]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'drm-intel-next-2014-04-16' of git://anongit.freedesktop.org/drm-intel...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97         struct drm_i915_gem_object *obj = intel_fb->obj;
98         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99         int cfb_pitch;
100         int i;
101         u32 fbc_ctl;
102
103         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104         if (fb->pitches[0] < cfb_pitch)
105                 cfb_pitch = fb->pitches[0];
106
107         /* FBC_CTL wants 32B or 64B units */
108         if (IS_GEN2(dev))
109                 cfb_pitch = (cfb_pitch / 32) - 1;
110         else
111                 cfb_pitch = (cfb_pitch / 64) - 1;
112
113         /* Clear old tags */
114         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115                 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117         if (IS_GEN4(dev)) {
118                 u32 fbc_ctl2;
119
120                 /* Set it up... */
121                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125         }
126
127         /* enable it... */
128         fbc_ctl = I915_READ(FBC_CONTROL);
129         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131         if (IS_I945GM(dev))
132                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134         fbc_ctl |= obj->fence_reg;
135         I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144
145         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150         struct drm_device *dev = crtc->dev;
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         struct drm_framebuffer *fb = crtc->primary->fb;
153         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154         struct drm_i915_gem_object *obj = intel_fb->obj;
155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156         u32 dpfc_ctl;
157
158         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161         else
162                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167         /* enable it... */
168         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         u32 dpfc_ctl;
177
178         /* Disable compression */
179         dpfc_ctl = I915_READ(DPFC_CONTROL);
180         if (dpfc_ctl & DPFC_CTL_EN) {
181                 dpfc_ctl &= ~DPFC_CTL_EN;
182                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184                 DRM_DEBUG_KMS("disabled FBC\n");
185         }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191
192         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         u32 blt_ecoskpd;
199
200         /* Make sure blitter notifies FBC of writes */
201
202         /* Blitter is part of Media powerwell on VLV. No impact of
203          * his param in other platforms for now */
204         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208                 GEN6_BLITTER_LOCK_SHIFT;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213                          GEN6_BLITTER_LOCK_SHIFT);
214         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215         POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222         struct drm_device *dev = crtc->dev;
223         struct drm_i915_private *dev_priv = dev->dev_private;
224         struct drm_framebuffer *fb = crtc->primary->fb;
225         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226         struct drm_i915_gem_object *obj = intel_fb->obj;
227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228         u32 dpfc_ctl;
229
230         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
233         else
234                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
235         dpfc_ctl |= DPFC_CTL_FENCE_EN;
236         if (IS_GEN5(dev))
237                 dpfc_ctl |= obj->fence_reg;
238
239         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241         /* enable it... */
242         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244         if (IS_GEN6(dev)) {
245                 I915_WRITE(SNB_DPFC_CTL_SA,
246                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248                 sandybridge_blit_fbc_update(dev);
249         }
250
251         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256         struct drm_i915_private *dev_priv = dev->dev_private;
257         u32 dpfc_ctl;
258
259         /* Disable compression */
260         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261         if (dpfc_ctl & DPFC_CTL_EN) {
262                 dpfc_ctl &= ~DPFC_CTL_EN;
263                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265                 DRM_DEBUG_KMS("disabled FBC\n");
266         }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271         struct drm_i915_private *dev_priv = dev->dev_private;
272
273         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc)
277 {
278         struct drm_device *dev = crtc->dev;
279         struct drm_i915_private *dev_priv = dev->dev_private;
280         struct drm_framebuffer *fb = crtc->primary->fb;
281         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282         struct drm_i915_gem_object *obj = intel_fb->obj;
283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284         u32 dpfc_ctl;
285
286         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
287         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
288                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
289         else
290                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
291         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
292
293         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
294
295         if (IS_IVYBRIDGE(dev)) {
296                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
298                            I915_READ(ILK_DISPLAY_CHICKEN1) |
299                            ILK_FBCQ_DIS);
300         } else {
301                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
302                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
303                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
304                            HSW_FBCQ_DIS);
305         }
306
307         I915_WRITE(SNB_DPFC_CTL_SA,
308                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
309         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
310
311         sandybridge_blit_fbc_update(dev);
312
313         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
314 }
315
316 bool intel_fbc_enabled(struct drm_device *dev)
317 {
318         struct drm_i915_private *dev_priv = dev->dev_private;
319
320         if (!dev_priv->display.fbc_enabled)
321                 return false;
322
323         return dev_priv->display.fbc_enabled(dev);
324 }
325
326 static void intel_fbc_work_fn(struct work_struct *__work)
327 {
328         struct intel_fbc_work *work =
329                 container_of(to_delayed_work(__work),
330                              struct intel_fbc_work, work);
331         struct drm_device *dev = work->crtc->dev;
332         struct drm_i915_private *dev_priv = dev->dev_private;
333
334         mutex_lock(&dev->struct_mutex);
335         if (work == dev_priv->fbc.fbc_work) {
336                 /* Double check that we haven't switched fb without cancelling
337                  * the prior work.
338                  */
339                 if (work->crtc->primary->fb == work->fb) {
340                         dev_priv->display.enable_fbc(work->crtc);
341
342                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
343                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
344                         dev_priv->fbc.y = work->crtc->y;
345                 }
346
347                 dev_priv->fbc.fbc_work = NULL;
348         }
349         mutex_unlock(&dev->struct_mutex);
350
351         kfree(work);
352 }
353
354 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
355 {
356         if (dev_priv->fbc.fbc_work == NULL)
357                 return;
358
359         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
360
361         /* Synchronisation is provided by struct_mutex and checking of
362          * dev_priv->fbc.fbc_work, so we can perform the cancellation
363          * entirely asynchronously.
364          */
365         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
366                 /* tasklet was killed before being run, clean up */
367                 kfree(dev_priv->fbc.fbc_work);
368
369         /* Mark the work as no longer wanted so that if it does
370          * wake-up (because the work was already running and waiting
371          * for our mutex), it will discover that is no longer
372          * necessary to run.
373          */
374         dev_priv->fbc.fbc_work = NULL;
375 }
376
377 static void intel_enable_fbc(struct drm_crtc *crtc)
378 {
379         struct intel_fbc_work *work;
380         struct drm_device *dev = crtc->dev;
381         struct drm_i915_private *dev_priv = dev->dev_private;
382
383         if (!dev_priv->display.enable_fbc)
384                 return;
385
386         intel_cancel_fbc_work(dev_priv);
387
388         work = kzalloc(sizeof(*work), GFP_KERNEL);
389         if (work == NULL) {
390                 DRM_ERROR("Failed to allocate FBC work structure\n");
391                 dev_priv->display.enable_fbc(crtc);
392                 return;
393         }
394
395         work->crtc = crtc;
396         work->fb = crtc->primary->fb;
397         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
398
399         dev_priv->fbc.fbc_work = work;
400
401         /* Delay the actual enabling to let pageflipping cease and the
402          * display to settle before starting the compression. Note that
403          * this delay also serves a second purpose: it allows for a
404          * vblank to pass after disabling the FBC before we attempt
405          * to modify the control registers.
406          *
407          * A more complicated solution would involve tracking vblanks
408          * following the termination of the page-flipping sequence
409          * and indeed performing the enable as a co-routine and not
410          * waiting synchronously upon the vblank.
411          *
412          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
413          */
414         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
415 }
416
417 void intel_disable_fbc(struct drm_device *dev)
418 {
419         struct drm_i915_private *dev_priv = dev->dev_private;
420
421         intel_cancel_fbc_work(dev_priv);
422
423         if (!dev_priv->display.disable_fbc)
424                 return;
425
426         dev_priv->display.disable_fbc(dev);
427         dev_priv->fbc.plane = -1;
428 }
429
430 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
431                               enum no_fbc_reason reason)
432 {
433         if (dev_priv->fbc.no_fbc_reason == reason)
434                 return false;
435
436         dev_priv->fbc.no_fbc_reason = reason;
437         return true;
438 }
439
440 /**
441  * intel_update_fbc - enable/disable FBC as needed
442  * @dev: the drm_device
443  *
444  * Set up the framebuffer compression hardware at mode set time.  We
445  * enable it if possible:
446  *   - plane A only (on pre-965)
447  *   - no pixel mulitply/line duplication
448  *   - no alpha buffer discard
449  *   - no dual wide
450  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
451  *
452  * We can't assume that any compression will take place (worst case),
453  * so the compressed buffer has to be the same size as the uncompressed
454  * one.  It also must reside (along with the line length buffer) in
455  * stolen memory.
456  *
457  * We need to enable/disable FBC on a global basis.
458  */
459 void intel_update_fbc(struct drm_device *dev)
460 {
461         struct drm_i915_private *dev_priv = dev->dev_private;
462         struct drm_crtc *crtc = NULL, *tmp_crtc;
463         struct intel_crtc *intel_crtc;
464         struct drm_framebuffer *fb;
465         struct intel_framebuffer *intel_fb;
466         struct drm_i915_gem_object *obj;
467         const struct drm_display_mode *adjusted_mode;
468         unsigned int max_width, max_height;
469
470         if (!HAS_FBC(dev)) {
471                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
472                 return;
473         }
474
475         if (!i915.powersave) {
476                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
477                         DRM_DEBUG_KMS("fbc disabled per module param\n");
478                 return;
479         }
480
481         /*
482          * If FBC is already on, we just have to verify that we can
483          * keep it that way...
484          * Need to disable if:
485          *   - more than one pipe is active
486          *   - changing FBC params (stride, fence, mode)
487          *   - new fb is too large to fit in compressed buffer
488          *   - going to an unsupported config (interlace, pixel multiply, etc.)
489          */
490         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
491                 if (intel_crtc_active(tmp_crtc) &&
492                     to_intel_crtc(tmp_crtc)->primary_enabled) {
493                         if (crtc) {
494                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
495                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
496                                 goto out_disable;
497                         }
498                         crtc = tmp_crtc;
499                 }
500         }
501
502         if (!crtc || crtc->primary->fb == NULL) {
503                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
504                         DRM_DEBUG_KMS("no output, disabling\n");
505                 goto out_disable;
506         }
507
508         intel_crtc = to_intel_crtc(crtc);
509         fb = crtc->primary->fb;
510         intel_fb = to_intel_framebuffer(fb);
511         obj = intel_fb->obj;
512         adjusted_mode = &intel_crtc->config.adjusted_mode;
513
514         if (i915.enable_fbc < 0 &&
515             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
516                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
517                         DRM_DEBUG_KMS("disabled per chip default\n");
518                 goto out_disable;
519         }
520         if (!i915.enable_fbc) {
521                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
522                         DRM_DEBUG_KMS("fbc disabled per module param\n");
523                 goto out_disable;
524         }
525         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
526             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
527                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
528                         DRM_DEBUG_KMS("mode incompatible with compression, "
529                                       "disabling\n");
530                 goto out_disable;
531         }
532
533         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
534                 max_width = 4096;
535                 max_height = 2048;
536         } else {
537                 max_width = 2048;
538                 max_height = 1536;
539         }
540         if (intel_crtc->config.pipe_src_w > max_width ||
541             intel_crtc->config.pipe_src_h > max_height) {
542                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
543                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
544                 goto out_disable;
545         }
546         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
547             intel_crtc->plane != PLANE_A) {
548                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
549                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
550                 goto out_disable;
551         }
552
553         /* The use of a CPU fence is mandatory in order to detect writes
554          * by the CPU to the scanout and trigger updates to the FBC.
555          */
556         if (obj->tiling_mode != I915_TILING_X ||
557             obj->fence_reg == I915_FENCE_REG_NONE) {
558                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
559                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
560                 goto out_disable;
561         }
562
563         /* If the kernel debugger is active, always disable compression */
564         if (in_dbg_master())
565                 goto out_disable;
566
567         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
568                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
569                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
570                 goto out_disable;
571         }
572
573         /* If the scanout has not changed, don't modify the FBC settings.
574          * Note that we make the fundamental assumption that the fb->obj
575          * cannot be unpinned (and have its GTT offset and fence revoked)
576          * without first being decoupled from the scanout and FBC disabled.
577          */
578         if (dev_priv->fbc.plane == intel_crtc->plane &&
579             dev_priv->fbc.fb_id == fb->base.id &&
580             dev_priv->fbc.y == crtc->y)
581                 return;
582
583         if (intel_fbc_enabled(dev)) {
584                 /* We update FBC along two paths, after changing fb/crtc
585                  * configuration (modeswitching) and after page-flipping
586                  * finishes. For the latter, we know that not only did
587                  * we disable the FBC at the start of the page-flip
588                  * sequence, but also more than one vblank has passed.
589                  *
590                  * For the former case of modeswitching, it is possible
591                  * to switch between two FBC valid configurations
592                  * instantaneously so we do need to disable the FBC
593                  * before we can modify its control registers. We also
594                  * have to wait for the next vblank for that to take
595                  * effect. However, since we delay enabling FBC we can
596                  * assume that a vblank has passed since disabling and
597                  * that we can safely alter the registers in the deferred
598                  * callback.
599                  *
600                  * In the scenario that we go from a valid to invalid
601                  * and then back to valid FBC configuration we have
602                  * no strict enforcement that a vblank occurred since
603                  * disabling the FBC. However, along all current pipe
604                  * disabling paths we do need to wait for a vblank at
605                  * some point. And we wait before enabling FBC anyway.
606                  */
607                 DRM_DEBUG_KMS("disabling active FBC for update\n");
608                 intel_disable_fbc(dev);
609         }
610
611         intel_enable_fbc(crtc);
612         dev_priv->fbc.no_fbc_reason = FBC_OK;
613         return;
614
615 out_disable:
616         /* Multiple disables should be harmless */
617         if (intel_fbc_enabled(dev)) {
618                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
619                 intel_disable_fbc(dev);
620         }
621         i915_gem_stolen_cleanup_compression(dev);
622 }
623
624 static void i915_pineview_get_mem_freq(struct drm_device *dev)
625 {
626         struct drm_i915_private *dev_priv = dev->dev_private;
627         u32 tmp;
628
629         tmp = I915_READ(CLKCFG);
630
631         switch (tmp & CLKCFG_FSB_MASK) {
632         case CLKCFG_FSB_533:
633                 dev_priv->fsb_freq = 533; /* 133*4 */
634                 break;
635         case CLKCFG_FSB_800:
636                 dev_priv->fsb_freq = 800; /* 200*4 */
637                 break;
638         case CLKCFG_FSB_667:
639                 dev_priv->fsb_freq =  667; /* 167*4 */
640                 break;
641         case CLKCFG_FSB_400:
642                 dev_priv->fsb_freq = 400; /* 100*4 */
643                 break;
644         }
645
646         switch (tmp & CLKCFG_MEM_MASK) {
647         case CLKCFG_MEM_533:
648                 dev_priv->mem_freq = 533;
649                 break;
650         case CLKCFG_MEM_667:
651                 dev_priv->mem_freq = 667;
652                 break;
653         case CLKCFG_MEM_800:
654                 dev_priv->mem_freq = 800;
655                 break;
656         }
657
658         /* detect pineview DDR3 setting */
659         tmp = I915_READ(CSHRDDR3CTL);
660         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
661 }
662
663 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
664 {
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         u16 ddrpll, csipll;
667
668         ddrpll = I915_READ16(DDRMPLL1);
669         csipll = I915_READ16(CSIPLL0);
670
671         switch (ddrpll & 0xff) {
672         case 0xc:
673                 dev_priv->mem_freq = 800;
674                 break;
675         case 0x10:
676                 dev_priv->mem_freq = 1066;
677                 break;
678         case 0x14:
679                 dev_priv->mem_freq = 1333;
680                 break;
681         case 0x18:
682                 dev_priv->mem_freq = 1600;
683                 break;
684         default:
685                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
686                                  ddrpll & 0xff);
687                 dev_priv->mem_freq = 0;
688                 break;
689         }
690
691         dev_priv->ips.r_t = dev_priv->mem_freq;
692
693         switch (csipll & 0x3ff) {
694         case 0x00c:
695                 dev_priv->fsb_freq = 3200;
696                 break;
697         case 0x00e:
698                 dev_priv->fsb_freq = 3733;
699                 break;
700         case 0x010:
701                 dev_priv->fsb_freq = 4266;
702                 break;
703         case 0x012:
704                 dev_priv->fsb_freq = 4800;
705                 break;
706         case 0x014:
707                 dev_priv->fsb_freq = 5333;
708                 break;
709         case 0x016:
710                 dev_priv->fsb_freq = 5866;
711                 break;
712         case 0x018:
713                 dev_priv->fsb_freq = 6400;
714                 break;
715         default:
716                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
717                                  csipll & 0x3ff);
718                 dev_priv->fsb_freq = 0;
719                 break;
720         }
721
722         if (dev_priv->fsb_freq == 3200) {
723                 dev_priv->ips.c_m = 0;
724         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
725                 dev_priv->ips.c_m = 1;
726         } else {
727                 dev_priv->ips.c_m = 2;
728         }
729 }
730
731 static const struct cxsr_latency cxsr_latency_table[] = {
732         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
733         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
734         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
735         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
736         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
737
738         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
739         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
740         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
741         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
742         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
743
744         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
745         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
746         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
747         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
748         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
749
750         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
751         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
752         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
753         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
754         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
755
756         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
757         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
758         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
759         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
760         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
761
762         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
763         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
764         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
765         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
766         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
767 };
768
769 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
770                                                          int is_ddr3,
771                                                          int fsb,
772                                                          int mem)
773 {
774         const struct cxsr_latency *latency;
775         int i;
776
777         if (fsb == 0 || mem == 0)
778                 return NULL;
779
780         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
781                 latency = &cxsr_latency_table[i];
782                 if (is_desktop == latency->is_desktop &&
783                     is_ddr3 == latency->is_ddr3 &&
784                     fsb == latency->fsb_freq && mem == latency->mem_freq)
785                         return latency;
786         }
787
788         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
789
790         return NULL;
791 }
792
793 static void pineview_disable_cxsr(struct drm_device *dev)
794 {
795         struct drm_i915_private *dev_priv = dev->dev_private;
796
797         /* deactivate cxsr */
798         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
799 }
800
801 /*
802  * Latency for FIFO fetches is dependent on several factors:
803  *   - memory configuration (speed, channels)
804  *   - chipset
805  *   - current MCH state
806  * It can be fairly high in some situations, so here we assume a fairly
807  * pessimal value.  It's a tradeoff between extra memory fetches (if we
808  * set this value too high, the FIFO will fetch frequently to stay full)
809  * and power consumption (set it too low to save power and we might see
810  * FIFO underruns and display "flicker").
811  *
812  * A value of 5us seems to be a good balance; safe for very low end
813  * platforms but not overly aggressive on lower latency configs.
814  */
815 static const int latency_ns = 5000;
816
817 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
818 {
819         struct drm_i915_private *dev_priv = dev->dev_private;
820         uint32_t dsparb = I915_READ(DSPARB);
821         int size;
822
823         size = dsparb & 0x7f;
824         if (plane)
825                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
826
827         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
828                       plane ? "B" : "A", size);
829
830         return size;
831 }
832
833 static int i830_get_fifo_size(struct drm_device *dev, int plane)
834 {
835         struct drm_i915_private *dev_priv = dev->dev_private;
836         uint32_t dsparb = I915_READ(DSPARB);
837         int size;
838
839         size = dsparb & 0x1ff;
840         if (plane)
841                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
842         size >>= 1; /* Convert to cachelines */
843
844         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
845                       plane ? "B" : "A", size);
846
847         return size;
848 }
849
850 static int i845_get_fifo_size(struct drm_device *dev, int plane)
851 {
852         struct drm_i915_private *dev_priv = dev->dev_private;
853         uint32_t dsparb = I915_READ(DSPARB);
854         int size;
855
856         size = dsparb & 0x7f;
857         size >>= 2; /* Convert to cachelines */
858
859         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
860                       plane ? "B" : "A",
861                       size);
862
863         return size;
864 }
865
866 /* Pineview has different values for various configs */
867 static const struct intel_watermark_params pineview_display_wm = {
868         PINEVIEW_DISPLAY_FIFO,
869         PINEVIEW_MAX_WM,
870         PINEVIEW_DFT_WM,
871         PINEVIEW_GUARD_WM,
872         PINEVIEW_FIFO_LINE_SIZE
873 };
874 static const struct intel_watermark_params pineview_display_hplloff_wm = {
875         PINEVIEW_DISPLAY_FIFO,
876         PINEVIEW_MAX_WM,
877         PINEVIEW_DFT_HPLLOFF_WM,
878         PINEVIEW_GUARD_WM,
879         PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_cursor_wm = {
882         PINEVIEW_CURSOR_FIFO,
883         PINEVIEW_CURSOR_MAX_WM,
884         PINEVIEW_CURSOR_DFT_WM,
885         PINEVIEW_CURSOR_GUARD_WM,
886         PINEVIEW_FIFO_LINE_SIZE,
887 };
888 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
889         PINEVIEW_CURSOR_FIFO,
890         PINEVIEW_CURSOR_MAX_WM,
891         PINEVIEW_CURSOR_DFT_WM,
892         PINEVIEW_CURSOR_GUARD_WM,
893         PINEVIEW_FIFO_LINE_SIZE
894 };
895 static const struct intel_watermark_params g4x_wm_info = {
896         G4X_FIFO_SIZE,
897         G4X_MAX_WM,
898         G4X_MAX_WM,
899         2,
900         G4X_FIFO_LINE_SIZE,
901 };
902 static const struct intel_watermark_params g4x_cursor_wm_info = {
903         I965_CURSOR_FIFO,
904         I965_CURSOR_MAX_WM,
905         I965_CURSOR_DFT_WM,
906         2,
907         G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params valleyview_wm_info = {
910         VALLEYVIEW_FIFO_SIZE,
911         VALLEYVIEW_MAX_WM,
912         VALLEYVIEW_MAX_WM,
913         2,
914         G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_cursor_wm_info = {
917         I965_CURSOR_FIFO,
918         VALLEYVIEW_CURSOR_MAX_WM,
919         I965_CURSOR_DFT_WM,
920         2,
921         G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params i965_cursor_wm_info = {
924         I965_CURSOR_FIFO,
925         I965_CURSOR_MAX_WM,
926         I965_CURSOR_DFT_WM,
927         2,
928         I915_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i945_wm_info = {
931         I945_FIFO_SIZE,
932         I915_MAX_WM,
933         1,
934         2,
935         I915_FIFO_LINE_SIZE
936 };
937 static const struct intel_watermark_params i915_wm_info = {
938         I915_FIFO_SIZE,
939         I915_MAX_WM,
940         1,
941         2,
942         I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i830_wm_info = {
945         I855GM_FIFO_SIZE,
946         I915_MAX_WM,
947         1,
948         2,
949         I830_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i845_wm_info = {
952         I830_FIFO_SIZE,
953         I915_MAX_WM,
954         1,
955         2,
956         I830_FIFO_LINE_SIZE
957 };
958
959 /**
960  * intel_calculate_wm - calculate watermark level
961  * @clock_in_khz: pixel clock
962  * @wm: chip FIFO params
963  * @pixel_size: display pixel size
964  * @latency_ns: memory latency for the platform
965  *
966  * Calculate the watermark level (the level at which the display plane will
967  * start fetching from memory again).  Each chip has a different display
968  * FIFO size and allocation, so the caller needs to figure that out and pass
969  * in the correct intel_watermark_params structure.
970  *
971  * As the pixel clock runs, the FIFO will be drained at a rate that depends
972  * on the pixel size.  When it reaches the watermark level, it'll start
973  * fetching FIFO line sized based chunks from memory until the FIFO fills
974  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
975  * will occur, and a display engine hang could result.
976  */
977 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
978                                         const struct intel_watermark_params *wm,
979                                         int fifo_size,
980                                         int pixel_size,
981                                         unsigned long latency_ns)
982 {
983         long entries_required, wm_size;
984
985         /*
986          * Note: we need to make sure we don't overflow for various clock &
987          * latency values.
988          * clocks go from a few thousand to several hundred thousand.
989          * latency is usually a few thousand
990          */
991         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
992                 1000;
993         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
994
995         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
996
997         wm_size = fifo_size - (entries_required + wm->guard_size);
998
999         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1000
1001         /* Don't promote wm_size to unsigned... */
1002         if (wm_size > (long)wm->max_wm)
1003                 wm_size = wm->max_wm;
1004         if (wm_size <= 0)
1005                 wm_size = wm->default_wm;
1006         return wm_size;
1007 }
1008
1009 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1010 {
1011         struct drm_crtc *crtc, *enabled = NULL;
1012
1013         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1014                 if (intel_crtc_active(crtc)) {
1015                         if (enabled)
1016                                 return NULL;
1017                         enabled = crtc;
1018                 }
1019         }
1020
1021         return enabled;
1022 }
1023
1024 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1025 {
1026         struct drm_device *dev = unused_crtc->dev;
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_crtc *crtc;
1029         const struct cxsr_latency *latency;
1030         u32 reg;
1031         unsigned long wm;
1032
1033         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1034                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1035         if (!latency) {
1036                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1037                 pineview_disable_cxsr(dev);
1038                 return;
1039         }
1040
1041         crtc = single_enabled_crtc(dev);
1042         if (crtc) {
1043                 const struct drm_display_mode *adjusted_mode;
1044                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1045                 int clock;
1046
1047                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1048                 clock = adjusted_mode->crtc_clock;
1049
1050                 /* Display SR */
1051                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1052                                         pineview_display_wm.fifo_size,
1053                                         pixel_size, latency->display_sr);
1054                 reg = I915_READ(DSPFW1);
1055                 reg &= ~DSPFW_SR_MASK;
1056                 reg |= wm << DSPFW_SR_SHIFT;
1057                 I915_WRITE(DSPFW1, reg);
1058                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1059
1060                 /* cursor SR */
1061                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1062                                         pineview_display_wm.fifo_size,
1063                                         pixel_size, latency->cursor_sr);
1064                 reg = I915_READ(DSPFW3);
1065                 reg &= ~DSPFW_CURSOR_SR_MASK;
1066                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1067                 I915_WRITE(DSPFW3, reg);
1068
1069                 /* Display HPLL off SR */
1070                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1071                                         pineview_display_hplloff_wm.fifo_size,
1072                                         pixel_size, latency->display_hpll_disable);
1073                 reg = I915_READ(DSPFW3);
1074                 reg &= ~DSPFW_HPLL_SR_MASK;
1075                 reg |= wm & DSPFW_HPLL_SR_MASK;
1076                 I915_WRITE(DSPFW3, reg);
1077
1078                 /* cursor HPLL off SR */
1079                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1080                                         pineview_display_hplloff_wm.fifo_size,
1081                                         pixel_size, latency->cursor_hpll_disable);
1082                 reg = I915_READ(DSPFW3);
1083                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1084                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1085                 I915_WRITE(DSPFW3, reg);
1086                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1087
1088                 /* activate cxsr */
1089                 I915_WRITE(DSPFW3,
1090                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1091                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1092         } else {
1093                 pineview_disable_cxsr(dev);
1094                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1095         }
1096 }
1097
1098 static bool g4x_compute_wm0(struct drm_device *dev,
1099                             int plane,
1100                             const struct intel_watermark_params *display,
1101                             int display_latency_ns,
1102                             const struct intel_watermark_params *cursor,
1103                             int cursor_latency_ns,
1104                             int *plane_wm,
1105                             int *cursor_wm)
1106 {
1107         struct drm_crtc *crtc;
1108         const struct drm_display_mode *adjusted_mode;
1109         int htotal, hdisplay, clock, pixel_size;
1110         int line_time_us, line_count;
1111         int entries, tlb_miss;
1112
1113         crtc = intel_get_crtc_for_plane(dev, plane);
1114         if (!intel_crtc_active(crtc)) {
1115                 *cursor_wm = cursor->guard_size;
1116                 *plane_wm = display->guard_size;
1117                 return false;
1118         }
1119
1120         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1121         clock = adjusted_mode->crtc_clock;
1122         htotal = adjusted_mode->crtc_htotal;
1123         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1124         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1125
1126         /* Use the small buffer method to calculate plane watermark */
1127         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1128         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1129         if (tlb_miss > 0)
1130                 entries += tlb_miss;
1131         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1132         *plane_wm = entries + display->guard_size;
1133         if (*plane_wm > (int)display->max_wm)
1134                 *plane_wm = display->max_wm;
1135
1136         /* Use the large buffer method to calculate cursor watermark */
1137         line_time_us = max(htotal * 1000 / clock, 1);
1138         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1139         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1140         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1141         if (tlb_miss > 0)
1142                 entries += tlb_miss;
1143         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1144         *cursor_wm = entries + cursor->guard_size;
1145         if (*cursor_wm > (int)cursor->max_wm)
1146                 *cursor_wm = (int)cursor->max_wm;
1147
1148         return true;
1149 }
1150
1151 /*
1152  * Check the wm result.
1153  *
1154  * If any calculated watermark values is larger than the maximum value that
1155  * can be programmed into the associated watermark register, that watermark
1156  * must be disabled.
1157  */
1158 static bool g4x_check_srwm(struct drm_device *dev,
1159                            int display_wm, int cursor_wm,
1160                            const struct intel_watermark_params *display,
1161                            const struct intel_watermark_params *cursor)
1162 {
1163         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1164                       display_wm, cursor_wm);
1165
1166         if (display_wm > display->max_wm) {
1167                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1168                               display_wm, display->max_wm);
1169                 return false;
1170         }
1171
1172         if (cursor_wm > cursor->max_wm) {
1173                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1174                               cursor_wm, cursor->max_wm);
1175                 return false;
1176         }
1177
1178         if (!(display_wm || cursor_wm)) {
1179                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1180                 return false;
1181         }
1182
1183         return true;
1184 }
1185
1186 static bool g4x_compute_srwm(struct drm_device *dev,
1187                              int plane,
1188                              int latency_ns,
1189                              const struct intel_watermark_params *display,
1190                              const struct intel_watermark_params *cursor,
1191                              int *display_wm, int *cursor_wm)
1192 {
1193         struct drm_crtc *crtc;
1194         const struct drm_display_mode *adjusted_mode;
1195         int hdisplay, htotal, pixel_size, clock;
1196         unsigned long line_time_us;
1197         int line_count, line_size;
1198         int small, large;
1199         int entries;
1200
1201         if (!latency_ns) {
1202                 *display_wm = *cursor_wm = 0;
1203                 return false;
1204         }
1205
1206         crtc = intel_get_crtc_for_plane(dev, plane);
1207         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1208         clock = adjusted_mode->crtc_clock;
1209         htotal = adjusted_mode->crtc_htotal;
1210         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1211         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1212
1213         line_time_us = max(htotal * 1000 / clock, 1);
1214         line_count = (latency_ns / line_time_us + 1000) / 1000;
1215         line_size = hdisplay * pixel_size;
1216
1217         /* Use the minimum of the small and large buffer method for primary */
1218         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1219         large = line_count * line_size;
1220
1221         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1222         *display_wm = entries + display->guard_size;
1223
1224         /* calculate the self-refresh watermark for display cursor */
1225         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1226         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1227         *cursor_wm = entries + cursor->guard_size;
1228
1229         return g4x_check_srwm(dev,
1230                               *display_wm, *cursor_wm,
1231                               display, cursor);
1232 }
1233
1234 static bool vlv_compute_drain_latency(struct drm_device *dev,
1235                                      int plane,
1236                                      int *plane_prec_mult,
1237                                      int *plane_dl,
1238                                      int *cursor_prec_mult,
1239                                      int *cursor_dl)
1240 {
1241         struct drm_crtc *crtc;
1242         int clock, pixel_size;
1243         int entries;
1244
1245         crtc = intel_get_crtc_for_plane(dev, plane);
1246         if (!intel_crtc_active(crtc))
1247                 return false;
1248
1249         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1250         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1251
1252         entries = (clock / 1000) * pixel_size;
1253         *plane_prec_mult = (entries > 256) ?
1254                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1256                                                      pixel_size);
1257
1258         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1259         *cursor_prec_mult = (entries > 256) ?
1260                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1261         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1262
1263         return true;
1264 }
1265
1266 /*
1267  * Update drain latency registers of memory arbiter
1268  *
1269  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1270  * to be programmed. Each plane has a drain latency multiplier and a drain
1271  * latency value.
1272  */
1273
1274 static void vlv_update_drain_latency(struct drm_device *dev)
1275 {
1276         struct drm_i915_private *dev_priv = dev->dev_private;
1277         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1278         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1279         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1280                                                         either 16 or 32 */
1281
1282         /* For plane A, Cursor A */
1283         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1284                                       &cursor_prec_mult, &cursora_dl)) {
1285                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1286                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1287                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1288                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1289
1290                 I915_WRITE(VLV_DDL1, cursora_prec |
1291                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1292                                 planea_prec | planea_dl);
1293         }
1294
1295         /* For plane B, Cursor B */
1296         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1297                                       &cursor_prec_mult, &cursorb_dl)) {
1298                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1299                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1300                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1301                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1302
1303                 I915_WRITE(VLV_DDL2, cursorb_prec |
1304                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1305                                 planeb_prec | planeb_dl);
1306         }
1307 }
1308
1309 #define single_plane_enabled(mask) is_power_of_2(mask)
1310
1311 static void valleyview_update_wm(struct drm_crtc *crtc)
1312 {
1313         struct drm_device *dev = crtc->dev;
1314         static const int sr_latency_ns = 12000;
1315         struct drm_i915_private *dev_priv = dev->dev_private;
1316         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1317         int plane_sr, cursor_sr;
1318         int ignore_plane_sr, ignore_cursor_sr;
1319         unsigned int enabled = 0;
1320
1321         vlv_update_drain_latency(dev);
1322
1323         if (g4x_compute_wm0(dev, PIPE_A,
1324                             &valleyview_wm_info, latency_ns,
1325                             &valleyview_cursor_wm_info, latency_ns,
1326                             &planea_wm, &cursora_wm))
1327                 enabled |= 1 << PIPE_A;
1328
1329         if (g4x_compute_wm0(dev, PIPE_B,
1330                             &valleyview_wm_info, latency_ns,
1331                             &valleyview_cursor_wm_info, latency_ns,
1332                             &planeb_wm, &cursorb_wm))
1333                 enabled |= 1 << PIPE_B;
1334
1335         if (single_plane_enabled(enabled) &&
1336             g4x_compute_srwm(dev, ffs(enabled) - 1,
1337                              sr_latency_ns,
1338                              &valleyview_wm_info,
1339                              &valleyview_cursor_wm_info,
1340                              &plane_sr, &ignore_cursor_sr) &&
1341             g4x_compute_srwm(dev, ffs(enabled) - 1,
1342                              2*sr_latency_ns,
1343                              &valleyview_wm_info,
1344                              &valleyview_cursor_wm_info,
1345                              &ignore_plane_sr, &cursor_sr)) {
1346                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1347         } else {
1348                 I915_WRITE(FW_BLC_SELF_VLV,
1349                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1350                 plane_sr = cursor_sr = 0;
1351         }
1352
1353         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1354                       planea_wm, cursora_wm,
1355                       planeb_wm, cursorb_wm,
1356                       plane_sr, cursor_sr);
1357
1358         I915_WRITE(DSPFW1,
1359                    (plane_sr << DSPFW_SR_SHIFT) |
1360                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1361                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1362                    planea_wm);
1363         I915_WRITE(DSPFW2,
1364                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1365                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1366         I915_WRITE(DSPFW3,
1367                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1368                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1369 }
1370
1371 static void g4x_update_wm(struct drm_crtc *crtc)
1372 {
1373         struct drm_device *dev = crtc->dev;
1374         static const int sr_latency_ns = 12000;
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1377         int plane_sr, cursor_sr;
1378         unsigned int enabled = 0;
1379
1380         if (g4x_compute_wm0(dev, PIPE_A,
1381                             &g4x_wm_info, latency_ns,
1382                             &g4x_cursor_wm_info, latency_ns,
1383                             &planea_wm, &cursora_wm))
1384                 enabled |= 1 << PIPE_A;
1385
1386         if (g4x_compute_wm0(dev, PIPE_B,
1387                             &g4x_wm_info, latency_ns,
1388                             &g4x_cursor_wm_info, latency_ns,
1389                             &planeb_wm, &cursorb_wm))
1390                 enabled |= 1 << PIPE_B;
1391
1392         if (single_plane_enabled(enabled) &&
1393             g4x_compute_srwm(dev, ffs(enabled) - 1,
1394                              sr_latency_ns,
1395                              &g4x_wm_info,
1396                              &g4x_cursor_wm_info,
1397                              &plane_sr, &cursor_sr)) {
1398                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1399         } else {
1400                 I915_WRITE(FW_BLC_SELF,
1401                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1402                 plane_sr = cursor_sr = 0;
1403         }
1404
1405         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1406                       planea_wm, cursora_wm,
1407                       planeb_wm, cursorb_wm,
1408                       plane_sr, cursor_sr);
1409
1410         I915_WRITE(DSPFW1,
1411                    (plane_sr << DSPFW_SR_SHIFT) |
1412                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1413                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1414                    planea_wm);
1415         I915_WRITE(DSPFW2,
1416                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1417                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1418         /* HPLL off in SR has some issues on G4x... disable it */
1419         I915_WRITE(DSPFW3,
1420                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1421                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1422 }
1423
1424 static void i965_update_wm(struct drm_crtc *unused_crtc)
1425 {
1426         struct drm_device *dev = unused_crtc->dev;
1427         struct drm_i915_private *dev_priv = dev->dev_private;
1428         struct drm_crtc *crtc;
1429         int srwm = 1;
1430         int cursor_sr = 16;
1431
1432         /* Calc sr entries for one plane configs */
1433         crtc = single_enabled_crtc(dev);
1434         if (crtc) {
1435                 /* self-refresh has much higher latency */
1436                 static const int sr_latency_ns = 12000;
1437                 const struct drm_display_mode *adjusted_mode =
1438                         &to_intel_crtc(crtc)->config.adjusted_mode;
1439                 int clock = adjusted_mode->crtc_clock;
1440                 int htotal = adjusted_mode->crtc_htotal;
1441                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1442                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1443                 unsigned long line_time_us;
1444                 int entries;
1445
1446                 line_time_us = max(htotal * 1000 / clock, 1);
1447
1448                 /* Use ns/us then divide to preserve precision */
1449                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450                         pixel_size * hdisplay;
1451                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1452                 srwm = I965_FIFO_SIZE - entries;
1453                 if (srwm < 0)
1454                         srwm = 1;
1455                 srwm &= 0x1ff;
1456                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1457                               entries, srwm);
1458
1459                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1461                 entries = DIV_ROUND_UP(entries,
1462                                           i965_cursor_wm_info.cacheline_size);
1463                 cursor_sr = i965_cursor_wm_info.fifo_size -
1464                         (entries + i965_cursor_wm_info.guard_size);
1465
1466                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1467                         cursor_sr = i965_cursor_wm_info.max_wm;
1468
1469                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1470                               "cursor %d\n", srwm, cursor_sr);
1471
1472                 if (IS_CRESTLINE(dev))
1473                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1474         } else {
1475                 /* Turn off self refresh if both pipes are enabled */
1476                 if (IS_CRESTLINE(dev))
1477                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1478                                    & ~FW_BLC_SELF_EN);
1479         }
1480
1481         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1482                       srwm);
1483
1484         /* 965 has limitations... */
1485         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1486                    (8 << 16) | (8 << 8) | (8 << 0));
1487         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1488         /* update cursor SR watermark */
1489         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490 }
1491
1492 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1493 {
1494         struct drm_device *dev = unused_crtc->dev;
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         const struct intel_watermark_params *wm_info;
1497         uint32_t fwater_lo;
1498         uint32_t fwater_hi;
1499         int cwm, srwm = 1;
1500         int fifo_size;
1501         int planea_wm, planeb_wm;
1502         struct drm_crtc *crtc, *enabled = NULL;
1503
1504         if (IS_I945GM(dev))
1505                 wm_info = &i945_wm_info;
1506         else if (!IS_GEN2(dev))
1507                 wm_info = &i915_wm_info;
1508         else
1509                 wm_info = &i830_wm_info;
1510
1511         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1512         crtc = intel_get_crtc_for_plane(dev, 0);
1513         if (intel_crtc_active(crtc)) {
1514                 const struct drm_display_mode *adjusted_mode;
1515                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1516                 if (IS_GEN2(dev))
1517                         cpp = 4;
1518
1519                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1520                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1521                                                wm_info, fifo_size, cpp,
1522                                                latency_ns);
1523                 enabled = crtc;
1524         } else
1525                 planea_wm = fifo_size - wm_info->guard_size;
1526
1527         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1528         crtc = intel_get_crtc_for_plane(dev, 1);
1529         if (intel_crtc_active(crtc)) {
1530                 const struct drm_display_mode *adjusted_mode;
1531                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1532                 if (IS_GEN2(dev))
1533                         cpp = 4;
1534
1535                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1536                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1537                                                wm_info, fifo_size, cpp,
1538                                                latency_ns);
1539                 if (enabled == NULL)
1540                         enabled = crtc;
1541                 else
1542                         enabled = NULL;
1543         } else
1544                 planeb_wm = fifo_size - wm_info->guard_size;
1545
1546         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1547
1548         if (IS_I915GM(dev) && enabled) {
1549                 struct intel_framebuffer *fb;
1550
1551                 fb = to_intel_framebuffer(enabled->primary->fb);
1552
1553                 /* self-refresh seems busted with untiled */
1554                 if (fb->obj->tiling_mode == I915_TILING_NONE)
1555                         enabled = NULL;
1556         }
1557
1558         /*
1559          * Overlay gets an aggressive default since video jitter is bad.
1560          */
1561         cwm = 2;
1562
1563         /* Play safe and disable self-refresh before adjusting watermarks. */
1564         if (IS_I945G(dev) || IS_I945GM(dev))
1565                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1566         else if (IS_I915GM(dev))
1567                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1568
1569         /* Calc sr entries for one plane configs */
1570         if (HAS_FW_BLC(dev) && enabled) {
1571                 /* self-refresh has much higher latency */
1572                 static const int sr_latency_ns = 6000;
1573                 const struct drm_display_mode *adjusted_mode =
1574                         &to_intel_crtc(enabled)->config.adjusted_mode;
1575                 int clock = adjusted_mode->crtc_clock;
1576                 int htotal = adjusted_mode->crtc_htotal;
1577                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1578                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1579                 unsigned long line_time_us;
1580                 int entries;
1581
1582                 line_time_us = max(htotal * 1000 / clock, 1);
1583
1584                 /* Use ns/us then divide to preserve precision */
1585                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1586                         pixel_size * hdisplay;
1587                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1588                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1589                 srwm = wm_info->fifo_size - entries;
1590                 if (srwm < 0)
1591                         srwm = 1;
1592
1593                 if (IS_I945G(dev) || IS_I945GM(dev))
1594                         I915_WRITE(FW_BLC_SELF,
1595                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1596                 else if (IS_I915GM(dev))
1597                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1598         }
1599
1600         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1601                       planea_wm, planeb_wm, cwm, srwm);
1602
1603         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1604         fwater_hi = (cwm & 0x1f);
1605
1606         /* Set request length to 8 cachelines per fetch */
1607         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1608         fwater_hi = fwater_hi | (1 << 8);
1609
1610         I915_WRITE(FW_BLC, fwater_lo);
1611         I915_WRITE(FW_BLC2, fwater_hi);
1612
1613         if (HAS_FW_BLC(dev)) {
1614                 if (enabled) {
1615                         if (IS_I945G(dev) || IS_I945GM(dev))
1616                                 I915_WRITE(FW_BLC_SELF,
1617                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1618                         else if (IS_I915GM(dev))
1619                                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1620                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1621                 } else
1622                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1623         }
1624 }
1625
1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628         struct drm_device *dev = unused_crtc->dev;
1629         struct drm_i915_private *dev_priv = dev->dev_private;
1630         struct drm_crtc *crtc;
1631         const struct drm_display_mode *adjusted_mode;
1632         uint32_t fwater_lo;
1633         int planea_wm;
1634
1635         crtc = single_enabled_crtc(dev);
1636         if (crtc == NULL)
1637                 return;
1638
1639         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1640         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641                                        &i845_wm_info,
1642                                        dev_priv->display.get_fifo_size(dev, 0),
1643                                        4, latency_ns);
1644         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645         fwater_lo |= (3<<8) | planea_wm;
1646
1647         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649         I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651
1652 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1653                                     struct drm_crtc *crtc)
1654 {
1655         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1656         uint32_t pixel_rate;
1657
1658         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1659
1660         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1661          * adjust the pixel_rate here. */
1662
1663         if (intel_crtc->config.pch_pfit.enabled) {
1664                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1665                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1666
1667                 pipe_w = intel_crtc->config.pipe_src_w;
1668                 pipe_h = intel_crtc->config.pipe_src_h;
1669                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1670                 pfit_h = pfit_size & 0xFFFF;
1671                 if (pipe_w < pfit_w)
1672                         pipe_w = pfit_w;
1673                 if (pipe_h < pfit_h)
1674                         pipe_h = pfit_h;
1675
1676                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1677                                      pfit_w * pfit_h);
1678         }
1679
1680         return pixel_rate;
1681 }
1682
1683 /* latency must be in 0.1us units. */
1684 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1685                                uint32_t latency)
1686 {
1687         uint64_t ret;
1688
1689         if (WARN(latency == 0, "Latency value missing\n"))
1690                 return UINT_MAX;
1691
1692         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1693         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1694
1695         return ret;
1696 }
1697
1698 /* latency must be in 0.1us units. */
1699 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1700                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1701                                uint32_t latency)
1702 {
1703         uint32_t ret;
1704
1705         if (WARN(latency == 0, "Latency value missing\n"))
1706                 return UINT_MAX;
1707
1708         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1709         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1710         ret = DIV_ROUND_UP(ret, 64) + 2;
1711         return ret;
1712 }
1713
1714 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1715                            uint8_t bytes_per_pixel)
1716 {
1717         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1718 }
1719
1720 struct ilk_pipe_wm_parameters {
1721         bool active;
1722         uint32_t pipe_htotal;
1723         uint32_t pixel_rate;
1724         struct intel_plane_wm_parameters pri;
1725         struct intel_plane_wm_parameters spr;
1726         struct intel_plane_wm_parameters cur;
1727 };
1728
1729 struct ilk_wm_maximums {
1730         uint16_t pri;
1731         uint16_t spr;
1732         uint16_t cur;
1733         uint16_t fbc;
1734 };
1735
1736 /* used in computing the new watermarks state */
1737 struct intel_wm_config {
1738         unsigned int num_pipes_active;
1739         bool sprites_enabled;
1740         bool sprites_scaled;
1741 };
1742
1743 /*
1744  * For both WM_PIPE and WM_LP.
1745  * mem_value must be in 0.1us units.
1746  */
1747 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1748                                    uint32_t mem_value,
1749                                    bool is_lp)
1750 {
1751         uint32_t method1, method2;
1752
1753         if (!params->active || !params->pri.enabled)
1754                 return 0;
1755
1756         method1 = ilk_wm_method1(params->pixel_rate,
1757                                  params->pri.bytes_per_pixel,
1758                                  mem_value);
1759
1760         if (!is_lp)
1761                 return method1;
1762
1763         method2 = ilk_wm_method2(params->pixel_rate,
1764                                  params->pipe_htotal,
1765                                  params->pri.horiz_pixels,
1766                                  params->pri.bytes_per_pixel,
1767                                  mem_value);
1768
1769         return min(method1, method2);
1770 }
1771
1772 /*
1773  * For both WM_PIPE and WM_LP.
1774  * mem_value must be in 0.1us units.
1775  */
1776 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1777                                    uint32_t mem_value)
1778 {
1779         uint32_t method1, method2;
1780
1781         if (!params->active || !params->spr.enabled)
1782                 return 0;
1783
1784         method1 = ilk_wm_method1(params->pixel_rate,
1785                                  params->spr.bytes_per_pixel,
1786                                  mem_value);
1787         method2 = ilk_wm_method2(params->pixel_rate,
1788                                  params->pipe_htotal,
1789                                  params->spr.horiz_pixels,
1790                                  params->spr.bytes_per_pixel,
1791                                  mem_value);
1792         return min(method1, method2);
1793 }
1794
1795 /*
1796  * For both WM_PIPE and WM_LP.
1797  * mem_value must be in 0.1us units.
1798  */
1799 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1800                                    uint32_t mem_value)
1801 {
1802         if (!params->active || !params->cur.enabled)
1803                 return 0;
1804
1805         return ilk_wm_method2(params->pixel_rate,
1806                               params->pipe_htotal,
1807                               params->cur.horiz_pixels,
1808                               params->cur.bytes_per_pixel,
1809                               mem_value);
1810 }
1811
1812 /* Only for WM_LP. */
1813 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1814                                    uint32_t pri_val)
1815 {
1816         if (!params->active || !params->pri.enabled)
1817                 return 0;
1818
1819         return ilk_wm_fbc(pri_val,
1820                           params->pri.horiz_pixels,
1821                           params->pri.bytes_per_pixel);
1822 }
1823
1824 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1825 {
1826         if (INTEL_INFO(dev)->gen >= 8)
1827                 return 3072;
1828         else if (INTEL_INFO(dev)->gen >= 7)
1829                 return 768;
1830         else
1831                 return 512;
1832 }
1833
1834 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1835                                          int level, bool is_sprite)
1836 {
1837         if (INTEL_INFO(dev)->gen >= 8)
1838                 /* BDW primary/sprite plane watermarks */
1839                 return level == 0 ? 255 : 2047;
1840         else if (INTEL_INFO(dev)->gen >= 7)
1841                 /* IVB/HSW primary/sprite plane watermarks */
1842                 return level == 0 ? 127 : 1023;
1843         else if (!is_sprite)
1844                 /* ILK/SNB primary plane watermarks */
1845                 return level == 0 ? 127 : 511;
1846         else
1847                 /* ILK/SNB sprite plane watermarks */
1848                 return level == 0 ? 63 : 255;
1849 }
1850
1851 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1852                                           int level)
1853 {
1854         if (INTEL_INFO(dev)->gen >= 7)
1855                 return level == 0 ? 63 : 255;
1856         else
1857                 return level == 0 ? 31 : 63;
1858 }
1859
1860 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1861 {
1862         if (INTEL_INFO(dev)->gen >= 8)
1863                 return 31;
1864         else
1865                 return 15;
1866 }
1867
1868 /* Calculate the maximum primary/sprite plane watermark */
1869 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1870                                      int level,
1871                                      const struct intel_wm_config *config,
1872                                      enum intel_ddb_partitioning ddb_partitioning,
1873                                      bool is_sprite)
1874 {
1875         unsigned int fifo_size = ilk_display_fifo_size(dev);
1876
1877         /* if sprites aren't enabled, sprites get nothing */
1878         if (is_sprite && !config->sprites_enabled)
1879                 return 0;
1880
1881         /* HSW allows LP1+ watermarks even with multiple pipes */
1882         if (level == 0 || config->num_pipes_active > 1) {
1883                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1884
1885                 /*
1886                  * For some reason the non self refresh
1887                  * FIFO size is only half of the self
1888                  * refresh FIFO size on ILK/SNB.
1889                  */
1890                 if (INTEL_INFO(dev)->gen <= 6)
1891                         fifo_size /= 2;
1892         }
1893
1894         if (config->sprites_enabled) {
1895                 /* level 0 is always calculated with 1:1 split */
1896                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1897                         if (is_sprite)
1898                                 fifo_size *= 5;
1899                         fifo_size /= 6;
1900                 } else {
1901                         fifo_size /= 2;
1902                 }
1903         }
1904
1905         /* clamp to max that the registers can hold */
1906         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1907 }
1908
1909 /* Calculate the maximum cursor plane watermark */
1910 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1911                                       int level,
1912                                       const struct intel_wm_config *config)
1913 {
1914         /* HSW LP1+ watermarks w/ multiple pipes */
1915         if (level > 0 && config->num_pipes_active > 1)
1916                 return 64;
1917
1918         /* otherwise just report max that registers can hold */
1919         return ilk_cursor_wm_reg_max(dev, level);
1920 }
1921
1922 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1923                                     int level,
1924                                     const struct intel_wm_config *config,
1925                                     enum intel_ddb_partitioning ddb_partitioning,
1926                                     struct ilk_wm_maximums *max)
1927 {
1928         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1929         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1930         max->cur = ilk_cursor_wm_max(dev, level, config);
1931         max->fbc = ilk_fbc_wm_reg_max(dev);
1932 }
1933
1934 static bool ilk_validate_wm_level(int level,
1935                                   const struct ilk_wm_maximums *max,
1936                                   struct intel_wm_level *result)
1937 {
1938         bool ret;
1939
1940         /* already determined to be invalid? */
1941         if (!result->enable)
1942                 return false;
1943
1944         result->enable = result->pri_val <= max->pri &&
1945                          result->spr_val <= max->spr &&
1946                          result->cur_val <= max->cur;
1947
1948         ret = result->enable;
1949
1950         /*
1951          * HACK until we can pre-compute everything,
1952          * and thus fail gracefully if LP0 watermarks
1953          * are exceeded...
1954          */
1955         if (level == 0 && !result->enable) {
1956                 if (result->pri_val > max->pri)
1957                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1958                                       level, result->pri_val, max->pri);
1959                 if (result->spr_val > max->spr)
1960                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1961                                       level, result->spr_val, max->spr);
1962                 if (result->cur_val > max->cur)
1963                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1964                                       level, result->cur_val, max->cur);
1965
1966                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1967                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1968                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1969                 result->enable = true;
1970         }
1971
1972         return ret;
1973 }
1974
1975 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1976                                  int level,
1977                                  const struct ilk_pipe_wm_parameters *p,
1978                                  struct intel_wm_level *result)
1979 {
1980         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1981         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1982         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1983
1984         /* WM1+ latency values stored in 0.5us units */
1985         if (level > 0) {
1986                 pri_latency *= 5;
1987                 spr_latency *= 5;
1988                 cur_latency *= 5;
1989         }
1990
1991         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1992         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1993         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1994         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1995         result->enable = true;
1996 }
1997
1998 static uint32_t
1999 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2000 {
2001         struct drm_i915_private *dev_priv = dev->dev_private;
2002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2003         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2004         u32 linetime, ips_linetime;
2005
2006         if (!intel_crtc_active(crtc))
2007                 return 0;
2008
2009         /* The WM are computed with base on how long it takes to fill a single
2010          * row at the given clock rate, multiplied by 8.
2011          * */
2012         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2013                                      mode->crtc_clock);
2014         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2015                                          intel_ddi_get_cdclk_freq(dev_priv));
2016
2017         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2018                PIPE_WM_LINETIME_TIME(linetime);
2019 }
2020
2021 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2022 {
2023         struct drm_i915_private *dev_priv = dev->dev_private;
2024
2025         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2026                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2027
2028                 wm[0] = (sskpd >> 56) & 0xFF;
2029                 if (wm[0] == 0)
2030                         wm[0] = sskpd & 0xF;
2031                 wm[1] = (sskpd >> 4) & 0xFF;
2032                 wm[2] = (sskpd >> 12) & 0xFF;
2033                 wm[3] = (sskpd >> 20) & 0x1FF;
2034                 wm[4] = (sskpd >> 32) & 0x1FF;
2035         } else if (INTEL_INFO(dev)->gen >= 6) {
2036                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2037
2038                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2039                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2040                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2041                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2042         } else if (INTEL_INFO(dev)->gen >= 5) {
2043                 uint32_t mltr = I915_READ(MLTR_ILK);
2044
2045                 /* ILK primary LP0 latency is 700 ns */
2046                 wm[0] = 7;
2047                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2048                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2049         }
2050 }
2051
2052 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2053 {
2054         /* ILK sprite LP0 latency is 1300 ns */
2055         if (INTEL_INFO(dev)->gen == 5)
2056                 wm[0] = 13;
2057 }
2058
2059 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2060 {
2061         /* ILK cursor LP0 latency is 1300 ns */
2062         if (INTEL_INFO(dev)->gen == 5)
2063                 wm[0] = 13;
2064
2065         /* WaDoubleCursorLP3Latency:ivb */
2066         if (IS_IVYBRIDGE(dev))
2067                 wm[3] *= 2;
2068 }
2069
2070 static int ilk_wm_max_level(const struct drm_device *dev)
2071 {
2072         /* how many WM levels are we expecting */
2073         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2074                 return 4;
2075         else if (INTEL_INFO(dev)->gen >= 6)
2076                 return 3;
2077         else
2078                 return 2;
2079 }
2080
2081 static void intel_print_wm_latency(struct drm_device *dev,
2082                                    const char *name,
2083                                    const uint16_t wm[5])
2084 {
2085         int level, max_level = ilk_wm_max_level(dev);
2086
2087         for (level = 0; level <= max_level; level++) {
2088                 unsigned int latency = wm[level];
2089
2090                 if (latency == 0) {
2091                         DRM_ERROR("%s WM%d latency not provided\n",
2092                                   name, level);
2093                         continue;
2094                 }
2095
2096                 /* WM1+ latency values in 0.5us units */
2097                 if (level > 0)
2098                         latency *= 5;
2099
2100                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2101                               name, level, wm[level],
2102                               latency / 10, latency % 10);
2103         }
2104 }
2105
2106 static void ilk_setup_wm_latency(struct drm_device *dev)
2107 {
2108         struct drm_i915_private *dev_priv = dev->dev_private;
2109
2110         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2111
2112         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2113                sizeof(dev_priv->wm.pri_latency));
2114         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2115                sizeof(dev_priv->wm.pri_latency));
2116
2117         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2118         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2119
2120         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2121         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2122         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2123 }
2124
2125 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2126                                       struct ilk_pipe_wm_parameters *p)
2127 {
2128         struct drm_device *dev = crtc->dev;
2129         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2130         enum pipe pipe = intel_crtc->pipe;
2131         struct drm_plane *plane;
2132
2133         if (!intel_crtc_active(crtc))
2134                 return;
2135
2136         p->active = true;
2137         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2138         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2139         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2140         p->cur.bytes_per_pixel = 4;
2141         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2142         p->cur.horiz_pixels = intel_crtc->cursor_width;
2143         /* TODO: for now, assume primary and cursor planes are always enabled. */
2144         p->pri.enabled = true;
2145         p->cur.enabled = true;
2146
2147         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2148                 struct intel_plane *intel_plane = to_intel_plane(plane);
2149
2150                 if (intel_plane->pipe == pipe) {
2151                         p->spr = intel_plane->wm;
2152                         break;
2153                 }
2154         }
2155 }
2156
2157 static void ilk_compute_wm_config(struct drm_device *dev,
2158                                   struct intel_wm_config *config)
2159 {
2160         struct intel_crtc *intel_crtc;
2161
2162         /* Compute the currently _active_ config */
2163         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2164                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2165
2166                 if (!wm->pipe_enabled)
2167                         continue;
2168
2169                 config->sprites_enabled |= wm->sprites_enabled;
2170                 config->sprites_scaled |= wm->sprites_scaled;
2171                 config->num_pipes_active++;
2172         }
2173 }
2174
2175 /* Compute new watermarks for the pipe */
2176 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2177                                   const struct ilk_pipe_wm_parameters *params,
2178                                   struct intel_pipe_wm *pipe_wm)
2179 {
2180         struct drm_device *dev = crtc->dev;
2181         const struct drm_i915_private *dev_priv = dev->dev_private;
2182         int level, max_level = ilk_wm_max_level(dev);
2183         /* LP0 watermark maximums depend on this pipe alone */
2184         struct intel_wm_config config = {
2185                 .num_pipes_active = 1,
2186                 .sprites_enabled = params->spr.enabled,
2187                 .sprites_scaled = params->spr.scaled,
2188         };
2189         struct ilk_wm_maximums max;
2190
2191         /* LP0 watermarks always use 1/2 DDB partitioning */
2192         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2193
2194         pipe_wm->pipe_enabled = params->active;
2195         pipe_wm->sprites_enabled = params->spr.enabled;
2196         pipe_wm->sprites_scaled = params->spr.scaled;
2197
2198         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2199         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2200                 max_level = 1;
2201
2202         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2203         if (params->spr.scaled)
2204                 max_level = 0;
2205
2206         for (level = 0; level <= max_level; level++)
2207                 ilk_compute_wm_level(dev_priv, level, params,
2208                                      &pipe_wm->wm[level]);
2209
2210         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2211                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2212
2213         /* At least LP0 must be valid */
2214         return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2215 }
2216
2217 /*
2218  * Merge the watermarks from all active pipes for a specific level.
2219  */
2220 static void ilk_merge_wm_level(struct drm_device *dev,
2221                                int level,
2222                                struct intel_wm_level *ret_wm)
2223 {
2224         const struct intel_crtc *intel_crtc;
2225
2226         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2227                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2228                 const struct intel_wm_level *wm = &active->wm[level];
2229
2230                 if (!active->pipe_enabled)
2231                         continue;
2232
2233                 if (!wm->enable)
2234                         return;
2235
2236                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2237                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2238                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2239                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2240         }
2241
2242         ret_wm->enable = true;
2243 }
2244
2245 /*
2246  * Merge all low power watermarks for all active pipes.
2247  */
2248 static void ilk_wm_merge(struct drm_device *dev,
2249                          const struct intel_wm_config *config,
2250                          const struct ilk_wm_maximums *max,
2251                          struct intel_pipe_wm *merged)
2252 {
2253         int level, max_level = ilk_wm_max_level(dev);
2254
2255         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2256         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2257             config->num_pipes_active > 1)
2258                 return;
2259
2260         /* ILK: FBC WM must be disabled always */
2261         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2262
2263         /* merge each WM1+ level */
2264         for (level = 1; level <= max_level; level++) {
2265                 struct intel_wm_level *wm = &merged->wm[level];
2266
2267                 ilk_merge_wm_level(dev, level, wm);
2268
2269                 if (!ilk_validate_wm_level(level, max, wm))
2270                         break;
2271
2272                 /*
2273                  * The spec says it is preferred to disable
2274                  * FBC WMs instead of disabling a WM level.
2275                  */
2276                 if (wm->fbc_val > max->fbc) {
2277                         merged->fbc_wm_enabled = false;
2278                         wm->fbc_val = 0;
2279                 }
2280         }
2281
2282         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2283         /*
2284          * FIXME this is racy. FBC might get enabled later.
2285          * What we should check here is whether FBC can be
2286          * enabled sometime later.
2287          */
2288         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2289                 for (level = 2; level <= max_level; level++) {
2290                         struct intel_wm_level *wm = &merged->wm[level];
2291
2292                         wm->enable = false;
2293                 }
2294         }
2295 }
2296
2297 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2298 {
2299         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2300         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2301 }
2302
2303 /* The value we need to program into the WM_LPx latency field */
2304 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2305 {
2306         struct drm_i915_private *dev_priv = dev->dev_private;
2307
2308         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2309                 return 2 * level;
2310         else
2311                 return dev_priv->wm.pri_latency[level];
2312 }
2313
2314 static void ilk_compute_wm_results(struct drm_device *dev,
2315                                    const struct intel_pipe_wm *merged,
2316                                    enum intel_ddb_partitioning partitioning,
2317                                    struct ilk_wm_values *results)
2318 {
2319         struct intel_crtc *intel_crtc;
2320         int level, wm_lp;
2321
2322         results->enable_fbc_wm = merged->fbc_wm_enabled;
2323         results->partitioning = partitioning;
2324
2325         /* LP1+ register values */
2326         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2327                 const struct intel_wm_level *r;
2328
2329                 level = ilk_wm_lp_to_level(wm_lp, merged);
2330
2331                 r = &merged->wm[level];
2332                 if (!r->enable)
2333                         break;
2334
2335                 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2336                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2337                         (r->pri_val << WM1_LP_SR_SHIFT) |
2338                         r->cur_val;
2339
2340                 if (INTEL_INFO(dev)->gen >= 8)
2341                         results->wm_lp[wm_lp - 1] |=
2342                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2343                 else
2344                         results->wm_lp[wm_lp - 1] |=
2345                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2346
2347                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2348                         WARN_ON(wm_lp != 1);
2349                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2350                 } else
2351                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2352         }
2353
2354         /* LP0 register values */
2355         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2356                 enum pipe pipe = intel_crtc->pipe;
2357                 const struct intel_wm_level *r =
2358                         &intel_crtc->wm.active.wm[0];
2359
2360                 if (WARN_ON(!r->enable))
2361                         continue;
2362
2363                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2364
2365                 results->wm_pipe[pipe] =
2366                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2367                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2368                         r->cur_val;
2369         }
2370 }
2371
2372 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2373  * case both are at the same level. Prefer r1 in case they're the same. */
2374 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2375                                                   struct intel_pipe_wm *r1,
2376                                                   struct intel_pipe_wm *r2)
2377 {
2378         int level, max_level = ilk_wm_max_level(dev);
2379         int level1 = 0, level2 = 0;
2380
2381         for (level = 1; level <= max_level; level++) {
2382                 if (r1->wm[level].enable)
2383                         level1 = level;
2384                 if (r2->wm[level].enable)
2385                         level2 = level;
2386         }
2387
2388         if (level1 == level2) {
2389                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2390                         return r2;
2391                 else
2392                         return r1;
2393         } else if (level1 > level2) {
2394                 return r1;
2395         } else {
2396                 return r2;
2397         }
2398 }
2399
2400 /* dirty bits used to track which watermarks need changes */
2401 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2402 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2403 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2404 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2405 #define WM_DIRTY_FBC (1 << 24)
2406 #define WM_DIRTY_DDB (1 << 25)
2407
2408 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2409                                          const struct ilk_wm_values *old,
2410                                          const struct ilk_wm_values *new)
2411 {
2412         unsigned int dirty = 0;
2413         enum pipe pipe;
2414         int wm_lp;
2415
2416         for_each_pipe(pipe) {
2417                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2418                         dirty |= WM_DIRTY_LINETIME(pipe);
2419                         /* Must disable LP1+ watermarks too */
2420                         dirty |= WM_DIRTY_LP_ALL;
2421                 }
2422
2423                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2424                         dirty |= WM_DIRTY_PIPE(pipe);
2425                         /* Must disable LP1+ watermarks too */
2426                         dirty |= WM_DIRTY_LP_ALL;
2427                 }
2428         }
2429
2430         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2431                 dirty |= WM_DIRTY_FBC;
2432                 /* Must disable LP1+ watermarks too */
2433                 dirty |= WM_DIRTY_LP_ALL;
2434         }
2435
2436         if (old->partitioning != new->partitioning) {
2437                 dirty |= WM_DIRTY_DDB;
2438                 /* Must disable LP1+ watermarks too */
2439                 dirty |= WM_DIRTY_LP_ALL;
2440         }
2441
2442         /* LP1+ watermarks already deemed dirty, no need to continue */
2443         if (dirty & WM_DIRTY_LP_ALL)
2444                 return dirty;
2445
2446         /* Find the lowest numbered LP1+ watermark in need of an update... */
2447         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2448                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2449                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2450                         break;
2451         }
2452
2453         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2454         for (; wm_lp <= 3; wm_lp++)
2455                 dirty |= WM_DIRTY_LP(wm_lp);
2456
2457         return dirty;
2458 }
2459
2460 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2461                                unsigned int dirty)
2462 {
2463         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2464         bool changed = false;
2465
2466         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2467                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2468                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2469                 changed = true;
2470         }
2471         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2472                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2473                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2474                 changed = true;
2475         }
2476         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2477                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2478                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2479                 changed = true;
2480         }
2481
2482         /*
2483          * Don't touch WM1S_LP_EN here.
2484          * Doing so could cause underruns.
2485          */
2486
2487         return changed;
2488 }
2489
2490 /*
2491  * The spec says we shouldn't write when we don't need, because every write
2492  * causes WMs to be re-evaluated, expending some power.
2493  */
2494 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2495                                 struct ilk_wm_values *results)
2496 {
2497         struct drm_device *dev = dev_priv->dev;
2498         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2499         unsigned int dirty;
2500         uint32_t val;
2501
2502         dirty = ilk_compute_wm_dirty(dev, previous, results);
2503         if (!dirty)
2504                 return;
2505
2506         _ilk_disable_lp_wm(dev_priv, dirty);
2507
2508         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2509                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2510         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2511                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2512         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2513                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2514
2515         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2516                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2517         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2518                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2519         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2520                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2521
2522         if (dirty & WM_DIRTY_DDB) {
2523                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2524                         val = I915_READ(WM_MISC);
2525                         if (results->partitioning == INTEL_DDB_PART_1_2)
2526                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2527                         else
2528                                 val |= WM_MISC_DATA_PARTITION_5_6;
2529                         I915_WRITE(WM_MISC, val);
2530                 } else {
2531                         val = I915_READ(DISP_ARB_CTL2);
2532                         if (results->partitioning == INTEL_DDB_PART_1_2)
2533                                 val &= ~DISP_DATA_PARTITION_5_6;
2534                         else
2535                                 val |= DISP_DATA_PARTITION_5_6;
2536                         I915_WRITE(DISP_ARB_CTL2, val);
2537                 }
2538         }
2539
2540         if (dirty & WM_DIRTY_FBC) {
2541                 val = I915_READ(DISP_ARB_CTL);
2542                 if (results->enable_fbc_wm)
2543                         val &= ~DISP_FBC_WM_DIS;
2544                 else
2545                         val |= DISP_FBC_WM_DIS;
2546                 I915_WRITE(DISP_ARB_CTL, val);
2547         }
2548
2549         if (dirty & WM_DIRTY_LP(1) &&
2550             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2551                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2552
2553         if (INTEL_INFO(dev)->gen >= 7) {
2554                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2555                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2556                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2557                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2558         }
2559
2560         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2561                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2562         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2563                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2564         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2565                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2566
2567         dev_priv->wm.hw = *results;
2568 }
2569
2570 static bool ilk_disable_lp_wm(struct drm_device *dev)
2571 {
2572         struct drm_i915_private *dev_priv = dev->dev_private;
2573
2574         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2575 }
2576
2577 static void ilk_update_wm(struct drm_crtc *crtc)
2578 {
2579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2580         struct drm_device *dev = crtc->dev;
2581         struct drm_i915_private *dev_priv = dev->dev_private;
2582         struct ilk_wm_maximums max;
2583         struct ilk_pipe_wm_parameters params = {};
2584         struct ilk_wm_values results = {};
2585         enum intel_ddb_partitioning partitioning;
2586         struct intel_pipe_wm pipe_wm = {};
2587         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2588         struct intel_wm_config config = {};
2589
2590         ilk_compute_wm_parameters(crtc, &params);
2591
2592         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2593
2594         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2595                 return;
2596
2597         intel_crtc->wm.active = pipe_wm;
2598
2599         ilk_compute_wm_config(dev, &config);
2600
2601         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2602         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2603
2604         /* 5/6 split only in single pipe config on IVB+ */
2605         if (INTEL_INFO(dev)->gen >= 7 &&
2606             config.num_pipes_active == 1 && config.sprites_enabled) {
2607                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2608                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2609
2610                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2611         } else {
2612                 best_lp_wm = &lp_wm_1_2;
2613         }
2614
2615         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2616                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2617
2618         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2619
2620         ilk_write_wm_values(dev_priv, &results);
2621 }
2622
2623 static void ilk_update_sprite_wm(struct drm_plane *plane,
2624                                      struct drm_crtc *crtc,
2625                                      uint32_t sprite_width, int pixel_size,
2626                                      bool enabled, bool scaled)
2627 {
2628         struct drm_device *dev = plane->dev;
2629         struct intel_plane *intel_plane = to_intel_plane(plane);
2630
2631         intel_plane->wm.enabled = enabled;
2632         intel_plane->wm.scaled = scaled;
2633         intel_plane->wm.horiz_pixels = sprite_width;
2634         intel_plane->wm.bytes_per_pixel = pixel_size;
2635
2636         /*
2637          * IVB workaround: must disable low power watermarks for at least
2638          * one frame before enabling scaling.  LP watermarks can be re-enabled
2639          * when scaling is disabled.
2640          *
2641          * WaCxSRDisabledForSpriteScaling:ivb
2642          */
2643         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2644                 intel_wait_for_vblank(dev, intel_plane->pipe);
2645
2646         ilk_update_wm(crtc);
2647 }
2648
2649 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2650 {
2651         struct drm_device *dev = crtc->dev;
2652         struct drm_i915_private *dev_priv = dev->dev_private;
2653         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2655         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2656         enum pipe pipe = intel_crtc->pipe;
2657         static const unsigned int wm0_pipe_reg[] = {
2658                 [PIPE_A] = WM0_PIPEA_ILK,
2659                 [PIPE_B] = WM0_PIPEB_ILK,
2660                 [PIPE_C] = WM0_PIPEC_IVB,
2661         };
2662
2663         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2664         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2665                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2666
2667         active->pipe_enabled = intel_crtc_active(crtc);
2668
2669         if (active->pipe_enabled) {
2670                 u32 tmp = hw->wm_pipe[pipe];
2671
2672                 /*
2673                  * For active pipes LP0 watermark is marked as
2674                  * enabled, and LP1+ watermaks as disabled since
2675                  * we can't really reverse compute them in case
2676                  * multiple pipes are active.
2677                  */
2678                 active->wm[0].enable = true;
2679                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2680                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2681                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2682                 active->linetime = hw->wm_linetime[pipe];
2683         } else {
2684                 int level, max_level = ilk_wm_max_level(dev);
2685
2686                 /*
2687                  * For inactive pipes, all watermark levels
2688                  * should be marked as enabled but zeroed,
2689                  * which is what we'd compute them to.
2690                  */
2691                 for (level = 0; level <= max_level; level++)
2692                         active->wm[level].enable = true;
2693         }
2694 }
2695
2696 void ilk_wm_get_hw_state(struct drm_device *dev)
2697 {
2698         struct drm_i915_private *dev_priv = dev->dev_private;
2699         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2700         struct drm_crtc *crtc;
2701
2702         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2703                 ilk_pipe_wm_get_hw_state(crtc);
2704
2705         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2706         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2707         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2708
2709         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2710         if (INTEL_INFO(dev)->gen >= 7) {
2711                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2712                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2713         }
2714
2715         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2716                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2717                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2718         else if (IS_IVYBRIDGE(dev))
2719                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2720                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2721
2722         hw->enable_fbc_wm =
2723                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2724 }
2725
2726 /**
2727  * intel_update_watermarks - update FIFO watermark values based on current modes
2728  *
2729  * Calculate watermark values for the various WM regs based on current mode
2730  * and plane configuration.
2731  *
2732  * There are several cases to deal with here:
2733  *   - normal (i.e. non-self-refresh)
2734  *   - self-refresh (SR) mode
2735  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2736  *   - lines are small relative to FIFO size (buffer can hold more than 2
2737  *     lines), so need to account for TLB latency
2738  *
2739  *   The normal calculation is:
2740  *     watermark = dotclock * bytes per pixel * latency
2741  *   where latency is platform & configuration dependent (we assume pessimal
2742  *   values here).
2743  *
2744  *   The SR calculation is:
2745  *     watermark = (trunc(latency/line time)+1) * surface width *
2746  *       bytes per pixel
2747  *   where
2748  *     line time = htotal / dotclock
2749  *     surface width = hdisplay for normal plane and 64 for cursor
2750  *   and latency is assumed to be high, as above.
2751  *
2752  * The final value programmed to the register should always be rounded up,
2753  * and include an extra 2 entries to account for clock crossings.
2754  *
2755  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2756  * to set the non-SR watermarks to 8.
2757  */
2758 void intel_update_watermarks(struct drm_crtc *crtc)
2759 {
2760         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2761
2762         if (dev_priv->display.update_wm)
2763                 dev_priv->display.update_wm(crtc);
2764 }
2765
2766 void intel_update_sprite_watermarks(struct drm_plane *plane,
2767                                     struct drm_crtc *crtc,
2768                                     uint32_t sprite_width, int pixel_size,
2769                                     bool enabled, bool scaled)
2770 {
2771         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2772
2773         if (dev_priv->display.update_sprite_wm)
2774                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2775                                                    pixel_size, enabled, scaled);
2776 }
2777
2778 static struct drm_i915_gem_object *
2779 intel_alloc_context_page(struct drm_device *dev)
2780 {
2781         struct drm_i915_gem_object *ctx;
2782         int ret;
2783
2784         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2785
2786         ctx = i915_gem_alloc_object(dev, 4096);
2787         if (!ctx) {
2788                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2789                 return NULL;
2790         }
2791
2792         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2793         if (ret) {
2794                 DRM_ERROR("failed to pin power context: %d\n", ret);
2795                 goto err_unref;
2796         }
2797
2798         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2799         if (ret) {
2800                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2801                 goto err_unpin;
2802         }
2803
2804         return ctx;
2805
2806 err_unpin:
2807         i915_gem_object_ggtt_unpin(ctx);
2808 err_unref:
2809         drm_gem_object_unreference(&ctx->base);
2810         return NULL;
2811 }
2812
2813 /**
2814  * Lock protecting IPS related data structures
2815  */
2816 DEFINE_SPINLOCK(mchdev_lock);
2817
2818 /* Global for IPS driver to get at the current i915 device. Protected by
2819  * mchdev_lock. */
2820 static struct drm_i915_private *i915_mch_dev;
2821
2822 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2823 {
2824         struct drm_i915_private *dev_priv = dev->dev_private;
2825         u16 rgvswctl;
2826
2827         assert_spin_locked(&mchdev_lock);
2828
2829         rgvswctl = I915_READ16(MEMSWCTL);
2830         if (rgvswctl & MEMCTL_CMD_STS) {
2831                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2832                 return false; /* still busy with another command */
2833         }
2834
2835         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2836                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2837         I915_WRITE16(MEMSWCTL, rgvswctl);
2838         POSTING_READ16(MEMSWCTL);
2839
2840         rgvswctl |= MEMCTL_CMD_STS;
2841         I915_WRITE16(MEMSWCTL, rgvswctl);
2842
2843         return true;
2844 }
2845
2846 static void ironlake_enable_drps(struct drm_device *dev)
2847 {
2848         struct drm_i915_private *dev_priv = dev->dev_private;
2849         u32 rgvmodectl = I915_READ(MEMMODECTL);
2850         u8 fmax, fmin, fstart, vstart;
2851
2852         spin_lock_irq(&mchdev_lock);
2853
2854         /* Enable temp reporting */
2855         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2856         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2857
2858         /* 100ms RC evaluation intervals */
2859         I915_WRITE(RCUPEI, 100000);
2860         I915_WRITE(RCDNEI, 100000);
2861
2862         /* Set max/min thresholds to 90ms and 80ms respectively */
2863         I915_WRITE(RCBMAXAVG, 90000);
2864         I915_WRITE(RCBMINAVG, 80000);
2865
2866         I915_WRITE(MEMIHYST, 1);
2867
2868         /* Set up min, max, and cur for interrupt handling */
2869         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2870         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2871         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2872                 MEMMODE_FSTART_SHIFT;
2873
2874         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2875                 PXVFREQ_PX_SHIFT;
2876
2877         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2878         dev_priv->ips.fstart = fstart;
2879
2880         dev_priv->ips.max_delay = fstart;
2881         dev_priv->ips.min_delay = fmin;
2882         dev_priv->ips.cur_delay = fstart;
2883
2884         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2885                          fmax, fmin, fstart);
2886
2887         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2888
2889         /*
2890          * Interrupts will be enabled in ironlake_irq_postinstall
2891          */
2892
2893         I915_WRITE(VIDSTART, vstart);
2894         POSTING_READ(VIDSTART);
2895
2896         rgvmodectl |= MEMMODE_SWMODE_EN;
2897         I915_WRITE(MEMMODECTL, rgvmodectl);
2898
2899         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2900                 DRM_ERROR("stuck trying to change perf mode\n");
2901         mdelay(1);
2902
2903         ironlake_set_drps(dev, fstart);
2904
2905         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2906                 I915_READ(0x112e0);
2907         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2908         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2909         getrawmonotonic(&dev_priv->ips.last_time2);
2910
2911         spin_unlock_irq(&mchdev_lock);
2912 }
2913
2914 static void ironlake_disable_drps(struct drm_device *dev)
2915 {
2916         struct drm_i915_private *dev_priv = dev->dev_private;
2917         u16 rgvswctl;
2918
2919         spin_lock_irq(&mchdev_lock);
2920
2921         rgvswctl = I915_READ16(MEMSWCTL);
2922
2923         /* Ack interrupts, disable EFC interrupt */
2924         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2925         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2926         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2927         I915_WRITE(DEIIR, DE_PCU_EVENT);
2928         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2929
2930         /* Go back to the starting frequency */
2931         ironlake_set_drps(dev, dev_priv->ips.fstart);
2932         mdelay(1);
2933         rgvswctl |= MEMCTL_CMD_STS;
2934         I915_WRITE(MEMSWCTL, rgvswctl);
2935         mdelay(1);
2936
2937         spin_unlock_irq(&mchdev_lock);
2938 }
2939
2940 /* There's a funny hw issue where the hw returns all 0 when reading from
2941  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2942  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2943  * all limits and the gpu stuck at whatever frequency it is at atm).
2944  */
2945 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2946 {
2947         u32 limits;
2948
2949         /* Only set the down limit when we've reached the lowest level to avoid
2950          * getting more interrupts, otherwise leave this clear. This prevents a
2951          * race in the hw when coming out of rc6: There's a tiny window where
2952          * the hw runs at the minimal clock before selecting the desired
2953          * frequency, if the down threshold expires in that window we will not
2954          * receive a down interrupt. */
2955         limits = dev_priv->rps.max_freq_softlimit << 24;
2956         if (val <= dev_priv->rps.min_freq_softlimit)
2957                 limits |= dev_priv->rps.min_freq_softlimit << 16;
2958
2959         return limits;
2960 }
2961
2962 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2963 {
2964         int new_power;
2965
2966         new_power = dev_priv->rps.power;
2967         switch (dev_priv->rps.power) {
2968         case LOW_POWER:
2969                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
2970                         new_power = BETWEEN;
2971                 break;
2972
2973         case BETWEEN:
2974                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
2975                         new_power = LOW_POWER;
2976                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
2977                         new_power = HIGH_POWER;
2978                 break;
2979
2980         case HIGH_POWER:
2981                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
2982                         new_power = BETWEEN;
2983                 break;
2984         }
2985         /* Max/min bins are special */
2986         if (val == dev_priv->rps.min_freq_softlimit)
2987                 new_power = LOW_POWER;
2988         if (val == dev_priv->rps.max_freq_softlimit)
2989                 new_power = HIGH_POWER;
2990         if (new_power == dev_priv->rps.power)
2991                 return;
2992
2993         /* Note the units here are not exactly 1us, but 1280ns. */
2994         switch (new_power) {
2995         case LOW_POWER:
2996                 /* Upclock if more than 95% busy over 16ms */
2997                 I915_WRITE(GEN6_RP_UP_EI, 12500);
2998                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
2999
3000                 /* Downclock if less than 85% busy over 32ms */
3001                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3002                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3003
3004                 I915_WRITE(GEN6_RP_CONTROL,
3005                            GEN6_RP_MEDIA_TURBO |
3006                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3007                            GEN6_RP_MEDIA_IS_GFX |
3008                            GEN6_RP_ENABLE |
3009                            GEN6_RP_UP_BUSY_AVG |
3010                            GEN6_RP_DOWN_IDLE_AVG);
3011                 break;
3012
3013         case BETWEEN:
3014                 /* Upclock if more than 90% busy over 13ms */
3015                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3016                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3017
3018                 /* Downclock if less than 75% busy over 32ms */
3019                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3020                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3021
3022                 I915_WRITE(GEN6_RP_CONTROL,
3023                            GEN6_RP_MEDIA_TURBO |
3024                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3025                            GEN6_RP_MEDIA_IS_GFX |
3026                            GEN6_RP_ENABLE |
3027                            GEN6_RP_UP_BUSY_AVG |
3028                            GEN6_RP_DOWN_IDLE_AVG);
3029                 break;
3030
3031         case HIGH_POWER:
3032                 /* Upclock if more than 85% busy over 10ms */
3033                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3034                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3035
3036                 /* Downclock if less than 60% busy over 32ms */
3037                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3038                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3039
3040                 I915_WRITE(GEN6_RP_CONTROL,
3041                            GEN6_RP_MEDIA_TURBO |
3042                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3043                            GEN6_RP_MEDIA_IS_GFX |
3044                            GEN6_RP_ENABLE |
3045                            GEN6_RP_UP_BUSY_AVG |
3046                            GEN6_RP_DOWN_IDLE_AVG);
3047                 break;
3048         }
3049
3050         dev_priv->rps.power = new_power;
3051         dev_priv->rps.last_adj = 0;
3052 }
3053
3054 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3055 {
3056         u32 mask = 0;
3057
3058         if (val > dev_priv->rps.min_freq_softlimit)
3059                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3060         if (val < dev_priv->rps.max_freq_softlimit)
3061                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3062
3063         /* IVB and SNB hard hangs on looping batchbuffer
3064          * if GEN6_PM_UP_EI_EXPIRED is masked.
3065          */
3066         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3067                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3068
3069         return ~mask;
3070 }
3071
3072 /* gen6_set_rps is called to update the frequency request, but should also be
3073  * called when the range (min_delay and max_delay) is modified so that we can
3074  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3075 void gen6_set_rps(struct drm_device *dev, u8 val)
3076 {
3077         struct drm_i915_private *dev_priv = dev->dev_private;
3078
3079         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3080         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3081         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3082
3083         /* min/max delay may still have been modified so be sure to
3084          * write the limits value.
3085          */
3086         if (val != dev_priv->rps.cur_freq) {
3087                 gen6_set_rps_thresholds(dev_priv, val);
3088
3089                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3090                         I915_WRITE(GEN6_RPNSWREQ,
3091                                    HSW_FREQUENCY(val));
3092                 else
3093                         I915_WRITE(GEN6_RPNSWREQ,
3094                                    GEN6_FREQUENCY(val) |
3095                                    GEN6_OFFSET(0) |
3096                                    GEN6_AGGRESSIVE_TURBO);
3097         }
3098
3099         /* Make sure we continue to get interrupts
3100          * until we hit the minimum or maximum frequencies.
3101          */
3102         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3103         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3104
3105         POSTING_READ(GEN6_RPNSWREQ);
3106
3107         dev_priv->rps.cur_freq = val;
3108         trace_intel_gpu_freq_change(val * 50);
3109 }
3110
3111 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3112  *
3113  * * If Gfx is Idle, then
3114  * 1. Mask Turbo interrupts
3115  * 2. Bring up Gfx clock
3116  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3117  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3118  * 5. Unmask Turbo interrupts
3119 */
3120 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3121 {
3122         /*
3123          * When we are idle.  Drop to min voltage state.
3124          */
3125
3126         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3127                 return;
3128
3129         /* Mask turbo interrupt so that they will not come in between */
3130         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3131
3132         /* Bring up the Gfx clock */
3133         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3134                 I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
3135                                 VLV_GFX_CLK_FORCE_ON_BIT);
3136
3137         if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
3138                 I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
3139                         DRM_ERROR("GFX_CLK_ON request timed out\n");
3140                 return;
3141         }
3142
3143         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3144
3145         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3146                                         dev_priv->rps.min_freq_softlimit);
3147
3148         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3149                                 & GENFREQSTATUS) == 0, 5))
3150                 DRM_ERROR("timed out waiting for Punit\n");
3151
3152         /* Release the Gfx clock */
3153         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3154                 I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
3155                                 ~VLV_GFX_CLK_FORCE_ON_BIT);
3156
3157         I915_WRITE(GEN6_PMINTRMSK,
3158                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3159 }
3160
3161 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3162 {
3163         struct drm_device *dev = dev_priv->dev;
3164
3165         mutex_lock(&dev_priv->rps.hw_lock);
3166         if (dev_priv->rps.enabled) {
3167                 if (IS_VALLEYVIEW(dev))
3168                         vlv_set_rps_idle(dev_priv);
3169                 else
3170                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3171                 dev_priv->rps.last_adj = 0;
3172         }
3173         mutex_unlock(&dev_priv->rps.hw_lock);
3174 }
3175
3176 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3177 {
3178         struct drm_device *dev = dev_priv->dev;
3179
3180         mutex_lock(&dev_priv->rps.hw_lock);
3181         if (dev_priv->rps.enabled) {
3182                 if (IS_VALLEYVIEW(dev))
3183                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3184                 else
3185                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3186                 dev_priv->rps.last_adj = 0;
3187         }
3188         mutex_unlock(&dev_priv->rps.hw_lock);
3189 }
3190
3191 void valleyview_set_rps(struct drm_device *dev, u8 val)
3192 {
3193         struct drm_i915_private *dev_priv = dev->dev_private;
3194
3195         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3196         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3197         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3198
3199         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3200                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3201                          dev_priv->rps.cur_freq,
3202                          vlv_gpu_freq(dev_priv, val), val);
3203
3204         if (val != dev_priv->rps.cur_freq)
3205                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3206
3207         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3208
3209         dev_priv->rps.cur_freq = val;
3210         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3211 }
3212
3213 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3214 {
3215         struct drm_i915_private *dev_priv = dev->dev_private;
3216
3217         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3218         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3219                                 ~dev_priv->pm_rps_events);
3220         /* Complete PM interrupt masking here doesn't race with the rps work
3221          * item again unmasking PM interrupts because that is using a different
3222          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3223          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3224
3225         spin_lock_irq(&dev_priv->irq_lock);
3226         dev_priv->rps.pm_iir = 0;
3227         spin_unlock_irq(&dev_priv->irq_lock);
3228
3229         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3230 }
3231
3232 static void gen6_disable_rps(struct drm_device *dev)
3233 {
3234         struct drm_i915_private *dev_priv = dev->dev_private;
3235
3236         I915_WRITE(GEN6_RC_CONTROL, 0);
3237         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3238
3239         gen6_disable_rps_interrupts(dev);
3240 }
3241
3242 static void valleyview_disable_rps(struct drm_device *dev)
3243 {
3244         struct drm_i915_private *dev_priv = dev->dev_private;
3245
3246         I915_WRITE(GEN6_RC_CONTROL, 0);
3247
3248         gen6_disable_rps_interrupts(dev);
3249 }
3250
3251 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3252 {
3253         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3254                  (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3255                  (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3256                  (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3257 }
3258
3259 int intel_enable_rc6(const struct drm_device *dev)
3260 {
3261         /* No RC6 before Ironlake */
3262         if (INTEL_INFO(dev)->gen < 5)
3263                 return 0;
3264
3265         /* Respect the kernel parameter if it is set */
3266         if (i915.enable_rc6 >= 0)
3267                 return i915.enable_rc6;
3268
3269         /* Disable RC6 on Ironlake */
3270         if (INTEL_INFO(dev)->gen == 5)
3271                 return 0;
3272
3273         if (IS_IVYBRIDGE(dev))
3274                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3275
3276         return INTEL_RC6_ENABLE;
3277 }
3278
3279 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3280 {
3281         struct drm_i915_private *dev_priv = dev->dev_private;
3282
3283         spin_lock_irq(&dev_priv->irq_lock);
3284         WARN_ON(dev_priv->rps.pm_iir);
3285         snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3286         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3287         spin_unlock_irq(&dev_priv->irq_lock);
3288 }
3289
3290 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3291 {
3292         /* All of these values are in units of 50MHz */
3293         dev_priv->rps.cur_freq          = 0;
3294         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3295         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3296         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3297         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3298         /* XXX: only BYT has a special efficient freq */
3299         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3300         /* hw_max = RP0 until we check for overclocking */
3301         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3302
3303         /* Preserve min/max settings in case of re-init */
3304         if (dev_priv->rps.max_freq_softlimit == 0)
3305                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3306
3307         if (dev_priv->rps.min_freq_softlimit == 0)
3308                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3309 }
3310
3311 static void gen8_enable_rps(struct drm_device *dev)
3312 {
3313         struct drm_i915_private *dev_priv = dev->dev_private;
3314         struct intel_ring_buffer *ring;
3315         uint32_t rc6_mask = 0, rp_state_cap;
3316         int unused;
3317
3318         /* 1a: Software RC state - RC0 */
3319         I915_WRITE(GEN6_RC_STATE, 0);
3320
3321         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3322          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3323         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3324
3325         /* 2a: Disable RC states. */
3326         I915_WRITE(GEN6_RC_CONTROL, 0);
3327
3328         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3329         parse_rp_state_cap(dev_priv, rp_state_cap);
3330
3331         /* 2b: Program RC6 thresholds.*/
3332         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3333         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3334         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3335         for_each_ring(ring, dev_priv, unused)
3336                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3337         I915_WRITE(GEN6_RC_SLEEP, 0);
3338         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3339
3340         /* 3: Enable RC6 */
3341         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3342                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3343         intel_print_rc6_info(dev, rc6_mask);
3344         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3345                                     GEN6_RC_CTL_EI_MODE(1) |
3346                                     rc6_mask);
3347
3348         /* 4 Program defaults and thresholds for RPS*/
3349         I915_WRITE(GEN6_RPNSWREQ,
3350                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3351         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3352                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3353         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3354         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3355
3356         /* Docs recommend 900MHz, and 300 MHz respectively */
3357         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3358                    dev_priv->rps.max_freq_softlimit << 24 |
3359                    dev_priv->rps.min_freq_softlimit << 16);
3360
3361         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3362         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3363         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3364         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3365
3366         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3367
3368         /* 5: Enable RPS */
3369         I915_WRITE(GEN6_RP_CONTROL,
3370                    GEN6_RP_MEDIA_TURBO |
3371                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3372                    GEN6_RP_MEDIA_IS_GFX |
3373                    GEN6_RP_ENABLE |
3374                    GEN6_RP_UP_BUSY_AVG |
3375                    GEN6_RP_DOWN_IDLE_AVG);
3376
3377         /* 6: Ring frequency + overclocking (our driver does this later */
3378
3379         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3380
3381         gen6_enable_rps_interrupts(dev);
3382
3383         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3384 }
3385
3386 static void gen6_enable_rps(struct drm_device *dev)
3387 {
3388         struct drm_i915_private *dev_priv = dev->dev_private;
3389         struct intel_ring_buffer *ring;
3390         u32 rp_state_cap;
3391         u32 gt_perf_status;
3392         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3393         u32 gtfifodbg;
3394         int rc6_mode;
3395         int i, ret;
3396
3397         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3398
3399         /* Here begins a magic sequence of register writes to enable
3400          * auto-downclocking.
3401          *
3402          * Perhaps there might be some value in exposing these to
3403          * userspace...
3404          */
3405         I915_WRITE(GEN6_RC_STATE, 0);
3406
3407         /* Clear the DBG now so we don't confuse earlier errors */
3408         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3409                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3410                 I915_WRITE(GTFIFODBG, gtfifodbg);
3411         }
3412
3413         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3414
3415         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3416         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3417
3418         parse_rp_state_cap(dev_priv, rp_state_cap);
3419
3420         /* disable the counters and set deterministic thresholds */
3421         I915_WRITE(GEN6_RC_CONTROL, 0);
3422
3423         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3424         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3425         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3426         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3427         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3428
3429         for_each_ring(ring, dev_priv, i)
3430                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3431
3432         I915_WRITE(GEN6_RC_SLEEP, 0);
3433         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3434         if (IS_IVYBRIDGE(dev))
3435                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3436         else
3437                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3438         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3439         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3440
3441         /* Check if we are enabling RC6 */
3442         rc6_mode = intel_enable_rc6(dev_priv->dev);
3443         if (rc6_mode & INTEL_RC6_ENABLE)
3444                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3445
3446         /* We don't use those on Haswell */
3447         if (!IS_HASWELL(dev)) {
3448                 if (rc6_mode & INTEL_RC6p_ENABLE)
3449                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3450
3451                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3452                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3453         }
3454
3455         intel_print_rc6_info(dev, rc6_mask);
3456
3457         I915_WRITE(GEN6_RC_CONTROL,
3458                    rc6_mask |
3459                    GEN6_RC_CTL_EI_MODE(1) |
3460                    GEN6_RC_CTL_HW_ENABLE);
3461
3462         /* Power down if completely idle for over 50ms */
3463         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3464         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3465
3466         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3467         if (ret)
3468                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3469
3470         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3471         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3472                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3473                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3474                                  (pcu_mbox & 0xff) * 50);
3475                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3476         }
3477
3478         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3479         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3480
3481         gen6_enable_rps_interrupts(dev);
3482
3483         rc6vids = 0;
3484         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3485         if (IS_GEN6(dev) && ret) {
3486                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3487         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3488                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3489                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3490                 rc6vids &= 0xffff00;
3491                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3492                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3493                 if (ret)
3494                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3495         }
3496
3497         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3498 }
3499
3500 void gen6_update_ring_freq(struct drm_device *dev)
3501 {
3502         struct drm_i915_private *dev_priv = dev->dev_private;
3503         int min_freq = 15;
3504         unsigned int gpu_freq;
3505         unsigned int max_ia_freq, min_ring_freq;
3506         int scaling_factor = 180;
3507         struct cpufreq_policy *policy;
3508
3509         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3510
3511         policy = cpufreq_cpu_get(0);
3512         if (policy) {
3513                 max_ia_freq = policy->cpuinfo.max_freq;
3514                 cpufreq_cpu_put(policy);
3515         } else {
3516                 /*
3517                  * Default to measured freq if none found, PCU will ensure we
3518                  * don't go over
3519                  */
3520                 max_ia_freq = tsc_khz;
3521         }
3522
3523         /* Convert from kHz to MHz */
3524         max_ia_freq /= 1000;
3525
3526         min_ring_freq = I915_READ(DCLK) & 0xf;
3527         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3528         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3529
3530         /*
3531          * For each potential GPU frequency, load a ring frequency we'd like
3532          * to use for memory access.  We do this by specifying the IA frequency
3533          * the PCU should use as a reference to determine the ring frequency.
3534          */
3535         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3536              gpu_freq--) {
3537                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3538                 unsigned int ia_freq = 0, ring_freq = 0;
3539
3540                 if (INTEL_INFO(dev)->gen >= 8) {
3541                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3542                         ring_freq = max(min_ring_freq, gpu_freq);
3543                 } else if (IS_HASWELL(dev)) {
3544                         ring_freq = mult_frac(gpu_freq, 5, 4);
3545                         ring_freq = max(min_ring_freq, ring_freq);
3546                         /* leave ia_freq as the default, chosen by cpufreq */
3547                 } else {
3548                         /* On older processors, there is no separate ring
3549                          * clock domain, so in order to boost the bandwidth
3550                          * of the ring, we need to upclock the CPU (ia_freq).
3551                          *
3552                          * For GPU frequencies less than 750MHz,
3553                          * just use the lowest ring freq.
3554                          */
3555                         if (gpu_freq < min_freq)
3556                                 ia_freq = 800;
3557                         else
3558                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3559                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3560                 }
3561
3562                 sandybridge_pcode_write(dev_priv,
3563                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3564                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3565                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3566                                         gpu_freq);
3567         }
3568 }
3569
3570 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3571 {
3572         u32 val, rp0;
3573
3574         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3575
3576         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3577         /* Clamp to max */
3578         rp0 = min_t(u32, rp0, 0xea);
3579
3580         return rp0;
3581 }
3582
3583 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3584 {
3585         u32 val, rpe;
3586
3587         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3588         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3589         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3590         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3591
3592         return rpe;
3593 }
3594
3595 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3596 {
3597         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3598 }
3599
3600 /* Check that the pctx buffer wasn't move under us. */
3601 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3602 {
3603         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3604
3605         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3606                              dev_priv->vlv_pctx->stolen->start);
3607 }
3608
3609 static void valleyview_setup_pctx(struct drm_device *dev)
3610 {
3611         struct drm_i915_private *dev_priv = dev->dev_private;
3612         struct drm_i915_gem_object *pctx;
3613         unsigned long pctx_paddr;
3614         u32 pcbr;
3615         int pctx_size = 24*1024;
3616
3617         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3618
3619         pcbr = I915_READ(VLV_PCBR);
3620         if (pcbr) {
3621                 /* BIOS set it up already, grab the pre-alloc'd space */
3622                 int pcbr_offset;
3623
3624                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3625                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3626                                                                       pcbr_offset,
3627                                                                       I915_GTT_OFFSET_NONE,
3628                                                                       pctx_size);
3629                 goto out;
3630         }
3631
3632         /*
3633          * From the Gunit register HAS:
3634          * The Gfx driver is expected to program this register and ensure
3635          * proper allocation within Gfx stolen memory.  For example, this
3636          * register should be programmed such than the PCBR range does not
3637          * overlap with other ranges, such as the frame buffer, protected
3638          * memory, or any other relevant ranges.
3639          */
3640         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3641         if (!pctx) {
3642                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3643                 return;
3644         }
3645
3646         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3647         I915_WRITE(VLV_PCBR, pctx_paddr);
3648
3649 out:
3650         dev_priv->vlv_pctx = pctx;
3651 }
3652
3653 static void valleyview_cleanup_pctx(struct drm_device *dev)
3654 {
3655         struct drm_i915_private *dev_priv = dev->dev_private;
3656
3657         if (WARN_ON(!dev_priv->vlv_pctx))
3658                 return;
3659
3660         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3661         dev_priv->vlv_pctx = NULL;
3662 }
3663
3664 static void valleyview_enable_rps(struct drm_device *dev)
3665 {
3666         struct drm_i915_private *dev_priv = dev->dev_private;
3667         struct intel_ring_buffer *ring;
3668         u32 gtfifodbg, val, rc6_mode = 0;
3669         int i;
3670
3671         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3672
3673         valleyview_check_pctx(dev_priv);
3674
3675         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3676                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3677                                  gtfifodbg);
3678                 I915_WRITE(GTFIFODBG, gtfifodbg);
3679         }
3680
3681         /* If VLV, Forcewake all wells, else re-direct to regular path */
3682         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3683
3684         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3685         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3686         I915_WRITE(GEN6_RP_UP_EI, 66000);
3687         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3688
3689         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3690
3691         I915_WRITE(GEN6_RP_CONTROL,
3692                    GEN6_RP_MEDIA_TURBO |
3693                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3694                    GEN6_RP_MEDIA_IS_GFX |
3695                    GEN6_RP_ENABLE |
3696                    GEN6_RP_UP_BUSY_AVG |
3697                    GEN6_RP_DOWN_IDLE_CONT);
3698
3699         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3700         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3701         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3702
3703         for_each_ring(ring, dev_priv, i)
3704                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3705
3706         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3707
3708         /* allows RC6 residency counter to work */
3709         I915_WRITE(VLV_COUNTER_CONTROL,
3710                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3711                                       VLV_MEDIA_RC6_COUNT_EN |
3712                                       VLV_RENDER_RC6_COUNT_EN));
3713         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3714                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3715
3716         intel_print_rc6_info(dev, rc6_mode);
3717
3718         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3719
3720         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3721
3722         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3723         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3724
3725         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
3726         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3727                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3728                          dev_priv->rps.cur_freq);
3729
3730         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3731         dev_priv->rps.rp0_freq  = dev_priv->rps.max_freq;
3732         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3733                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3734                          dev_priv->rps.max_freq);
3735
3736         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3737         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3738                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3739                          dev_priv->rps.efficient_freq);
3740
3741         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3742         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3743                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3744                          dev_priv->rps.min_freq);
3745
3746         /* Preserve min/max settings in case of re-init */
3747         if (dev_priv->rps.max_freq_softlimit == 0)
3748                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3749
3750         if (dev_priv->rps.min_freq_softlimit == 0)
3751                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3752
3753         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3754                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3755                          dev_priv->rps.efficient_freq);
3756
3757         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
3758
3759         gen6_enable_rps_interrupts(dev);
3760
3761         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3762 }
3763
3764 void ironlake_teardown_rc6(struct drm_device *dev)
3765 {
3766         struct drm_i915_private *dev_priv = dev->dev_private;
3767
3768         if (dev_priv->ips.renderctx) {
3769                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3770                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3771                 dev_priv->ips.renderctx = NULL;
3772         }
3773
3774         if (dev_priv->ips.pwrctx) {
3775                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3776                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3777                 dev_priv->ips.pwrctx = NULL;
3778         }
3779 }
3780
3781 static void ironlake_disable_rc6(struct drm_device *dev)
3782 {
3783         struct drm_i915_private *dev_priv = dev->dev_private;
3784
3785         if (I915_READ(PWRCTXA)) {
3786                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3787                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3788                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3789                          50);
3790
3791                 I915_WRITE(PWRCTXA, 0);
3792                 POSTING_READ(PWRCTXA);
3793
3794                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3795                 POSTING_READ(RSTDBYCTL);
3796         }
3797 }
3798
3799 static int ironlake_setup_rc6(struct drm_device *dev)
3800 {
3801         struct drm_i915_private *dev_priv = dev->dev_private;
3802
3803         if (dev_priv->ips.renderctx == NULL)
3804                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3805         if (!dev_priv->ips.renderctx)
3806                 return -ENOMEM;
3807
3808         if (dev_priv->ips.pwrctx == NULL)
3809                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3810         if (!dev_priv->ips.pwrctx) {
3811                 ironlake_teardown_rc6(dev);
3812                 return -ENOMEM;
3813         }
3814
3815         return 0;
3816 }
3817
3818 static void ironlake_enable_rc6(struct drm_device *dev)
3819 {
3820         struct drm_i915_private *dev_priv = dev->dev_private;
3821         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3822         bool was_interruptible;
3823         int ret;
3824
3825         /* rc6 disabled by default due to repeated reports of hanging during
3826          * boot and resume.
3827          */
3828         if (!intel_enable_rc6(dev))
3829                 return;
3830
3831         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3832
3833         ret = ironlake_setup_rc6(dev);
3834         if (ret)
3835                 return;
3836
3837         was_interruptible = dev_priv->mm.interruptible;
3838         dev_priv->mm.interruptible = false;
3839
3840         /*
3841          * GPU can automatically power down the render unit if given a page
3842          * to save state.
3843          */
3844         ret = intel_ring_begin(ring, 6);
3845         if (ret) {
3846                 ironlake_teardown_rc6(dev);
3847                 dev_priv->mm.interruptible = was_interruptible;
3848                 return;
3849         }
3850
3851         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3852         intel_ring_emit(ring, MI_SET_CONTEXT);
3853         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3854                         MI_MM_SPACE_GTT |
3855                         MI_SAVE_EXT_STATE_EN |
3856                         MI_RESTORE_EXT_STATE_EN |
3857                         MI_RESTORE_INHIBIT);
3858         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3859         intel_ring_emit(ring, MI_NOOP);
3860         intel_ring_emit(ring, MI_FLUSH);
3861         intel_ring_advance(ring);
3862
3863         /*
3864          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3865          * does an implicit flush, combined with MI_FLUSH above, it should be
3866          * safe to assume that renderctx is valid
3867          */
3868         ret = intel_ring_idle(ring);
3869         dev_priv->mm.interruptible = was_interruptible;
3870         if (ret) {
3871                 DRM_ERROR("failed to enable ironlake power savings\n");
3872                 ironlake_teardown_rc6(dev);
3873                 return;
3874         }
3875
3876         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3877         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3878
3879         intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
3880 }
3881
3882 static unsigned long intel_pxfreq(u32 vidfreq)
3883 {
3884         unsigned long freq;
3885         int div = (vidfreq & 0x3f0000) >> 16;
3886         int post = (vidfreq & 0x3000) >> 12;
3887         int pre = (vidfreq & 0x7);
3888
3889         if (!pre)
3890                 return 0;
3891
3892         freq = ((div * 133333) / ((1<<post) * pre));
3893
3894         return freq;
3895 }
3896
3897 static const struct cparams {
3898         u16 i;
3899         u16 t;
3900         u16 m;
3901         u16 c;
3902 } cparams[] = {
3903         { 1, 1333, 301, 28664 },
3904         { 1, 1066, 294, 24460 },
3905         { 1, 800, 294, 25192 },
3906         { 0, 1333, 276, 27605 },
3907         { 0, 1066, 276, 27605 },
3908         { 0, 800, 231, 23784 },
3909 };
3910
3911 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3912 {
3913         u64 total_count, diff, ret;
3914         u32 count1, count2, count3, m = 0, c = 0;
3915         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3916         int i;
3917
3918         assert_spin_locked(&mchdev_lock);
3919
3920         diff1 = now - dev_priv->ips.last_time1;
3921
3922         /* Prevent division-by-zero if we are asking too fast.
3923          * Also, we don't get interesting results if we are polling
3924          * faster than once in 10ms, so just return the saved value
3925          * in such cases.
3926          */
3927         if (diff1 <= 10)
3928                 return dev_priv->ips.chipset_power;
3929
3930         count1 = I915_READ(DMIEC);
3931         count2 = I915_READ(DDREC);
3932         count3 = I915_READ(CSIEC);
3933
3934         total_count = count1 + count2 + count3;
3935
3936         /* FIXME: handle per-counter overflow */
3937         if (total_count < dev_priv->ips.last_count1) {
3938                 diff = ~0UL - dev_priv->ips.last_count1;
3939                 diff += total_count;
3940         } else {
3941                 diff = total_count - dev_priv->ips.last_count1;
3942         }
3943
3944         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3945                 if (cparams[i].i == dev_priv->ips.c_m &&
3946                     cparams[i].t == dev_priv->ips.r_t) {
3947                         m = cparams[i].m;
3948                         c = cparams[i].c;
3949                         break;
3950                 }
3951         }
3952
3953         diff = div_u64(diff, diff1);
3954         ret = ((m * diff) + c);
3955         ret = div_u64(ret, 10);
3956
3957         dev_priv->ips.last_count1 = total_count;
3958         dev_priv->ips.last_time1 = now;
3959
3960         dev_priv->ips.chipset_power = ret;
3961
3962         return ret;
3963 }
3964
3965 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3966 {
3967         struct drm_device *dev = dev_priv->dev;
3968         unsigned long val;
3969
3970         if (INTEL_INFO(dev)->gen != 5)
3971                 return 0;
3972
3973         spin_lock_irq(&mchdev_lock);
3974
3975         val = __i915_chipset_val(dev_priv);
3976
3977         spin_unlock_irq(&mchdev_lock);
3978
3979         return val;
3980 }
3981
3982 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3983 {
3984         unsigned long m, x, b;
3985         u32 tsfs;
3986
3987         tsfs = I915_READ(TSFS);
3988
3989         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3990         x = I915_READ8(TR1);
3991
3992         b = tsfs & TSFS_INTR_MASK;
3993
3994         return ((m * x) / 127) - b;
3995 }
3996
3997 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3998 {
3999         struct drm_device *dev = dev_priv->dev;
4000         static const struct v_table {
4001                 u16 vd; /* in .1 mil */
4002                 u16 vm; /* in .1 mil */
4003         } v_table[] = {
4004                 { 0, 0, },
4005                 { 375, 0, },
4006                 { 500, 0, },
4007                 { 625, 0, },
4008                 { 750, 0, },
4009                 { 875, 0, },
4010                 { 1000, 0, },
4011                 { 1125, 0, },
4012                 { 4125, 3000, },
4013                 { 4125, 3000, },
4014                 { 4125, 3000, },
4015                 { 4125, 3000, },
4016                 { 4125, 3000, },
4017                 { 4125, 3000, },
4018                 { 4125, 3000, },
4019                 { 4125, 3000, },
4020                 { 4125, 3000, },
4021                 { 4125, 3000, },
4022                 { 4125, 3000, },
4023                 { 4125, 3000, },
4024                 { 4125, 3000, },
4025                 { 4125, 3000, },
4026                 { 4125, 3000, },
4027                 { 4125, 3000, },
4028                 { 4125, 3000, },
4029                 { 4125, 3000, },
4030                 { 4125, 3000, },
4031                 { 4125, 3000, },
4032                 { 4125, 3000, },
4033                 { 4125, 3000, },
4034                 { 4125, 3000, },
4035                 { 4125, 3000, },
4036                 { 4250, 3125, },
4037                 { 4375, 3250, },
4038                 { 4500, 3375, },
4039                 { 4625, 3500, },
4040                 { 4750, 3625, },
4041                 { 4875, 3750, },
4042                 { 5000, 3875, },
4043                 { 5125, 4000, },
4044                 { 5250, 4125, },
4045                 { 5375, 4250, },
4046                 { 5500, 4375, },
4047                 { 5625, 4500, },
4048                 { 5750, 4625, },
4049                 { 5875, 4750, },
4050                 { 6000, 4875, },
4051                 { 6125, 5000, },
4052                 { 6250, 5125, },
4053                 { 6375, 5250, },
4054                 { 6500, 5375, },
4055                 { 6625, 5500, },
4056                 { 6750, 5625, },
4057                 { 6875, 5750, },
4058                 { 7000, 5875, },
4059                 { 7125, 6000, },
4060                 { 7250, 6125, },
4061                 { 7375, 6250, },
4062                 { 7500, 6375, },
4063                 { 7625, 6500, },
4064                 { 7750, 6625, },
4065                 { 7875, 6750, },
4066                 { 8000, 6875, },
4067                 { 8125, 7000, },
4068                 { 8250, 7125, },
4069                 { 8375, 7250, },
4070                 { 8500, 7375, },
4071                 { 8625, 7500, },
4072                 { 8750, 7625, },
4073                 { 8875, 7750, },
4074                 { 9000, 7875, },
4075                 { 9125, 8000, },
4076                 { 9250, 8125, },
4077                 { 9375, 8250, },
4078                 { 9500, 8375, },
4079                 { 9625, 8500, },
4080                 { 9750, 8625, },
4081                 { 9875, 8750, },
4082                 { 10000, 8875, },
4083                 { 10125, 9000, },
4084                 { 10250, 9125, },
4085                 { 10375, 9250, },
4086                 { 10500, 9375, },
4087                 { 10625, 9500, },
4088                 { 10750, 9625, },
4089                 { 10875, 9750, },
4090                 { 11000, 9875, },
4091                 { 11125, 10000, },
4092                 { 11250, 10125, },
4093                 { 11375, 10250, },
4094                 { 11500, 10375, },
4095                 { 11625, 10500, },
4096                 { 11750, 10625, },
4097                 { 11875, 10750, },
4098                 { 12000, 10875, },
4099                 { 12125, 11000, },
4100                 { 12250, 11125, },
4101                 { 12375, 11250, },
4102                 { 12500, 11375, },
4103                 { 12625, 11500, },
4104                 { 12750, 11625, },
4105                 { 12875, 11750, },
4106                 { 13000, 11875, },
4107                 { 13125, 12000, },
4108                 { 13250, 12125, },
4109                 { 13375, 12250, },
4110                 { 13500, 12375, },
4111                 { 13625, 12500, },
4112                 { 13750, 12625, },
4113                 { 13875, 12750, },
4114                 { 14000, 12875, },
4115                 { 14125, 13000, },
4116                 { 14250, 13125, },
4117                 { 14375, 13250, },
4118                 { 14500, 13375, },
4119                 { 14625, 13500, },
4120                 { 14750, 13625, },
4121                 { 14875, 13750, },
4122                 { 15000, 13875, },
4123                 { 15125, 14000, },
4124                 { 15250, 14125, },
4125                 { 15375, 14250, },
4126                 { 15500, 14375, },
4127                 { 15625, 14500, },
4128                 { 15750, 14625, },
4129                 { 15875, 14750, },
4130                 { 16000, 14875, },
4131                 { 16125, 15000, },
4132         };
4133         if (INTEL_INFO(dev)->is_mobile)
4134                 return v_table[pxvid].vm;
4135         else
4136                 return v_table[pxvid].vd;
4137 }
4138
4139 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4140 {
4141         struct timespec now, diff1;
4142         u64 diff;
4143         unsigned long diffms;
4144         u32 count;
4145
4146         assert_spin_locked(&mchdev_lock);
4147
4148         getrawmonotonic(&now);
4149         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4150
4151         /* Don't divide by 0 */
4152         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4153         if (!diffms)
4154                 return;
4155
4156         count = I915_READ(GFXEC);
4157
4158         if (count < dev_priv->ips.last_count2) {
4159                 diff = ~0UL - dev_priv->ips.last_count2;
4160                 diff += count;
4161         } else {
4162                 diff = count - dev_priv->ips.last_count2;
4163         }
4164
4165         dev_priv->ips.last_count2 = count;
4166         dev_priv->ips.last_time2 = now;
4167
4168         /* More magic constants... */
4169         diff = diff * 1181;
4170         diff = div_u64(diff, diffms * 10);
4171         dev_priv->ips.gfx_power = diff;
4172 }
4173
4174 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4175 {
4176         struct drm_device *dev = dev_priv->dev;
4177
4178         if (INTEL_INFO(dev)->gen != 5)
4179                 return;
4180
4181         spin_lock_irq(&mchdev_lock);
4182
4183         __i915_update_gfx_val(dev_priv);
4184
4185         spin_unlock_irq(&mchdev_lock);
4186 }
4187
4188 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4189 {
4190         unsigned long t, corr, state1, corr2, state2;
4191         u32 pxvid, ext_v;
4192
4193         assert_spin_locked(&mchdev_lock);
4194
4195         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4196         pxvid = (pxvid >> 24) & 0x7f;
4197         ext_v = pvid_to_extvid(dev_priv, pxvid);
4198
4199         state1 = ext_v;
4200
4201         t = i915_mch_val(dev_priv);
4202
4203         /* Revel in the empirically derived constants */
4204
4205         /* Correction factor in 1/100000 units */
4206         if (t > 80)
4207                 corr = ((t * 2349) + 135940);
4208         else if (t >= 50)
4209                 corr = ((t * 964) + 29317);
4210         else /* < 50 */
4211                 corr = ((t * 301) + 1004);
4212
4213         corr = corr * ((150142 * state1) / 10000 - 78642);
4214         corr /= 100000;
4215         corr2 = (corr * dev_priv->ips.corr);
4216
4217         state2 = (corr2 * state1) / 10000;
4218         state2 /= 100; /* convert to mW */
4219
4220         __i915_update_gfx_val(dev_priv);
4221
4222         return dev_priv->ips.gfx_power + state2;
4223 }
4224
4225 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4226 {
4227         struct drm_device *dev = dev_priv->dev;
4228         unsigned long val;
4229
4230         if (INTEL_INFO(dev)->gen != 5)
4231                 return 0;
4232
4233         spin_lock_irq(&mchdev_lock);
4234
4235         val = __i915_gfx_val(dev_priv);
4236
4237         spin_unlock_irq(&mchdev_lock);
4238
4239         return val;
4240 }
4241
4242 /**
4243  * i915_read_mch_val - return value for IPS use
4244  *
4245  * Calculate and return a value for the IPS driver to use when deciding whether
4246  * we have thermal and power headroom to increase CPU or GPU power budget.
4247  */
4248 unsigned long i915_read_mch_val(void)
4249 {
4250         struct drm_i915_private *dev_priv;
4251         unsigned long chipset_val, graphics_val, ret = 0;
4252
4253         spin_lock_irq(&mchdev_lock);
4254         if (!i915_mch_dev)
4255                 goto out_unlock;
4256         dev_priv = i915_mch_dev;
4257
4258         chipset_val = __i915_chipset_val(dev_priv);
4259         graphics_val = __i915_gfx_val(dev_priv);
4260
4261         ret = chipset_val + graphics_val;
4262
4263 out_unlock:
4264         spin_unlock_irq(&mchdev_lock);
4265
4266         return ret;
4267 }
4268 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4269
4270 /**
4271  * i915_gpu_raise - raise GPU frequency limit
4272  *
4273  * Raise the limit; IPS indicates we have thermal headroom.
4274  */
4275 bool i915_gpu_raise(void)
4276 {
4277         struct drm_i915_private *dev_priv;
4278         bool ret = true;
4279
4280         spin_lock_irq(&mchdev_lock);
4281         if (!i915_mch_dev) {
4282                 ret = false;
4283                 goto out_unlock;
4284         }
4285         dev_priv = i915_mch_dev;
4286
4287         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4288                 dev_priv->ips.max_delay--;
4289
4290 out_unlock:
4291         spin_unlock_irq(&mchdev_lock);
4292
4293         return ret;
4294 }
4295 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4296
4297 /**
4298  * i915_gpu_lower - lower GPU frequency limit
4299  *
4300  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4301  * frequency maximum.
4302  */
4303 bool i915_gpu_lower(void)
4304 {
4305         struct drm_i915_private *dev_priv;
4306         bool ret = true;
4307
4308         spin_lock_irq(&mchdev_lock);
4309         if (!i915_mch_dev) {
4310                 ret = false;
4311                 goto out_unlock;
4312         }
4313         dev_priv = i915_mch_dev;
4314
4315         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4316                 dev_priv->ips.max_delay++;
4317
4318 out_unlock:
4319         spin_unlock_irq(&mchdev_lock);
4320
4321         return ret;
4322 }
4323 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4324
4325 /**
4326  * i915_gpu_busy - indicate GPU business to IPS
4327  *
4328  * Tell the IPS driver whether or not the GPU is busy.
4329  */
4330 bool i915_gpu_busy(void)
4331 {
4332         struct drm_i915_private *dev_priv;
4333         struct intel_ring_buffer *ring;
4334         bool ret = false;
4335         int i;
4336
4337         spin_lock_irq(&mchdev_lock);
4338         if (!i915_mch_dev)
4339                 goto out_unlock;
4340         dev_priv = i915_mch_dev;
4341
4342         for_each_ring(ring, dev_priv, i)
4343                 ret |= !list_empty(&ring->request_list);
4344
4345 out_unlock:
4346         spin_unlock_irq(&mchdev_lock);
4347
4348         return ret;
4349 }
4350 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4351
4352 /**
4353  * i915_gpu_turbo_disable - disable graphics turbo
4354  *
4355  * Disable graphics turbo by resetting the max frequency and setting the
4356  * current frequency to the default.
4357  */
4358 bool i915_gpu_turbo_disable(void)
4359 {
4360         struct drm_i915_private *dev_priv;
4361         bool ret = true;
4362
4363         spin_lock_irq(&mchdev_lock);
4364         if (!i915_mch_dev) {
4365                 ret = false;
4366                 goto out_unlock;
4367         }
4368         dev_priv = i915_mch_dev;
4369
4370         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4371
4372         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4373                 ret = false;
4374
4375 out_unlock:
4376         spin_unlock_irq(&mchdev_lock);
4377
4378         return ret;
4379 }
4380 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4381
4382 /**
4383  * Tells the intel_ips driver that the i915 driver is now loaded, if
4384  * IPS got loaded first.
4385  *
4386  * This awkward dance is so that neither module has to depend on the
4387  * other in order for IPS to do the appropriate communication of
4388  * GPU turbo limits to i915.
4389  */
4390 static void
4391 ips_ping_for_i915_load(void)
4392 {
4393         void (*link)(void);
4394
4395         link = symbol_get(ips_link_to_i915_driver);
4396         if (link) {
4397                 link();
4398                 symbol_put(ips_link_to_i915_driver);
4399         }
4400 }
4401
4402 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4403 {
4404         /* We only register the i915 ips part with intel-ips once everything is
4405          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4406         spin_lock_irq(&mchdev_lock);
4407         i915_mch_dev = dev_priv;
4408         spin_unlock_irq(&mchdev_lock);
4409
4410         ips_ping_for_i915_load();
4411 }
4412
4413 void intel_gpu_ips_teardown(void)
4414 {
4415         spin_lock_irq(&mchdev_lock);
4416         i915_mch_dev = NULL;
4417         spin_unlock_irq(&mchdev_lock);
4418 }
4419
4420 static void intel_init_emon(struct drm_device *dev)
4421 {
4422         struct drm_i915_private *dev_priv = dev->dev_private;
4423         u32 lcfuse;
4424         u8 pxw[16];
4425         int i;
4426
4427         /* Disable to program */
4428         I915_WRITE(ECR, 0);
4429         POSTING_READ(ECR);
4430
4431         /* Program energy weights for various events */
4432         I915_WRITE(SDEW, 0x15040d00);
4433         I915_WRITE(CSIEW0, 0x007f0000);
4434         I915_WRITE(CSIEW1, 0x1e220004);
4435         I915_WRITE(CSIEW2, 0x04000004);
4436
4437         for (i = 0; i < 5; i++)
4438                 I915_WRITE(PEW + (i * 4), 0);
4439         for (i = 0; i < 3; i++)
4440                 I915_WRITE(DEW + (i * 4), 0);
4441
4442         /* Program P-state weights to account for frequency power adjustment */
4443         for (i = 0; i < 16; i++) {
4444                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4445                 unsigned long freq = intel_pxfreq(pxvidfreq);
4446                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4447                         PXVFREQ_PX_SHIFT;
4448                 unsigned long val;
4449
4450                 val = vid * vid;
4451                 val *= (freq / 1000);
4452                 val *= 255;
4453                 val /= (127*127*900);
4454                 if (val > 0xff)
4455                         DRM_ERROR("bad pxval: %ld\n", val);
4456                 pxw[i] = val;
4457         }
4458         /* Render standby states get 0 weight */
4459         pxw[14] = 0;
4460         pxw[15] = 0;
4461
4462         for (i = 0; i < 4; i++) {
4463                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4464                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4465                 I915_WRITE(PXW + (i * 4), val);
4466         }
4467
4468         /* Adjust magic regs to magic values (more experimental results) */
4469         I915_WRITE(OGW0, 0);
4470         I915_WRITE(OGW1, 0);
4471         I915_WRITE(EG0, 0x00007f00);
4472         I915_WRITE(EG1, 0x0000000e);
4473         I915_WRITE(EG2, 0x000e0000);
4474         I915_WRITE(EG3, 0x68000300);
4475         I915_WRITE(EG4, 0x42000000);
4476         I915_WRITE(EG5, 0x00140031);
4477         I915_WRITE(EG6, 0);
4478         I915_WRITE(EG7, 0);
4479
4480         for (i = 0; i < 8; i++)
4481                 I915_WRITE(PXWL + (i * 4), 0);
4482
4483         /* Enable PMON + select events */
4484         I915_WRITE(ECR, 0x80000019);
4485
4486         lcfuse = I915_READ(LCFUSE02);
4487
4488         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4489 }
4490
4491 void intel_init_gt_powersave(struct drm_device *dev)
4492 {
4493         if (IS_VALLEYVIEW(dev))
4494                 valleyview_setup_pctx(dev);
4495 }
4496
4497 void intel_cleanup_gt_powersave(struct drm_device *dev)
4498 {
4499         if (IS_VALLEYVIEW(dev))
4500                 valleyview_cleanup_pctx(dev);
4501 }
4502
4503 void intel_disable_gt_powersave(struct drm_device *dev)
4504 {
4505         struct drm_i915_private *dev_priv = dev->dev_private;
4506
4507         /* Interrupts should be disabled already to avoid re-arming. */
4508         WARN_ON(dev->irq_enabled);
4509
4510         if (IS_IRONLAKE_M(dev)) {
4511                 ironlake_disable_drps(dev);
4512                 ironlake_disable_rc6(dev);
4513         } else if (INTEL_INFO(dev)->gen >= 6) {
4514                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4515                 cancel_work_sync(&dev_priv->rps.work);
4516                 mutex_lock(&dev_priv->rps.hw_lock);
4517                 if (IS_VALLEYVIEW(dev))
4518                         valleyview_disable_rps(dev);
4519                 else
4520                         gen6_disable_rps(dev);
4521                 dev_priv->rps.enabled = false;
4522                 mutex_unlock(&dev_priv->rps.hw_lock);
4523         }
4524 }
4525
4526 static void intel_gen6_powersave_work(struct work_struct *work)
4527 {
4528         struct drm_i915_private *dev_priv =
4529                 container_of(work, struct drm_i915_private,
4530                              rps.delayed_resume_work.work);
4531         struct drm_device *dev = dev_priv->dev;
4532
4533         mutex_lock(&dev_priv->rps.hw_lock);
4534
4535         if (IS_VALLEYVIEW(dev)) {
4536                 valleyview_enable_rps(dev);
4537         } else if (IS_BROADWELL(dev)) {
4538                 gen8_enable_rps(dev);
4539                 gen6_update_ring_freq(dev);
4540         } else {
4541                 gen6_enable_rps(dev);
4542                 gen6_update_ring_freq(dev);
4543         }
4544         dev_priv->rps.enabled = true;
4545         mutex_unlock(&dev_priv->rps.hw_lock);
4546 }
4547
4548 void intel_enable_gt_powersave(struct drm_device *dev)
4549 {
4550         struct drm_i915_private *dev_priv = dev->dev_private;
4551
4552         if (IS_IRONLAKE_M(dev)) {
4553                 ironlake_enable_drps(dev);
4554                 ironlake_enable_rc6(dev);
4555                 intel_init_emon(dev);
4556         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4557                 /*
4558                  * PCU communication is slow and this doesn't need to be
4559                  * done at any specific time, so do this out of our fast path
4560                  * to make resume and init faster.
4561                  */
4562                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4563                                       round_jiffies_up_relative(HZ));
4564         }
4565 }
4566
4567 static void ibx_init_clock_gating(struct drm_device *dev)
4568 {
4569         struct drm_i915_private *dev_priv = dev->dev_private;
4570
4571         /*
4572          * On Ibex Peak and Cougar Point, we need to disable clock
4573          * gating for the panel power sequencer or it will fail to
4574          * start up when no ports are active.
4575          */
4576         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4577 }
4578
4579 static void g4x_disable_trickle_feed(struct drm_device *dev)
4580 {
4581         struct drm_i915_private *dev_priv = dev->dev_private;
4582         int pipe;
4583
4584         for_each_pipe(pipe) {
4585                 I915_WRITE(DSPCNTR(pipe),
4586                            I915_READ(DSPCNTR(pipe)) |
4587                            DISPPLANE_TRICKLE_FEED_DISABLE);
4588                 intel_flush_primary_plane(dev_priv, pipe);
4589         }
4590 }
4591
4592 static void ilk_init_lp_watermarks(struct drm_device *dev)
4593 {
4594         struct drm_i915_private *dev_priv = dev->dev_private;
4595
4596         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4597         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4598         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4599
4600         /*
4601          * Don't touch WM1S_LP_EN here.
4602          * Doing so could cause underruns.
4603          */
4604 }
4605
4606 static void ironlake_init_clock_gating(struct drm_device *dev)
4607 {
4608         struct drm_i915_private *dev_priv = dev->dev_private;
4609         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4610
4611         /*
4612          * Required for FBC
4613          * WaFbcDisableDpfcClockGating:ilk
4614          */
4615         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4616                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4617                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4618
4619         I915_WRITE(PCH_3DCGDIS0,
4620                    MARIUNIT_CLOCK_GATE_DISABLE |
4621                    SVSMUNIT_CLOCK_GATE_DISABLE);
4622         I915_WRITE(PCH_3DCGDIS1,
4623                    VFMUNIT_CLOCK_GATE_DISABLE);
4624
4625         /*
4626          * According to the spec the following bits should be set in
4627          * order to enable memory self-refresh
4628          * The bit 22/21 of 0x42004
4629          * The bit 5 of 0x42020
4630          * The bit 15 of 0x45000
4631          */
4632         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4633                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4634                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4635         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4636         I915_WRITE(DISP_ARB_CTL,
4637                    (I915_READ(DISP_ARB_CTL) |
4638                     DISP_FBC_WM_DIS));
4639
4640         ilk_init_lp_watermarks(dev);
4641
4642         /*
4643          * Based on the document from hardware guys the following bits
4644          * should be set unconditionally in order to enable FBC.
4645          * The bit 22 of 0x42000
4646          * The bit 22 of 0x42004
4647          * The bit 7,8,9 of 0x42020.
4648          */
4649         if (IS_IRONLAKE_M(dev)) {
4650                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4651                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4652                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4653                            ILK_FBCQ_DIS);
4654                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4655                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4656                            ILK_DPARB_GATE);
4657         }
4658
4659         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4660
4661         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4662                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4663                    ILK_ELPIN_409_SELECT);
4664         I915_WRITE(_3D_CHICKEN2,
4665                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4666                    _3D_CHICKEN2_WM_READ_PIPELINED);
4667
4668         /* WaDisableRenderCachePipelinedFlush:ilk */
4669         I915_WRITE(CACHE_MODE_0,
4670                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4671
4672         /* WaDisable_RenderCache_OperationalFlush:ilk */
4673         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4674
4675         g4x_disable_trickle_feed(dev);
4676
4677         ibx_init_clock_gating(dev);
4678 }
4679
4680 static void cpt_init_clock_gating(struct drm_device *dev)
4681 {
4682         struct drm_i915_private *dev_priv = dev->dev_private;
4683         int pipe;
4684         uint32_t val;
4685
4686         /*
4687          * On Ibex Peak and Cougar Point, we need to disable clock
4688          * gating for the panel power sequencer or it will fail to
4689          * start up when no ports are active.
4690          */
4691         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4692                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4693                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
4694         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4695                    DPLS_EDP_PPS_FIX_DIS);
4696         /* The below fixes the weird display corruption, a few pixels shifted
4697          * downward, on (only) LVDS of some HP laptops with IVY.
4698          */
4699         for_each_pipe(pipe) {
4700                 val = I915_READ(TRANS_CHICKEN2(pipe));
4701                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4702                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4703                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4704                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4705                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4706                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4707                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4708                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4709         }
4710         /* WADP0ClockGatingDisable */
4711         for_each_pipe(pipe) {
4712                 I915_WRITE(TRANS_CHICKEN1(pipe),
4713                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4714         }
4715 }
4716
4717 static void gen6_check_mch_setup(struct drm_device *dev)
4718 {
4719         struct drm_i915_private *dev_priv = dev->dev_private;
4720         uint32_t tmp;
4721
4722         tmp = I915_READ(MCH_SSKPD);
4723         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4724                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4725                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4726                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4727         }
4728 }
4729
4730 static void gen6_init_clock_gating(struct drm_device *dev)
4731 {
4732         struct drm_i915_private *dev_priv = dev->dev_private;
4733         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4734
4735         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4736
4737         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4738                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4739                    ILK_ELPIN_409_SELECT);
4740
4741         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4742         I915_WRITE(_3D_CHICKEN,
4743                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4744
4745         /* WaSetupGtModeTdRowDispatch:snb */
4746         if (IS_SNB_GT1(dev))
4747                 I915_WRITE(GEN6_GT_MODE,
4748                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4749
4750         /* WaDisable_RenderCache_OperationalFlush:snb */
4751         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4752
4753         /*
4754          * BSpec recoomends 8x4 when MSAA is used,
4755          * however in practice 16x4 seems fastest.
4756          *
4757          * Note that PS/WM thread counts depend on the WIZ hashing
4758          * disable bit, which we don't touch here, but it's good
4759          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4760          */
4761         I915_WRITE(GEN6_GT_MODE,
4762                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4763
4764         ilk_init_lp_watermarks(dev);
4765
4766         I915_WRITE(CACHE_MODE_0,
4767                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4768
4769         I915_WRITE(GEN6_UCGCTL1,
4770                    I915_READ(GEN6_UCGCTL1) |
4771                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4772                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4773
4774         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4775          * gating disable must be set.  Failure to set it results in
4776          * flickering pixels due to Z write ordering failures after
4777          * some amount of runtime in the Mesa "fire" demo, and Unigine
4778          * Sanctuary and Tropics, and apparently anything else with
4779          * alpha test or pixel discard.
4780          *
4781          * According to the spec, bit 11 (RCCUNIT) must also be set,
4782          * but we didn't debug actual testcases to find it out.
4783          *
4784          * WaDisableRCCUnitClockGating:snb
4785          * WaDisableRCPBUnitClockGating:snb
4786          */
4787         I915_WRITE(GEN6_UCGCTL2,
4788                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4789                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4790
4791         /* WaStripsFansDisableFastClipPerformanceFix:snb */
4792         I915_WRITE(_3D_CHICKEN3,
4793                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
4794
4795         /*
4796          * Bspec says:
4797          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4798          * 3DSTATE_SF number of SF output attributes is more than 16."
4799          */
4800         I915_WRITE(_3D_CHICKEN3,
4801                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
4802
4803         /*
4804          * According to the spec the following bits should be
4805          * set in order to enable memory self-refresh and fbc:
4806          * The bit21 and bit22 of 0x42000
4807          * The bit21 and bit22 of 0x42004
4808          * The bit5 and bit7 of 0x42020
4809          * The bit14 of 0x70180
4810          * The bit14 of 0x71180
4811          *
4812          * WaFbcAsynchFlipDisableFbcQueue:snb
4813          */
4814         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4815                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4816                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4817         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4818                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4819                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4820         I915_WRITE(ILK_DSPCLK_GATE_D,
4821                    I915_READ(ILK_DSPCLK_GATE_D) |
4822                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4823                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4824
4825         g4x_disable_trickle_feed(dev);
4826
4827         cpt_init_clock_gating(dev);
4828
4829         gen6_check_mch_setup(dev);
4830 }
4831
4832 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4833 {
4834         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4835
4836         /*
4837          * WaVSThreadDispatchOverride:ivb,vlv
4838          *
4839          * This actually overrides the dispatch
4840          * mode for all thread types.
4841          */
4842         reg &= ~GEN7_FF_SCHED_MASK;
4843         reg |= GEN7_FF_TS_SCHED_HW;
4844         reg |= GEN7_FF_VS_SCHED_HW;
4845         reg |= GEN7_FF_DS_SCHED_HW;
4846
4847         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4848 }
4849
4850 static void lpt_init_clock_gating(struct drm_device *dev)
4851 {
4852         struct drm_i915_private *dev_priv = dev->dev_private;
4853
4854         /*
4855          * TODO: this bit should only be enabled when really needed, then
4856          * disabled when not needed anymore in order to save power.
4857          */
4858         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4859                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4860                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4861                            PCH_LP_PARTITION_LEVEL_DISABLE);
4862
4863         /* WADPOClockGatingDisable:hsw */
4864         I915_WRITE(_TRANSA_CHICKEN1,
4865                    I915_READ(_TRANSA_CHICKEN1) |
4866                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4867 }
4868
4869 static void lpt_suspend_hw(struct drm_device *dev)
4870 {
4871         struct drm_i915_private *dev_priv = dev->dev_private;
4872
4873         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4874                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4875
4876                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4877                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4878         }
4879 }
4880
4881 static void gen8_init_clock_gating(struct drm_device *dev)
4882 {
4883         struct drm_i915_private *dev_priv = dev->dev_private;
4884         enum pipe pipe;
4885
4886         I915_WRITE(WM3_LP_ILK, 0);
4887         I915_WRITE(WM2_LP_ILK, 0);
4888         I915_WRITE(WM1_LP_ILK, 0);
4889
4890         /* FIXME(BDW): Check all the w/a, some might only apply to
4891          * pre-production hw. */
4892
4893         /* WaDisablePartialInstShootdown:bdw */
4894         I915_WRITE(GEN8_ROW_CHICKEN,
4895                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
4896
4897         /* WaDisableThreadStallDopClockGating:bdw */
4898         /* FIXME: Unclear whether we really need this on production bdw. */
4899         I915_WRITE(GEN8_ROW_CHICKEN,
4900                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
4901
4902         /*
4903          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
4904          * pre-production hardware
4905          */
4906         I915_WRITE(HALF_SLICE_CHICKEN3,
4907                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
4908         I915_WRITE(HALF_SLICE_CHICKEN3,
4909                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4910         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4911
4912         I915_WRITE(_3D_CHICKEN3,
4913                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4914
4915         I915_WRITE(COMMON_SLICE_CHICKEN2,
4916                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4917
4918         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4919                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4920
4921         /* WaSwitchSolVfFArbitrationPriority:bdw */
4922         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4923
4924         /* WaPsrDPAMaskVBlankInSRD:bdw */
4925         I915_WRITE(CHICKEN_PAR1_1,
4926                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4927
4928         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
4929         for_each_pipe(pipe) {
4930                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
4931                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
4932                            BDW_DPRS_MASK_VBLANK_SRD);
4933         }
4934
4935         /* Use Force Non-Coherent whenever executing a 3D context. This is a
4936          * workaround for for a possible hang in the unlikely event a TLB
4937          * invalidation occurs during a PSD flush.
4938          */
4939         I915_WRITE(HDC_CHICKEN0,
4940                    I915_READ(HDC_CHICKEN0) |
4941                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
4942
4943         /* WaVSRefCountFullforceMissDisable:bdw */
4944         /* WaDSRefCountFullforceMissDisable:bdw */
4945         I915_WRITE(GEN7_FF_THREAD_MODE,
4946                    I915_READ(GEN7_FF_THREAD_MODE) &
4947                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
4948
4949         /*
4950          * BSpec recommends 8x4 when MSAA is used,
4951          * however in practice 16x4 seems fastest.
4952          *
4953          * Note that PS/WM thread counts depend on the WIZ hashing
4954          * disable bit, which we don't touch here, but it's good
4955          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4956          */
4957         I915_WRITE(GEN7_GT_MODE,
4958                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4959
4960         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
4961                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
4962
4963         /* WaDisableSDEUnitClockGating:bdw */
4964         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
4965                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
4966
4967         /* Wa4x4STCOptimizationDisable:bdw */
4968         I915_WRITE(CACHE_MODE_1,
4969                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
4970 }
4971
4972 static void haswell_init_clock_gating(struct drm_device *dev)
4973 {
4974         struct drm_i915_private *dev_priv = dev->dev_private;
4975
4976         ilk_init_lp_watermarks(dev);
4977
4978         /* L3 caching of data atomics doesn't work -- disable it. */
4979         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4980         I915_WRITE(HSW_ROW_CHICKEN3,
4981                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4982
4983         /* This is required by WaCatErrorRejectionIssue:hsw */
4984         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4985                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4986                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4987
4988         /* WaVSRefCountFullforceMissDisable:hsw */
4989         I915_WRITE(GEN7_FF_THREAD_MODE,
4990                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
4991
4992         /* WaDisable_RenderCache_OperationalFlush:hsw */
4993         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4994
4995         /* enable HiZ Raw Stall Optimization */
4996         I915_WRITE(CACHE_MODE_0_GEN7,
4997                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
4998
4999         /* WaDisable4x2SubspanOptimization:hsw */
5000         I915_WRITE(CACHE_MODE_1,
5001                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5002
5003         /*
5004          * BSpec recommends 8x4 when MSAA is used,
5005          * however in practice 16x4 seems fastest.
5006          *
5007          * Note that PS/WM thread counts depend on the WIZ hashing
5008          * disable bit, which we don't touch here, but it's good
5009          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5010          */
5011         I915_WRITE(GEN7_GT_MODE,
5012                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5013
5014         /* WaSwitchSolVfFArbitrationPriority:hsw */
5015         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5016
5017         /* WaRsPkgCStateDisplayPMReq:hsw */
5018         I915_WRITE(CHICKEN_PAR1_1,
5019                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5020
5021         lpt_init_clock_gating(dev);
5022 }
5023
5024 static void ivybridge_init_clock_gating(struct drm_device *dev)
5025 {
5026         struct drm_i915_private *dev_priv = dev->dev_private;
5027         uint32_t snpcr;
5028
5029         ilk_init_lp_watermarks(dev);
5030
5031         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5032
5033         /* WaDisableEarlyCull:ivb */
5034         I915_WRITE(_3D_CHICKEN3,
5035                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5036
5037         /* WaDisableBackToBackFlipFix:ivb */
5038         I915_WRITE(IVB_CHICKEN3,
5039                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5040                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5041
5042         /* WaDisablePSDDualDispatchEnable:ivb */
5043         if (IS_IVB_GT1(dev))
5044                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5045                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5046
5047         /* WaDisable_RenderCache_OperationalFlush:ivb */
5048         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5049
5050         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5051         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5052                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5053
5054         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5055         I915_WRITE(GEN7_L3CNTLREG1,
5056                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5057         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5058                    GEN7_WA_L3_CHICKEN_MODE);
5059         if (IS_IVB_GT1(dev))
5060                 I915_WRITE(GEN7_ROW_CHICKEN2,
5061                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5062         else {
5063                 /* must write both registers */
5064                 I915_WRITE(GEN7_ROW_CHICKEN2,
5065                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5066                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5067                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5068         }
5069
5070         /* WaForceL3Serialization:ivb */
5071         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5072                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5073
5074         /*
5075          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5076          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5077          */
5078         I915_WRITE(GEN6_UCGCTL2,
5079                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5080
5081         /* This is required by WaCatErrorRejectionIssue:ivb */
5082         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5083                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5084                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5085
5086         g4x_disable_trickle_feed(dev);
5087
5088         gen7_setup_fixed_func_scheduler(dev_priv);
5089
5090         if (0) { /* causes HiZ corruption on ivb:gt1 */
5091                 /* enable HiZ Raw Stall Optimization */
5092                 I915_WRITE(CACHE_MODE_0_GEN7,
5093                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5094         }
5095
5096         /* WaDisable4x2SubspanOptimization:ivb */
5097         I915_WRITE(CACHE_MODE_1,
5098                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5099
5100         /*
5101          * BSpec recommends 8x4 when MSAA is used,
5102          * however in practice 16x4 seems fastest.
5103          *
5104          * Note that PS/WM thread counts depend on the WIZ hashing
5105          * disable bit, which we don't touch here, but it's good
5106          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5107          */
5108         I915_WRITE(GEN7_GT_MODE,
5109                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5110
5111         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5112         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5113         snpcr |= GEN6_MBC_SNPCR_MED;
5114         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5115
5116         if (!HAS_PCH_NOP(dev))
5117                 cpt_init_clock_gating(dev);
5118
5119         gen6_check_mch_setup(dev);
5120 }
5121
5122 static void valleyview_init_clock_gating(struct drm_device *dev)
5123 {
5124         struct drm_i915_private *dev_priv = dev->dev_private;
5125         u32 val;
5126
5127         mutex_lock(&dev_priv->rps.hw_lock);
5128         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5129         mutex_unlock(&dev_priv->rps.hw_lock);
5130         switch ((val >> 6) & 3) {
5131         case 0:
5132         case 1:
5133                 dev_priv->mem_freq = 800;
5134                 break;
5135         case 2:
5136                 dev_priv->mem_freq = 1066;
5137                 break;
5138         case 3:
5139                 dev_priv->mem_freq = 1333;
5140                 break;
5141         }
5142         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5143
5144         dev_priv->vlv_cdclk_freq = valleyview_cur_cdclk(dev_priv);
5145         DRM_DEBUG_DRIVER("Current CD clock rate: %d MHz",
5146                          dev_priv->vlv_cdclk_freq);
5147
5148         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5149
5150         /* WaDisableEarlyCull:vlv */
5151         I915_WRITE(_3D_CHICKEN3,
5152                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5153
5154         /* WaDisableBackToBackFlipFix:vlv */
5155         I915_WRITE(IVB_CHICKEN3,
5156                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5157                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5158
5159         /* WaPsdDispatchEnable:vlv */
5160         /* WaDisablePSDDualDispatchEnable:vlv */
5161         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5162                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5163                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5164
5165         /* WaDisable_RenderCache_OperationalFlush:vlv */
5166         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5167
5168         /* WaForceL3Serialization:vlv */
5169         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5170                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5171
5172         /* WaDisableDopClockGating:vlv */
5173         I915_WRITE(GEN7_ROW_CHICKEN2,
5174                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5175
5176         /* This is required by WaCatErrorRejectionIssue:vlv */
5177         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5178                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5179                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5180
5181         gen7_setup_fixed_func_scheduler(dev_priv);
5182
5183         /*
5184          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5185          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5186          */
5187         I915_WRITE(GEN6_UCGCTL2,
5188                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5189
5190         /* WaDisableL3Bank2xClockGate:vlv */
5191         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5192
5193         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5194
5195         /*
5196          * BSpec says this must be set, even though
5197          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5198          */
5199         I915_WRITE(CACHE_MODE_1,
5200                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5201
5202         /*
5203          * WaIncreaseL3CreditsForVLVB0:vlv
5204          * This is the hardware default actually.
5205          */
5206         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5207
5208         /*
5209          * WaDisableVLVClockGating_VBIIssue:vlv
5210          * Disable clock gating on th GCFG unit to prevent a delay
5211          * in the reporting of vblank events.
5212          */
5213         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5214 }
5215
5216 static void g4x_init_clock_gating(struct drm_device *dev)
5217 {
5218         struct drm_i915_private *dev_priv = dev->dev_private;
5219         uint32_t dspclk_gate;
5220
5221         I915_WRITE(RENCLK_GATE_D1, 0);
5222         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5223                    GS_UNIT_CLOCK_GATE_DISABLE |
5224                    CL_UNIT_CLOCK_GATE_DISABLE);
5225         I915_WRITE(RAMCLK_GATE_D, 0);
5226         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5227                 OVRUNIT_CLOCK_GATE_DISABLE |
5228                 OVCUNIT_CLOCK_GATE_DISABLE;
5229         if (IS_GM45(dev))
5230                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5231         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5232
5233         /* WaDisableRenderCachePipelinedFlush */
5234         I915_WRITE(CACHE_MODE_0,
5235                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5236
5237         /* WaDisable_RenderCache_OperationalFlush:g4x */
5238         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5239
5240         g4x_disable_trickle_feed(dev);
5241 }
5242
5243 static void crestline_init_clock_gating(struct drm_device *dev)
5244 {
5245         struct drm_i915_private *dev_priv = dev->dev_private;
5246
5247         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5248         I915_WRITE(RENCLK_GATE_D2, 0);
5249         I915_WRITE(DSPCLK_GATE_D, 0);
5250         I915_WRITE(RAMCLK_GATE_D, 0);
5251         I915_WRITE16(DEUC, 0);
5252         I915_WRITE(MI_ARB_STATE,
5253                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5254
5255         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5256         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5257 }
5258
5259 static void broadwater_init_clock_gating(struct drm_device *dev)
5260 {
5261         struct drm_i915_private *dev_priv = dev->dev_private;
5262
5263         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5264                    I965_RCC_CLOCK_GATE_DISABLE |
5265                    I965_RCPB_CLOCK_GATE_DISABLE |
5266                    I965_ISC_CLOCK_GATE_DISABLE |
5267                    I965_FBC_CLOCK_GATE_DISABLE);
5268         I915_WRITE(RENCLK_GATE_D2, 0);
5269         I915_WRITE(MI_ARB_STATE,
5270                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5271
5272         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5273         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5274 }
5275
5276 static void gen3_init_clock_gating(struct drm_device *dev)
5277 {
5278         struct drm_i915_private *dev_priv = dev->dev_private;
5279         u32 dstate = I915_READ(D_STATE);
5280
5281         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5282                 DSTATE_DOT_CLOCK_GATING;
5283         I915_WRITE(D_STATE, dstate);
5284
5285         if (IS_PINEVIEW(dev))
5286                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5287
5288         /* IIR "flip pending" means done if this bit is set */
5289         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5290 }
5291
5292 static void i85x_init_clock_gating(struct drm_device *dev)
5293 {
5294         struct drm_i915_private *dev_priv = dev->dev_private;
5295
5296         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5297 }
5298
5299 static void i830_init_clock_gating(struct drm_device *dev)
5300 {
5301         struct drm_i915_private *dev_priv = dev->dev_private;
5302
5303         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5304 }
5305
5306 void intel_init_clock_gating(struct drm_device *dev)
5307 {
5308         struct drm_i915_private *dev_priv = dev->dev_private;
5309
5310         dev_priv->display.init_clock_gating(dev);
5311 }
5312
5313 void intel_suspend_hw(struct drm_device *dev)
5314 {
5315         if (HAS_PCH_LPT(dev))
5316                 lpt_suspend_hw(dev);
5317 }
5318
5319 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5320         for (i = 0;                                                     \
5321              i < (power_domains)->power_well_count &&                   \
5322                  ((power_well) = &(power_domains)->power_wells[i]);     \
5323              i++)                                                       \
5324                 if ((power_well)->domains & (domain_mask))
5325
5326 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5327         for (i = (power_domains)->power_well_count - 1;                  \
5328              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5329              i--)                                                        \
5330                 if ((power_well)->domains & (domain_mask))
5331
5332 /**
5333  * We should only use the power well if we explicitly asked the hardware to
5334  * enable it, so check if it's enabled and also check if we've requested it to
5335  * be enabled.
5336  */
5337 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5338                                    struct i915_power_well *power_well)
5339 {
5340         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5341                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5342 }
5343
5344 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5345                                     enum intel_display_power_domain domain)
5346 {
5347         struct i915_power_domains *power_domains;
5348
5349         power_domains = &dev_priv->power_domains;
5350
5351         return power_domains->domain_use_count[domain];
5352 }
5353
5354 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5355                                  enum intel_display_power_domain domain)
5356 {
5357         struct i915_power_domains *power_domains;
5358         struct i915_power_well *power_well;
5359         bool is_enabled;
5360         int i;
5361
5362         if (dev_priv->pm.suspended)
5363                 return false;
5364
5365         power_domains = &dev_priv->power_domains;
5366
5367         is_enabled = true;
5368
5369         mutex_lock(&power_domains->lock);
5370         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5371                 if (power_well->always_on)
5372                         continue;
5373
5374                 if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5375                         is_enabled = false;
5376                         break;
5377                 }
5378         }
5379         mutex_unlock(&power_domains->lock);
5380
5381         return is_enabled;
5382 }
5383
5384 /*
5385  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5386  * when not needed anymore. We have 4 registers that can request the power well
5387  * to be enabled, and it will only be disabled if none of the registers is
5388  * requesting it to be enabled.
5389  */
5390 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5391 {
5392         struct drm_device *dev = dev_priv->dev;
5393         unsigned long irqflags;
5394
5395         /*
5396          * After we re-enable the power well, if we touch VGA register 0x3d5
5397          * we'll get unclaimed register interrupts. This stops after we write
5398          * anything to the VGA MSR register. The vgacon module uses this
5399          * register all the time, so if we unbind our driver and, as a
5400          * consequence, bind vgacon, we'll get stuck in an infinite loop at
5401          * console_unlock(). So make here we touch the VGA MSR register, making
5402          * sure vgacon can keep working normally without triggering interrupts
5403          * and error messages.
5404          */
5405         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5406         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5407         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5408
5409         if (IS_BROADWELL(dev)) {
5410                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5411                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5412                            dev_priv->de_irq_mask[PIPE_B]);
5413                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5414                            ~dev_priv->de_irq_mask[PIPE_B] |
5415                            GEN8_PIPE_VBLANK);
5416                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5417                            dev_priv->de_irq_mask[PIPE_C]);
5418                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5419                            ~dev_priv->de_irq_mask[PIPE_C] |
5420                            GEN8_PIPE_VBLANK);
5421                 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5422                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5423         }
5424 }
5425
5426 static void reset_vblank_counter(struct drm_device *dev, enum pipe pipe)
5427 {
5428         assert_spin_locked(&dev->vbl_lock);
5429
5430         dev->vblank[pipe].last = 0;
5431 }
5432
5433 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5434 {
5435         struct drm_device *dev = dev_priv->dev;
5436         enum pipe pipe;
5437         unsigned long irqflags;
5438
5439         /*
5440          * After this, the registers on the pipes that are part of the power
5441          * well will become zero, so we have to adjust our counters according to
5442          * that.
5443          *
5444          * FIXME: Should we do this in general in drm_vblank_post_modeset?
5445          */
5446         spin_lock_irqsave(&dev->vbl_lock, irqflags);
5447         for_each_pipe(pipe)
5448                 if (pipe != PIPE_A)
5449                         reset_vblank_counter(dev, pipe);
5450         spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5451 }
5452
5453 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5454                                struct i915_power_well *power_well, bool enable)
5455 {
5456         bool is_enabled, enable_requested;
5457         uint32_t tmp;
5458
5459         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5460         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5461         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5462
5463         if (enable) {
5464                 if (!enable_requested)
5465                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5466                                    HSW_PWR_WELL_ENABLE_REQUEST);
5467
5468                 if (!is_enabled) {
5469                         DRM_DEBUG_KMS("Enabling power well\n");
5470                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5471                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5472                                 DRM_ERROR("Timeout enabling power well\n");
5473                 }
5474
5475                 hsw_power_well_post_enable(dev_priv);
5476         } else {
5477                 if (enable_requested) {
5478                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5479                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5480                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5481
5482                         hsw_power_well_post_disable(dev_priv);
5483                 }
5484         }
5485 }
5486
5487 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5488                                    struct i915_power_well *power_well)
5489 {
5490         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5491
5492         /*
5493          * We're taking over the BIOS, so clear any requests made by it since
5494          * the driver is in charge now.
5495          */
5496         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5497                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5498 }
5499
5500 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5501                                   struct i915_power_well *power_well)
5502 {
5503         hsw_set_power_well(dev_priv, power_well, true);
5504 }
5505
5506 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5507                                    struct i915_power_well *power_well)
5508 {
5509         hsw_set_power_well(dev_priv, power_well, false);
5510 }
5511
5512 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5513                                            struct i915_power_well *power_well)
5514 {
5515 }
5516
5517 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5518                                              struct i915_power_well *power_well)
5519 {
5520         return true;
5521 }
5522
5523 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
5524                                struct i915_power_well *power_well, bool enable)
5525 {
5526         enum punit_power_well power_well_id = power_well->data;
5527         u32 mask;
5528         u32 state;
5529         u32 ctrl;
5530
5531         mask = PUNIT_PWRGT_MASK(power_well_id);
5532         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
5533                          PUNIT_PWRGT_PWR_GATE(power_well_id);
5534
5535         mutex_lock(&dev_priv->rps.hw_lock);
5536
5537 #define COND \
5538         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
5539
5540         if (COND)
5541                 goto out;
5542
5543         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
5544         ctrl &= ~mask;
5545         ctrl |= state;
5546         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
5547
5548         if (wait_for(COND, 100))
5549                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
5550                           state,
5551                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
5552
5553 #undef COND
5554
5555 out:
5556         mutex_unlock(&dev_priv->rps.hw_lock);
5557 }
5558
5559 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
5560                                    struct i915_power_well *power_well)
5561 {
5562         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
5563 }
5564
5565 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
5566                                   struct i915_power_well *power_well)
5567 {
5568         vlv_set_power_well(dev_priv, power_well, true);
5569 }
5570
5571 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
5572                                    struct i915_power_well *power_well)
5573 {
5574         vlv_set_power_well(dev_priv, power_well, false);
5575 }
5576
5577 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
5578                                    struct i915_power_well *power_well)
5579 {
5580         int power_well_id = power_well->data;
5581         bool enabled = false;
5582         u32 mask;
5583         u32 state;
5584         u32 ctrl;
5585
5586         mask = PUNIT_PWRGT_MASK(power_well_id);
5587         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
5588
5589         mutex_lock(&dev_priv->rps.hw_lock);
5590
5591         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
5592         /*
5593          * We only ever set the power-on and power-gate states, anything
5594          * else is unexpected.
5595          */
5596         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
5597                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
5598         if (state == ctrl)
5599                 enabled = true;
5600
5601         /*
5602          * A transient state at this point would mean some unexpected party
5603          * is poking at the power controls too.
5604          */
5605         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
5606         WARN_ON(ctrl != state);
5607
5608         mutex_unlock(&dev_priv->rps.hw_lock);
5609
5610         return enabled;
5611 }
5612
5613 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
5614                                           struct i915_power_well *power_well)
5615 {
5616         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5617
5618         vlv_set_power_well(dev_priv, power_well, true);
5619
5620         spin_lock_irq(&dev_priv->irq_lock);
5621         valleyview_enable_display_irqs(dev_priv);
5622         spin_unlock_irq(&dev_priv->irq_lock);
5623
5624         /*
5625          * During driver initialization we need to defer enabling hotplug
5626          * processing until fbdev is set up.
5627          */
5628         if (dev_priv->enable_hotplug_processing)
5629                 intel_hpd_init(dev_priv->dev);
5630
5631         i915_redisable_vga_power_on(dev_priv->dev);
5632 }
5633
5634 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
5635                                            struct i915_power_well *power_well)
5636 {
5637         struct drm_device *dev = dev_priv->dev;
5638         enum pipe pipe;
5639
5640         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5641
5642         spin_lock_irq(&dev_priv->irq_lock);
5643         for_each_pipe(pipe)
5644                 __intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
5645
5646         valleyview_disable_display_irqs(dev_priv);
5647         spin_unlock_irq(&dev_priv->irq_lock);
5648
5649         spin_lock_irq(&dev->vbl_lock);
5650         for_each_pipe(pipe)
5651                 reset_vblank_counter(dev, pipe);
5652         spin_unlock_irq(&dev->vbl_lock);
5653
5654         vlv_set_power_well(dev_priv, power_well, false);
5655 }
5656
5657 static void check_power_well_state(struct drm_i915_private *dev_priv,
5658                                    struct i915_power_well *power_well)
5659 {
5660         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
5661
5662         if (power_well->always_on || !i915.disable_power_well) {
5663                 if (!enabled)
5664                         goto mismatch;
5665
5666                 return;
5667         }
5668
5669         if (enabled != (power_well->count > 0))
5670                 goto mismatch;
5671
5672         return;
5673
5674 mismatch:
5675         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
5676                   power_well->name, power_well->always_on, enabled,
5677                   power_well->count, i915.disable_power_well);
5678 }
5679
5680 void intel_display_power_get(struct drm_i915_private *dev_priv,
5681                              enum intel_display_power_domain domain)
5682 {
5683         struct i915_power_domains *power_domains;
5684         struct i915_power_well *power_well;
5685         int i;
5686
5687         intel_runtime_pm_get(dev_priv);
5688
5689         power_domains = &dev_priv->power_domains;
5690
5691         mutex_lock(&power_domains->lock);
5692
5693         for_each_power_well(i, power_well, BIT(domain), power_domains) {
5694                 if (!power_well->count++) {
5695                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
5696                         power_well->ops->enable(dev_priv, power_well);
5697                 }
5698
5699                 check_power_well_state(dev_priv, power_well);
5700         }
5701
5702         power_domains->domain_use_count[domain]++;
5703
5704         mutex_unlock(&power_domains->lock);
5705 }
5706
5707 void intel_display_power_put(struct drm_i915_private *dev_priv,
5708                              enum intel_display_power_domain domain)
5709 {
5710         struct i915_power_domains *power_domains;
5711         struct i915_power_well *power_well;
5712         int i;
5713
5714         power_domains = &dev_priv->power_domains;
5715
5716         mutex_lock(&power_domains->lock);
5717
5718         WARN_ON(!power_domains->domain_use_count[domain]);
5719         power_domains->domain_use_count[domain]--;
5720
5721         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5722                 WARN_ON(!power_well->count);
5723
5724                 if (!--power_well->count && i915.disable_power_well) {
5725                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
5726                         power_well->ops->disable(dev_priv, power_well);
5727                 }
5728
5729                 check_power_well_state(dev_priv, power_well);
5730         }
5731
5732         mutex_unlock(&power_domains->lock);
5733
5734         intel_runtime_pm_put(dev_priv);
5735 }
5736
5737 static struct i915_power_domains *hsw_pwr;
5738
5739 /* Display audio driver power well request */
5740 void i915_request_power_well(void)
5741 {
5742         struct drm_i915_private *dev_priv;
5743
5744         if (WARN_ON(!hsw_pwr))
5745                 return;
5746
5747         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5748                                 power_domains);
5749         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
5750 }
5751 EXPORT_SYMBOL_GPL(i915_request_power_well);
5752
5753 /* Display audio driver power well release */
5754 void i915_release_power_well(void)
5755 {
5756         struct drm_i915_private *dev_priv;
5757
5758         if (WARN_ON(!hsw_pwr))
5759                 return;
5760
5761         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5762                                 power_domains);
5763         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
5764 }
5765 EXPORT_SYMBOL_GPL(i915_release_power_well);
5766
5767 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
5768
5769 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
5770         BIT(POWER_DOMAIN_PIPE_A) |                      \
5771         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
5772         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
5773         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
5774         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
5775         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
5776         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
5777         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
5778         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
5779         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
5780         BIT(POWER_DOMAIN_PORT_CRT) |                    \
5781         BIT(POWER_DOMAIN_INIT))
5782 #define HSW_DISPLAY_POWER_DOMAINS (                             \
5783         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
5784         BIT(POWER_DOMAIN_INIT))
5785
5786 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
5787         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
5788         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
5789 #define BDW_DISPLAY_POWER_DOMAINS (                             \
5790         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
5791         BIT(POWER_DOMAIN_INIT))
5792
5793 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
5794 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
5795
5796 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
5797         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
5798         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5799         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
5800         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5801         BIT(POWER_DOMAIN_PORT_CRT) |            \
5802         BIT(POWER_DOMAIN_INIT))
5803
5804 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
5805         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
5806         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5807         BIT(POWER_DOMAIN_INIT))
5808
5809 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
5810         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5811         BIT(POWER_DOMAIN_INIT))
5812
5813 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
5814         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
5815         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5816         BIT(POWER_DOMAIN_INIT))
5817
5818 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
5819         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5820         BIT(POWER_DOMAIN_INIT))
5821
5822 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
5823         .sync_hw = i9xx_always_on_power_well_noop,
5824         .enable = i9xx_always_on_power_well_noop,
5825         .disable = i9xx_always_on_power_well_noop,
5826         .is_enabled = i9xx_always_on_power_well_enabled,
5827 };
5828
5829 static struct i915_power_well i9xx_always_on_power_well[] = {
5830         {
5831                 .name = "always-on",
5832                 .always_on = 1,
5833                 .domains = POWER_DOMAIN_MASK,
5834                 .ops = &i9xx_always_on_power_well_ops,
5835         },
5836 };
5837
5838 static const struct i915_power_well_ops hsw_power_well_ops = {
5839         .sync_hw = hsw_power_well_sync_hw,
5840         .enable = hsw_power_well_enable,
5841         .disable = hsw_power_well_disable,
5842         .is_enabled = hsw_power_well_enabled,
5843 };
5844
5845 static struct i915_power_well hsw_power_wells[] = {
5846         {
5847                 .name = "always-on",
5848                 .always_on = 1,
5849                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5850                 .ops = &i9xx_always_on_power_well_ops,
5851         },
5852         {
5853                 .name = "display",
5854                 .domains = HSW_DISPLAY_POWER_DOMAINS,
5855                 .ops = &hsw_power_well_ops,
5856         },
5857 };
5858
5859 static struct i915_power_well bdw_power_wells[] = {
5860         {
5861                 .name = "always-on",
5862                 .always_on = 1,
5863                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5864                 .ops = &i9xx_always_on_power_well_ops,
5865         },
5866         {
5867                 .name = "display",
5868                 .domains = BDW_DISPLAY_POWER_DOMAINS,
5869                 .ops = &hsw_power_well_ops,
5870         },
5871 };
5872
5873 static const struct i915_power_well_ops vlv_display_power_well_ops = {
5874         .sync_hw = vlv_power_well_sync_hw,
5875         .enable = vlv_display_power_well_enable,
5876         .disable = vlv_display_power_well_disable,
5877         .is_enabled = vlv_power_well_enabled,
5878 };
5879
5880 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
5881         .sync_hw = vlv_power_well_sync_hw,
5882         .enable = vlv_power_well_enable,
5883         .disable = vlv_power_well_disable,
5884         .is_enabled = vlv_power_well_enabled,
5885 };
5886
5887 static struct i915_power_well vlv_power_wells[] = {
5888         {
5889                 .name = "always-on",
5890                 .always_on = 1,
5891                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
5892                 .ops = &i9xx_always_on_power_well_ops,
5893         },
5894         {
5895                 .name = "display",
5896                 .domains = VLV_DISPLAY_POWER_DOMAINS,
5897                 .data = PUNIT_POWER_WELL_DISP2D,
5898                 .ops = &vlv_display_power_well_ops,
5899         },
5900         {
5901                 .name = "dpio-common",
5902                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
5903                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
5904                 .ops = &vlv_dpio_power_well_ops,
5905         },
5906         {
5907                 .name = "dpio-tx-b-01",
5908                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5909                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5910                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5911                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5912                 .ops = &vlv_dpio_power_well_ops,
5913                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
5914         },
5915         {
5916                 .name = "dpio-tx-b-23",
5917                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5918                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5919                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5920                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5921                 .ops = &vlv_dpio_power_well_ops,
5922                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
5923         },
5924         {
5925                 .name = "dpio-tx-c-01",
5926                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5927                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5928                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5929                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5930                 .ops = &vlv_dpio_power_well_ops,
5931                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
5932         },
5933         {
5934                 .name = "dpio-tx-c-23",
5935                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5936                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5937                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5938                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5939                 .ops = &vlv_dpio_power_well_ops,
5940                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
5941         },
5942 };
5943
5944 #define set_power_wells(power_domains, __power_wells) ({                \
5945         (power_domains)->power_wells = (__power_wells);                 \
5946         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
5947 })
5948
5949 int intel_power_domains_init(struct drm_i915_private *dev_priv)
5950 {
5951         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5952
5953         mutex_init(&power_domains->lock);
5954
5955         /*
5956          * The enabling order will be from lower to higher indexed wells,
5957          * the disabling order is reversed.
5958          */
5959         if (IS_HASWELL(dev_priv->dev)) {
5960                 set_power_wells(power_domains, hsw_power_wells);
5961                 hsw_pwr = power_domains;
5962         } else if (IS_BROADWELL(dev_priv->dev)) {
5963                 set_power_wells(power_domains, bdw_power_wells);
5964                 hsw_pwr = power_domains;
5965         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
5966                 set_power_wells(power_domains, vlv_power_wells);
5967         } else {
5968                 set_power_wells(power_domains, i9xx_always_on_power_well);
5969         }
5970
5971         return 0;
5972 }
5973
5974 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
5975 {
5976         hsw_pwr = NULL;
5977 }
5978
5979 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
5980 {
5981         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5982         struct i915_power_well *power_well;
5983         int i;
5984
5985         mutex_lock(&power_domains->lock);
5986         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
5987                 power_well->ops->sync_hw(dev_priv, power_well);
5988         mutex_unlock(&power_domains->lock);
5989 }
5990
5991 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
5992 {
5993         /* For now, we need the power well to be always enabled. */
5994         intel_display_set_init_power(dev_priv, true);
5995         intel_power_domains_resume(dev_priv);
5996 }
5997
5998 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5999 {
6000         intel_runtime_pm_get(dev_priv);
6001 }
6002
6003 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6004 {
6005         intel_runtime_pm_put(dev_priv);
6006 }
6007
6008 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6009 {
6010         struct drm_device *dev = dev_priv->dev;
6011         struct device *device = &dev->pdev->dev;
6012
6013         if (!HAS_RUNTIME_PM(dev))
6014                 return;
6015
6016         pm_runtime_get_sync(device);
6017         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6018 }
6019
6020 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6021 {
6022         struct drm_device *dev = dev_priv->dev;
6023         struct device *device = &dev->pdev->dev;
6024
6025         if (!HAS_RUNTIME_PM(dev))
6026                 return;
6027
6028         pm_runtime_mark_last_busy(device);
6029         pm_runtime_put_autosuspend(device);
6030 }
6031
6032 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6033 {
6034         struct drm_device *dev = dev_priv->dev;
6035         struct device *device = &dev->pdev->dev;
6036
6037         if (!HAS_RUNTIME_PM(dev))
6038                 return;
6039
6040         pm_runtime_set_active(device);
6041
6042         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6043         pm_runtime_mark_last_busy(device);
6044         pm_runtime_use_autosuspend(device);
6045
6046         pm_runtime_put_autosuspend(device);
6047 }
6048
6049 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6050 {
6051         struct drm_device *dev = dev_priv->dev;
6052         struct device *device = &dev->pdev->dev;
6053
6054         if (!HAS_RUNTIME_PM(dev))
6055                 return;
6056
6057         /* Make sure we're not suspended first. */
6058         pm_runtime_get_sync(device);
6059         pm_runtime_disable(device);
6060 }
6061
6062 /* Set up chip specific power management-related functions */
6063 void intel_init_pm(struct drm_device *dev)
6064 {
6065         struct drm_i915_private *dev_priv = dev->dev_private;
6066
6067         if (HAS_FBC(dev)) {
6068                 if (INTEL_INFO(dev)->gen >= 7) {
6069                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6070                         dev_priv->display.enable_fbc = gen7_enable_fbc;
6071                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6072                 } else if (INTEL_INFO(dev)->gen >= 5) {
6073                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6074                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6075                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6076                 } else if (IS_GM45(dev)) {
6077                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6078                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6079                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6080                 } else {
6081                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6082                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6083                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6084
6085                         /* This value was pulled out of someone's hat */
6086                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6087                 }
6088         }
6089
6090         /* For cxsr */
6091         if (IS_PINEVIEW(dev))
6092                 i915_pineview_get_mem_freq(dev);
6093         else if (IS_GEN5(dev))
6094                 i915_ironlake_get_mem_freq(dev);
6095
6096         /* For FIFO watermark updates */
6097         if (HAS_PCH_SPLIT(dev)) {
6098                 ilk_setup_wm_latency(dev);
6099
6100                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6101                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6102                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6103                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6104                         dev_priv->display.update_wm = ilk_update_wm;
6105                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6106                 } else {
6107                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6108                                       "Disable CxSR\n");
6109                 }
6110
6111                 if (IS_GEN5(dev))
6112                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6113                 else if (IS_GEN6(dev))
6114                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6115                 else if (IS_IVYBRIDGE(dev))
6116                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6117                 else if (IS_HASWELL(dev))
6118                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6119                 else if (INTEL_INFO(dev)->gen == 8)
6120                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6121         } else if (IS_VALLEYVIEW(dev)) {
6122                 dev_priv->display.update_wm = valleyview_update_wm;
6123                 dev_priv->display.init_clock_gating =
6124                         valleyview_init_clock_gating;
6125         } else if (IS_PINEVIEW(dev)) {
6126                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6127                                             dev_priv->is_ddr3,
6128                                             dev_priv->fsb_freq,
6129                                             dev_priv->mem_freq)) {
6130                         DRM_INFO("failed to find known CxSR latency "
6131                                  "(found ddr%s fsb freq %d, mem freq %d), "
6132                                  "disabling CxSR\n",
6133                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6134                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6135                         /* Disable CxSR and never update its watermark again */
6136                         pineview_disable_cxsr(dev);
6137                         dev_priv->display.update_wm = NULL;
6138                 } else
6139                         dev_priv->display.update_wm = pineview_update_wm;
6140                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6141         } else if (IS_G4X(dev)) {
6142                 dev_priv->display.update_wm = g4x_update_wm;
6143                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6144         } else if (IS_GEN4(dev)) {
6145                 dev_priv->display.update_wm = i965_update_wm;
6146                 if (IS_CRESTLINE(dev))
6147                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6148                 else if (IS_BROADWATER(dev))
6149                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6150         } else if (IS_GEN3(dev)) {
6151                 dev_priv->display.update_wm = i9xx_update_wm;
6152                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6153                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6154         } else if (IS_GEN2(dev)) {
6155                 if (INTEL_INFO(dev)->num_pipes == 1) {
6156                         dev_priv->display.update_wm = i845_update_wm;
6157                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6158                 } else {
6159                         dev_priv->display.update_wm = i9xx_update_wm;
6160                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6161                 }
6162
6163                 if (IS_I85X(dev) || IS_I865G(dev))
6164                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6165                 else
6166                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6167         } else {
6168                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6169         }
6170 }
6171
6172 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6173 {
6174         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6175
6176         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6177                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6178                 return -EAGAIN;
6179         }
6180
6181         I915_WRITE(GEN6_PCODE_DATA, *val);
6182         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6183
6184         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6185                      500)) {
6186                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6187                 return -ETIMEDOUT;
6188         }
6189
6190         *val = I915_READ(GEN6_PCODE_DATA);
6191         I915_WRITE(GEN6_PCODE_DATA, 0);
6192
6193         return 0;
6194 }
6195
6196 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6197 {
6198         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6199
6200         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6201                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6202                 return -EAGAIN;
6203         }
6204
6205         I915_WRITE(GEN6_PCODE_DATA, val);
6206         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6207
6208         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6209                      500)) {
6210                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6211                 return -ETIMEDOUT;
6212         }
6213
6214         I915_WRITE(GEN6_PCODE_DATA, 0);
6215
6216         return 0;
6217 }
6218
6219 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6220 {
6221         int div;
6222
6223         /* 4 x czclk */
6224         switch (dev_priv->mem_freq) {
6225         case 800:
6226                 div = 10;
6227                 break;
6228         case 1066:
6229                 div = 12;
6230                 break;
6231         case 1333:
6232                 div = 16;
6233                 break;
6234         default:
6235                 return -1;
6236         }
6237
6238         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6239 }
6240
6241 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6242 {
6243         int mul;
6244
6245         /* 4 x czclk */
6246         switch (dev_priv->mem_freq) {
6247         case 800:
6248                 mul = 10;
6249                 break;
6250         case 1066:
6251                 mul = 12;
6252                 break;
6253         case 1333:
6254                 mul = 16;
6255                 break;
6256         default:
6257                 return -1;
6258         }
6259
6260         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6261 }
6262
6263 void intel_pm_setup(struct drm_device *dev)
6264 {
6265         struct drm_i915_private *dev_priv = dev->dev_private;
6266
6267         mutex_init(&dev_priv->rps.hw_lock);
6268
6269         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6270                           intel_gen6_powersave_work);
6271
6272         dev_priv->pm.suspended = false;
6273         dev_priv->pm.irqs_disabled = false;
6274 }