]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
141
142 #define GEN8_LR_CONTEXT_ALIGN 4096
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192 enum {
193         ADVANCED_CONTEXT = 0,
194         LEGACY_CONTEXT,
195         ADVANCED_AD_CONTEXT,
196         LEGACY_64B_CONTEXT
197 };
198 #define GEN8_CTX_MODE_SHIFT 3
199 enum {
200         FAULT_AND_HANG = 0,
201         FAULT_AND_HALT, /* Debug only */
202         FAULT_AND_STREAM,
203         FAULT_AND_CONTINUE /* Unsupported */
204 };
205 #define GEN8_CTX_ID_SHIFT 32
206
207 /**
208  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
209  * @dev: DRM device.
210  * @enable_execlists: value of i915.enable_execlists module parameter.
211  *
212  * Only certain platforms support Execlists (the prerequisites being
213  * support for Logical Ring Contexts and Aliasing PPGTT or better),
214  * and only when enabled via module parameter.
215  *
216  * Return: 1 if Execlists is supported and has to be enabled.
217  */
218 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
219 {
220         WARN_ON(i915.enable_ppgtt == -1);
221
222         if (enable_execlists == 0)
223                 return 0;
224
225         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
226             i915.use_mmio_flip >= 0)
227                 return 1;
228
229         return 0;
230 }
231
232 /**
233  * intel_execlists_ctx_id() - get the Execlists Context ID
234  * @ctx_obj: Logical Ring Context backing object.
235  *
236  * Do not confuse with ctx->id! Unfortunately we have a name overload
237  * here: the old context ID we pass to userspace as a handler so that
238  * they can refer to a context, and the new context ID we pass to the
239  * ELSP so that the GPU can inform us of the context status via
240  * interrupts.
241  *
242  * Return: 20-bits globally unique context ID.
243  */
244 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
245 {
246         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
247
248         /* LRCA is required to be 4K aligned so the more significant 20 bits
249          * are globally unique */
250         return lrca >> 12;
251 }
252
253 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
254 {
255         uint64_t desc;
256         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
257
258         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
259
260         desc = GEN8_CTX_VALID;
261         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
262         desc |= GEN8_CTX_L3LLC_COHERENT;
263         desc |= GEN8_CTX_PRIVILEGE;
264         desc |= lrca;
265         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
266
267         /* TODO: WaDisableLiteRestore when we start using semaphore
268          * signalling between Command Streamers */
269         /* desc |= GEN8_CTX_FORCE_RESTORE; */
270
271         return desc;
272 }
273
274 static void execlists_elsp_write(struct intel_engine_cs *ring,
275                                  struct drm_i915_gem_object *ctx_obj0,
276                                  struct drm_i915_gem_object *ctx_obj1)
277 {
278         struct drm_i915_private *dev_priv = ring->dev->dev_private;
279         uint64_t temp = 0;
280         uint32_t desc[4];
281         unsigned long flags;
282
283         /* XXX: You must always write both descriptors in the order below. */
284         if (ctx_obj1)
285                 temp = execlists_ctx_descriptor(ctx_obj1);
286         else
287                 temp = 0;
288         desc[1] = (u32)(temp >> 32);
289         desc[0] = (u32)temp;
290
291         temp = execlists_ctx_descriptor(ctx_obj0);
292         desc[3] = (u32)(temp >> 32);
293         desc[2] = (u32)temp;
294
295         /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
296          * are in progress.
297          *
298          * The other problem is that we can't just call gen6_gt_force_wake_get()
299          * because that function calls intel_runtime_pm_get(), which might sleep.
300          * Instead, we do the runtime_pm_get/put when creating/destroying requests.
301          */
302         spin_lock_irqsave(&dev_priv->uncore.lock, flags);
303         if (IS_CHERRYVIEW(dev_priv->dev)) {
304                 if (dev_priv->uncore.fw_rendercount++ == 0)
305                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
306                                                               FORCEWAKE_RENDER);
307                 if (dev_priv->uncore.fw_mediacount++ == 0)
308                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
309                                                               FORCEWAKE_MEDIA);
310         } else {
311                 if (dev_priv->uncore.forcewake_count++ == 0)
312                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
313                                                               FORCEWAKE_ALL);
314         }
315         spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
316
317         I915_WRITE(RING_ELSP(ring), desc[1]);
318         I915_WRITE(RING_ELSP(ring), desc[0]);
319         I915_WRITE(RING_ELSP(ring), desc[3]);
320         /* The context is automatically loaded after the following */
321         I915_WRITE(RING_ELSP(ring), desc[2]);
322
323         /* ELSP is a wo register, so use another nearby reg for posting instead */
324         POSTING_READ(RING_EXECLIST_STATUS(ring));
325
326         /* Release Force Wakeup (see the big comment above). */
327         spin_lock_irqsave(&dev_priv->uncore.lock, flags);
328         if (IS_CHERRYVIEW(dev_priv->dev)) {
329                 if (--dev_priv->uncore.fw_rendercount == 0)
330                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
331                                                               FORCEWAKE_RENDER);
332                 if (--dev_priv->uncore.fw_mediacount == 0)
333                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
334                                                               FORCEWAKE_MEDIA);
335         } else {
336                 if (--dev_priv->uncore.forcewake_count == 0)
337                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
338                                                               FORCEWAKE_ALL);
339         }
340
341         spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
342 }
343
344 static int execlists_ctx_write_tail(struct drm_i915_gem_object *ctx_obj, u32 tail)
345 {
346         struct page *page;
347         uint32_t *reg_state;
348
349         page = i915_gem_object_get_page(ctx_obj, 1);
350         reg_state = kmap_atomic(page);
351
352         reg_state[CTX_RING_TAIL+1] = tail;
353
354         kunmap_atomic(reg_state);
355
356         return 0;
357 }
358
359 static int execlists_submit_context(struct intel_engine_cs *ring,
360                                     struct intel_context *to0, u32 tail0,
361                                     struct intel_context *to1, u32 tail1)
362 {
363         struct drm_i915_gem_object *ctx_obj0;
364         struct drm_i915_gem_object *ctx_obj1 = NULL;
365
366         ctx_obj0 = to0->engine[ring->id].state;
367         BUG_ON(!ctx_obj0);
368         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
369
370         execlists_ctx_write_tail(ctx_obj0, tail0);
371
372         if (to1) {
373                 ctx_obj1 = to1->engine[ring->id].state;
374                 BUG_ON(!ctx_obj1);
375                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
376
377                 execlists_ctx_write_tail(ctx_obj1, tail1);
378         }
379
380         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
381
382         return 0;
383 }
384
385 static void execlists_context_unqueue(struct intel_engine_cs *ring)
386 {
387         struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
388         struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
389         struct drm_i915_private *dev_priv = ring->dev->dev_private;
390
391         assert_spin_locked(&ring->execlist_lock);
392
393         if (list_empty(&ring->execlist_queue))
394                 return;
395
396         /* Try to read in pairs */
397         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
398                                  execlist_link) {
399                 if (!req0) {
400                         req0 = cursor;
401                 } else if (req0->ctx == cursor->ctx) {
402                         /* Same ctx: ignore first request, as second request
403                          * will update tail past first request's workload */
404                         cursor->elsp_submitted = req0->elsp_submitted;
405                         list_del(&req0->execlist_link);
406                         queue_work(dev_priv->wq, &req0->work);
407                         req0 = cursor;
408                 } else {
409                         req1 = cursor;
410                         break;
411                 }
412         }
413
414         WARN_ON(req1 && req1->elsp_submitted);
415
416         WARN_ON(execlists_submit_context(ring, req0->ctx, req0->tail,
417                                          req1 ? req1->ctx : NULL,
418                                          req1 ? req1->tail : 0));
419
420         req0->elsp_submitted++;
421         if (req1)
422                 req1->elsp_submitted++;
423 }
424
425 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
426                                            u32 request_id)
427 {
428         struct drm_i915_private *dev_priv = ring->dev->dev_private;
429         struct intel_ctx_submit_request *head_req;
430
431         assert_spin_locked(&ring->execlist_lock);
432
433         head_req = list_first_entry_or_null(&ring->execlist_queue,
434                                             struct intel_ctx_submit_request,
435                                             execlist_link);
436
437         if (head_req != NULL) {
438                 struct drm_i915_gem_object *ctx_obj =
439                                 head_req->ctx->engine[ring->id].state;
440                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
441                         WARN(head_req->elsp_submitted == 0,
442                              "Never submitted head request\n");
443
444                         if (--head_req->elsp_submitted <= 0) {
445                                 list_del(&head_req->execlist_link);
446                                 queue_work(dev_priv->wq, &head_req->work);
447                                 return true;
448                         }
449                 }
450         }
451
452         return false;
453 }
454
455 /**
456  * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
457  * @ring: Engine Command Streamer to handle.
458  *
459  * Check the unread Context Status Buffers and manage the submission of new
460  * contexts to the ELSP accordingly.
461  */
462 void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
463 {
464         struct drm_i915_private *dev_priv = ring->dev->dev_private;
465         u32 status_pointer;
466         u8 read_pointer;
467         u8 write_pointer;
468         u32 status;
469         u32 status_id;
470         u32 submit_contexts = 0;
471
472         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
473
474         read_pointer = ring->next_context_status_buffer;
475         write_pointer = status_pointer & 0x07;
476         if (read_pointer > write_pointer)
477                 write_pointer += 6;
478
479         spin_lock(&ring->execlist_lock);
480
481         while (read_pointer < write_pointer) {
482                 read_pointer++;
483                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
484                                 (read_pointer % 6) * 8);
485                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486                                 (read_pointer % 6) * 8 + 4);
487
488                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
489                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
490                                 if (execlists_check_remove_request(ring, status_id))
491                                         WARN(1, "Lite Restored request removed from queue\n");
492                         } else
493                                 WARN(1, "Preemption without Lite Restore\n");
494                 }
495
496                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
497                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
498                         if (execlists_check_remove_request(ring, status_id))
499                                 submit_contexts++;
500                 }
501         }
502
503         if (submit_contexts != 0)
504                 execlists_context_unqueue(ring);
505
506         spin_unlock(&ring->execlist_lock);
507
508         WARN(submit_contexts > 2, "More than two context complete events?\n");
509         ring->next_context_status_buffer = write_pointer % 6;
510
511         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
512                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
513 }
514
515 static void execlists_free_request_task(struct work_struct *work)
516 {
517         struct intel_ctx_submit_request *req =
518                 container_of(work, struct intel_ctx_submit_request, work);
519         struct drm_device *dev = req->ring->dev;
520         struct drm_i915_private *dev_priv = dev->dev_private;
521
522         intel_runtime_pm_put(dev_priv);
523
524         mutex_lock(&dev->struct_mutex);
525         i915_gem_context_unreference(req->ctx);
526         mutex_unlock(&dev->struct_mutex);
527
528         kfree(req);
529 }
530
531 static int execlists_context_queue(struct intel_engine_cs *ring,
532                                    struct intel_context *to,
533                                    u32 tail)
534 {
535         struct intel_ctx_submit_request *req = NULL, *cursor;
536         struct drm_i915_private *dev_priv = ring->dev->dev_private;
537         unsigned long flags;
538         int num_elements = 0;
539
540         req = kzalloc(sizeof(*req), GFP_KERNEL);
541         if (req == NULL)
542                 return -ENOMEM;
543         req->ctx = to;
544         i915_gem_context_reference(req->ctx);
545         req->ring = ring;
546         req->tail = tail;
547         INIT_WORK(&req->work, execlists_free_request_task);
548
549         intel_runtime_pm_get(dev_priv);
550
551         spin_lock_irqsave(&ring->execlist_lock, flags);
552
553         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
554                 if (++num_elements > 2)
555                         break;
556
557         if (num_elements > 2) {
558                 struct intel_ctx_submit_request *tail_req;
559
560                 tail_req = list_last_entry(&ring->execlist_queue,
561                                            struct intel_ctx_submit_request,
562                                            execlist_link);
563
564                 if (to == tail_req->ctx) {
565                         WARN(tail_req->elsp_submitted != 0,
566                              "More than 2 already-submitted reqs queued\n");
567                         list_del(&tail_req->execlist_link);
568                         queue_work(dev_priv->wq, &tail_req->work);
569                 }
570         }
571
572         list_add_tail(&req->execlist_link, &ring->execlist_queue);
573         if (num_elements == 0)
574                 execlists_context_unqueue(ring);
575
576         spin_unlock_irqrestore(&ring->execlist_lock, flags);
577
578         return 0;
579 }
580
581 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
582 {
583         struct intel_engine_cs *ring = ringbuf->ring;
584         uint32_t flush_domains;
585         int ret;
586
587         flush_domains = 0;
588         if (ring->gpu_caches_dirty)
589                 flush_domains = I915_GEM_GPU_DOMAINS;
590
591         ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
592         if (ret)
593                 return ret;
594
595         ring->gpu_caches_dirty = false;
596         return 0;
597 }
598
599 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
600                                  struct list_head *vmas)
601 {
602         struct intel_engine_cs *ring = ringbuf->ring;
603         struct i915_vma *vma;
604         uint32_t flush_domains = 0;
605         bool flush_chipset = false;
606         int ret;
607
608         list_for_each_entry(vma, vmas, exec_list) {
609                 struct drm_i915_gem_object *obj = vma->obj;
610
611                 ret = i915_gem_object_sync(obj, ring);
612                 if (ret)
613                         return ret;
614
615                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
616                         flush_chipset |= i915_gem_clflush_object(obj, false);
617
618                 flush_domains |= obj->base.write_domain;
619         }
620
621         if (flush_domains & I915_GEM_DOMAIN_GTT)
622                 wmb();
623
624         /* Unconditionally invalidate gpu caches and ensure that we do flush
625          * any residual writes from the previous batch.
626          */
627         return logical_ring_invalidate_all_caches(ringbuf);
628 }
629
630 /**
631  * execlists_submission() - submit a batchbuffer for execution, Execlists style
632  * @dev: DRM device.
633  * @file: DRM file.
634  * @ring: Engine Command Streamer to submit to.
635  * @ctx: Context to employ for this submission.
636  * @args: execbuffer call arguments.
637  * @vmas: list of vmas.
638  * @batch_obj: the batchbuffer to submit.
639  * @exec_start: batchbuffer start virtual address pointer.
640  * @flags: translated execbuffer call flags.
641  *
642  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
643  * away the submission details of the execbuffer ioctl call.
644  *
645  * Return: non-zero if the submission fails.
646  */
647 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
648                                struct intel_engine_cs *ring,
649                                struct intel_context *ctx,
650                                struct drm_i915_gem_execbuffer2 *args,
651                                struct list_head *vmas,
652                                struct drm_i915_gem_object *batch_obj,
653                                u64 exec_start, u32 flags)
654 {
655         struct drm_i915_private *dev_priv = dev->dev_private;
656         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
657         int instp_mode;
658         u32 instp_mask;
659         int ret;
660
661         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
662         instp_mask = I915_EXEC_CONSTANTS_MASK;
663         switch (instp_mode) {
664         case I915_EXEC_CONSTANTS_REL_GENERAL:
665         case I915_EXEC_CONSTANTS_ABSOLUTE:
666         case I915_EXEC_CONSTANTS_REL_SURFACE:
667                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
668                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
669                         return -EINVAL;
670                 }
671
672                 if (instp_mode != dev_priv->relative_constants_mode) {
673                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
674                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
675                                 return -EINVAL;
676                         }
677
678                         /* The HW changed the meaning on this bit on gen6 */
679                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
680                 }
681                 break;
682         default:
683                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
684                 return -EINVAL;
685         }
686
687         if (args->num_cliprects != 0) {
688                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
689                 return -EINVAL;
690         } else {
691                 if (args->DR4 == 0xffffffff) {
692                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
693                         args->DR4 = 0;
694                 }
695
696                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
697                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
698                         return -EINVAL;
699                 }
700         }
701
702         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
703                 DRM_DEBUG("sol reset is gen7 only\n");
704                 return -EINVAL;
705         }
706
707         ret = execlists_move_to_gpu(ringbuf, vmas);
708         if (ret)
709                 return ret;
710
711         if (ring == &dev_priv->ring[RCS] &&
712             instp_mode != dev_priv->relative_constants_mode) {
713                 ret = intel_logical_ring_begin(ringbuf, 4);
714                 if (ret)
715                         return ret;
716
717                 intel_logical_ring_emit(ringbuf, MI_NOOP);
718                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
719                 intel_logical_ring_emit(ringbuf, INSTPM);
720                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
721                 intel_logical_ring_advance(ringbuf);
722
723                 dev_priv->relative_constants_mode = instp_mode;
724         }
725
726         ret = ring->emit_bb_start(ringbuf, exec_start, flags);
727         if (ret)
728                 return ret;
729
730         i915_gem_execbuffer_move_to_active(vmas, ring);
731         i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
732
733         return 0;
734 }
735
736 void intel_logical_ring_stop(struct intel_engine_cs *ring)
737 {
738         struct drm_i915_private *dev_priv = ring->dev->dev_private;
739         int ret;
740
741         if (!intel_ring_initialized(ring))
742                 return;
743
744         ret = intel_ring_idle(ring);
745         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
746                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
747                           ring->name, ret);
748
749         /* TODO: Is this correct with Execlists enabled? */
750         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
751         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
752                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
753                 return;
754         }
755         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
756 }
757
758 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
759 {
760         struct intel_engine_cs *ring = ringbuf->ring;
761         int ret;
762
763         if (!ring->gpu_caches_dirty)
764                 return 0;
765
766         ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
767         if (ret)
768                 return ret;
769
770         ring->gpu_caches_dirty = false;
771         return 0;
772 }
773
774 /**
775  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
776  * @ringbuf: Logical Ringbuffer to advance.
777  *
778  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
779  * really happens during submission is that the context and current tail will be placed
780  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
781  * point, the tail *inside* the context is updated and the ELSP written to.
782  */
783 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
784 {
785         struct intel_engine_cs *ring = ringbuf->ring;
786         struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
787
788         intel_logical_ring_advance(ringbuf);
789
790         if (intel_ring_stopped(ring))
791                 return;
792
793         execlists_context_queue(ring, ctx, ringbuf->tail);
794 }
795
796 static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
797                                     struct intel_context *ctx)
798 {
799         if (ring->outstanding_lazy_seqno)
800                 return 0;
801
802         if (ring->preallocated_lazy_request == NULL) {
803                 struct drm_i915_gem_request *request;
804
805                 request = kmalloc(sizeof(*request), GFP_KERNEL);
806                 if (request == NULL)
807                         return -ENOMEM;
808
809                 /* Hold a reference to the context this request belongs to
810                  * (we will need it when the time comes to emit/retire the
811                  * request).
812                  */
813                 request->ctx = ctx;
814                 i915_gem_context_reference(request->ctx);
815
816                 ring->preallocated_lazy_request = request;
817         }
818
819         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
820 }
821
822 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
823                                      int bytes)
824 {
825         struct intel_engine_cs *ring = ringbuf->ring;
826         struct drm_i915_gem_request *request;
827         u32 seqno = 0;
828         int ret;
829
830         if (ringbuf->last_retired_head != -1) {
831                 ringbuf->head = ringbuf->last_retired_head;
832                 ringbuf->last_retired_head = -1;
833
834                 ringbuf->space = intel_ring_space(ringbuf);
835                 if (ringbuf->space >= bytes)
836                         return 0;
837         }
838
839         list_for_each_entry(request, &ring->request_list, list) {
840                 if (__intel_ring_space(request->tail, ringbuf->tail,
841                                        ringbuf->size) >= bytes) {
842                         seqno = request->seqno;
843                         break;
844                 }
845         }
846
847         if (seqno == 0)
848                 return -ENOSPC;
849
850         ret = i915_wait_seqno(ring, seqno);
851         if (ret)
852                 return ret;
853
854         i915_gem_retire_requests_ring(ring);
855         ringbuf->head = ringbuf->last_retired_head;
856         ringbuf->last_retired_head = -1;
857
858         ringbuf->space = intel_ring_space(ringbuf);
859         return 0;
860 }
861
862 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
863                                        int bytes)
864 {
865         struct intel_engine_cs *ring = ringbuf->ring;
866         struct drm_device *dev = ring->dev;
867         struct drm_i915_private *dev_priv = dev->dev_private;
868         unsigned long end;
869         int ret;
870
871         ret = logical_ring_wait_request(ringbuf, bytes);
872         if (ret != -ENOSPC)
873                 return ret;
874
875         /* Force the context submission in case we have been skipping it */
876         intel_logical_ring_advance_and_submit(ringbuf);
877
878         /* With GEM the hangcheck timer should kick us out of the loop,
879          * leaving it early runs the risk of corrupting GEM state (due
880          * to running on almost untested codepaths). But on resume
881          * timers don't work yet, so prevent a complete hang in that
882          * case by choosing an insanely large timeout. */
883         end = jiffies + 60 * HZ;
884
885         do {
886                 ringbuf->head = I915_READ_HEAD(ring);
887                 ringbuf->space = intel_ring_space(ringbuf);
888                 if (ringbuf->space >= bytes) {
889                         ret = 0;
890                         break;
891                 }
892
893                 msleep(1);
894
895                 if (dev_priv->mm.interruptible && signal_pending(current)) {
896                         ret = -ERESTARTSYS;
897                         break;
898                 }
899
900                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
901                                            dev_priv->mm.interruptible);
902                 if (ret)
903                         break;
904
905                 if (time_after(jiffies, end)) {
906                         ret = -EBUSY;
907                         break;
908                 }
909         } while (1);
910
911         return ret;
912 }
913
914 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
915 {
916         uint32_t __iomem *virt;
917         int rem = ringbuf->size - ringbuf->tail;
918
919         if (ringbuf->space < rem) {
920                 int ret = logical_ring_wait_for_space(ringbuf, rem);
921
922                 if (ret)
923                         return ret;
924         }
925
926         virt = ringbuf->virtual_start + ringbuf->tail;
927         rem /= 4;
928         while (rem--)
929                 iowrite32(MI_NOOP, virt++);
930
931         ringbuf->tail = 0;
932         ringbuf->space = intel_ring_space(ringbuf);
933
934         return 0;
935 }
936
937 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
938 {
939         int ret;
940
941         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
942                 ret = logical_ring_wrap_buffer(ringbuf);
943                 if (unlikely(ret))
944                         return ret;
945         }
946
947         if (unlikely(ringbuf->space < bytes)) {
948                 ret = logical_ring_wait_for_space(ringbuf, bytes);
949                 if (unlikely(ret))
950                         return ret;
951         }
952
953         return 0;
954 }
955
956 /**
957  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
958  *
959  * @ringbuf: Logical ringbuffer.
960  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
961  *
962  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
963  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
964  * and also preallocates a request (every workload submission is still mediated through
965  * requests, same as it did with legacy ringbuffer submission).
966  *
967  * Return: non-zero if the ringbuffer is not ready to be written to.
968  */
969 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
970 {
971         struct intel_engine_cs *ring = ringbuf->ring;
972         struct drm_device *dev = ring->dev;
973         struct drm_i915_private *dev_priv = dev->dev_private;
974         int ret;
975
976         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
977                                    dev_priv->mm.interruptible);
978         if (ret)
979                 return ret;
980
981         ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
982         if (ret)
983                 return ret;
984
985         /* Preallocate the olr before touching the ring */
986         ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
987         if (ret)
988                 return ret;
989
990         ringbuf->space -= num_dwords * sizeof(uint32_t);
991         return 0;
992 }
993
994 static int gen8_init_common_ring(struct intel_engine_cs *ring)
995 {
996         struct drm_device *dev = ring->dev;
997         struct drm_i915_private *dev_priv = dev->dev_private;
998
999         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1000         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1001
1002         I915_WRITE(RING_MODE_GEN7(ring),
1003                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1004                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1005         POSTING_READ(RING_MODE_GEN7(ring));
1006         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1007
1008         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1009
1010         return 0;
1011 }
1012
1013 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1014 {
1015         struct drm_device *dev = ring->dev;
1016         struct drm_i915_private *dev_priv = dev->dev_private;
1017         int ret;
1018
1019         ret = gen8_init_common_ring(ring);
1020         if (ret)
1021                 return ret;
1022
1023         /* We need to disable the AsyncFlip performance optimisations in order
1024          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1025          * programmed to '1' on all products.
1026          *
1027          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1028          */
1029         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1030
1031         ret = intel_init_pipe_control(ring);
1032         if (ret)
1033                 return ret;
1034
1035         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1036
1037         return ret;
1038 }
1039
1040 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1041                               u64 offset, unsigned flags)
1042 {
1043         bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1044         int ret;
1045
1046         ret = intel_logical_ring_begin(ringbuf, 4);
1047         if (ret)
1048                 return ret;
1049
1050         /* FIXME(BDW): Address space and security selectors. */
1051         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1052         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1053         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1054         intel_logical_ring_emit(ringbuf, MI_NOOP);
1055         intel_logical_ring_advance(ringbuf);
1056
1057         return 0;
1058 }
1059
1060 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1061 {
1062         struct drm_device *dev = ring->dev;
1063         struct drm_i915_private *dev_priv = dev->dev_private;
1064         unsigned long flags;
1065
1066         if (!dev->irq_enabled)
1067                 return false;
1068
1069         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1070         if (ring->irq_refcount++ == 0) {
1071                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1072                 POSTING_READ(RING_IMR(ring->mmio_base));
1073         }
1074         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1075
1076         return true;
1077 }
1078
1079 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1080 {
1081         struct drm_device *dev = ring->dev;
1082         struct drm_i915_private *dev_priv = dev->dev_private;
1083         unsigned long flags;
1084
1085         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1086         if (--ring->irq_refcount == 0) {
1087                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1088                 POSTING_READ(RING_IMR(ring->mmio_base));
1089         }
1090         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1091 }
1092
1093 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1094                            u32 invalidate_domains,
1095                            u32 unused)
1096 {
1097         struct intel_engine_cs *ring = ringbuf->ring;
1098         struct drm_device *dev = ring->dev;
1099         struct drm_i915_private *dev_priv = dev->dev_private;
1100         uint32_t cmd;
1101         int ret;
1102
1103         ret = intel_logical_ring_begin(ringbuf, 4);
1104         if (ret)
1105                 return ret;
1106
1107         cmd = MI_FLUSH_DW + 1;
1108
1109         if (ring == &dev_priv->ring[VCS]) {
1110                 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1111                         cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1112                                 MI_FLUSH_DW_STORE_INDEX |
1113                                 MI_FLUSH_DW_OP_STOREDW;
1114         } else {
1115                 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1116                         cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1117                                 MI_FLUSH_DW_OP_STOREDW;
1118         }
1119
1120         intel_logical_ring_emit(ringbuf, cmd);
1121         intel_logical_ring_emit(ringbuf,
1122                                 I915_GEM_HWS_SCRATCH_ADDR |
1123                                 MI_FLUSH_DW_USE_GTT);
1124         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1125         intel_logical_ring_emit(ringbuf, 0); /* value */
1126         intel_logical_ring_advance(ringbuf);
1127
1128         return 0;
1129 }
1130
1131 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1132                                   u32 invalidate_domains,
1133                                   u32 flush_domains)
1134 {
1135         struct intel_engine_cs *ring = ringbuf->ring;
1136         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1137         u32 flags = 0;
1138         int ret;
1139
1140         flags |= PIPE_CONTROL_CS_STALL;
1141
1142         if (flush_domains) {
1143                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1144                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1145         }
1146
1147         if (invalidate_domains) {
1148                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1149                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1150                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1151                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1152                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1153                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1154                 flags |= PIPE_CONTROL_QW_WRITE;
1155                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1156         }
1157
1158         ret = intel_logical_ring_begin(ringbuf, 6);
1159         if (ret)
1160                 return ret;
1161
1162         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1163         intel_logical_ring_emit(ringbuf, flags);
1164         intel_logical_ring_emit(ringbuf, scratch_addr);
1165         intel_logical_ring_emit(ringbuf, 0);
1166         intel_logical_ring_emit(ringbuf, 0);
1167         intel_logical_ring_emit(ringbuf, 0);
1168         intel_logical_ring_advance(ringbuf);
1169
1170         return 0;
1171 }
1172
1173 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1174 {
1175         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1176 }
1177
1178 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1179 {
1180         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1181 }
1182
1183 static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1184 {
1185         struct intel_engine_cs *ring = ringbuf->ring;
1186         u32 cmd;
1187         int ret;
1188
1189         ret = intel_logical_ring_begin(ringbuf, 6);
1190         if (ret)
1191                 return ret;
1192
1193         cmd = MI_STORE_DWORD_IMM_GEN8;
1194         cmd |= MI_GLOBAL_GTT;
1195
1196         intel_logical_ring_emit(ringbuf, cmd);
1197         intel_logical_ring_emit(ringbuf,
1198                                 (ring->status_page.gfx_addr +
1199                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1200         intel_logical_ring_emit(ringbuf, 0);
1201         intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1202         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1203         intel_logical_ring_emit(ringbuf, MI_NOOP);
1204         intel_logical_ring_advance_and_submit(ringbuf);
1205
1206         return 0;
1207 }
1208
1209 /**
1210  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1211  *
1212  * @ring: Engine Command Streamer.
1213  *
1214  */
1215 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1216 {
1217         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1218
1219         if (!intel_ring_initialized(ring))
1220                 return;
1221
1222         intel_logical_ring_stop(ring);
1223         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1224         ring->preallocated_lazy_request = NULL;
1225         ring->outstanding_lazy_seqno = 0;
1226
1227         if (ring->cleanup)
1228                 ring->cleanup(ring);
1229
1230         i915_cmd_parser_fini_ring(ring);
1231
1232         if (ring->status_page.obj) {
1233                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1234                 ring->status_page.obj = NULL;
1235         }
1236 }
1237
1238 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1239 {
1240         int ret;
1241
1242         /* Intentionally left blank. */
1243         ring->buffer = NULL;
1244
1245         ring->dev = dev;
1246         INIT_LIST_HEAD(&ring->active_list);
1247         INIT_LIST_HEAD(&ring->request_list);
1248         init_waitqueue_head(&ring->irq_queue);
1249
1250         INIT_LIST_HEAD(&ring->execlist_queue);
1251         spin_lock_init(&ring->execlist_lock);
1252         ring->next_context_status_buffer = 0;
1253
1254         ret = i915_cmd_parser_init_ring(ring);
1255         if (ret)
1256                 return ret;
1257
1258         if (ring->init) {
1259                 ret = ring->init(ring);
1260                 if (ret)
1261                         return ret;
1262         }
1263
1264         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1265
1266         return ret;
1267 }
1268
1269 static int logical_render_ring_init(struct drm_device *dev)
1270 {
1271         struct drm_i915_private *dev_priv = dev->dev_private;
1272         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1273
1274         ring->name = "render ring";
1275         ring->id = RCS;
1276         ring->mmio_base = RENDER_RING_BASE;
1277         ring->irq_enable_mask =
1278                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1279         ring->irq_keep_mask =
1280                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1281         if (HAS_L3_DPF(dev))
1282                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1283
1284         ring->init = gen8_init_render_ring;
1285         ring->cleanup = intel_fini_pipe_control;
1286         ring->get_seqno = gen8_get_seqno;
1287         ring->set_seqno = gen8_set_seqno;
1288         ring->emit_request = gen8_emit_request;
1289         ring->emit_flush = gen8_emit_flush_render;
1290         ring->irq_get = gen8_logical_ring_get_irq;
1291         ring->irq_put = gen8_logical_ring_put_irq;
1292         ring->emit_bb_start = gen8_emit_bb_start;
1293
1294         return logical_ring_init(dev, ring);
1295 }
1296
1297 static int logical_bsd_ring_init(struct drm_device *dev)
1298 {
1299         struct drm_i915_private *dev_priv = dev->dev_private;
1300         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1301
1302         ring->name = "bsd ring";
1303         ring->id = VCS;
1304         ring->mmio_base = GEN6_BSD_RING_BASE;
1305         ring->irq_enable_mask =
1306                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1307         ring->irq_keep_mask =
1308                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1309
1310         ring->init = gen8_init_common_ring;
1311         ring->get_seqno = gen8_get_seqno;
1312         ring->set_seqno = gen8_set_seqno;
1313         ring->emit_request = gen8_emit_request;
1314         ring->emit_flush = gen8_emit_flush;
1315         ring->irq_get = gen8_logical_ring_get_irq;
1316         ring->irq_put = gen8_logical_ring_put_irq;
1317         ring->emit_bb_start = gen8_emit_bb_start;
1318
1319         return logical_ring_init(dev, ring);
1320 }
1321
1322 static int logical_bsd2_ring_init(struct drm_device *dev)
1323 {
1324         struct drm_i915_private *dev_priv = dev->dev_private;
1325         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1326
1327         ring->name = "bds2 ring";
1328         ring->id = VCS2;
1329         ring->mmio_base = GEN8_BSD2_RING_BASE;
1330         ring->irq_enable_mask =
1331                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1332         ring->irq_keep_mask =
1333                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1334
1335         ring->init = gen8_init_common_ring;
1336         ring->get_seqno = gen8_get_seqno;
1337         ring->set_seqno = gen8_set_seqno;
1338         ring->emit_request = gen8_emit_request;
1339         ring->emit_flush = gen8_emit_flush;
1340         ring->irq_get = gen8_logical_ring_get_irq;
1341         ring->irq_put = gen8_logical_ring_put_irq;
1342         ring->emit_bb_start = gen8_emit_bb_start;
1343
1344         return logical_ring_init(dev, ring);
1345 }
1346
1347 static int logical_blt_ring_init(struct drm_device *dev)
1348 {
1349         struct drm_i915_private *dev_priv = dev->dev_private;
1350         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1351
1352         ring->name = "blitter ring";
1353         ring->id = BCS;
1354         ring->mmio_base = BLT_RING_BASE;
1355         ring->irq_enable_mask =
1356                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1357         ring->irq_keep_mask =
1358                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1359
1360         ring->init = gen8_init_common_ring;
1361         ring->get_seqno = gen8_get_seqno;
1362         ring->set_seqno = gen8_set_seqno;
1363         ring->emit_request = gen8_emit_request;
1364         ring->emit_flush = gen8_emit_flush;
1365         ring->irq_get = gen8_logical_ring_get_irq;
1366         ring->irq_put = gen8_logical_ring_put_irq;
1367         ring->emit_bb_start = gen8_emit_bb_start;
1368
1369         return logical_ring_init(dev, ring);
1370 }
1371
1372 static int logical_vebox_ring_init(struct drm_device *dev)
1373 {
1374         struct drm_i915_private *dev_priv = dev->dev_private;
1375         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1376
1377         ring->name = "video enhancement ring";
1378         ring->id = VECS;
1379         ring->mmio_base = VEBOX_RING_BASE;
1380         ring->irq_enable_mask =
1381                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1382         ring->irq_keep_mask =
1383                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1384
1385         ring->init = gen8_init_common_ring;
1386         ring->get_seqno = gen8_get_seqno;
1387         ring->set_seqno = gen8_set_seqno;
1388         ring->emit_request = gen8_emit_request;
1389         ring->emit_flush = gen8_emit_flush;
1390         ring->irq_get = gen8_logical_ring_get_irq;
1391         ring->irq_put = gen8_logical_ring_put_irq;
1392         ring->emit_bb_start = gen8_emit_bb_start;
1393
1394         return logical_ring_init(dev, ring);
1395 }
1396
1397 /**
1398  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1399  * @dev: DRM device.
1400  *
1401  * This function inits the engines for an Execlists submission style (the equivalent in the
1402  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1403  * those engines that are present in the hardware.
1404  *
1405  * Return: non-zero if the initialization failed.
1406  */
1407 int intel_logical_rings_init(struct drm_device *dev)
1408 {
1409         struct drm_i915_private *dev_priv = dev->dev_private;
1410         int ret;
1411
1412         ret = logical_render_ring_init(dev);
1413         if (ret)
1414                 return ret;
1415
1416         if (HAS_BSD(dev)) {
1417                 ret = logical_bsd_ring_init(dev);
1418                 if (ret)
1419                         goto cleanup_render_ring;
1420         }
1421
1422         if (HAS_BLT(dev)) {
1423                 ret = logical_blt_ring_init(dev);
1424                 if (ret)
1425                         goto cleanup_bsd_ring;
1426         }
1427
1428         if (HAS_VEBOX(dev)) {
1429                 ret = logical_vebox_ring_init(dev);
1430                 if (ret)
1431                         goto cleanup_blt_ring;
1432         }
1433
1434         if (HAS_BSD2(dev)) {
1435                 ret = logical_bsd2_ring_init(dev);
1436                 if (ret)
1437                         goto cleanup_vebox_ring;
1438         }
1439
1440         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1441         if (ret)
1442                 goto cleanup_bsd2_ring;
1443
1444         return 0;
1445
1446 cleanup_bsd2_ring:
1447         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1448 cleanup_vebox_ring:
1449         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1450 cleanup_blt_ring:
1451         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1452 cleanup_bsd_ring:
1453         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1454 cleanup_render_ring:
1455         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1456
1457         return ret;
1458 }
1459
1460 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1461                                        struct intel_context *ctx)
1462 {
1463         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1464         struct render_state so;
1465         struct drm_i915_file_private *file_priv = ctx->file_priv;
1466         struct drm_file *file = file_priv ? file_priv->file : NULL;
1467         int ret;
1468
1469         ret = i915_gem_render_state_prepare(ring, &so);
1470         if (ret)
1471                 return ret;
1472
1473         if (so.rodata == NULL)
1474                 return 0;
1475
1476         ret = ring->emit_bb_start(ringbuf,
1477                         so.ggtt_offset,
1478                         I915_DISPATCH_SECURE);
1479         if (ret)
1480                 goto out;
1481
1482         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1483
1484         ret = __i915_add_request(ring, file, so.obj, NULL);
1485         /* intel_logical_ring_add_request moves object to inactive if it
1486          * fails */
1487 out:
1488         i915_gem_render_state_fini(&so);
1489         return ret;
1490 }
1491
1492 static int
1493 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1494                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1495 {
1496         struct drm_device *dev = ring->dev;
1497         struct drm_i915_private *dev_priv = dev->dev_private;
1498         struct drm_i915_gem_object *ring_obj = ringbuf->obj;
1499         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1500         struct page *page;
1501         uint32_t *reg_state;
1502         int ret;
1503
1504         if (!ppgtt)
1505                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1506
1507         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1508         if (ret) {
1509                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1510                 return ret;
1511         }
1512
1513         ret = i915_gem_object_get_pages(ctx_obj);
1514         if (ret) {
1515                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1516                 return ret;
1517         }
1518
1519         i915_gem_object_pin_pages(ctx_obj);
1520
1521         /* The second page of the context object contains some fields which must
1522          * be set up prior to the first execution. */
1523         page = i915_gem_object_get_page(ctx_obj, 1);
1524         reg_state = kmap_atomic(page);
1525
1526         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1527          * commands followed by (reg, value) pairs. The values we are setting here are
1528          * only for the first context restore: on a subsequent save, the GPU will
1529          * recreate this batchbuffer with new values (including all the missing
1530          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1531         if (ring->id == RCS)
1532                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1533         else
1534                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1535         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1536         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1537         reg_state[CTX_CONTEXT_CONTROL+1] =
1538                         _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1539         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1540         reg_state[CTX_RING_HEAD+1] = 0;
1541         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1542         reg_state[CTX_RING_TAIL+1] = 0;
1543         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1544         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
1545         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1546         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1547                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1548         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1549         reg_state[CTX_BB_HEAD_U+1] = 0;
1550         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1551         reg_state[CTX_BB_HEAD_L+1] = 0;
1552         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1553         reg_state[CTX_BB_STATE+1] = (1<<5);
1554         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1555         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1556         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1557         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1558         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1559         reg_state[CTX_SECOND_BB_STATE+1] = 0;
1560         if (ring->id == RCS) {
1561                 /* TODO: according to BSpec, the register state context
1562                  * for CHV does not have these. OTOH, these registers do
1563                  * exist in CHV. I'm waiting for a clarification */
1564                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1565                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1566                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1567                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1568                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1569                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1570         }
1571         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1572         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1573         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1574         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1575         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1576         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1577         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1578         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1579         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1580         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1581         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1582         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1583         reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1584         reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1585         reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1586         reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1587         reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1588         reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1589         reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1590         reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1591         if (ring->id == RCS) {
1592                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1593                 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1594                 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1595         }
1596
1597         kunmap_atomic(reg_state);
1598
1599         ctx_obj->dirty = 1;
1600         set_page_dirty(page);
1601         i915_gem_object_unpin_pages(ctx_obj);
1602
1603         return 0;
1604 }
1605
1606 /**
1607  * intel_lr_context_free() - free the LRC specific bits of a context
1608  * @ctx: the LR context to free.
1609  *
1610  * The real context freeing is done in i915_gem_context_free: this only
1611  * takes care of the bits that are LRC related: the per-engine backing
1612  * objects and the logical ringbuffer.
1613  */
1614 void intel_lr_context_free(struct intel_context *ctx)
1615 {
1616         int i;
1617
1618         for (i = 0; i < I915_NUM_RINGS; i++) {
1619                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1620                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
1621
1622                 if (ctx_obj) {
1623                         intel_destroy_ringbuffer_obj(ringbuf);
1624                         kfree(ringbuf);
1625                         i915_gem_object_ggtt_unpin(ctx_obj);
1626                         drm_gem_object_unreference(&ctx_obj->base);
1627                 }
1628         }
1629 }
1630
1631 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1632 {
1633         int ret = 0;
1634
1635         WARN_ON(INTEL_INFO(ring->dev)->gen != 8);
1636
1637         switch (ring->id) {
1638         case RCS:
1639                 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1640                 break;
1641         case VCS:
1642         case BCS:
1643         case VECS:
1644         case VCS2:
1645                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1646                 break;
1647         }
1648
1649         return ret;
1650 }
1651
1652 /**
1653  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1654  * @ctx: LR context to create.
1655  * @ring: engine to be used with the context.
1656  *
1657  * This function can be called more than once, with different engines, if we plan
1658  * to use the context with them. The context backing objects and the ringbuffers
1659  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1660  * the creation is a deferred call: it's better to make sure first that we need to use
1661  * a given ring with the context.
1662  *
1663  * Return: non-zero on eror.
1664  */
1665 int intel_lr_context_deferred_create(struct intel_context *ctx,
1666                                      struct intel_engine_cs *ring)
1667 {
1668         struct drm_device *dev = ring->dev;
1669         struct drm_i915_gem_object *ctx_obj;
1670         uint32_t context_size;
1671         struct intel_ringbuffer *ringbuf;
1672         int ret;
1673
1674         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1675         if (ctx->engine[ring->id].state)
1676                 return 0;
1677
1678         context_size = round_up(get_lr_context_size(ring), 4096);
1679
1680         ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1681         if (IS_ERR(ctx_obj)) {
1682                 ret = PTR_ERR(ctx_obj);
1683                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1684                 return ret;
1685         }
1686
1687         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1688         if (ret) {
1689                 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
1690                 drm_gem_object_unreference(&ctx_obj->base);
1691                 return ret;
1692         }
1693
1694         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1695         if (!ringbuf) {
1696                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1697                                 ring->name);
1698                 i915_gem_object_ggtt_unpin(ctx_obj);
1699                 drm_gem_object_unreference(&ctx_obj->base);
1700                 ret = -ENOMEM;
1701                 return ret;
1702         }
1703
1704         ringbuf->ring = ring;
1705         ringbuf->FIXME_lrc_ctx = ctx;
1706
1707         ringbuf->size = 32 * PAGE_SIZE;
1708         ringbuf->effective_size = ringbuf->size;
1709         ringbuf->head = 0;
1710         ringbuf->tail = 0;
1711         ringbuf->space = ringbuf->size;
1712         ringbuf->last_retired_head = -1;
1713
1714         /* TODO: For now we put this in the mappable region so that we can reuse
1715          * the existing ringbuffer code which ioremaps it. When we start
1716          * creating many contexts, this will no longer work and we must switch
1717          * to a kmapish interface.
1718          */
1719         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1720         if (ret) {
1721                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
1722                                 ring->name, ret);
1723                 goto error;
1724         }
1725
1726         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1727         if (ret) {
1728                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1729                 intel_destroy_ringbuffer_obj(ringbuf);
1730                 goto error;
1731         }
1732
1733         ctx->engine[ring->id].ringbuf = ringbuf;
1734         ctx->engine[ring->id].state = ctx_obj;
1735
1736         if (ctx == ring->default_context) {
1737                 /* The status page is offset 0 from the default context object
1738                  * in LRC mode. */
1739                 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(ctx_obj);
1740                 ring->status_page.page_addr =
1741                                 kmap(sg_page(ctx_obj->pages->sgl));
1742                 if (ring->status_page.page_addr == NULL)
1743                         return -ENOMEM;
1744                 ring->status_page.obj = ctx_obj;
1745         }
1746
1747         if (ring->id == RCS && !ctx->rcs_initialized) {
1748                 ret = intel_lr_context_render_state_init(ring, ctx);
1749                 if (ret) {
1750                         DRM_ERROR("Init render state failed: %d\n", ret);
1751                         ctx->engine[ring->id].ringbuf = NULL;
1752                         ctx->engine[ring->id].state = NULL;
1753                         intel_destroy_ringbuffer_obj(ringbuf);
1754                         goto error;
1755                 }
1756                 ctx->rcs_initialized = true;
1757         }
1758
1759         return 0;
1760
1761 error:
1762         kfree(ringbuf);
1763         i915_gem_object_ggtt_unpin(ctx_obj);
1764         drm_gem_object_unreference(&ctx_obj->base);
1765         return ret;
1766 }