoder *encoder,
1173                    struct intel_crtc_state *pipe_config, int link_bw)
1174 {
1175         struct drm_device *dev = encoder->base.dev;
1176         const struct dp_link_dpll *divisor = NULL;
1177         int i, count = 0;
1178
1179         if (IS_G4X(dev)) {
1180                 divisor = gen4_dpll;
1181                 count = ARRAY_SIZE(gen4_dpll);
1182         } else if (HAS_PCH_SPLIT(dev)) {
1183                 divisor = pch_dpll;
1184                 count = ARRAY_SIZE(pch_dpll);
1185         } else if (IS_CHERRYVIEW(dev)) {
1186                 divisor = chv_dpll;
1187                 count = ARRAY_SIZE(chv_dpll);
1188         } else if (IS_VALLEYVIEW(dev)) {
1189                 divisor = vlv_dpll;
1190                 count = ARRAY_SIZE(vlv_dpll);
1191         }
1192
1193         if (divisor && count) {
1194                 for (i = 0; i < count; i++) {
1195                         if (link_bw == divisor[i].link_bw) {
1196                                 pipe_config->dpll = divisor[i].dpll;
1197                                 pipe_config->clock_set = true;
1198                                 break;
1199                         }
1200                 }
1201         }
1202 }
1203
1204 static int intel_supported_rates(const int *source_rates, int source_len,
1205                                  const int *sink_rates, int sink_len,
1206                                  int *supported_rates)
1207 {
1208         int i = 0, j = 0, k = 0;
1209
1210         /* For panels with edp version less than 1.4 */
1211         if (sink_len == 0) {
1212                 for (i = 0; i < source_len; ++i)
1213                         supported_rates[i] = source_rates[i];
1214                 return source_len;
1215         }
1216
1217         /* For edp1.4 panels, find the common rates between source and sink */
1218         while (i < source_len && j < sink_len) {
1219                 if (source_rates[i] == sink_rates[j]) {
1220                         supported_rates[k] = source_rates[i];
1221                         ++k;
1222                         ++i;
1223                         ++j;
1224                 } else if (source_rates[i] < sink_rates[j]) {
1225                         ++i;
1226                 } else {
1227                         ++j;
1228                 }
1229         }
1230         return k;
1231 }
1232
1233 static int rate_to_index(int find, const int *rates)
1234 {
1235         int i = 0;
1236
1237         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1238                 if (find == rates[i])
1239                         break;
1240
1241         return i;
1242 }
1243
1244 bool
1245 intel_dp_compute_config(struct intel_encoder *encoder,
1246                         struct intel_crtc_state *pipe_config)
1247 {
1248         struct drm_device *dev = encoder->base.dev;
1249         struct drm_i915_private *dev_priv = dev->dev_private;
1250         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1251         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1252         enum port port = dp_to_dig_port(intel_dp)->port;
1253         struct intel_crtc *intel_crtc = encoder->new_crtc;
1254         struct intel_connector *intel_connector = intel_dp->attached_connector;
1255         int lane_count, clock;
1256         int min_lane_count = 1;
1257         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1258         /* Conveniently, the link BW constants become indices with a shift...*/
1259         int min_clock = 0;
1260         int max_clock;
1261         int bpp, mode_rate;
1262         int link_avail, link_clock;
1263         const int *sink_rates;
1264         int supported_rates[8] = {0};
1265         const int *source_rates;
1266         int source_len, sink_len, supported_len;
1267
1268         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1269
1270         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1271
1272         supported_len = intel_supported_rates(source_rates, source_len,
1273                                 sink_rates, sink_len, supported_rates);
1274
1275         /* No common link rates between source and sink */
1276         WARN_ON(supported_len <= 0);
1277
1278         max_clock = supported_len - 1;
1279
1280         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1281                 pipe_config->has_pch_encoder = true;
1282
1283         pipe_config->has_dp_encoder = true;
1284         pipe_config->has_drrs = false;
1285         pipe_config->has_audio = intel_dp->has_audio;
1286
1287         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1288                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1289                                        adjusted_mode);
1290                 if (!HAS_PCH_SPLIT(dev))
1291                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1292                                                  intel_connector->panel.fitting_mode);
1293                 else
1294                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1295                                                 intel_connector->panel.fitting_mode);
1296         }
1297
1298         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1299                 return false;
1300
1301         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1302                       "max bw %d pixel clock %iKHz\n",
1303                       max_lane_count, supported_rates[max_clock],
1304                       adjusted_mode->crtc_clock);
1305
1306         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1307          * bpc in between. */
1308         bpp = pipe_config->pipe_bpp;
1309         if (is_edp(intel_dp)) {
1310                 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1311                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1312                                       dev_priv->vbt.edp_bpp);
1313                         bpp = dev_priv->vbt.edp_bpp;
1314                 }
1315
1316                 /*
1317                  * Use the maximum clock and number of lanes the eDP panel
1318                  * advertizes being capable of. The panels are generally
1319                  * designed to support only a single clock and lane
1320                  * configuration, and typically these values correspond to the
1321                  * native resolution of the panel.
1322                  */
1323                 min_lane_count = max_lane_count;
1324                 min_clock = max_clock;
1325         }
1326
1327         for (; bpp >= 6*3; bpp -= 2*3) {
1328                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1329                                                    bpp);
1330
1331                 for (clock = min_clock; clock <= max_clock; clock++) {
1332                         for (lane_count = min_lane_count;
1333                                 lane_count <= max_lane_count;
1334                                 lane_count <<= 1) {
1335
1336                                 link_clock = supported_rates[clock];
1337                                 link_avail = intel_dp_max_data_rate(link_clock,
1338                                                                     lane_count);
1339
1340                                 if (mode_rate <= link_avail) {
1341                                         goto found;
1342                                 }
1343                         }
1344                 }
1345         }
1346
1347         return false;
1348
1349 found:
1350         if (intel_dp->color_range_auto) {
1351                 /*
1352                  * See:
1353                  * CEA-861-E - 5.1 Default Encoding Parameters
1354                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1355                  */
1356                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1357                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
1358                 else
1359                         intel_dp->color_range = 0;
1360         }
1361
1362         if (intel_dp->color_range)
1363                 pipe_config->limited_color_range = true;
1364
1365         intel_dp->lane_count = lane_count;
1366
1367         intel_dp->link_bw =
1368                 drm_dp_link_rate_to_bw_code(supported_rates[clock]);
1369
1370         if (INTEL_INFO(dev)->gen >= 9 && intel_dp->supported_rates[0]) {
1371                 intel_dp->rate_select =
1372                         rate_to_index(supported_rates[clock], sink_rates);
1373                 intel_dp->link_bw = 0;
1374         }
1375
1376         pipe_config->pipe_bpp = bpp;
1377         pipe_config->port_clock = supported_rates[clock];
1378
1379         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1380                       intel_dp->link_bw, intel_dp->lane_count,
1381                       pipe_config->port_clock, bpp);
1382         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1383                       mode_rate, link_avail);
1384
1385         intel_link_compute_m_n(bpp, lane_count,
1386                                adjusted_mode->crtc_clock,
1387                                pipe_config->port_clock,
1388                                &pipe_config->dp_m_n);
1389
1390         if (intel_connector->panel.downclock_mode != NULL &&
1391                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1392                         pipe_config->has_drrs = true;
1393                         intel_link_compute_m_n(bpp, lane_count,
1394                                 intel_connector->panel.downclock_mode->clock,
1395                                 pipe_config->port_clock,
1396                                 &pipe_config->dp_m2_n2);
1397         }
1398
1399         if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1400                 skl_edp_set_pll_config(pipe_config, supported_rates[clock]);
1401         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1402                 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1403         else
1404                 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1405
1406         return true;
1407 }
1408
1409 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1410 {
1411         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1412         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1413         struct drm_device *dev = crtc->base.dev;
1414         struct drm_i915_private *dev_priv = dev->dev_private;
1415         u32 dpa_ctl;
1416
1417         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1418                       crtc->config->port_clock);
1419         dpa_ctl = I915_READ(DP_A);
1420         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1421
1422         if (crtc->config->port_clock == 162000) {
1423                 /* For a long time we've carried around a ILK-DevA w/a for the
1424                  * 160MHz clock. If we're really unlucky, it's still required.
1425                  */
1426                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1427                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1428                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1429         } else {
1430                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1431                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1432         }
1433
1434         I915_WRITE(DP_A, dpa_ctl);
1435
1436         POSTING_READ(DP_A);
1437         udelay(500);
1438 }
1439
1440 static void intel_dp_prepare(struct intel_encoder *encoder)
1441 {
1442         struct drm_device *dev = encoder->base.dev;
1443         struct drm_i915_private *dev_priv = dev->dev_private;
1444         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1445         enum port port = dp_to_dig_port(intel_dp)->port;
1446         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1447         struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1448
1449         /*
1450          * There are four kinds of DP registers:
1451          *
1452          *      IBX PCH
1453          *      SNB CPU
1454          *      IVB CPU
1455          *      CPT PCH
1456          *
1457          * IBX PCH and CPU are the same for almost everything,
1458          * except that the CPU DP PLL is configured in this
1459          * register
1460          *
1461          * CPT PCH is quite different, having many bits moved
1462          * to the TRANS_DP_CTL register instead. That
1463          * configuration happens (oddly) in ironlake_pch_enable
1464          */
1465
1466         /* Preserve the BIOS-computed detected bit. This is
1467          * supposed to be read-only.
1468          */
1469         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1470
1471         /* Handle DP bits in common between all three register formats */
1472         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1473         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1474
1475         if (crtc->config->has_audio)
1476                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1477
1478         /* Split out the IBX/CPU vs CPT settings */
1479
1480         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1481                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1482                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1483                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1484                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1485                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1486
1487                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1488                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1489
1490                 intel_dp->DP |= crtc->pipe << 29;
1491         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1492                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1493                         intel_dp->DP |= intel_dp->color_range;
1494
1495                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1496                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1497                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1498                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1499                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1500
1501                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1502                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1503
1504                 if (!IS_CHERRYVIEW(dev)) {
1505                         if (crtc->pipe == 1)
1506                                 intel_dp->DP |= DP_PIPEB_SELECT;
1507                 } else {
1508                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1509                 }
1510         } else {
1511                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1512         }
1513 }
1514
1515 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1516 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1517
1518 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1519 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1520
1521 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1522 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1523
1524 static void wait_panel_status(struct intel_dp *intel_dp,
1525                                        u32 mask,
1526                                        u32 value)
1527 {
1528         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1529         struct drm_i915_private *dev_priv = dev->dev_private;
1530         u32 pp_stat_reg, pp_ctrl_reg;
1531
1532         lockdep_assert_held(&dev_priv->pps_mutex);
1533
1534         pp_stat_reg = _pp_stat_reg(intel_dp);
1535         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1536
1537         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1538                         mask, value,
1539                         I915_READ(pp_stat_reg),
1540                         I915_READ(pp_ctrl_reg));
1541
1542         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1543                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1544                                 I915_READ(pp_stat_reg),
1545                                 I915_READ(pp_ctrl_reg));
1546         }
1547
1548         DRM_DEBUG_KMS("Wait complete\n");
1549 }
1550
1551 static void wait_panel_on(struct intel_dp *intel_dp)
1552 {
1553         DRM_DEBUG_KMS("Wait for panel power on\n");
1554         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1555 }
1556
1557 static void wait_panel_off(struct intel_dp *intel_dp)
1558 {
1559         DRM_DEBUG_KMS("Wait for panel power off time\n");
1560         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1561 }
1562
1563 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1564 {
1565         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1566
1567         /* When we disable the VDD override bit last we have to do the manual
1568          * wait. */
1569         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1570                                        intel_dp->panel_power_cycle_delay);
1571
1572         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1573 }
1574
1575 static void wait_backlight_on(struct intel_dp *intel_dp)
1576 {
1577         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1578                                        intel_dp->backlight_on_delay);
1579 }
1580
1581 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1582 {
1583         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1584                                        intel_dp->backlight_off_delay);
1585 }
1586
1587 /* Read the current pp_control value, unlocking the register if it
1588  * is locked
1589  */
1590
1591 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1592 {
1593         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1594         struct drm_i915_private *dev_priv = dev->dev_private;
1595         u32 control;
1596
1597         lockdep_assert_held(&dev_priv->pps_mutex);
1598
1599         control = I915_READ(_pp_ctrl_reg(intel_dp));
1600         control &= ~PANEL_UNLOCK_MASK;
1601         control |= PANEL_UNLOCK_REGS;
1602         return control;
1603 }
1604
1605 /*
1606  * Must be paired with edp_panel_vdd_off().
1607  * Must hold pps_mutex around the whole on/off sequence.
1608  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1609  */
1610 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1611 {
1612         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1613         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1614         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1615         struct drm_i915_private *dev_priv = dev->dev_private;
1616         enum intel_display_power_domain power_domain;
1617         u32 pp;
1618         u32 pp_stat_reg, pp_ctrl_reg;
1619         bool need_to_disable = !intel_dp->want_panel_vdd;
1620
1621         lockdep_assert_held(&dev_priv->pps_mutex);
1622
1623         if (!is_edp(intel_dp))
1624                 return false;
1625
1626         cancel_delayed_work(&intel_dp->panel_vdd_work);
1627         intel_dp->want_panel_vdd = true;
1628
1629         if (edp_have_panel_vdd(intel_dp))
1630                 return need_to_disable;
1631
1632         power_domain = intel_display_port_power_domain(intel_encoder);
1633         intel_display_power_get(dev_priv, power_domain);
1634
1635         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1636                       port_name(intel_dig_port->port));
1637
1638         if (!edp_have_panel_power(intel_dp))
1639                 wait_panel_power_cycle(intel_dp);
1640
1641         pp = ironlake_get_pp_control(intel_dp);
1642         pp |= EDP_FORCE_VDD;
1643
1644         pp_stat_reg = _pp_stat_reg(intel_dp);
1645         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1646
1647         I915_WRITE(pp_ctrl_reg, pp);
1648         POSTING_READ(pp_ctrl_reg);
1649         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1650                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1651         /*
1652          * If the panel wasn't on, delay before accessing aux channel
1653          */
1654         if (!edp_have_panel_power(intel_dp)) {
1655                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1656                               port_name(intel_dig_port->port));
1657                 msleep(intel_dp->panel_power_up_delay);
1658         }
1659
1660         return need_to_disable;
1661 }
1662
1663 /*
1664  * Must be paired with intel_edp_panel_vdd_off() or
1665  * intel_edp_panel_off().
1666  * Nested calls to these functions are not allowed since
1667  * we drop the lock. Caller must use some higher level
1668  * locking to prevent nested calls from other threads.
1669  */
1670 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1671 {
1672         bool vdd;
1673
1674         if (!is_edp(intel_dp))
1675                 return;
1676
1677         pps_lock(intel_dp);
1678         vdd = edp_panel_vdd_on(intel_dp);
1679         pps_unlock(intel_dp);
1680
1681         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1682              port_name(dp_to_dig_port(intel_dp)->port));
1683 }
1684
1685 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1686 {
1687         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1688         struct drm_i915_private *dev_priv = dev->dev_private;
1689         struct intel_digital_port *intel_dig_port =
1690                 dp_to_dig_port(intel_dp);
1691         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1692         enum intel_display_power_domain power_domain;
1693         u32 pp;
1694         u32 pp_stat_reg, pp_ctrl_reg;
1695
1696         lockdep_assert_held(&dev_priv->pps_mutex);
1697
1698         WARN_ON(intel_dp->want_panel_vdd);
1699
1700         if (!edp_have_panel_vdd(intel_dp))
1701                 return;
1702
1703         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1704                       port_name(intel_dig_port->port));
1705
1706         pp = ironlake_get_pp_control(intel_dp);
1707         pp &= ~EDP_FORCE_VDD;
1708
1709         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1710         pp_stat_reg = _pp_stat_reg(intel_dp);
1711
1712         I915_WRITE(pp_ctrl_reg, pp);
1713         POSTING_READ(pp_ctrl_reg);
1714
1715         /* Make sure sequencer is idle before allowing subsequent activity */
1716         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1717         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1718
1719         if ((pp & POWER_TARGET_ON) == 0)
1720                 intel_dp->last_power_cycle = jiffies;
1721
1722         power_domain = intel_display_port_power_domain(intel_encoder);
1723         intel_display_power_put(dev_priv, power_domain);
1724 }
1725
1726 static void edp_panel_vdd_work(struct work_struct *__work)
1727 {
1728         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1729                                                  struct intel_dp, panel_vdd_work);
1730
1731         pps_lock(intel_dp);
1732         if (!intel_dp->want_panel_vdd)
1733                 edp_panel_vdd_off_sync(intel_dp);
1734         pps_unlock(intel_dp);
1735 }
1736
1737 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1738 {
1739         unsigned long delay;
1740
1741         /*
1742          * Queue the timer to fire a long time from now (relative to the power
1743          * down delay) to keep the panel power up across a sequence of
1744          * operations.
1745          */
1746         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1747         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1748 }
1749
1750 /*
1751  * Must be paired with edp_panel_vdd_on().
1752  * Must hold pps_mutex around the whole on/off sequence.
1753  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1754  */
1755 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1756 {
1757         struct drm_i915_private *dev_priv =
1758                 intel_dp_to_dev(intel_dp)->dev_private;
1759
1760         lockdep_assert_held(&dev_priv->pps_mutex);
1761
1762         if (!is_edp(intel_dp))
1763                 return;
1764
1765         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1766              port_name(dp_to_dig_port(intel_dp)->port));
1767
1768         intel_dp->want_panel_vdd = false;
1769
1770         if (sync)
1771                 edp_panel_vdd_off_sync(intel_dp);
1772         else
1773                 edp_panel_vdd_schedule_off(intel_dp);
1774 }
1775
1776 static void edp_panel_on(struct intel_dp *intel_dp)
1777 {
1778         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1779         struct drm_i915_private *dev_priv = dev->dev_private;
1780         u32 pp;
1781         u32 pp_ctrl_reg;
1782
1783         lockdep_assert_held(&dev_priv->pps_mutex);
1784
1785         if (!is_edp(intel_dp))
1786                 return;
1787
1788         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1789                       port_name(dp_to_dig_port(intel_dp)->port));
1790
1791         if (WARN(edp_have_panel_power(intel_dp),
1792                  "eDP port %c panel power already on\n",
1793                  port_name(dp_to_dig_port(intel_dp)->port)))
1794                 return;
1795
1796         wait_panel_power_cycle(intel_dp);
1797
1798         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1799         pp = ironlake_get_pp_control(intel_dp);
1800         if (IS_GEN5(dev)) {
1801                 /* ILK workaround: disable reset around power sequence */
1802                 pp &= ~PANEL_POWER_RESET;
1803                 I915_WRITE(pp_ctrl_reg, pp);
1804                 POSTING_READ(pp_ctrl_reg);
1805         }
1806
1807         pp |= POWER_TARGET_ON;
1808         if (!IS_GEN5(dev))
1809                 pp |= PANEL_POWER_RESET;
1810
1811         I915_WRITE(pp_ctrl_reg, pp);
1812         POSTING_READ(pp_ctrl_reg);
1813
1814         wait_panel_on(intel_dp);
1815         intel_dp->last_power_on = jiffies;
1816
1817         if (IS_GEN5(dev)) {
1818                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1819                 I915_WRITE(pp_ctrl_reg, pp);
1820                 POSTING_READ(pp_ctrl_reg);
1821         }
1822 }
1823
1824 void intel_edp_panel_on(struct intel_dp *intel_dp)
1825 {
1826         if (!is_edp(intel_dp))
1827                 return;
1828
1829         pps_lock(intel_dp);
1830         edp_panel_on(intel_dp);
1831         pps_unlock(intel_dp);
1832 }
1833
1834
1835 static void edp_panel_off(struct intel_dp *intel_dp)
1836 {
1837         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1838         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1839         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1840         struct drm_i915_private *dev_priv = dev->dev_private;
1841         enum intel_display_power_domain power_domain;
1842         u32 pp;
1843         u32 pp_ctrl_reg;
1844
1845         lockdep_assert_held(&dev_priv->pps_mutex);
1846
1847         if (!is_edp(intel_dp))
1848                 return;
1849
1850         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1851                       port_name(dp_to_dig_port(intel_dp)->port));
1852
1853         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1854              port_name(dp_to_dig_port(intel_dp)->port));
1855
1856         pp = ironlake_get_pp_control(intel_dp);
1857         /* We need to switch off panel power _and_ force vdd, for otherwise some
1858          * panels get very unhappy and cease to work. */
1859         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1860                 EDP_BLC_ENABLE);
1861
1862         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1863
1864         intel_dp->want_panel_vdd = false;
1865
1866         I915_WRITE(pp_ctrl_reg, pp);
1867         POSTING_READ(pp_ctrl_reg);
1868
1869         intel_dp->last_power_cycle = jiffies;
1870         wait_panel_off(intel_dp);
1871
1872         /* We got a reference when we enabled the VDD. */
1873         power_domain = intel_display_port_power_domain(intel_encoder);
1874         intel_display_power_put(dev_priv, power_domain);
1875 }
1876
1877 void intel_edp_panel_off(struct intel_dp *intel_dp)
1878 {
1879         if (!is_edp(intel_dp))
1880                 return;
1881
1882         pps_lock(intel_dp);
1883         edp_panel_off(intel_dp);
1884         pps_unlock(intel_dp);
1885 }
1886
1887 /* Enable backlight in the panel power control. */
1888 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1889 {
1890         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1891         struct drm_device *dev = intel_dig_port->base.base.dev;
1892         struct drm_i915_private *dev_priv = dev->dev_private;
1893         u32 pp;
1894         u32 pp_ctrl_reg;
1895
1896         /*
1897          * If we enable the backlight right away following a panel power
1898          * on, we may see slight flicker as the panel syncs with the eDP
1899          * link.  So delay a bit to make sure the image is solid before
1900          * allowing it to appear.
1901          */
1902         wait_backlight_on(intel_dp);
1903
1904         pps_lock(intel_dp);
1905
1906         pp = ironlake_get_pp_control(intel_dp);
1907         pp |= EDP_BLC_ENABLE;
1908
1909         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1910
1911         I915_WRITE(pp_ctrl_reg, pp);
1912         POSTING_READ(pp_ctrl_reg);
1913
1914         pps_unlock(intel_dp);
1915 }
1916
1917 /* Enable backlight PWM and backlight PP control. */
1918 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1919 {
1920         if (!is_edp(intel_dp))
1921                 return;
1922
1923         DRM_DEBUG_KMS("\n");
1924
1925         intel_panel_enable_backlight(intel_dp->attached_connector);
1926         _intel_edp_backlight_on(intel_dp);
1927 }
1928
1929 /* Disable backlight in the panel power control. */
1930 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1931 {
1932         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1933         struct drm_i915_private *dev_priv = dev->dev_private;
1934         u32 pp;
1935         u32 pp_ctrl_reg;
1936
1937         if (!is_edp(intel_dp))
1938                 return;
1939
1940         pps_lock(intel_dp);
1941
1942         pp = ironlake_get_pp_control(intel_dp);
1943         pp &= ~EDP_BLC_ENABLE;
1944
1945         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1946
1947         I915_WRITE(pp_ctrl_reg, pp);
1948         POSTING_READ(pp_ctrl_reg);
1949
1950         pps_unlock(intel_dp);
1951
1952         intel_dp->last_backlight_off = jiffies;
1953         edp_wait_backlight_off(intel_dp);
1954 }
1955
1956 /* Disable backlight PP control and backlight PWM. */
1957 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1958 {
1959         if (!is_edp(intel_dp))
1960                 return;
1961
1962         DRM_DEBUG_KMS("\n");
1963
1964         _intel_edp_backlight_off(intel_dp);
1965         intel_panel_disable_backlight(intel_dp->attached_connector);
1966 }
1967
1968 /*
1969  * Hook for controlling the panel power control backlight through the bl_power
1970  * sysfs attribute. Take care to handle multiple calls.
1971  */
1972 static void intel_edp_backlight_power(struct intel_connector *connector,
1973                                       bool enable)
1974 {
1975         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1976         bool is_enabled;
1977
1978         pps_lock(intel_dp);
1979         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1980         pps_unlock(intel_dp);
1981
1982         if (is_enabled == enable)
1983                 return;
1984
1985         DRM_DEBUG_KMS("panel power control backlight %s\n",
1986                       enable ? "enable" : "disable");
1987
1988         if (enable)
1989                 _intel_edp_backlight_on(intel_dp);
1990         else
1991                 _intel_edp_backlight_off(intel_dp);
1992 }
1993
1994 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1995 {
1996         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1997         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1998         struct drm_device *dev = crtc->dev;
1999         struct drm_i915_private *dev_priv = dev->dev_private;
2000         u32 dpa_ctl;
2001
2002         assert_pipe_disabled(dev_priv,
2003                              to_intel_crtc(crtc)->pipe);
2004
2005         DRM_DEBUG_KMS("\n");
2006         dpa_ctl = I915_READ(DP_A);
2007         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2008         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2009
2010         /* We don't adjust intel_dp->DP while tearing down the link, to
2011          * facilitate link retraining (e.g. after hotplug). Hence clear all
2012          * enable bits here to ensure that we don't enable too much. */
2013         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2014         intel_dp->DP |= DP_PLL_ENABLE;
2015         I915_WRITE(DP_A, intel_dp->DP);
2016         POSTING_READ(DP_A);
2017         udelay(200);
2018 }
2019
2020 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2021 {
2022         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2023         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2024         struct drm_device *dev = crtc->dev;
2025         struct drm_i915_private *dev_priv = dev->dev_private;
2026         u32 dpa_ctl;
2027
2028         assert_pipe_disabled(dev_priv,
2029                              to_intel_crtc(crtc)->pipe);
2030
2031         dpa_ctl = I915_READ(DP_A);
2032         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2033              "dp pll off, should be on\n");
2034         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2035
2036         /* We can't rely on the value tracked for the DP register in
2037          * intel_dp->DP because link_down must not change that (otherwise link
2038          * re-training will fail. */
2039         dpa_ctl &= ~DP_PLL_ENABLE;
2040         I915_WRITE(DP_A, dpa_ctl);
2041         POSTING_READ(DP_A);
2042         udelay(200);
2043 }
2044
2045 /* If the sink supports it, try to set the power state appropriately */
2046 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2047 {
2048         int ret, i;
2049
2050         /* Should have a valid DPCD by this point */
2051         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2052                 return;
2053
2054         if (mode != DRM_MODE_DPMS_ON) {
2055                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2056                                          DP_SET_POWER_D3);
2057         } else {
2058                 /*
2059                  * When turning on, we need to retry for 1ms to give the sink
2060                  * time to wake up.
2061                  */
2062                 for (i = 0; i < 3; i++) {
2063                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2064                                                  DP_SET_POWER_D0);
2065                         if (ret == 1)
2066                                 break;
2067                         msleep(1);
2068                 }
2069         }
2070
2071         if (ret != 1)
2072                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2073                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2074 }
2075
2076 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2077                                   enum pipe *pipe)
2078 {
2079         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2080         enum port port = dp_to_dig_port(intel_dp)->port;
2081         struct drm_device *dev = encoder->base.dev;
2082         struct drm_i915_private *dev_priv = dev->dev_private;
2083         enum intel_display_power_domain power_domain;
2084         u32 tmp;
2085
2086         power_domain = intel_display_port_power_domain(encoder);
2087         if (!intel_display_power_is_enabled(dev_priv, power_domain))
2088                 return false;
2089
2090         tmp = I915_READ(intel_dp->output_reg);
2091
2092         if (!(tmp & DP_PORT_EN))
2093                 return false;
2094
2095         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
2096                 *pipe = PORT_TO_PIPE_CPT(tmp);
2097         } else if (IS_CHERRYVIEW(dev)) {
2098                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2099         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
2100                 *pipe = PORT_TO_PIPE(tmp);
2101         } else {
2102                 u32 trans_sel;
2103                 u32 trans_dp;
2104                 int i;
2105
2106                 switch (intel_dp->output_reg) {
2107                 case PCH_DP_B:
2108                         trans_sel = TRANS_DP_PORT_SEL_B;
2109                         break;
2110                 case PCH_DP_C:
2111                         trans_sel = TRANS_DP_PORT_SEL_C;
2112                         break;
2113                 case PCH_DP_D:
2114                         trans_sel = TRANS_DP_PORT_SEL_D;
2115                         break;
2116                 default:
2117                         return true;
2118                 }
2119
2120                 for_each_pipe(dev_priv, i) {
2121                         trans_dp = I915_READ(TRANS_DP_CTL(i));
2122                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
2123                                 *pipe = i;
2124                                 return true;
2125                         }
2126                 }
2127
2128                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2129                               intel_dp->output_reg);
2130         }
2131
2132         return true;
2133 }
2134
2135 static void intel_dp_get_config(struct intel_encoder *encoder,
2136                                 struct intel_crtc_state *pipe_config)
2137 {
2138         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2139         u32 tmp, flags = 0;
2140         struct drm_device *dev = encoder->base.dev;
2141         struct drm_i915_private *dev_priv = dev->dev_private;
2142         enum port port = dp_to_dig_port(intel_dp)->port;
2143         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2144         int dotclock;
2145
2146         tmp = I915_READ(intel_dp->output_reg);
2147         if (tmp & DP_AUDIO_OUTPUT_ENABLE)
2148                 pipe_config->has_audio = true;
2149
2150         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
2151                 if (tmp & DP_SYNC_HS_HIGH)
2152                         flags |= DRM_MODE_FLAG_PHSYNC;
2153                 else
2154                         flags |= DRM_MODE_FLAG_NHSYNC;
2155
2156                 if (tmp & DP_SYNC_VS_HIGH)
2157                         flags |= DRM_MODE_FLAG_PVSYNC;
2158                 else
2159                         flags |= DRM_MODE_FLAG_NVSYNC;
2160         } else {
2161                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2162                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2163                         flags |= DRM_MODE_FLAG_PHSYNC;
2164                 else
2165                         flags |= DRM_MODE_FLAG_NHSYNC;
2166
2167                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2168                         flags |= DRM_MODE_FLAG_PVSYNC;
2169                 else
2170                         flags |= DRM_MODE_FLAG_NVSYNC;
2171         }
2172
2173         pipe_config->base.adjusted_mode.flags |= flags;
2174
2175         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2176             tmp & DP_COLOR_RANGE_16_235)
2177                 pipe_config->limited_color_range = true;
2178
2179         pipe_config->has_dp_encoder = true;
2180
2181         intel_dp_get_m_n(crtc, pipe_config);
2182
2183         if (port == PORT_A) {
2184                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2185                         pipe_config->port_clock = 162000;
2186                 else
2187                         pipe_config->port_clock = 270000;
2188         }
2189
2190         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2191                                             &pipe_config->dp_m_n);
2192
2193         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2194                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2195
2196         pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2197
2198         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2199             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2200                 /*
2201                  * This is a big fat ugly hack.
2202                  *
2203                  * Some machines in UEFI boot mode provide us a VBT that has 18
2204                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2205                  * unknown we fail to light up. Yet the same BIOS boots up with
2206                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2207                  * max, not what it tells us to use.
2208                  *
2209                  * Note: This will still be broken if the eDP panel is not lit
2210                  * up by the BIOS, and thus we can't get the mode at module
2211                  * load.
2212                  */
2213                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2214                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2215                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2216         }
2217 }
2218
2219 static void intel_disable_dp(struct intel_encoder *encoder)
2220 {
2221         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2222         struct drm_device *dev = encoder->base.dev;
2223         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2224
2225         if (crtc->config->has_audio)
2226                 intel_audio_codec_disable(encoder);
2227
2228         if (HAS_PSR(dev) && !HAS_DDI(dev))
2229                 intel_psr_disable(intel_dp);
2230
2231         /* Make sure the panel is off before trying to change the mode. But also
2232          * ensure that we have vdd while we switch off the panel. */
2233         intel_edp_panel_vdd_on(intel_dp);
2234         intel_edp_backlight_off(intel_dp);
2235         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2236         intel_edp_panel_off(intel_dp);
2237
2238         /* disable the port before the pipe on g4x */
2239         if (INTEL_INFO(dev)->gen < 5)
2240                 intel_dp_link_down(intel_dp);
2241 }
2242
2243 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2244 {
2245         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2246         enum port port = dp_to_dig_port(intel_dp)->port;
2247
2248         intel_dp_link_down(intel_dp);
2249         if (port == PORT_A)
2250                 ironlake_edp_pll_off(intel_dp);
2251 }
2252
2253 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2254 {
2255         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2256
2257         intel_dp_link_down(intel_dp);
2258 }
2259
2260 static void chv_post_disable_dp(struct intel_encoder *encoder)
2261 {
2262         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2263         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2264         struct drm_device *dev = encoder->base.dev;
2265         struct drm_i915_private *dev_priv = dev->dev_private;
2266         struct intel_crtc *intel_crtc =
2267                 to_intel_crtc(encoder->base.crtc);
2268         enum dpio_channel ch = vlv_dport_to_channel(dport);
2269         enum pipe pipe = intel_crtc->pipe;
2270         u32 val;
2271
2272         intel_dp_link_down(intel_dp);
2273
2274         mutex_lock(&dev_priv->dpio_lock);
2275
2276         /* Propagate soft reset to data lane reset */
2277         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2278         val |= CHV_PCS_REQ_SOFTRESET_EN;
2279         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2280
2281         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2282         val |= CHV_PCS_REQ_SOFTRESET_EN;
2283         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2284
2285         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2286         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2287         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2288
2289         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2290         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2291         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2292
2293         mutex_unlock(&dev_priv->dpio_lock);
2294 }
2295
2296 static void
2297 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2298                          uint32_t *DP,
2299                          uint8_t dp_train_pat)
2300 {
2301         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2302         struct drm_device *dev = intel_dig_port->base.base.dev;
2303         struct drm_i915_private *dev_priv = dev->dev_private;
2304         enum port port = intel_dig_port->port;
2305
2306         if (HAS_DDI(dev)) {
2307                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2308
2309                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2310                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2311                 else
2312                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2313
2314                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2315                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2316                 case DP_TRAINING_PATTERN_DISABLE:
2317                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2318
2319                         break;
2320                 case DP_TRAINING_PATTERN_1:
2321                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2322                         break;
2323                 case DP_TRAINING_PATTERN_2:
2324                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2325                         break;
2326                 case DP_TRAINING_PATTERN_3:
2327                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2328                         break;
2329                 }
2330                 I915_WRITE(DP_TP_CTL(port), temp);
2331
2332         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2333                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2334
2335                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2336                 case DP_TRAINING_PATTERN_DISABLE:
2337                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2338                         break;
2339                 case DP_TRAINING_PATTERN_1:
2340                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2341                         break;
2342                 case DP_TRAINING_PATTERN_2:
2343                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2344                         break;
2345                 case DP_TRAINING_PATTERN_3:
2346                         DRM_ERROR("DP training pattern 3 not supported\n");
2347                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2348                         break;
2349                 }
2350
2351         } else {
2352                 if (IS_CHERRYVIEW(dev))
2353                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2354                 else
2355                         *DP &= ~DP_LINK_TRAIN_MASK;
2356
2357                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2358                 case DP_TRAINING_PATTERN_DISABLE:
2359                         *DP |= DP_LINK_TRAIN_OFF;
2360                         break;
2361                 case DP_TRAINING_PATTERN_1:
2362                         *DP |= DP_LINK_TRAIN_PAT_1;
2363                         break;
2364                 case DP_TRAINING_PATTERN_2:
2365                         *DP |= DP_LINK_TRAIN_PAT_2;
2366                         break;
2367                 case DP_TRAINING_PATTERN_3:
2368                         if (IS_CHERRYVIEW(dev)) {
2369                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2370                         } else {
2371                                 DRM_ERROR("DP training pattern 3 not supported\n");
2372                                 *DP |= DP_LINK_TRAIN_PAT_2;
2373                         }
2374                         break;
2375                 }
2376         }
2377 }
2378
2379 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2380 {
2381         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2382         struct drm_i915_private *dev_priv = dev->dev_private;
2383
2384         /* enable with pattern 1 (as per spec) */
2385         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2386                                  DP_TRAINING_PATTERN_1);
2387
2388         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2389         POSTING_READ(intel_dp->output_reg);
2390
2391         /*
2392          * Magic for VLV/CHV. We _must_ first set up the register
2393          * without actually enabling the port, and then do another
2394          * write to enable the port. Otherwise link training will
2395          * fail when the power sequencer is freshly used for this port.
2396          */
2397         intel_dp->DP |= DP_PORT_EN;
2398
2399         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2400         POSTING_READ(intel_dp->output_reg);
2401 }
2402
2403 static void intel_enable_dp(struct intel_encoder *encoder)
2404 {
2405         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2406         struct drm_device *dev = encoder->base.dev;
2407         struct drm_i915_private *dev_priv = dev->dev_private;
2408         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2409         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2410
2411         if (WARN_ON(dp_reg & DP_PORT_EN))
2412                 return;
2413
2414         pps_lock(intel_dp);
2415
2416         if (IS_VALLEYVIEW(dev))
2417                 vlv_init_panel_power_sequencer(intel_dp);
2418
2419         intel_dp_enable_port(intel_dp);
2420
2421         edp_panel_vdd_on(intel_dp);
2422         edp_panel_on(intel_dp);
2423         edp_panel_vdd_off(intel_dp, true);
2424
2425         pps_unlock(intel_dp);
2426
2427         if (IS_VALLEYVIEW(dev))
2428                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp));
2429
2430         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2431         intel_dp_start_link_train(intel_dp);
2432         intel_dp_complete_link_train(intel_dp);
2433         intel_dp_stop_link_train(intel_dp);
2434
2435         if (crtc->config->has_audio) {
2436                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2437                                  pipe_name(crtc->pipe));
2438                 intel_audio_codec_enable(encoder);
2439         }
2440 }
2441
2442 static void g4x_enable_dp(struct intel_encoder *encoder)
2443 {
2444         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2445
2446         intel_enable_dp(encoder);
2447         intel_edp_backlight_on(intel_dp);
2448 }
2449
2450 static void vlv_enable_dp(struct intel_encoder *encoder)
2451 {
2452         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2453
2454         intel_edp_backlight_on(intel_dp);
2455         intel_psr_enable(intel_dp);
2456 }
2457
2458 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2459 {
2460         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2461         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2462
2463         intel_dp_prepare(encoder);
2464
2465         /* Only ilk+ has port A */
2466         if (dport->port == PORT_A) {
2467                 ironlake_set_pll_cpu_edp(intel_dp);
2468                 ironlake_edp_pll_on(intel_dp);
2469         }
2470 }
2471
2472 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2473 {
2474         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2475         struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2476         enum pipe pipe = intel_dp->pps_pipe;
2477         int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2478
2479         edp_panel_vdd_off_sync(intel_dp);
2480
2481         /*
2482          * VLV seems to get confused when multiple power seqeuencers
2483          * have the same port selected (even if only one has power/vdd
2484          * enabled). The failure manifests as vlv_wait_port_ready() failing
2485          * CHV on the other hand doesn't seem to mind having the same port
2486          * selected in multiple power seqeuencers, but let's clear the
2487          * port select always when logically disconnecting a power sequencer
2488          * from a port.
2489          */
2490         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2491                       pipe_name(pipe), port_name(intel_dig_port->port));
2492         I915_WRITE(pp_on_reg, 0);
2493         POSTING_READ(pp_on_reg);
2494
2495         intel_dp->pps_pipe = INVALID_PIPE;
2496 }
2497
2498 static void vlv_steal_power_sequencer(struct drm_device *dev,
2499                                       enum pipe pipe)
2500 {
2501         struct drm_i915_private *dev_priv = dev->dev_private;
2502         struct intel_encoder *encoder;
2503
2504         lockdep_assert_held(&dev_priv->pps_mutex);
2505
2506         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2507                 return;
2508
2509         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2510                             base.head) {
2511                 struct intel_dp *intel_dp;
2512                 enum port port;
2513
2514                 if (encoder->type != INTEL_OUTPUT_EDP)
2515                         continue;
2516
2517                 intel_dp = enc_to_intel_dp(&encoder->base);
2518                 port = dp_to_dig_port(intel_dp)->port;
2519
2520                 if (intel_dp->pps_pipe != pipe)
2521                         continue;
2522
2523                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2524                               pipe_name(pipe), port_name(port));
2525
2526                 WARN(encoder->connectors_active,
2527                      "stealing pipe %c power sequencer from active eDP port %c\n",
2528                      pipe_name(pipe), port_name(port));
2529
2530                 /* make sure vdd is off before we steal it */
2531                 vlv_detach_power_sequencer(intel_dp);
2532         }
2533 }
2534
2535 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2536 {
2537         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2538         struct intel_encoder *encoder = &intel_dig_port->base;
2539         struct drm_device *dev = encoder->base.dev;
2540         struct drm_i915_private *dev_priv = dev->dev_private;
2541         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2542
2543         lockdep_assert_held(&dev_priv->pps_mutex);
2544
2545         if (!is_edp(intel_dp))
2546                 return;
2547
2548         if (intel_dp->pps_pipe == crtc->pipe)
2549                 return;
2550
2551         /*
2552          * If another power sequencer was being used on this
2553          * port previously make sure to turn off vdd there while
2554          * we still have control of it.
2555          */
2556         if (intel_dp->pps_pipe != INVALID_PIPE)
2557                 vlv_detach_power_sequencer(intel_dp);
2558
2559         /*
2560          * We may be stealing the power
2561          * sequencer from another port.
2562          */
2563         vlv_steal_power_sequencer(dev, crtc->pipe);
2564
2565         /* now it's all ours */
2566         intel_dp->pps_pipe = crtc->pipe;
2567
2568         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2569                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2570
2571         /* init power sequencer on this pipe and port */
2572         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2573         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2574 }
2575
2576 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2577 {
2578         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2579         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2580         struct drm_device *dev = encoder->base.dev;
2581         struct drm_i915_private *dev_priv = dev->dev_private;
2582         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2583         enum dpio_channel port = vlv_dport_to_channel(dport);
2584         int pipe = intel_crtc->pipe;
2585         u32 val;
2586
2587         mutex_lock(&dev_priv->dpio_lock);
2588
2589         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2590         val = 0;
2591         if (pipe)
2592                 val |= (1<<21);
2593         else
2594                 val &= ~(1<<21);
2595         val |= 0x001000c4;
2596         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2597         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2598         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2599
2600         mutex_unlock(&dev_priv->dpio_lock);
2601
2602         intel_enable_dp(encoder);
2603 }
2604
2605 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2606 {
2607         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2608         struct drm_device *dev = encoder->base.dev;
2609         struct drm_i915_private *dev_priv = dev->dev_private;
2610         struct intel_crtc *intel_crtc =
2611                 to_intel_crtc(encoder->base.crtc);
2612         enum dpio_channel port = vlv_dport_to_channel(dport);
2613         int pipe = intel_crtc->pipe;
2614
2615         intel_dp_prepare(encoder);
2616
2617         /* Program Tx lane resets to default */
2618         mutex_lock(&dev_priv->dpio_lock);
2619         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2620                          DPIO_PCS_TX_LANE2_RESET |
2621                          DPIO_PCS_TX_LANE1_RESET);
2622         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2623                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2624                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2625                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2626                                  DPIO_PCS_CLK_SOFT_RESET);
2627
2628         /* Fix up inter-pair skew failure */
2629         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2630         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2631         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2632         mutex_unlock(&dev_priv->dpio_lock);
2633 }
2634
2635 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2636 {
2637         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2638         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2639         struct drm_device *dev = encoder->base.dev;
2640         struct drm_i915_private *dev_priv = dev->dev_private;
2641         struct intel_crtc *intel_crtc =
2642                 to_intel_crtc(encoder->base.crtc);
2643         enum dpio_channel ch = vlv_dport_to_channel(dport);
2644         int pipe = intel_crtc->pipe;
2645         int data, i;
2646         u32 val;
2647
2648         mutex_lock(&dev_priv->dpio_lock);
2649
2650         /* allow hardware to manage TX FIFO reset source */
2651         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2652         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2653         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2654
2655         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2656         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2657         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2658
2659         /* Deassert soft data lane reset*/
2660         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2661         val |= CHV_PCS_REQ_SOFTRESET_EN;
2662         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2663
2664         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2665         val |= CHV_PCS_REQ_SOFTRESET_EN;
2666         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2667
2668         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2669         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2670         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2671
2672         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2673         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2674         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2675
2676         /* Program Tx lane latency optimal setting*/
2677         for (i = 0; i < 4; i++) {
2678                 /* Set the latency optimal bit */
2679                 data = (i == 1) ? 0x0 : 0x6;
2680                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2681                                 data << DPIO_FRC_LATENCY_SHFIT);
2682
2683                 /* Set the upar bit */
2684                 data = (i == 1) ? 0x0 : 0x1;
2685                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2686                                 data << DPIO_UPAR_SHIFT);
2687         }
2688
2689         /* Data lane stagger programming */
2690         /* FIXME: Fix up value only after power analysis */
2691
2692         mutex_unlock(&dev_priv->dpio_lock);
2693
2694         intel_enable_dp(encoder);
2695 }
2696
2697 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2698 {
2699         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2700         struct drm_device *dev = encoder->base.dev;
2701         struct drm_i915_private *dev_priv = dev->dev_private;
2702         struct intel_crtc *intel_crtc =
2703                 to_intel_crtc(encoder->base.crtc);
2704         enum dpio_channel ch = vlv_dport_to_channel(dport);
2705         enum pipe pipe = intel_crtc->pipe;
2706         u32 val;
2707
2708         intel_dp_prepare(encoder);
2709
2710         mutex_lock(&dev_priv->dpio_lock);
2711
2712         /* program left/right clock distribution */
2713         if (pipe != PIPE_B) {
2714                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2715                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2716                 if (ch == DPIO_CH0)
2717                         val |= CHV_BUFLEFTENA1_FORCE;
2718                 if (ch == DPIO_CH1)
2719                         val |= CHV_BUFRIGHTENA1_FORCE;
2720                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2721         } else {
2722                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2723                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2724                 if (ch == DPIO_CH0)
2725                         val |= CHV_BUFLEFTENA2_FORCE;
2726                 if (ch == DPIO_CH1)
2727                         val |= CHV_BUFRIGHTENA2_FORCE;
2728                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2729         }
2730
2731         /* program clock channel usage */
2732         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2733         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2734         if (pipe != PIPE_B)
2735                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2736         else
2737                 val |= CHV_PCS_USEDCLKCHANNEL;
2738         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2739
2740         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2741         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2742         if (pipe != PIPE_B)
2743                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2744         else
2745                 val |= CHV_PCS_USEDCLKCHANNEL;
2746         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2747
2748         /*
2749          * This a a bit weird since generally CL
2750          * matches the pipe, but here we need to
2751          * pick the CL based on the port.
2752          */
2753         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2754         if (pipe != PIPE_B)
2755                 val &= ~CHV_CMN_USEDCLKCHANNEL;
2756         else
2757                 val |= CHV_CMN_USEDCLKCHANNEL;
2758         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2759
2760         mutex_unlock(&dev_priv->dpio_lock);
2761 }
2762
2763 /*
2764  * Native read with retry for link status and receiver capability reads for
2765  * cases where the sink may still be asleep.
2766  *
2767  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2768  * supposed to retry 3 times per the spec.
2769  */
2770 static ssize_t
2771 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2772                         void *buffer, size_t size)
2773 {
2774         ssize_t ret;
2775         int i;
2776
2777         /*
2778          * Sometime we just get the same incorrect byte repeated
2779          * over the entire buffer. Doing just one throw away read
2780          * initially seems to "solve" it.
2781          */
2782         drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2783
2784         for (i = 0; i < 3; i++) {
2785                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2786                 if (ret == size)
2787                         return ret;
2788                 msleep(1);
2789         }
2790
2791         return ret;
2792 }
2793
2794 /*
2795  * Fetch AUX CH registers 0x202 - 0x207 which contain
2796  * link status information
2797  */
2798 static bool
2799 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2800 {
2801         return intel_dp_dpcd_read_wake(&intel_dp->aux,
2802                                        DP_LANE0_1_STATUS,
2803                                        link_status,
2804                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2805 }
2806
2807 /* These are source-specific values. */
2808 static uint8_t
2809 intel_dp_voltage_max(struct intel_dp *intel_dp)
2810 {
2811         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2812         struct drm_i915_private *dev_priv = dev->dev_private;
2813         enum port port = dp_to_dig_port(intel_dp)->port;
2814
2815         if (INTEL_INFO(dev)->gen >= 9) {
2816                 if (dev_priv->vbt.edp_low_vswing && port == PORT_A)
2817                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2818                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2819         } else if (IS_VALLEYVIEW(dev))
2820                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2821         else if (IS_GEN7(dev) && port == PORT_A)
2822                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2823         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2824                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2825         else
2826                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2827 }
2828
2829 static uint8_t
2830 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2831 {
2832         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2833         enum port port = dp_to_dig_port(intel_dp)->port;
2834
2835         if (INTEL_INFO(dev)->gen >= 9) {
2836                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2837                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2838                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2839                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2840                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2841                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2842                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2843                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2844                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2845                 default:
2846                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2847                 }
2848         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2849                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2850                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2851                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2852                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2853                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2854                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2855                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2856                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2857                 default:
2858                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2859                 }
2860         } else if (IS_VALLEYVIEW(dev)) {
2861                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2862                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2863                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2864                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2865                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2866                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2867                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2868                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2869                 default:
2870                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2871                 }
2872         } else if (IS_GEN7(dev) && port == PORT_A) {
2873                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2874                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2875                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2876                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2877                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2878                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2879                 default:
2880                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2881                 }
2882         } else {
2883                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2884                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2885                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2886                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2887                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2888                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2889                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2890                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2891                 default:
2892                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2893                 }
2894         }
2895 }
2896
2897 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2898 {
2899         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2900         struct drm_i915_private *dev_priv = dev->dev_private;
2901         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2902         struct intel_crtc *intel_crtc =
2903                 to_intel_crtc(dport->base.base.crtc);
2904         unsigned long demph_reg_value, preemph_reg_value,
2905                 uniqtranscale_reg_value;
2906         uint8_t train_set = intel_dp->train_set[0];
2907         enum dpio_channel port = vlv_dport_to_channel(dport);
2908         int pipe = intel_crtc->pipe;
2909
2910         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2911         case DP_TRAIN_PRE_EMPH_LEVEL_0:
2912                 preemph_reg_value = 0x0004000;
2913                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2914                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2915                         demph_reg_value = 0x2B405555;
2916                         uniqtranscale_reg_value = 0x552AB83A;
2917                         break;
2918                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2919                         demph_reg_value = 0x2B404040;
2920                         uniqtranscale_reg_value = 0x5548B83A;
2921                         break;
2922                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2923                         demph_reg_value = 0x2B245555;
2924                         uniqtranscale_reg_value = 0x5560B83A;
2925                         break;
2926                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2927                         demph_reg_value = 0x2B405555;
2928                         uniqtranscale_reg_value = 0x5598DA3A;
2929                         break;
2930                 default:
2931                         return 0;
2932                 }
2933                 break;
2934         case DP_TRAIN_PRE_EMPH_LEVEL_1:
2935                 preemph_reg_value = 0x0002000;
2936                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2937                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2938                         demph_reg_value = 0x2B404040;
2939                         uniqtranscale_reg_value = 0x5552B83A;
2940                         break;
2941                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2942                         demph_reg_value = 0x2B404848;
2943                         uniqtranscale_reg_value = 0x5580B83A;
2944                         break;
2945                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2946                         demph_reg_value = 0x2B404040;
2947                         uniqtranscale_reg_value = 0x55ADDA3A;
2948                         break;
2949                 default:
2950                         return 0;
2951                 }
2952                 break;
2953         case DP_TRAIN_PRE_EMPH_LEVEL_2:
2954                 preemph_reg_value = 0x0000000;
2955                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2956                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2957                         demph_reg_value = 0x2B305555;
2958                         uniqtranscale_reg_value = 0x5570B83A;
2959                         break;
2960                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2961                         demph_reg_value = 0x2B2B4040;
2962                         uniqtranscale_reg_value = 0x55ADDA3A;
2963                         break;
2964                 default:
2965                         return 0;
2966                 }
2967                 break;
2968         case DP_TRAIN_PRE_EMPH_LEVEL_3:
2969                 preemph_reg_value = 0x0006000;
2970                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2971                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2972                         demph_reg_value = 0x1B405555;
2973                         uniqtranscale_reg_value = 0x55ADDA3A;
2974                         break;
2975                 default:
2976                         return 0;
2977                 }
2978                 break;
2979         default:
2980                 return 0;
2981         }
2982
2983         mutex_lock(&dev_priv->dpio_lock);
2984         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2985         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2986         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2987                          uniqtranscale_reg_value);
2988         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2989         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2990         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2991         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2992         mutex_unlock(&dev_priv->dpio_lock);
2993
2994         return 0;
2995 }
2996
2997 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2998 {
2999         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3000         struct drm_i915_private *dev_priv = dev->dev_private;
3001         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3002         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3003         u32 deemph_reg_value, margin_reg_value, val;
3004         uint8_t train_set = intel_dp->train_set[0];
3005         enum dpio_channel ch = vlv_dport_to_channel(dport);
3006         enum pipe pipe = intel_crtc->pipe;
3007         int i;
3008
3009         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3010         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3011                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3012                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3013                         deemph_reg_value = 128;
3014                         margin_reg_value = 52;
3015                         break;
3016                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3017                         deemph_reg_value = 128;
3018                         margin_reg_value = 77;
3019                         break;
3020                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3021                         deemph_reg_value = 128;
3022                         margin_reg_value = 102;
3023                         break;
3024                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3025                         deemph_reg_value = 128;
3026                         margin_reg_value = 154;
3027                         /* FIXME extra to set for 1200 */
3028                         break;
3029                 default:
3030                         return 0;
3031                 }
3032                 break;
3033         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3034                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3035                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3036                         deemph_reg_value = 85;
3037                         margin_reg_value = 78;
3038                         break;
3039                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3040                         deemph_reg_value = 85;
3041                         margin_reg_value = 116;
3042                         break;
3043                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3044                         deemph_reg_value = 85;
3045                         margin_reg_value = 154;
3046                         break;
3047                 default:
3048                         return 0;
3049                 }
3050                 break;
3051         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3052                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3053                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3054                         deemph_reg_value = 64;
3055                         margin_reg_value = 104;
3056                         break;
3057                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3058                         deemph_reg_value = 64;
3059                         margin_reg_value = 154;
3060                         break;
3061                 default:
3062                         return 0;
3063                 }
3064                 break;
3065         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3066                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3067                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3068                         deemph_reg_value = 43;
3069                         margin_reg_value = 154;
3070                         break;
3071                 default:
3072                         return 0;
3073                 }
3074                 break;
3075         default:
3076                 return 0;
3077         }
3078
3079         mutex_lock(&dev_priv->dpio_lock);
3080
3081         /* Clear calc init */
3082         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3083         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3084         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3085         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3086         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3087
3088         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3089         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3090         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3091         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3092         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3093
3094         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3095         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3096         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3097         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3098
3099         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3100         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3101         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3102         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3103
3104         /* Program swing deemph */
3105         for (i = 0; i < 4; i++) {
3106                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3107                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3108                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3109                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3110         }
3111
3112         /* Program swing margin */
3113         for (i = 0; i < 4; i++) {
3114                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3115                 val &= ~DPIO_SWING_MARGIN000_MASK;
3116                 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3117                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3118         }
3119
3120         /* Disable unique transition scale */
3121         for (i = 0; i < 4; i++) {
3122                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3123                 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3124                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3125         }
3126
3127         if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3128                         == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3129                 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3130                         == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3131
3132                 /*
3133                  * The document said it needs to set bit 27 for ch0 and bit 26
3134                  * for ch1. Might be a typo in the doc.
3135                  * For now, for this unique transition scale selection, set bit
3136                  * 27 for ch0 and ch1.
3137                  */
3138                 for (i = 0; i < 4; i++) {
3139                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3140                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3141                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3142                 }
3143
3144                 for (i = 0; i < 4; i++) {
3145                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3146                         val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3147                         val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3148                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3149                 }
3150         }
3151
3152         /* Start swing calculation */
3153         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3154         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3155         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3156
3157         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3158         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3159         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3160
3161         /* LRC Bypass */
3162         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3163         val |= DPIO_LRC_BYPASS;
3164         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3165
3166         mutex_unlock(&dev_priv->dpio_lock);
3167
3168         return 0;
3169 }
3170
3171 static void
3172 intel_get_adjust_train(struct intel_dp *intel_dp,
3173                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
3174 {
3175         uint8_t v = 0;
3176         uint8_t p = 0;
3177         int lane;
3178         uint8_t voltage_max;
3179         uint8_t preemph_max;
3180
3181         for (lane = 0; lane < intel_dp->lane_count; lane++) {
3182                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3183                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3184
3185                 if (this_v > v)
3186                         v = this_v;
3187                 if (this_p > p)
3188                         p = this_p;
3189         }
3190
3191         voltage_max = intel_dp_voltage_max(intel_dp);
3192         if (v >= voltage_max)
3193                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3194
3195         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3196         if (p >= preemph_max)
3197                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3198
3199         for (lane = 0; lane < 4; lane++)
3200                 intel_dp->train_set[lane] = v | p;
3201 }
3202
3203 static uint32_t
3204 intel_gen4_signal_levels(uint8_t train_set)
3205 {
3206         uint32_t        signal_levels = 0;
3207
3208         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3209         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3210         default:
3211                 signal_levels |= DP_VOLTAGE_0_4;
3212                 break;
3213         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3214                 signal_levels |= DP_VOLTAGE_0_6;
3215                 break;
3216         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3217                 signal_levels |= DP_VOLTAGE_0_8;
3218                 break;
3219         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3220                 signal_levels |= DP_VOLTAGE_1_2;
3221                 break;
3222         }
3223         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3224         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3225         default:
3226                 signal_levels |= DP_PRE_EMPHASIS_0;
3227                 break;
3228         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3229                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3230                 break;
3231         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3232                 signal_levels |= DP_PRE_EMPHASIS_6;
3233                 break;
3234         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3235                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3236                 break;
3237         }
3238         return signal_levels;
3239 }
3240
3241 /* Gen6's DP voltage swing and pre-emphasis control */
3242 static uint32_t
3243 intel_gen6_edp_signal_levels(uint8_t train_set)
3244 {
3245         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3246                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3247         switch (signal_levels) {
3248         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3249         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3250                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3251         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3252                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3253         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3254         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3255                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3256         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3257         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3258                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3259         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3260         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3261                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3262         default:
3263                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3264                               "0x%x\n", signal_levels);
3265                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3266         }
3267 }
3268
3269 /* Gen7's DP voltage swing and pre-emphasis control */
3270 static uint32_t
3271 intel_gen7_edp_signal_levels(uint8_t train_set)
3272 {
3273         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3274                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3275         switch (signal_levels) {
3276         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3277                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3278         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3279                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3280         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3281                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3282
3283         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3284                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3285         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3286                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3287
3288         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3289                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3290         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3291                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3292
3293         default:
3294                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3295                               "0x%x\n", signal_levels);
3296                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3297         }
3298 }
3299
3300 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3301 static uint32_t
3302 intel_hsw_signal_levels(uint8_t train_set)
3303 {
3304         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3305                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3306         switch (signal_levels) {
3307         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3308                 return DDI_BUF_TRANS_SELECT(0);
3309         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3310                 return DDI_BUF_TRANS_SELECT(1);
3311         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3312                 return DDI_BUF_TRANS_SELECT(2);
3313         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3314                 return DDI_BUF_TRANS_SELECT(3);
3315
3316         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3317                 return DDI_BUF_TRANS_SELECT(4);
3318         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3319                 return DDI_BUF_TRANS_SELECT(5);
3320         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3321                 return DDI_BUF_TRANS_SELECT(6);
3322
3323         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3324                 return DDI_BUF_TRANS_SELECT(7);
3325         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3326                 return DDI_BUF_TRANS_SELECT(8);
3327
3328         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3329                 return DDI_BUF_TRANS_SELECT(9);
3330         default:
3331                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3332                               "0x%x\n", signal_levels);
3333                 return DDI_BUF_TRANS_SELECT(0);
3334         }
3335 }
3336
3337 /* Properly updates "DP" with the correct signal levels. */
3338 static void
3339 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3340 {
3341         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3342         enum port port = intel_dig_port->port;
3343         struct drm_device *dev = intel_dig_port->base.base.dev;
3344         uint32_t signal_levels, mask;
3345         uint8_t train_set = intel_dp->train_set[0];
3346
3347         if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
3348                 signal_levels = intel_hsw_signal_levels(train_set);
3349                 mask = DDI_BUF_EMP_MASK;
3350         } else if (IS_CHERRYVIEW(dev)) {
3351                 signal_levels = intel_chv_signal_levels(intel_dp);
3352                 mask = 0;
3353         } else if (IS_VALLEYVIEW(dev)) {
3354                 signal_levels = intel_vlv_signal_levels(intel_dp);
3355                 mask = 0;
3356         } else if (IS_GEN7(dev) && port == PORT_A) {
3357                 signal_levels = intel_gen7_edp_signal_levels(train_set);
3358                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3359         } else if (IS_GEN6(dev) && port == PORT_A) {
3360                 signal_levels = intel_gen6_edp_signal_levels(train_set);
3361                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3362         } else {
3363                 signal_levels = intel_gen4_signal_levels(train_set);
3364                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3365         }
3366
3367         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3368
3369         *DP = (*DP & ~mask) | signal_levels;
3370 }
3371
3372 static bool
3373 intel_dp_set_link_train(struct intel_dp *intel_dp,
3374                         uint32_t *DP,
3375                         uint8_t dp_train_pat)
3376 {
3377         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3378         struct drm_device *dev = intel_dig_port->base.base.dev;
3379         struct drm_i915_private *dev_priv = dev->dev_private;
3380         uint8_t buf[sizeof(intel_dp->train_set) + 1];
3381         int ret, len;
3382
3383         _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3384
3385         I915_WRITE(intel_dp->output_reg, *DP);
3386         POSTING_READ(intel_dp->output_reg);
3387
3388         buf[0] = dp_train_pat;
3389         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3390             DP_TRAINING_PATTERN_DISABLE) {
3391                 /* don't write DP_TRAINING_LANEx_SET on disable */
3392                 len = 1;
3393         } else {
3394                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3395                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3396                 len = intel_dp->lane_count + 1;
3397         }
3398
3399         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3400                                 buf, len);
3401
3402         return ret == len;
3403 }
3404
3405 static bool
3406 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3407                         uint8_t dp_train_pat)
3408 {
3409         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3410         intel_dp_set_signal_levels(intel_dp, DP);
3411         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3412 }
3413
3414 static bool
3415 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3416                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
3417 {
3418         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3419         struct drm_device *dev = intel_dig_port->base.base.dev;
3420         struct drm_i915_private *dev_priv = dev->dev_private;
3421         int ret;
3422
3423         intel_get_adjust_train(intel_dp, link_status);
3424         intel_dp_set_signal_levels(intel_dp, DP);
3425
3426         I915_WRITE(intel_dp->output_reg, *DP);
3427         POSTING_READ(intel_dp->output_reg);
3428
3429         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3430                                 intel_dp->train_set, intel_dp->lane_count);
3431
3432         return ret == intel_dp->lane_count;
3433 }
3434
3435 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3436 {
3437         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3438         struct drm_device *dev = intel_dig_port->base.base.dev;
3439         struct drm_i915_private *dev_priv = dev->dev_private;
3440         enum port port = intel_dig_port->port;
3441         uint32_t val;
3442
3443         if (!HAS_DDI(dev))
3444                 return;
3445
3446         val = I915_READ(DP_TP_CTL(port));
3447         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3448         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3449         I915_WRITE(DP_TP_CTL(port), val);
3450
3451         /*
3452          * On PORT_A we can have only eDP in SST mode. There the only reason
3453          * we need to set idle transmission mode is to work around a HW issue
3454          * where we enable the pipe while not in idle link-training mode.
3455          * In this case there is requirement to wait for a minimum number of
3456          * idle patterns to be sent.
3457          */
3458         if (port == PORT_A)
3459                 return;
3460
3461         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3462                      1))
3463                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3464 }
3465
3466 /* Enable corresponding port and start training pattern 1 */
3467 void
3468 intel_dp_start_link_train(struct intel_dp *intel_dp)
3469 {
3470         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3471         struct drm_device *dev = encoder->dev;
3472         int i;
3473         uint8_t voltage;
3474         int voltage_tries, loop_tries;
3475         uint32_t DP = intel_dp->DP;
3476         uint8_t link_config[2];
3477
3478         if (HAS_DDI(dev))
3479                 intel_ddi_prepare_link_retrain(encoder);
3480
3481         /* Write the link configuration data */
3482         link_config[0] = intel_dp->link_bw;
3483         link_config[1] = intel_dp->lane_count;
3484         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3485                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3486         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3487         if (INTEL_INFO(dev)->gen >= 9 && intel_dp->supported_rates[0])
3488                 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3489                                 &intel_dp->rate_select, 1);
3490
3491         link_config[0] = 0;
3492         link_config[1] = DP_SET_ANSI_8B10B;
3493         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3494
3495         DP |= DP_PORT_EN;
3496
3497         /* clock recovery */
3498         if (!intel_dp_reset_link_train(intel_dp, &DP,
3499                                        DP_TRAINING_PATTERN_1 |
3500                                        DP_LINK_SCRAMBLING_DISABLE)) {
3501                 DRM_ERROR("failed to enable link training\n");
3502                 return;
3503         }
3504
3505         voltage = 0xff;
3506         voltage_tries = 0;
3507         loop_tries = 0;
3508         for (;;) {
3509                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3510
3511                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3512                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3513                         DRM_ERROR("failed to get link status\n");
3514                         break;
3515                 }
3516
3517                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3518                         DRM_DEBUG_KMS("clock recovery OK\n");
3519                         break;
3520                 }
3521
3522                 /* Check to see if we've tried the max voltage */
3523                 for (i = 0; i < intel_dp->lane_count; i++)
3524                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3525                                 break;
3526                 if (i == intel_dp->lane_count) {
3527                         ++loop_tries;
3528                         if (loop_tries == 5) {
3529                                 DRM_ERROR("too many full retries, give up\n");
3530                                 break;
3531                         }
3532                         intel_dp_reset_link_train(intel_dp, &DP,
3533                                                   DP_TRAINING_PATTERN_1 |
3534                                                   DP_LINK_SCRAMBLING_DISABLE);
3535                         voltage_tries = 0;
3536                         continue;
3537                 }
3538
3539                 /* Check to see if we've tried the same voltage 5 times */
3540                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3541                         ++voltage_tries;
3542                         if (voltage_tries == 5) {
3543                                 DRM_ERROR("too many voltage retries, give up\n");
3544                                 break;
3545                         }
3546                 } else
3547                         voltage_tries = 0;
3548                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3549
3550                 /* Update training set as requested by target */
3551                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3552                         DRM_ERROR("failed to update link training\n");
3553                         break;
3554                 }
3555         }
3556
3557         intel_dp->DP = DP;
3558 }
3559
3560 void
3561 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3562 {
3563         bool channel_eq = false;
3564         int tries, cr_tries;
3565         uint32_t DP = intel_dp->DP;
3566         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3567
3568         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3569         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3570                 training_pattern = DP_TRAINING_PATTERN_3;
3571
3572         /* channel equalization */
3573         if (!intel_dp_set_link_train(intel_dp, &DP,
3574                                      training_pattern |
3575                                      DP_LINK_SCRAMBLING_DISABLE)) {
3576                 DRM_ERROR("failed to start channel equalization\n");
3577                 return;
3578         }
3579
3580         tries = 0;
3581         cr_tries = 0;
3582         channel_eq = false;
3583         for (;;) {
3584                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3585
3586                 if (cr_tries > 5) {
3587                         DRM_ERROR("failed to train DP, aborting\n");
3588                         break;
3589                 }
3590
3591                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3592                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3593                         DRM_ERROR("failed to get link status\n");
3594                         break;
3595                 }
3596
3597                 /* Make sure clock is still ok */
3598                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3599                         intel_dp_start_link_train(intel_dp);
3600                         intel_dp_set_link_train(intel_dp, &DP,
3601                                                 training_pattern |
3602                                                 DP_LINK_SCRAMBLING_DISABLE);
3603                         cr_tries++;
3604                         continue;
3605                 }
3606
3607                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3608                         channel_eq = true;
3609                         break;
3610                 }
3611
3612                 /* Try 5 times, then try clock recovery if that fails */
3613                 if (tries > 5) {
3614                         intel_dp_start_link_train(intel_dp);
3615                         intel_dp_set_link_train(intel_dp, &DP,
3616                                                 training_pattern |
3617                                                 DP_LINK_SCRAMBLING_DISABLE);
3618                         tries = 0;
3619                         cr_tries++;
3620                         continue;
3621                 }
3622
3623                 /* Update training set as requested by target */
3624                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3625                         DRM_ERROR("failed to update link training\n");
3626                         break;
3627                 }
3628                 ++tries;
3629         }
3630
3631         intel_dp_set_idle_link_train(intel_dp);
3632
3633         intel_dp->DP = DP;
3634
3635         if (channel_eq)
3636                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3637
3638 }
3639
3640 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3641 {
3642         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3643                                 DP_TRAINING_PATTERN_DISABLE);
3644 }
3645
3646 static void
3647 intel_dp_link_down(struct intel_dp *intel_dp)
3648 {
3649         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3650         enum port port = intel_dig_port->port;
3651         struct drm_device *dev = intel_dig_port->base.base.dev;
3652         struct drm_i915_private *dev_priv = dev->dev_private;
3653         uint32_t DP = intel_dp->DP;
3654
3655         if (WARN_ON(HAS_DDI(dev)))
3656                 return;
3657
3658         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3659                 return;
3660
3661         DRM_DEBUG_KMS("\n");
3662
3663         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3664                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3665                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3666         } else {
3667                 if (IS_CHERRYVIEW(dev))
3668                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3669                 else
3670                         DP &= ~DP_LINK_TRAIN_MASK;
3671                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3672         }
3673         POSTING_READ(intel_dp->output_reg);
3674
3675         if (HAS_PCH_IBX(dev) &&
3676             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3677                 /* Hardware workaround: leaving our transcoder select
3678                  * set to transcoder B while it's off will prevent the
3679                  * corresponding HDMI output on transcoder A.
3680                  *
3681                  * Combine this with another hardware workaround:
3682                  * transcoder select bit can only be cleared while the
3683                  * port is enabled.
3684                  */
3685                 DP &= ~DP_PIPEB_SELECT;
3686                 I915_WRITE(intel_dp->output_reg, DP);
3687                 POSTING_READ(intel_dp->output_reg);
3688         }
3689
3690         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3691         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3692         POSTING_READ(intel_dp->output_reg);
3693         msleep(intel_dp->panel_power_down_delay);
3694 }
3695
3696 static bool
3697 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3698 {
3699         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3700         struct drm_device *dev = dig_port->base.base.dev;
3701         struct drm_i915_private *dev_priv = dev->dev_private;
3702         uint8_t rev;
3703
3704         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3705                                     sizeof(intel_dp->dpcd)) < 0)
3706                 return false; /* aux transfer failed */
3707
3708         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3709
3710         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3711                 return false; /* DPCD not present */
3712
3713         /* Check if the panel supports PSR */
3714         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3715         if (is_edp(intel_dp)) {
3716                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3717                                         intel_dp->psr_dpcd,
3718                                         sizeof(intel_dp->psr_dpcd));
3719                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3720                         dev_priv->psr.sink_support = true;
3721                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3722                 }
3723         }
3724
3725         /* Training Pattern 3 support, both source and sink */
3726         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3727             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3728             (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3729                 intel_dp->use_tps3 = true;
3730                 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3731         } else
3732                 intel_dp->use_tps3 = false;
3733
3734         /* Intermediate frequency support */
3735         if (is_edp(intel_dp) &&
3736             (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3737             (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3738             (rev >= 0x03)) { /* eDp v1.4 or higher */
3739                 __le16 supported_rates[DP_MAX_SUPPORTED_RATES];
3740                 int i;
3741
3742                 intel_dp_dpcd_read_wake(&intel_dp->aux,
3743                                 DP_SUPPORTED_LINK_RATES,
3744                                 supported_rates,
3745                                 sizeof(supported_rates));
3746
3747                 for (i = 0; i < ARRAY_SIZE(supported_rates); i++) {
3748                         int val = le16_to_cpu(supported_rates[i]);
3749
3750                         if (val == 0)
3751                                 break;
3752
3753                         intel_dp->supported_rates[i] = val * 200;
3754                 }
3755                 intel_dp->num_supported_rates = i;
3756         }
3757         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3758               DP_DWN_STRM_PORT_PRESENT))
3759                 return true; /* native DP sink */
3760
3761         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3762                 return true; /* no per-port downstream info */
3763
3764         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3765                                     intel_dp->downstream_ports,
3766                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
3767                 return false; /* downstream port status fetch failed */
3768
3769         return true;
3770 }
3771
3772 static void
3773 intel_dp_probe_oui(struct intel_dp *intel_dp)
3774 {
3775         u8 buf[3];
3776
3777         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3778                 return;
3779
3780         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3781                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3782                               buf[0], buf[1], buf[2]);
3783
3784         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3785                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3786                               buf[0], buf[1], buf[2]);
3787 }
3788
3789 static bool
3790 intel_dp_probe_mst(struct intel_dp *intel_dp)
3791 {
3792         u8 buf[1];
3793
3794         if (!intel_dp->can_mst)
3795                 return false;
3796
3797         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3798                 return false;
3799
3800         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3801                 if (buf[0] & DP_MST_CAP) {
3802                         DRM_DEBUG_KMS("Sink is MST capable\n");
3803                         intel_dp->is_mst = true;
3804                 } else {
3805                         DRM_DEBUG_KMS("Sink is not MST capable\n");
3806                         intel_dp->is_mst = false;
3807                 }
3808         }
3809
3810         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3811         return intel_dp->is_mst;
3812 }
3813
3814 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3815 {
3816         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3817         struct drm_device *dev = intel_dig_port->base.base.dev;
3818         struct intel_crtc *intel_crtc =
3819                 to_intel_crtc(intel_dig_port->base.base.crtc);
3820         u8 buf;
3821         int test_crc_count;
3822         int attempts = 6;
3823
3824         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3825                 return -EIO;
3826
3827         if (!(buf & DP_TEST_CRC_SUPPORTED))
3828                 return -ENOTTY;
3829
3830         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3831                 return -EIO;
3832
3833         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3834                                 buf | DP_TEST_SINK_START) < 0)
3835                 return -EIO;
3836
3837         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3838                 return -EIO;
3839         test_crc_count = buf & DP_TEST_COUNT_MASK;
3840
3841         do {
3842                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3843                                       DP_TEST_SINK_MISC, &buf) < 0)
3844                         return -EIO;
3845                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3846         } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
3847
3848         if (attempts == 0) {
3849                 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
3850                 return -ETIMEDOUT;
3851         }
3852
3853         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3854                 return -EIO;
3855
3856         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3857                 return -EIO;
3858         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3859                                buf & ~DP_TEST_SINK_START) < 0)
3860                 return -EIO;
3861
3862         return 0;
3863 }
3864
3865 static bool
3866 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3867 {
3868         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3869                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3870                                        sink_irq_vector, 1) == 1;
3871 }
3872
3873 static bool
3874 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3875 {
3876         int ret;
3877
3878         ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3879                                              DP_SINK_COUNT_ESI,
3880                                              sink_irq_vector, 14);
3881         if (ret != 14)
3882                 return false;
3883
3884         return true;
3885 }
3886
3887 static void
3888 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3889 {
3890         /* NAK by default */
3891         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3892 }
3893
3894 static int
3895 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3896 {
3897         bool bret;
3898
3899         if (intel_dp->is_mst) {
3900                 u8 esi[16] = { 0 };
3901                 int ret = 0;
3902                 int retry;
3903                 bool handled;
3904                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3905 go_again:
3906                 if (bret == true) {
3907
3908                         /* check link status - esi[10] = 0x200c */
3909                         if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3910                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3911                                 intel_dp_start_link_train(intel_dp);
3912                                 intel_dp_complete_link_train(intel_dp);
3913                                 intel_dp_stop_link_train(intel_dp);
3914                         }
3915
3916                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
3917                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3918
3919                         if (handled) {
3920                                 for (retry = 0; retry < 3; retry++) {
3921                                         int wret;
3922                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
3923                                                                  DP_SINK_COUNT_ESI+1,
3924                                                                  &esi[1], 3);
3925                                         if (wret == 3) {
3926                                                 break;
3927                                         }
3928                                 }
3929
3930                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3931                                 if (bret == true) {
3932                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3933                                         goto go_again;
3934                                 }
3935                         } else
3936                                 ret = 0;
3937
3938                         return ret;
3939                 } else {
3940                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3941                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3942                         intel_dp->is_mst = false;
3943                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3944                         /* send a hotplug event */
3945                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3946                 }
3947         }
3948         return -EINVAL;
3949 }
3950
3951 /*
3952  * According to DP spec
3953  * 5.1.2:
3954  *  1. Read DPCD
3955  *  2. Configure link according to Receiver Capabilities
3956  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3957  *  4. Check link status on receipt of hot-plug interrupt
3958  */
3959 static void
3960 intel_dp_check_link_status(struct intel_dp *intel_dp)
3961 {
3962         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3963         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3964         u8 sink_irq_vector;
3965         u8 link_status[DP_LINK_STATUS_SIZE];
3966
3967         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3968
3969         if (!intel_encoder->connectors_active)
3970                 return;
3971
3972         if (WARN_ON(!intel_encoder->base.crtc))
3973                 return;
3974
3975         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3976                 return;
3977
3978         /* Try to read receiver status if the link appears to be up */
3979         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3980                 return;
3981         }
3982
3983         /* Now read the DPCD to see if it's actually running */
3984         if (!intel_dp_get_dpcd(intel_dp)) {
3985                 return;
3986         }
3987
3988         /* Try to read the source of the interrupt */
3989         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3990             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3991                 /* Clear interrupt source */
3992                 drm_dp_dpcd_writeb(&intel_dp->aux,
3993                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
3994                                    sink_irq_vector);
3995
3996                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3997                         intel_dp_handle_test_request(intel_dp);
3998                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3999                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4000         }
4001
4002         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4003                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4004                               intel_encoder->base.name);
4005                 intel_dp_start_link_train(intel_dp);
4006                 intel_dp_complete_link_train(intel_dp);
4007                 intel_dp_stop_link_train(intel_dp);
4008         }
4009 }
4010
4011 /* XXX this is probably wrong for multiple downstream ports */
4012 static enum drm_connector_status
4013 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4014 {
4015         uint8_t *dpcd = intel_dp->dpcd;
4016         uint8_t type;
4017
4018         if (!intel_dp_get_dpcd(intel_dp))
4019                 return connector_status_disconnected;
4020
4021         /* if there's no downstream port, we're done */
4022         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4023                 return connector_status_connected;
4024
4025         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4026         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4027             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4028                 uint8_t reg;
4029
4030                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4031                                             &reg, 1) < 0)
4032                         return connector_status_unknown;
4033
4034                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4035                                               : connector_status_disconnected;
4036         }
4037
4038         /* If no HPD, poke DDC gently */
4039         if (drm_probe_ddc(&intel_dp->aux.ddc))
4040                 return connector_status_connected;
4041
4042         /* Well we tried, say unknown for unreliable port types */
4043         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4044                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4045                 if (type == DP_DS_PORT_TYPE_VGA ||
4046                     type == DP_DS_PORT_TYPE_NON_EDID)
4047                         return connector_status_unknown;
4048         } else {
4049                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4050                         DP_DWN_STRM_PORT_TYPE_MASK;
4051                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4052                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4053                         return connector_status_unknown;
4054         }
4055
4056         /* Anything else is out of spec, warn and ignore */
4057         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4058         return connector_status_disconnected;
4059 }
4060
4061 static enum drm_connector_status
4062 edp_detect(struct intel_dp *intel_dp)
4063 {
4064         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4065         enum drm_connector_status status;
4066
4067         status = intel_panel_detect(dev);
4068         if (status == connector_status_unknown)
4069                 status = connector_status_connected;
4070
4071         return status;
4072 }
4073
4074 static enum drm_connector_status
4075 ironlake_dp_detect(struct intel_dp *intel_dp)
4076 {
4077         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4078         struct drm_i915_private *dev_priv = dev->dev_private;
4079         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4080
4081         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4082                 return connector_status_disconnected;
4083
4084         return intel_dp_detect_dpcd(intel_dp);
4085 }
4086
4087 static int g4x_digital_port_connected(struct drm_device *dev,
4088                                        struct intel_digital_port *intel_dig_port)
4089 {
4090         struct drm_i915_private *dev_priv = dev->dev_private;
4091         uint32_t bit;
4092
4093         if (IS_VALLEYVIEW(dev)) {
4094                 switch (intel_dig_port->port) {
4095                 case PORT_B:
4096                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4097                         break;
4098                 case PORT_C:
4099                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4100                         break;
4101                 case PORT_D:
4102                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4103                         break;
4104                 default:
4105                         return -EINVAL;
4106                 }
4107         } else {
4108                 switch (intel_dig_port->port) {
4109                 case PORT_B:
4110                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4111                         break;
4112                 case PORT_C:
4113                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4114                         break;
4115                 case PORT_D:
4116                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4117                         break;
4118                 default:
4119                         return -EINVAL;
4120                 }
4121         }
4122
4123         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4124                 return 0;
4125         return 1;
4126 }
4127
4128 static enum drm_connector_status
4129 g4x_dp_detect(struct intel_dp *intel_dp)
4130 {
4131         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4132         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4133         int ret;
4134
4135         /* Can't disconnect eDP, but you can close the lid... */
4136         if (is_edp(intel_dp)) {
4137                 enum drm_connector_status status;
4138
4139                 status = intel_panel_detect(dev);
4140                 if (status == connector_status_unknown)
4141                         status = connector_status_connected;
4142                 return status;
4143         }
4144
4145         ret = g4x_digital_port_connected(dev, intel_dig_port);
4146         if (ret == -EINVAL)
4147                 return connector_status_unknown;
4148         else if (ret == 0)
4149                 return connector_status_disconnected;
4150
4151         return intel_dp_detect_dpcd(intel_dp);
4152 }
4153
4154 static struct edid *
4155 intel_dp_get_edid(struct intel_dp *intel_dp)
4156 {
4157         struct intel_connector *intel_connector = intel_dp->attached_connector;
4158
4159         /* use cached edid if we have one */
4160         if (intel_connector->edid) {
4161                 /* invalid edid */
4162                 if (IS_ERR(intel_connector->edid))
4163                         return NULL;
4164
4165                 return drm_edid_duplicate(intel_connector->edid);
4166         } else
4167                 return drm_get_edid(&intel_connector->base,
4168                                     &intel_dp->aux.ddc);
4169 }
4170
4171 static void
4172 intel_dp_set_edid(struct intel_dp *intel_dp)
4173 {
4174         struct intel_connector *intel_connector = intel_dp->attached_connector;
4175         struct edid *edid;
4176
4177         edid = intel_dp_get_edid(intel_dp);
4178         intel_connector->detect_edid = edid;
4179
4180         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4181                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4182         else
4183                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4184 }
4185
4186 static void
4187 intel_dp_unset_edid(struct intel_dp *intel_dp)
4188 {
4189         struct intel_connector *intel_connector = intel_dp->attached_connector;
4190
4191         kfree(intel_connector->detect_edid);
4192         intel_connector->detect_edid = NULL;
4193
4194         intel_dp->has_audio = false;
4195 }
4196
4197 static enum intel_display_power_domain
4198 intel_dp_power_get(struct intel_dp *dp)
4199 {
4200         struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4201         enum intel_display_power_domain power_domain;
4202
4203         power_domain = intel_display_port_power_domain(encoder);
4204         intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4205
4206         return power_domain;
4207 }
4208
4209 static void
4210 intel_dp_power_put(struct intel_dp *dp,
4211                    enum intel_display_power_domain power_domain)
4212 {
4213         struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4214         intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4215 }
4216
4217 static enum drm_connector_status
4218 intel_dp_detect(struct drm_connector *connector, bool force)
4219 {
4220         struct intel_dp *intel_dp = intel_attached_dp(connector);
4221         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4222         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4223         struct drm_device *dev = connector->dev;
4224         enum drm_connector_status status;
4225         enum intel_display_power_domain power_domain;
4226         bool ret;
4227
4228         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4229                       connector->base.id, connector->name);
4230         intel_dp_unset_edid(intel_dp);
4231
4232         if (intel_dp->is_mst) {
4233                 /* MST devices are disconnected from a monitor POV */
4234                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4235                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4236                 return connector_status_disconnected;
4237         }
4238
4239         power_domain = intel_dp_power_get(intel_dp);
4240
4241         /* Can't disconnect eDP, but you can close the lid... */
4242         if (is_edp(intel_dp))
4243                 status = edp_detect(intel_dp);
4244         else if (HAS_PCH_SPLIT(dev))
4245                 status = ironlake_dp_detect(intel_dp);
4246         else
4247                 status = g4x_dp_detect(intel_dp);
4248         if (status != connector_status_connected)
4249                 goto out;
4250
4251         intel_dp_probe_oui(intel_dp);
4252
4253         ret = intel_dp_probe_mst(intel_dp);
4254         if (ret) {
4255                 /* if we are in MST mode then this connector
4256                    won't appear connected or have anything with EDID on it */
4257                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4258                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4259                 status = connector_status_disconnected;
4260                 goto out;
4261         }
4262
4263         intel_dp_set_edid(intel_dp);
4264
4265         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4266                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4267         status = connector_status_connected;
4268
4269 out:
4270         intel_dp_power_put(intel_dp, power_domain);
4271         return status;
4272 }
4273
4274 static void
4275 intel_dp_force(struct drm_connector *connector)
4276 {
4277         struct intel_dp *intel_dp = intel_attached_dp(connector);
4278         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4279         enum intel_display_power_domain power_domain;
4280
4281         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4282                       connector->base.id, connector->name);
4283         intel_dp_unset_edid(intel_dp);
4284
4285         if (connector->status != connector_status_connected)
4286                 return;
4287
4288         power_domain = intel_dp_power_get(intel_dp);
4289
4290         intel_dp_set_edid(intel_dp);
4291
4292         intel_dp_power_put(intel_dp, power_domain);
4293
4294         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4295                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4296 }
4297
4298 static int intel_dp_get_modes(struct drm_connector *connector)
4299 {
4300         struct intel_connector *intel_connector = to_intel_connector(connector);
4301         struct edid *edid;
4302
4303         edid = intel_connector->detect_edid;
4304         if (edid) {
4305                 int ret = intel_connector_update_modes(connector, edid);
4306                 if (ret)
4307                         return ret;
4308         }
4309
4310         /* if eDP has no EDID, fall back to fixed mode */
4311         if (is_edp(intel_attached_dp(connector)) &&
4312             intel_connector->panel.fixed_mode) {
4313                 struct drm_display_mode *mode;
4314
4315                 mode = drm_mode_duplicate(connector->dev,
4316                                           intel_connector->panel.fixed_mode);
4317                 if (mode) {
4318                         drm_mode_probed_add(connector, mode);
4319                         return 1;
4320                 }
4321         }
4322
4323         return 0;
4324 }
4325
4326 static bool
4327 intel_dp_detect_audio(struct drm_connector *connector)
4328 {
4329         bool has_audio = false;
4330         struct edid *edid;
4331
4332         edid = to_intel_connector(connector)->detect_edid;
4333         if (edid)
4334                 has_audio = drm_detect_monitor_audio(edid);
4335
4336         return has_audio;
4337 }
4338
4339 static int
4340 intel_dp_set_property(struct drm_connector *connector,
4341                       struct drm_property *property,
4342                       uint64_t val)
4343 {
4344         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4345         struct intel_connector *intel_connector = to_intel_connector(connector);
4346         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4347         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4348         int ret;
4349
4350         ret = drm_object_property_set_value(&connector->base, property, val);
4351         if (ret)
4352                 return ret;
4353
4354         if (property == dev_priv->force_audio_property) {
4355                 int i = val;
4356                 bool has_audio;
4357
4358                 if (i == intel_dp->force_audio)
4359                         return 0;
4360
4361                 intel_dp->force_audio = i;
4362
4363                 if (i == HDMI_AUDIO_AUTO)
4364                         has_audio = intel_dp_detect_audio(connector);
4365                 else
4366                         has_audio = (i == HDMI_AUDIO_ON);
4367
4368                 if (has_audio == intel_dp->has_audio)
4369                         return 0;
4370
4371                 intel_dp->has_audio = has_audio;
4372                 goto done;
4373         }
4374
4375         if (property == dev_priv->broadcast_rgb_property) {
4376                 bool old_auto = intel_dp->color_range_auto;
4377                 uint32_t old_range = intel_dp->color_range;
4378
4379                 switch (val) {
4380                 case INTEL_BROADCAST_RGB_AUTO:
4381                         intel_dp->color_range_auto = true;
4382                         break;
4383                 case INTEL_BROADCAST_RGB_FULL:
4384                         intel_dp->color_range_auto = false;
4385                         intel_dp->color_range = 0;
4386                         break;
4387                 case INTEL_BROADCAST_RGB_LIMITED:
4388                         intel_dp->color_range_auto = false;
4389                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
4390                         break;
4391                 default:
4392                         return -EINVAL;
4393                 }
4394
4395                 if (old_auto == intel_dp->color_range_auto &&
4396                     old_range == intel_dp->color_range)
4397                         return 0;
4398
4399                 goto done;
4400         }
4401
4402         if (is_edp(intel_dp) &&
4403             property == connector->dev->mode_config.scaling_mode_property) {
4404                 if (val == DRM_MODE_SCALE_NONE) {
4405                         DRM_DEBUG_KMS("no scaling not supported\n");
4406                         return -EINVAL;
4407                 }
4408
4409                 if (intel_connector->panel.fitting_mode == val) {
4410                         /* the eDP scaling property is not changed */
4411                         return 0;
4412                 }
4413                 intel_connector->panel.fitting_mode = val;
4414
4415                 goto done;
4416         }
4417
4418         return -EINVAL;
4419
4420 done:
4421         if (intel_encoder->base.crtc)
4422                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4423
4424         return 0;
4425 }
4426
4427 static void
4428 intel_dp_connector_destroy(struct drm_connector *connector)
4429 {
4430         struct intel_connector *intel_connector = to_intel_connector(connector);
4431
4432         kfree(intel_connector->detect_edid);
4433
4434         if (!IS_ERR_OR_NULL(intel_connector->edid))
4435                 kfree(intel_connector->edid);
4436
4437         /* Can't call is_edp() since the encoder may have been destroyed
4438          * already. */
4439         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4440                 intel_panel_fini(&intel_connector->panel);
4441
4442         drm_connector_cleanup(connector);
4443         kfree(connector);
4444 }
4445
4446 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4447 {
4448         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4449         struct intel_dp *intel_dp = &intel_dig_port->dp;
4450
4451         drm_dp_aux_unregister(&intel_dp->aux);
4452         intel_dp_mst_encoder_cleanup(intel_dig_port);
4453         if (is_edp(intel_dp)) {
4454                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4455                 /*
4456                  * vdd might still be enabled do to the delayed vdd off.
4457                  * Make sure vdd is actually turned off here.
4458                  */
4459                 pps_lock(intel_dp);
4460                 edp_panel_vdd_off_sync(intel_dp);
4461                 pps_unlock(intel_dp);
4462
4463                 if (intel_dp->edp_notifier.notifier_call) {
4464                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4465                         intel_dp->edp_notifier.notifier_call = NULL;
4466                 }
4467         }
4468         drm_encoder_cleanup(encoder);
4469         kfree(intel_dig_port);
4470 }
4471
4472 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4473 {
4474         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4475
4476         if (!is_edp(intel_dp))
4477                 return;
4478
4479         /*
4480          * vdd might still be enabled do to the delayed vdd off.
4481          * Make sure vdd is actually turned off here.
4482          */
4483         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4484         pps_lock(intel_dp);
4485         edp_panel_vdd_off_sync(intel_dp);
4486         pps_unlock(intel_dp);
4487 }
4488
4489 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4490 {
4491         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4492         struct drm_device *dev = intel_dig_port->base.base.dev;
4493         struct drm_i915_private *dev_priv = dev->dev_private;
4494         enum intel_display_power_domain power_domain;
4495
4496         lockdep_assert_held(&dev_priv->pps_mutex);
4497
4498         if (!edp_have_panel_vdd(intel_dp))
4499                 return;
4500
4501         /*
4502          * The VDD bit needs a power domain reference, so if the bit is
4503          * already enabled when we boot or resume, grab this reference and
4504          * schedule a vdd off, so we don't hold on to the reference
4505          * indefinitely.
4506          */
4507         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4508         power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4509         intel_display_power_get(dev_priv, power_domain);
4510
4511         edp_panel_vdd_schedule_off(intel_dp);
4512 }
4513
4514 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4515 {
4516         struct intel_dp *intel_dp;
4517
4518         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4519                 return;
4520
4521         intel_dp = enc_to_intel_dp(encoder);
4522
4523         pps_lock(intel_dp);
4524
4525         /*
4526          * Read out the current power sequencer assignment,
4527          * in case the BIOS did something with it.
4528          */
4529         if (IS_VALLEYVIEW(encoder->dev))
4530                 vlv_initial_power_sequencer_setup(intel_dp);
4531
4532         intel_edp_panel_vdd_sanitize(intel_dp);
4533
4534         pps_unlock(intel_dp);
4535 }
4536
4537 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4538         .dpms = intel_connector_dpms,
4539         .detect = intel_dp_detect,
4540         .force = intel_dp_force,
4541         .fill_modes = drm_helper_probe_single_connector_modes,
4542         .set_property = intel_dp_set_property,
4543         .atomic_get_property = intel_connector_atomic_get_property,
4544         .destroy = intel_dp_connector_destroy,
4545         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4546 };
4547
4548 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4549         .get_modes = intel_dp_get_modes,
4550         .mode_valid = intel_dp_mode_valid,
4551         .best_encoder = intel_best_encoder,
4552 };
4553
4554 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4555         .reset = intel_dp_encoder_reset,
4556         .destroy = intel_dp_encoder_destroy,
4557 };
4558
4559 void
4560 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4561 {
4562         return;
4563 }
4564
4565 enum irqreturn
4566 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4567 {
4568         struct intel_dp *intel_dp = &intel_dig_port->dp;
4569         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4570         struct drm_device *dev = intel_dig_port->base.base.dev;
4571         struct drm_i915_private *dev_priv = dev->dev_private;
4572         enum intel_display_power_domain power_domain;
4573         enum irqreturn ret = IRQ_NONE;
4574
4575         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4576                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4577
4578         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4579                 /*
4580                  * vdd off can generate a long pulse on eDP which
4581                  * would require vdd on to handle it, and thus we
4582                  * would end up in an endless cycle of
4583                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4584                  */
4585                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4586                               port_name(intel_dig_port->port));
4587                 return IRQ_HANDLED;
4588         }
4589
4590         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4591                       port_name(intel_dig_port->port),
4592                       long_hpd ? "long" : "short");
4593
4594         power_domain = intel_display_port_power_domain(intel_encoder);
4595         intel_display_power_get(dev_priv, power_domain);
4596
4597         if (long_hpd) {
4598
4599                 if (HAS_PCH_SPLIT(dev)) {
4600                         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4601                                 goto mst_fail;
4602                 } else {
4603                         if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4604                                 goto mst_fail;
4605                 }
4606
4607                 if (!intel_dp_get_dpcd(intel_dp)) {
4608                         goto mst_fail;
4609                 }
4610
4611                 intel_dp_probe_oui(intel_dp);
4612
4613                 if (!intel_dp_probe_mst(intel_dp))
4614                         goto mst_fail;
4615
4616         } else {
4617                 if (intel_dp->is_mst) {
4618                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4619                                 goto mst_fail;
4620                 }
4621
4622                 if (!intel_dp->is_mst) {
4623                         /*
4624                          * we'll check the link status via the normal hot plug path later -
4625                          * but for short hpds we should check it now
4626                          */
4627                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4628                         intel_dp_check_link_status(intel_dp);
4629                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4630                 }
4631         }
4632
4633         ret = IRQ_HANDLED;
4634
4635         goto put_power;
4636 mst_fail:
4637         /* if we were in MST mode, and device is not there get out of MST mode */
4638         if (intel_dp->is_mst) {
4639                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4640                 intel_dp->is_mst = false;
4641                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4642         }
4643 put_power:
4644         intel_display_power_put(dev_priv, power_domain);
4645
4646         return ret;
4647 }
4648
4649 /* Return which DP Port should be selected for Transcoder DP control */
4650 int
4651 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4652 {
4653         struct drm_device *dev = crtc->dev;
4654         struct intel_encoder *intel_encoder;
4655         struct intel_dp *intel_dp;
4656
4657         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4658                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4659
4660                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4661                     intel_encoder->type == INTEL_OUTPUT_EDP)
4662                         return intel_dp->output_reg;
4663         }
4664
4665         return -1;
4666 }
4667
4668 /* check the VBT to see whether the eDP is on DP-D port */
4669 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4670 {
4671         struct drm_i915_private *dev_priv = dev->dev_private;
4672         union child_device_config *p_child;
4673         int i;
4674         static const short port_mapping[] = {
4675                 [PORT_B] = PORT_IDPB,
4676                 [PORT_C] = PORT_IDPC,
4677                 [PORT_D] = PORT_IDPD,
4678         };
4679
4680         if (port == PORT_A)
4681                 return true;
4682
4683         if (!dev_priv->vbt.child_dev_num)
4684                 return false;
4685
4686         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4687                 p_child = dev_priv->vbt.child_dev + i;
4688
4689                 if (p_child->common.dvo_port == port_mapping[port] &&
4690                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4691                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4692                         return true;
4693         }
4694         return false;
4695 }
4696
4697 void
4698 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4699 {
4700         struct intel_connector *intel_connector = to_intel_connector(connector);
4701
4702         intel_attach_force_audio_property(connector);
4703         intel_attach_broadcast_rgb_property(connector);
4704         intel_dp->color_range_auto = true;
4705
4706         if (is_edp(intel_dp)) {
4707                 drm_mode_create_scaling_mode_property(connector->dev);
4708                 drm_object_attach_property(
4709                         &connector->base,
4710                         connector->dev->mode_config.scaling_mode_property,
4711                         DRM_MODE_SCALE_ASPECT);
4712                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4713         }
4714 }
4715
4716 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4717 {
4718         intel_dp->last_power_cycle = jiffies;
4719         intel_dp->last_power_on = jiffies;
4720         intel_dp->last_backlight_off = jiffies;
4721 }
4722
4723 static void
4724 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4725                                     struct intel_dp *intel_dp)
4726 {
4727         struct drm_i915_private *dev_priv = dev->dev_private;
4728         struct edp_power_seq cur, vbt, spec,
4729                 *final = &intel_dp->pps_delays;
4730         u32 pp_on, pp_off, pp_div, pp;
4731         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4732
4733         lockdep_assert_held(&dev_priv->pps_mutex);
4734
4735         /* already initialized? */
4736         if (final->t11_t12 != 0)
4737                 return;
4738
4739         if (HAS_PCH_SPLIT(dev)) {
4740                 pp_ctrl_reg = PCH_PP_CONTROL;
4741                 pp_on_reg = PCH_PP_ON_DELAYS;
4742                 pp_off_reg = PCH_PP_OFF_DELAYS;
4743                 pp_div_reg = PCH_PP_DIVISOR;
4744         } else {
4745                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4746
4747                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4748                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4749                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4750                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4751         }
4752
4753         /* Workaround: Need to write PP_CONTROL with the unlock key as
4754          * the very first thing. */
4755         pp = ironlake_get_pp_control(intel_dp);
4756         I915_WRITE(pp_ctrl_reg, pp);
4757
4758         pp_on = I915_READ(pp_on_reg);
4759         pp_off = I915_READ(pp_off_reg);
4760         pp_div = I915_READ(pp_div_reg);
4761
4762         /* Pull timing values out of registers */
4763         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4764                 PANEL_POWER_UP_DELAY_SHIFT;
4765
4766         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4767                 PANEL_LIGHT_ON_DELAY_SHIFT;
4768
4769         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4770                 PANEL_LIGHT_OFF_DELAY_SHIFT;
4771
4772         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4773                 PANEL_POWER_DOWN_DELAY_SHIFT;
4774
4775         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4776                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4777
4778         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4779                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4780
4781         vbt = dev_priv->vbt.edp_pps;
4782
4783         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4784          * our hw here, which are all in 100usec. */
4785         spec.t1_t3 = 210 * 10;
4786         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4787         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4788         spec.t10 = 500 * 10;
4789         /* This one is special and actually in units of 100ms, but zero
4790          * based in the hw (so we need to add 100 ms). But the sw vbt
4791          * table multiplies it with 1000 to make it in units of 100usec,
4792          * too. */
4793         spec.t11_t12 = (510 + 100) * 10;
4794
4795         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4796                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4797
4798         /* Use the max of the register settings and vbt. If both are
4799          * unset, fall back to the spec limits. */
4800 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
4801                                        spec.field : \
4802                                        max(cur.field, vbt.field))
4803         assign_final(t1_t3);
4804         assign_final(t8);
4805         assign_final(t9);
4806         assign_final(t10);
4807         assign_final(t11_t12);
4808 #undef assign_final
4809
4810 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
4811         intel_dp->panel_power_up_delay = get_delay(t1_t3);
4812         intel_dp->backlight_on_delay = get_delay(t8);
4813         intel_dp->backlight_off_delay = get_delay(t9);
4814         intel_dp->panel_power_down_delay = get_delay(t10);
4815         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4816 #undef get_delay
4817
4818         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4819                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4820                       intel_dp->panel_power_cycle_delay);
4821
4822         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4823                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4824 }
4825
4826 static void
4827 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4828                                               struct intel_dp *intel_dp)
4829 {
4830         struct drm_i915_private *dev_priv = dev->dev_private;
4831         u32 pp_on, pp_off, pp_div, port_sel = 0;
4832         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4833         int pp_on_reg, pp_off_reg, pp_div_reg;
4834         enum port port = dp_to_dig_port(intel_dp)->port;
4835         const struct edp_power_seq *seq = &intel_dp->pps_delays;
4836
4837         lockdep_assert_held(&dev_priv->pps_mutex);
4838
4839         if (HAS_PCH_SPLIT(dev)) {
4840                 pp_on_reg = PCH_PP_ON_DELAYS;
4841                 pp_off_reg = PCH_PP_OFF_DELAYS;
4842                 pp_div_reg = PCH_PP_DIVISOR;
4843         } else {
4844                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4845
4846                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4847                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4848                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4849         }
4850
4851         /*
4852          * And finally store the new values in the power sequencer. The
4853          * backlight delays are set to 1 because we do manual waits on them. For
4854          * T8, even BSpec recommends doing it. For T9, if we don't do this,
4855          * we'll end up waiting for the backlight off delay twice: once when we
4856          * do the manual sleep, and once when we disable the panel and wait for
4857          * the PP_STATUS bit to become zero.
4858          */
4859         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4860                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4861         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4862                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4863         /* Compute the divisor for the pp clock, simply match the Bspec
4864          * formula. */
4865         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4866         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4867                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
4868
4869         /* Haswell doesn't have any port selection bits for the panel
4870          * power sequencer any more. */
4871         if (IS_VALLEYVIEW(dev)) {
4872                 port_sel = PANEL_PORT_SELECT_VLV(port);
4873         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4874                 if (port == PORT_A)
4875                         port_sel = PANEL_PORT_SELECT_DPA;
4876                 else
4877                         port_sel = PANEL_PORT_SELECT_DPD;
4878         }
4879
4880         pp_on |= port_sel;
4881
4882         I915_WRITE(pp_on_reg, pp_on);
4883         I915_WRITE(pp_off_reg, pp_off);
4884         I915_WRITE(pp_div_reg, pp_div);
4885
4886         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4887                       I915_READ(pp_on_reg),
4888                       I915_READ(pp_off_reg),
4889                       I915_READ(pp_div_reg));
4890 }
4891
4892 /**
4893  * intel_dp_set_drrs_state - program registers for RR switch to take effect
4894  * @dev: DRM device
4895  * @refresh_rate: RR to be programmed
4896  *
4897  * This function gets called when refresh rate (RR) has to be changed from
4898  * one frequency to another. Switches can be between high and low RR
4899  * supported by the panel or to any other RR based on media playback (in
4900  * this case, RR value needs to be passed from user space).
4901  *
4902  * The caller of this function needs to take a lock on dev_priv->drrs.
4903  */
4904 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4905 {
4906         struct drm_i915_private *dev_priv = dev->dev_private;
4907         struct intel_encoder *encoder;
4908         struct intel_digital_port *dig_port = NULL;
4909         struct intel_dp *intel_dp = dev_priv->drrs.dp;
4910         struct intel_crtc_state *config = NULL;
4911         struct intel_crtc *intel_crtc = NULL;
4912         u32 reg, val;
4913         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
4914
4915         if (refresh_rate <= 0) {
4916                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4917                 return;
4918         }
4919
4920         if (intel_dp == NULL) {
4921                 DRM_DEBUG_KMS("DRRS not supported.\n");
4922                 return;
4923         }
4924
4925         /*
4926          * FIXME: This needs proper synchronization with psr state for some
4927          * platforms that cannot have PSR and DRRS enabled at the same time.
4928          */
4929
4930         dig_port = dp_to_dig_port(intel_dp);
4931         encoder = &dig_port->base;
4932         intel_crtc = encoder->new_crtc;
4933
4934         if (!intel_crtc) {
4935                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4936                 return;
4937         }
4938
4939         config = intel_crtc->config;
4940
4941         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
4942                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4943                 return;
4944         }
4945
4946         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
4947                         refresh_rate)
4948                 index = DRRS_LOW_RR;
4949
4950         if (index == dev_priv->drrs.refresh_rate_type) {
4951                 DRM_DEBUG_KMS(
4952                         "DRRS requested for previously set RR...ignoring\n");
4953                 return;
4954         }
4955
4956         if (!intel_crtc->active) {
4957                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4958                 return;
4959         }
4960
4961         if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
4962                 switch (index) {
4963                 case DRRS_HIGH_RR:
4964                         intel_dp_set_m_n(intel_crtc, M1_N1);
4965                         break;
4966                 case DRRS_LOW_RR:
4967                         intel_dp_set_m_n(intel_crtc, M2_N2);
4968                         break;
4969                 case DRRS_MAX_RR:
4970                 default:
4971                         DRM_ERROR("Unsupported refreshrate type\n");
4972                 }
4973         } else if (INTEL_INFO(dev)->gen > 6) {
4974                 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
4975                 val = I915_READ(reg);
4976
4977                 if (index > DRRS_HIGH_RR) {
4978                         if (IS_VALLEYVIEW(dev))
4979                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
4980                         else
4981                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4982                 } else {
4983                         if (IS_VALLEYVIEW(dev))
4984                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
4985                         else
4986                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4987                 }
4988                 I915_WRITE(reg, val);
4989         }
4990
4991         dev_priv->drrs.refresh_rate_type = index;
4992
4993         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4994 }
4995
4996 /**
4997  * intel_edp_drrs_enable - init drrs struct if supported
4998  * @intel_dp: DP struct
4999  *
5000  * Initializes frontbuffer_bits and drrs.dp
5001  */
5002 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5003 {
5004         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5005         struct drm_i915_private *dev_priv = dev->dev_private;
5006         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5007         struct drm_crtc *crtc = dig_port->base.base.crtc;
5008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5009
5010         if (!intel_crtc->config->has_drrs) {
5011                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5012                 return;
5013         }
5014
5015         mutex_lock(&dev_priv->drrs.mutex);
5016         if (WARN_ON(dev_priv->drrs.dp)) {
5017                 DRM_ERROR("DRRS already enabled\n");
5018                 goto unlock;
5019         }
5020
5021         dev_priv->drrs.busy_frontbuffer_bits = 0;
5022
5023         dev_priv->drrs.dp = intel_dp;
5024
5025 unlock:
5026         mutex_unlock(&dev_priv->drrs.mutex);
5027 }
5028
5029 /**
5030  * intel_edp_drrs_disable - Disable DRRS
5031  * @intel_dp: DP struct
5032  *
5033  */
5034 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5035 {
5036         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5037         struct drm_i915_private *dev_priv = dev->dev_private;
5038         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5039         struct drm_crtc *crtc = dig_port->base.base.crtc;
5040         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5041
5042         if (!intel_crtc->config->has_drrs)
5043                 return;
5044
5045         mutex_lock(&dev_priv->drrs.mutex);
5046         if (!dev_priv->drrs.dp) {
5047                 mutex_unlock(&dev_priv->drrs.mutex);
5048                 return;
5049         }
5050
5051         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5052                 intel_dp_set_drrs_state(dev_priv->dev,
5053                         intel_dp->attached_connector->panel.
5054                         fixed_mode->vrefresh);
5055
5056         dev_priv->drrs.dp = NULL;
5057         mutex_unlock(&dev_priv->drrs.mutex);
5058
5059         cancel_delayed_work_sync(&dev_priv->drrs.work);
5060 }
5061
5062 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5063 {
5064         struct drm_i915_private *dev_priv =
5065                 container_of(work, typeof(*dev_priv), drrs.work.work);
5066         struct intel_dp *intel_dp;
5067
5068         mutex_lock(&dev_priv->drrs.mutex);
5069
5070         intel_dp = dev_priv->drrs.dp;
5071
5072         if (!intel_dp)
5073                 goto unlock;
5074
5075         /*
5076          * The delayed work can race with an invalidate hence we need to
5077          * recheck.
5078          */
5079
5080         if (dev_priv->drrs.busy_frontbuffer_bits)
5081                 goto unlock;
5082
5083         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5084                 intel_dp_set_drrs_state(dev_priv->dev,
5085                         intel_dp->attached_connector->panel.
5086                         downclock_mode->vrefresh);
5087
5088 unlock:
5089
5090         mutex_unlock(&dev_priv->drrs.mutex);
5091 }
5092
5093 /**
5094  * intel_edp_drrs_invalidate - Invalidate DRRS
5095  * @dev: DRM device
5096  * @frontbuffer_bits: frontbuffer plane tracking bits
5097  *
5098  * When there is a disturbance on screen (due to cursor movement/time
5099  * update etc), DRRS needs to be invalidated, i.e. need to switch to
5100  * high RR.
5101  *
5102  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5103  */
5104 void intel_edp_drrs_invalidate(struct drm_device *dev,
5105                 unsigned frontbuffer_bits)
5106 {
5107         struct drm_i915_private *dev_priv = dev->dev_private;
5108         struct drm_crtc *crtc;
5109         enum pipe pipe;
5110
5111         if (!dev_priv->drrs.dp)
5112                 return;
5113
5114         cancel_delayed_work_sync(&dev_priv->drrs.work);
5115
5116         mutex_lock(&dev_priv->drrs.mutex);
5117         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5118         pipe = to_intel_crtc(crtc)->pipe;
5119
5120         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
5121                 intel_dp_set_drrs_state(dev_priv->dev,
5122                                 dev_priv->drrs.dp->attached_connector->panel.
5123                                 fixed_mode->vrefresh);
5124         }
5125
5126         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5127
5128         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5129         mutex_unlock(&dev_priv->drrs.mutex);
5130 }
5131
5132 /**
5133  * intel_edp_drrs_flush - Flush DRRS
5134  * @dev: DRM device
5135  * @frontbuffer_bits: frontbuffer plane tracking bits
5136  *
5137  * When there is no movement on screen, DRRS work can be scheduled.
5138  * This DRRS work is responsible for setting relevant registers after a
5139  * timeout of 1 second.
5140  *
5141  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5142  */
5143 void intel_edp_drrs_flush(struct drm_device *dev,
5144                 unsigned frontbuffer_bits)
5145 {
5146         struct drm_i915_private *dev_priv = dev->dev_private;
5147         struct drm_crtc *crtc;
5148         enum pipe pipe;
5149
5150         if (!dev_priv->drrs.dp)
5151                 return;
5152
5153         cancel_delayed_work_sync(&dev_priv->drrs.work);
5154
5155         mutex_lock(&dev_priv->drrs.mutex);
5156         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5157         pipe = to_intel_crtc(crtc)->pipe;
5158         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5159
5160         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR &&
5161                         !dev_priv->drrs.busy_frontbuffer_bits)
5162                 schedule_delayed_work(&dev_priv->drrs.work,
5163                                 msecs_to_jiffies(1000));
5164         mutex_unlock(&dev_priv->drrs.mutex);
5165 }
5166
5167 /**
5168  * DOC: Display Refresh Rate Switching (DRRS)
5169  *
5170  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5171  * which enables swtching between low and high refresh rates,
5172  * dynamically, based on the usage scenario. This feature is applicable
5173  * for internal panels.
5174  *
5175  * Indication that the panel supports DRRS is given by the panel EDID, which
5176  * would list multiple refresh rates for one resolution.
5177  *
5178  * DRRS is of 2 types - static and seamless.
5179  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5180  * (may appear as a blink on screen) and is used in dock-undock scenario.
5181  * Seamless DRRS involves changing RR without any visual effect to the user
5182  * and can be used during normal system usage. This is done by programming
5183  * certain registers.
5184  *
5185  * Support for static/seamless DRRS may be indicated in the VBT based on
5186  * inputs from the panel spec.
5187  *
5188  * DRRS saves power by switching to low RR based on usage scenarios.
5189  *
5190  * eDP DRRS:-
5191  *        The implementation is based on frontbuffer tracking implementation.
5192  * When there is a disturbance on the screen triggered by user activity or a
5193  * periodic system activity, DRRS is disabled (RR is changed to high RR).
5194  * When there is no movement on screen, after a timeout of 1 second, a switch
5195  * to low RR is made.
5196  *        For integration with frontbuffer tracking code,
5197  * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5198  *
5199  * DRRS can be further extended to support other internal panels and also
5200  * the scenario of video playback wherein RR is set based on the rate
5201  * requested by userspace.
5202  */
5203
5204 /**
5205  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5206  * @intel_connector: eDP connector
5207  * @fixed_mode: preferred mode of panel
5208  *
5209  * This function is  called only once at driver load to initialize basic
5210  * DRRS stuff.
5211  *
5212  * Returns:
5213  * Downclock mode if panel supports it, else return NULL.
5214  * DRRS support is determined by the presence of downclock mode (apart
5215  * from VBT setting).
5216  */
5217 static struct drm_display_mode *
5218 intel_dp_drrs_init(struct intel_connector *intel_connector,
5219                 struct drm_display_mode *fixed_mode)
5220 {
5221         struct drm_connector *connector = &intel_connector->base;
5222         struct drm_device *dev = connector->dev;
5223         struct drm_i915_private *dev_priv = dev->dev_private;
5224         struct drm_display_mode *downclock_mode = NULL;
5225
5226         if (INTEL_INFO(dev)->gen <= 6) {
5227                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5228                 return NULL;
5229         }
5230
5231         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5232                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5233                 return NULL;
5234         }
5235
5236         downclock_mode = intel_find_panel_downclock
5237                                         (dev, fixed_mode, connector);
5238
5239         if (!downclock_mode) {
5240                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5241                 return NULL;
5242         }
5243
5244         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5245
5246         mutex_init(&dev_priv->drrs.mutex);
5247
5248         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5249
5250         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5251         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5252         return downclock_mode;
5253 }
5254
5255 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5256                                      struct intel_connector *intel_connector)
5257 {
5258         struct drm_connector *connector = &intel_connector->base;
5259         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5260         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5261         struct drm_device *dev = intel_encoder->base.dev;
5262         struct drm_i915_private *dev_priv = dev->dev_private;
5263         struct drm_display_mode *fixed_mode = NULL;
5264         struct drm_display_mode *downclock_mode = NULL;
5265         bool has_dpcd;
5266         struct drm_display_mode *scan;
5267         struct edid *edid;
5268         enum pipe pipe = INVALID_PIPE;
5269
5270         dev_priv->drrs.type = DRRS_NOT_SUPPORTED;
5271
5272         if (!is_edp(intel_dp))
5273                 return true;
5274
5275         pps_lock(intel_dp);
5276         intel_edp_panel_vdd_sanitize(intel_dp);
5277         pps_unlock(intel_dp);
5278
5279         /* Cache DPCD and EDID for edp. */
5280         has_dpcd = intel_dp_get_dpcd(intel_dp);
5281
5282         if (has_dpcd) {
5283                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5284                         dev_priv->no_aux_handshake =
5285                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5286                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5287         } else {
5288                 /* if this fails, presume the device is a ghost */
5289                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5290                 return false;
5291         }
5292
5293         /* We now know it's not a ghost, init power sequence regs. */
5294         pps_lock(intel_dp);
5295         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5296         pps_unlock(intel_dp);
5297
5298         mutex_lock(&dev->mode_config.mutex);
5299         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5300         if (edid) {
5301                 if (drm_add_edid_modes(connector, edid)) {
5302                         drm_mode_connector_update_edid_property(connector,
5303                                                                 edid);
5304                         drm_edid_to_eld(connector, edid);
5305                 } else {
5306                         kfree(edid);
5307                         edid = ERR_PTR(-EINVAL);
5308                 }
5309         } else {
5310                 edid = ERR_PTR(-ENOENT);
5311         }
5312         intel_connector->edid = edid;
5313
5314         /* prefer fixed mode from EDID if available */
5315         list_for_each_entry(scan, &connector->probed_modes, head) {
5316                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5317                         fixed_mode = drm_mode_duplicate(dev, scan);
5318                         downclock_mode = intel_dp_drrs_init(
5319                                                 intel_connector, fixed_mode);
5320                         break;
5321                 }
5322         }
5323
5324         /* fallback to VBT if available for eDP */
5325         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5326                 fixed_mode = drm_mode_duplicate(dev,
5327                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5328                 if (fixed_mode)
5329                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5330         }
5331         mutex_unlock(&dev->mode_config.mutex);
5332
5333         if (IS_VALLEYVIEW(dev)) {
5334                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5335                 register_reboot_notifier(&intel_dp->edp_notifier);
5336
5337                 /*
5338                  * Figure out the current pipe for the initial backlight setup.
5339                  * If the current pipe isn't valid, try the PPS pipe, and if that
5340                  * fails just assume pipe A.
5341                  */
5342                 if (IS_CHERRYVIEW(dev))
5343                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5344                 else
5345                         pipe = PORT_TO_PIPE(intel_dp->DP);
5346
5347                 if (pipe != PIPE_A && pipe != PIPE_B)
5348                         pipe = intel_dp->pps_pipe;
5349
5350                 if (pipe != PIPE_A && pipe != PIPE_B)
5351                         pipe = PIPE_A;
5352
5353                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5354                               pipe_name(pipe));
5355         }
5356
5357         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5358         intel_connector->panel.backlight_power = intel_edp_backlight_power;
5359         intel_panel_setup_backlight(connector, pipe);
5360
5361         return true;
5362 }
5363
5364 bool
5365 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5366                         struct intel_connector *intel_connector)
5367 {
5368         struct drm_connector *connector = &intel_connector->base;
5369         struct intel_dp *intel_dp = &intel_dig_port->dp;
5370         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5371         struct drm_device *dev = intel_encoder->base.dev;
5372         struct drm_i915_private *dev_priv = dev->dev_private;
5373         enum port port = intel_dig_port->port;
5374         int type;
5375
5376         intel_dp->pps_pipe = INVALID_PIPE;
5377
5378         /* intel_dp vfuncs */
5379         if (INTEL_INFO(dev)->gen >= 9)
5380                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5381         else if (IS_VALLEYVIEW(dev))
5382                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5383         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5384                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5385         else if (HAS_PCH_SPLIT(dev))
5386                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5387         else
5388                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5389
5390         if (INTEL_INFO(dev)->gen >= 9)
5391                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5392         else
5393                 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5394
5395         /* Preserve the current hw state. */
5396         intel_dp->DP = I915_READ(intel_dp->output_reg);
5397         intel_dp->attached_connector = intel_connector;
5398
5399         if (intel_dp_is_edp(dev, port))
5400                 type = DRM_MODE_CONNECTOR_eDP;
5401         else
5402                 type = DRM_MODE_CONNECTOR_DisplayPort;
5403
5404         /*
5405          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5406          * for DP the encoder type can be set by the caller to
5407          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5408          */
5409         if (type == DRM_MODE_CONNECTOR_eDP)
5410                 intel_encoder->type = INTEL_OUTPUT_EDP;
5411
5412         /* eDP only on port B and/or C on vlv/chv */
5413         if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5414                     port != PORT_B && port != PORT_C))
5415                 return false;
5416
5417         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5418                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5419                         port_name(port));
5420
5421         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5422         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5423
5424         connector->interlace_allowed = true;
5425         connector->doublescan_allowed = 0;
5426
5427         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5428                           edp_panel_vdd_work);
5429
5430         intel_connector_attach_encoder(intel_connector, intel_encoder);
5431         drm_connector_register(connector);
5432
5433         if (HAS_DDI(dev))
5434                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5435         else
5436                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5437         intel_connector->unregister = intel_dp_connector_unregister;
5438
5439         /* Set up the hotplug pin. */
5440         switch (port) {
5441         case PORT_A:
5442                 intel_encoder->hpd_pin = HPD_PORT_A;
5443                 break;
5444         case PORT_B:
5445                 intel_encoder->hpd_pin = HPD_PORT_B;
5446                 break;
5447         case PORT_C:
5448                 intel_encoder->hpd_pin = HPD_PORT_C;
5449                 break;
5450         case PORT_D:
5451                 intel_encoder->hpd_pin = HPD_PORT_D;
5452                 break;
5453         default:
5454                 BUG();
5455         }
5456
5457         if (is_edp(intel_dp)) {
5458                 pps_lock(intel_dp);
5459                 intel_dp_init_panel_power_timestamps(intel_dp);
5460                 if (IS_VALLEYVIEW(dev))
5461                         vlv_initial_power_sequencer_setup(intel_dp);
5462                 else
5463                         intel_dp_init_panel_power_sequencer(dev, intel_dp);
5464                 pps_unlock(intel_dp);
5465         }
5466
5467         intel_dp_aux_init(intel_dp, intel_connector);
5468
5469         /* init MST on ports that can support it */
5470         if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
5471                 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5472                         intel_dp_mst_encoder_init(intel_dig_port,
5473                                                   intel_connector->base.base.id);
5474                 }
5475         }
5476
5477         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5478                 drm_dp_aux_unregister(&intel_dp->aux);
5479                 if (is_edp(intel_dp)) {
5480                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5481                         /*
5482                          * vdd might still be enabled do to the delayed vdd off.
5483                          * Make sure vdd is actually turned off here.
5484                          */
5485                         pps_lock(intel_dp);
5486                         edp_panel_vdd_off_sync(intel_dp);
5487                         pps_unlock(intel_dp);
5488                 }
5489                 drm_connector_unregister(connector);
5490                 drm_connector_cleanup(connector);
5491                 return false;
5492         }
5493
5494         intel_dp_add_properties(intel_dp, connector);
5495
5496         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5497          * 0xd.  Failure to do so will result in spurious interrupts being
5498          * generated on the port when a cable is not attached.
5499          */
5500         if (IS_G4X(dev) && !IS_GM45(dev)) {
5501                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5502                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5503         }
5504
5505         return true;
5506 }
5507
5508 void
5509 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5510 {
5511         struct drm_i915_private *dev_priv = dev->dev_private;
5512         struct intel_digital_port *intel_dig_port;
5513         struct intel_encoder *intel_encoder;
5514         struct drm_encoder *encoder;
5515         struct intel_connector *intel_connector;
5516
5517         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5518         if (!intel_dig_port)
5519                 return;
5520
5521         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5522         if (!intel_connector) {
5523                 kfree(intel_dig_port);
5524                 return;
5525         }
5526
5527         intel_encoder = &intel_dig_port->base;
5528         encoder = &intel_encoder->base;
5529
5530         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5531                          DRM_MODE_ENCODER_TMDS);
5532
5533         intel_encoder->compute_config = intel_dp_compute_config;
5534         intel_encoder->disable = intel_disable_dp;
5535         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5536         intel_encoder->get_config = intel_dp_get_config;
5537         intel_encoder->suspend = intel_dp_encoder_suspend;
5538         if (IS_CHERRYVIEW(dev)) {
5539                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5540                 intel_encoder->pre_enable = chv_pre_enable_dp;
5541                 intel_encoder->enable = vlv_enable_dp;
5542                 intel_encoder->post_disable = chv_post_disable_dp;
5543         } else if (IS_VALLEYVIEW(dev)) {
5544                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5545                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5546                 intel_encoder->enable = vlv_enable_dp;
5547                 intel_encoder->post_disable = vlv_post_disable_dp;
5548         } else {
5549                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5550                 intel_encoder->enable = g4x_enable_dp;
5551                 if (INTEL_INFO(dev)->gen >= 5)
5552                         intel_encoder->post_disable = ilk_post_disable_dp;
5553         }
5554
5555         intel_dig_port->port = port;
5556         intel_dig_port->dp.output_reg = output_reg;
5557
5558         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5559         if (IS_CHERRYVIEW(dev)) {
5560                 if (port == PORT_D)
5561                         intel_encoder->crtc_mask = 1 << 2;
5562                 else
5563                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5564         } else {
5565                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5566         }
5567         intel_encoder->cloneable = 0;
5568         intel_encoder->hot_plug = intel_dp_hot_plug;
5569
5570         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5571         dev_priv->hpd_irq_port[port] = intel_dig_port;
5572
5573         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5574                 drm_encoder_cleanup(encoder);
5575                 kfree(intel_dig_port);
5576                 kfree(intel_connector);
5577         }
5578 }
5579
5580 void intel_dp_mst_suspend(struct drm_device *dev)
5581 {
5582         struct drm_i915_private *dev_priv = dev->dev_private;
5583         int i;
5584
5585         /* disable MST */
5586         for (i = 0; i < I915_MAX_PORTS; i++) {
5587                 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5588                 if (!intel_dig_port)
5589                         continue;
5590
5591                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5592                         if (!intel_dig_port->dp.can_mst)
5593                                 continue;
5594                         if (intel_dig_port->dp.is_mst)
5595                                 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5596                 }
5597         }
5598 }
5599
5600 void intel_dp_mst_resume(struct drm_device *dev)
5601 {
5602         struct drm_i915_private *dev_priv = dev->dev_private;
5603         int i;
5604
5605         for (i = 0; i < I915_MAX_PORTS; i++) {
5606                 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5607                 if (!intel_dig_port)
5608                         continue;
5609                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5610                         int ret;
5611
5612                         if (!intel_dig_port->dp.can_mst)
5613                                 continue;
5614
5615                         ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5616                         if (ret != 0) {
5617                                 intel_dp_check_mst_status(&intel_dig_port->dp);
5618                         }
5619                 }
5620         }
5621 }