]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
b10c7474893155cd66f2033a654380052401b762
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include "drmP.h"
31 #include "i915_drv.h"
32 #include "i915_drm.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /*
37  * 965+ support PIPE_CONTROL commands, which provide finer grained control
38  * over cache flushing.
39  */
40 struct pipe_control {
41         struct drm_i915_gem_object *obj;
42         volatile u32 *cpu_page;
43         u32 gtt_offset;
44 };
45
46 static inline int ring_space(struct intel_ring_buffer *ring)
47 {
48         int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
49         if (space < 0)
50                 space += ring->size;
51         return space;
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56                        u32      invalidate_domains,
57                        u32      flush_domains)
58 {
59         u32 cmd;
60         int ret;
61
62         cmd = MI_FLUSH;
63         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64                 cmd |= MI_NO_WRITE_FLUSH;
65
66         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67                 cmd |= MI_READ_FLUSH;
68
69         ret = intel_ring_begin(ring, 2);
70         if (ret)
71                 return ret;
72
73         intel_ring_emit(ring, cmd);
74         intel_ring_emit(ring, MI_NOOP);
75         intel_ring_advance(ring);
76
77         return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82                        u32      invalidate_domains,
83                        u32      flush_domains)
84 {
85         struct drm_device *dev = ring->dev;
86         u32 cmd;
87         int ret;
88
89         /*
90          * read/write caches:
91          *
92          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94          * also flushed at 2d versus 3d pipeline switches.
95          *
96          * read-only caches:
97          *
98          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99          * MI_READ_FLUSH is set, and is always flushed on 965.
100          *
101          * I915_GEM_DOMAIN_COMMAND may not exist?
102          *
103          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104          * invalidated when MI_EXE_FLUSH is set.
105          *
106          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107          * invalidated with every MI_FLUSH.
108          *
109          * TLBs:
110          *
111          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114          * are flushed at any MI_FLUSH.
115          */
116
117         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119                 cmd &= ~MI_NO_WRITE_FLUSH;
120         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121                 cmd |= MI_EXE_FLUSH;
122
123         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124             (IS_G4X(dev) || IS_GEN5(dev)))
125                 cmd |= MI_INVALIDATE_ISP;
126
127         ret = intel_ring_begin(ring, 2);
128         if (ret)
129                 return ret;
130
131         intel_ring_emit(ring, cmd);
132         intel_ring_emit(ring, MI_NOOP);
133         intel_ring_advance(ring);
134
135         return 0;
136 }
137
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178         struct pipe_control *pc = ring->private;
179         u32 scratch_addr = pc->gtt_offset + 128;
180         int ret;
181
182
183         ret = intel_ring_begin(ring, 6);
184         if (ret)
185                 return ret;
186
187         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
190         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191         intel_ring_emit(ring, 0); /* low dword */
192         intel_ring_emit(ring, 0); /* high dword */
193         intel_ring_emit(ring, MI_NOOP);
194         intel_ring_advance(ring);
195
196         ret = intel_ring_begin(ring, 6);
197         if (ret)
198                 return ret;
199
200         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, 0);
205         intel_ring_emit(ring, MI_NOOP);
206         intel_ring_advance(ring);
207
208         return 0;
209 }
210
211 static int
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213                          u32 invalidate_domains, u32 flush_domains)
214 {
215         u32 flags = 0;
216         struct pipe_control *pc = ring->private;
217         u32 scratch_addr = pc->gtt_offset + 128;
218         int ret;
219
220         /* Force SNB workarounds for PIPE_CONTROL flushes */
221         ret = intel_emit_post_sync_nonzero_flush(ring);
222         if (ret)
223                 return ret;
224
225         /* Just flush everything.  Experiments have shown that reducing the
226          * number of bits based on the write domains has little performance
227          * impact.
228          */
229         if (flush_domains) {
230                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232                 /*
233                  * Ensure that any following seqno writes only happen
234                  * when the render cache is indeed flushed.
235                  */
236                 flags |= PIPE_CONTROL_CS_STALL;
237         }
238         if (invalidate_domains) {
239                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245                 /*
246                  * TLB invalidate requires a post-sync write.
247                  */
248                 flags |= PIPE_CONTROL_QW_WRITE;
249         }
250
251         ret = intel_ring_begin(ring, 4);
252         if (ret)
253                 return ret;
254
255         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256         intel_ring_emit(ring, flags);
257         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258         intel_ring_emit(ring, 0);
259         intel_ring_advance(ring);
260
261         return 0;
262 }
263
264 static void ring_write_tail(struct intel_ring_buffer *ring,
265                             u32 value)
266 {
267         drm_i915_private_t *dev_priv = ring->dev->dev_private;
268         I915_WRITE_TAIL(ring, value);
269 }
270
271 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
272 {
273         drm_i915_private_t *dev_priv = ring->dev->dev_private;
274         u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
275                         RING_ACTHD(ring->mmio_base) : ACTHD;
276
277         return I915_READ(acthd_reg);
278 }
279
280 static int init_ring_common(struct intel_ring_buffer *ring)
281 {
282         struct drm_device *dev = ring->dev;
283         drm_i915_private_t *dev_priv = dev->dev_private;
284         struct drm_i915_gem_object *obj = ring->obj;
285         int ret = 0;
286         u32 head;
287
288         if (HAS_FORCE_WAKE(dev))
289                 gen6_gt_force_wake_get(dev_priv);
290
291         /* Stop the ring if it's running. */
292         I915_WRITE_CTL(ring, 0);
293         I915_WRITE_HEAD(ring, 0);
294         ring->write_tail(ring, 0);
295
296         head = I915_READ_HEAD(ring) & HEAD_ADDR;
297
298         /* G45 ring initialization fails to reset head to zero */
299         if (head != 0) {
300                 DRM_DEBUG_KMS("%s head not reset to zero "
301                               "ctl %08x head %08x tail %08x start %08x\n",
302                               ring->name,
303                               I915_READ_CTL(ring),
304                               I915_READ_HEAD(ring),
305                               I915_READ_TAIL(ring),
306                               I915_READ_START(ring));
307
308                 I915_WRITE_HEAD(ring, 0);
309
310                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
311                         DRM_ERROR("failed to set %s head to zero "
312                                   "ctl %08x head %08x tail %08x start %08x\n",
313                                   ring->name,
314                                   I915_READ_CTL(ring),
315                                   I915_READ_HEAD(ring),
316                                   I915_READ_TAIL(ring),
317                                   I915_READ_START(ring));
318                 }
319         }
320
321         /* Initialize the ring. This must happen _after_ we've cleared the ring
322          * registers with the above sequence (the readback of the HEAD registers
323          * also enforces ordering), otherwise the hw might lose the new ring
324          * register values. */
325         I915_WRITE_START(ring, obj->gtt_offset);
326         I915_WRITE_CTL(ring,
327                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
328                         | RING_VALID);
329
330         /* If the head is still not zero, the ring is dead */
331         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
332                      I915_READ_START(ring) == obj->gtt_offset &&
333                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
334                 DRM_ERROR("%s initialization failed "
335                                 "ctl %08x head %08x tail %08x start %08x\n",
336                                 ring->name,
337                                 I915_READ_CTL(ring),
338                                 I915_READ_HEAD(ring),
339                                 I915_READ_TAIL(ring),
340                                 I915_READ_START(ring));
341                 ret = -EIO;
342                 goto out;
343         }
344
345         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
346                 i915_kernel_lost_context(ring->dev);
347         else {
348                 ring->head = I915_READ_HEAD(ring);
349                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
350                 ring->space = ring_space(ring);
351                 ring->last_retired_head = -1;
352         }
353
354 out:
355         if (HAS_FORCE_WAKE(dev))
356                 gen6_gt_force_wake_put(dev_priv);
357
358         return ret;
359 }
360
361 static int
362 init_pipe_control(struct intel_ring_buffer *ring)
363 {
364         struct pipe_control *pc;
365         struct drm_i915_gem_object *obj;
366         int ret;
367
368         if (ring->private)
369                 return 0;
370
371         pc = kmalloc(sizeof(*pc), GFP_KERNEL);
372         if (!pc)
373                 return -ENOMEM;
374
375         obj = i915_gem_alloc_object(ring->dev, 4096);
376         if (obj == NULL) {
377                 DRM_ERROR("Failed to allocate seqno page\n");
378                 ret = -ENOMEM;
379                 goto err;
380         }
381
382         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
383
384         ret = i915_gem_object_pin(obj, 4096, true);
385         if (ret)
386                 goto err_unref;
387
388         pc->gtt_offset = obj->gtt_offset;
389         pc->cpu_page =  kmap(obj->pages[0]);
390         if (pc->cpu_page == NULL)
391                 goto err_unpin;
392
393         pc->obj = obj;
394         ring->private = pc;
395         return 0;
396
397 err_unpin:
398         i915_gem_object_unpin(obj);
399 err_unref:
400         drm_gem_object_unreference(&obj->base);
401 err:
402         kfree(pc);
403         return ret;
404 }
405
406 static void
407 cleanup_pipe_control(struct intel_ring_buffer *ring)
408 {
409         struct pipe_control *pc = ring->private;
410         struct drm_i915_gem_object *obj;
411
412         if (!ring->private)
413                 return;
414
415         obj = pc->obj;
416         kunmap(obj->pages[0]);
417         i915_gem_object_unpin(obj);
418         drm_gem_object_unreference(&obj->base);
419
420         kfree(pc);
421         ring->private = NULL;
422 }
423
424 static int init_render_ring(struct intel_ring_buffer *ring)
425 {
426         struct drm_device *dev = ring->dev;
427         struct drm_i915_private *dev_priv = dev->dev_private;
428         int ret = init_ring_common(ring);
429
430         if (INTEL_INFO(dev)->gen > 3) {
431                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
432                 if (IS_GEN7(dev))
433                         I915_WRITE(GFX_MODE_GEN7,
434                                    _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
435                                    _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
436         }
437
438         if (INTEL_INFO(dev)->gen >= 5) {
439                 ret = init_pipe_control(ring);
440                 if (ret)
441                         return ret;
442         }
443
444         if (IS_GEN6(dev)) {
445                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
446                  * "If this bit is set, STCunit will have LRA as replacement
447                  *  policy. [...] This bit must be reset.  LRA replacement
448                  *  policy is not supported."
449                  */
450                 I915_WRITE(CACHE_MODE_0,
451                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
452
453                 /* This is not explicitly set for GEN6, so read the register.
454                  * see intel_ring_mi_set_context() for why we care.
455                  * TODO: consider explicitly setting the bit for GEN5
456                  */
457                 ring->itlb_before_ctx_switch =
458                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
459         }
460
461         if (INTEL_INFO(dev)->gen >= 6)
462                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
463
464         if (IS_IVYBRIDGE(dev))
465                 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
466
467         return ret;
468 }
469
470 static void render_ring_cleanup(struct intel_ring_buffer *ring)
471 {
472         if (!ring->private)
473                 return;
474
475         cleanup_pipe_control(ring);
476 }
477
478 static void
479 update_mboxes(struct intel_ring_buffer *ring,
480             u32 seqno,
481             u32 mmio_offset)
482 {
483         intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
484                               MI_SEMAPHORE_GLOBAL_GTT |
485                               MI_SEMAPHORE_REGISTER |
486                               MI_SEMAPHORE_UPDATE);
487         intel_ring_emit(ring, seqno);
488         intel_ring_emit(ring, mmio_offset);
489 }
490
491 /**
492  * gen6_add_request - Update the semaphore mailbox registers
493  * 
494  * @ring - ring that is adding a request
495  * @seqno - return seqno stuck into the ring
496  *
497  * Update the mailbox registers in the *other* rings with the current seqno.
498  * This acts like a signal in the canonical semaphore.
499  */
500 static int
501 gen6_add_request(struct intel_ring_buffer *ring,
502                  u32 *seqno)
503 {
504         u32 mbox1_reg;
505         u32 mbox2_reg;
506         int ret;
507
508         ret = intel_ring_begin(ring, 10);
509         if (ret)
510                 return ret;
511
512         mbox1_reg = ring->signal_mbox[0];
513         mbox2_reg = ring->signal_mbox[1];
514
515         *seqno = i915_gem_next_request_seqno(ring);
516
517         update_mboxes(ring, *seqno, mbox1_reg);
518         update_mboxes(ring, *seqno, mbox2_reg);
519         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
520         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
521         intel_ring_emit(ring, *seqno);
522         intel_ring_emit(ring, MI_USER_INTERRUPT);
523         intel_ring_advance(ring);
524
525         return 0;
526 }
527
528 /**
529  * intel_ring_sync - sync the waiter to the signaller on seqno
530  *
531  * @waiter - ring that is waiting
532  * @signaller - ring which has, or will signal
533  * @seqno - seqno which the waiter will block on
534  */
535 static int
536 gen6_ring_sync(struct intel_ring_buffer *waiter,
537                struct intel_ring_buffer *signaller,
538                u32 seqno)
539 {
540         int ret;
541         u32 dw1 = MI_SEMAPHORE_MBOX |
542                   MI_SEMAPHORE_COMPARE |
543                   MI_SEMAPHORE_REGISTER;
544
545         /* Throughout all of the GEM code, seqno passed implies our current
546          * seqno is >= the last seqno executed. However for hardware the
547          * comparison is strictly greater than.
548          */
549         seqno -= 1;
550
551         WARN_ON(signaller->semaphore_register[waiter->id] ==
552                 MI_SEMAPHORE_SYNC_INVALID);
553
554         ret = intel_ring_begin(waiter, 4);
555         if (ret)
556                 return ret;
557
558         intel_ring_emit(waiter,
559                         dw1 | signaller->semaphore_register[waiter->id]);
560         intel_ring_emit(waiter, seqno);
561         intel_ring_emit(waiter, 0);
562         intel_ring_emit(waiter, MI_NOOP);
563         intel_ring_advance(waiter);
564
565         return 0;
566 }
567
568 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
569 do {                                                                    \
570         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
571                  PIPE_CONTROL_DEPTH_STALL);                             \
572         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
573         intel_ring_emit(ring__, 0);                                                     \
574         intel_ring_emit(ring__, 0);                                                     \
575 } while (0)
576
577 static int
578 pc_render_add_request(struct intel_ring_buffer *ring,
579                       u32 *result)
580 {
581         u32 seqno = i915_gem_next_request_seqno(ring);
582         struct pipe_control *pc = ring->private;
583         u32 scratch_addr = pc->gtt_offset + 128;
584         int ret;
585
586         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
587          * incoherent with writes to memory, i.e. completely fubar,
588          * so we need to use PIPE_NOTIFY instead.
589          *
590          * However, we also need to workaround the qword write
591          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
592          * memory before requesting an interrupt.
593          */
594         ret = intel_ring_begin(ring, 32);
595         if (ret)
596                 return ret;
597
598         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
599                         PIPE_CONTROL_WRITE_FLUSH |
600                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
601         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
602         intel_ring_emit(ring, seqno);
603         intel_ring_emit(ring, 0);
604         PIPE_CONTROL_FLUSH(ring, scratch_addr);
605         scratch_addr += 128; /* write to separate cachelines */
606         PIPE_CONTROL_FLUSH(ring, scratch_addr);
607         scratch_addr += 128;
608         PIPE_CONTROL_FLUSH(ring, scratch_addr);
609         scratch_addr += 128;
610         PIPE_CONTROL_FLUSH(ring, scratch_addr);
611         scratch_addr += 128;
612         PIPE_CONTROL_FLUSH(ring, scratch_addr);
613         scratch_addr += 128;
614         PIPE_CONTROL_FLUSH(ring, scratch_addr);
615
616         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
617                         PIPE_CONTROL_WRITE_FLUSH |
618                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
619                         PIPE_CONTROL_NOTIFY);
620         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
621         intel_ring_emit(ring, seqno);
622         intel_ring_emit(ring, 0);
623         intel_ring_advance(ring);
624
625         *result = seqno;
626         return 0;
627 }
628
629 static u32
630 gen6_ring_get_seqno(struct intel_ring_buffer *ring)
631 {
632         struct drm_device *dev = ring->dev;
633
634         /* Workaround to force correct ordering between irq and seqno writes on
635          * ivb (and maybe also on snb) by reading from a CS register (like
636          * ACTHD) before reading the status page. */
637         if (IS_GEN6(dev) || IS_GEN7(dev))
638                 intel_ring_get_active_head(ring);
639         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
640 }
641
642 static u32
643 ring_get_seqno(struct intel_ring_buffer *ring)
644 {
645         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
646 }
647
648 static u32
649 pc_render_get_seqno(struct intel_ring_buffer *ring)
650 {
651         struct pipe_control *pc = ring->private;
652         return pc->cpu_page[0];
653 }
654
655 static bool
656 gen5_ring_get_irq(struct intel_ring_buffer *ring)
657 {
658         struct drm_device *dev = ring->dev;
659         drm_i915_private_t *dev_priv = dev->dev_private;
660         unsigned long flags;
661
662         if (!dev->irq_enabled)
663                 return false;
664
665         spin_lock_irqsave(&dev_priv->irq_lock, flags);
666         if (ring->irq_refcount++ == 0) {
667                 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
668                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
669                 POSTING_READ(GTIMR);
670         }
671         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
672
673         return true;
674 }
675
676 static void
677 gen5_ring_put_irq(struct intel_ring_buffer *ring)
678 {
679         struct drm_device *dev = ring->dev;
680         drm_i915_private_t *dev_priv = dev->dev_private;
681         unsigned long flags;
682
683         spin_lock_irqsave(&dev_priv->irq_lock, flags);
684         if (--ring->irq_refcount == 0) {
685                 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
686                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
687                 POSTING_READ(GTIMR);
688         }
689         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
690 }
691
692 static bool
693 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
694 {
695         struct drm_device *dev = ring->dev;
696         drm_i915_private_t *dev_priv = dev->dev_private;
697         unsigned long flags;
698
699         if (!dev->irq_enabled)
700                 return false;
701
702         spin_lock_irqsave(&dev_priv->irq_lock, flags);
703         if (ring->irq_refcount++ == 0) {
704                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
705                 I915_WRITE(IMR, dev_priv->irq_mask);
706                 POSTING_READ(IMR);
707         }
708         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
709
710         return true;
711 }
712
713 static void
714 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
715 {
716         struct drm_device *dev = ring->dev;
717         drm_i915_private_t *dev_priv = dev->dev_private;
718         unsigned long flags;
719
720         spin_lock_irqsave(&dev_priv->irq_lock, flags);
721         if (--ring->irq_refcount == 0) {
722                 dev_priv->irq_mask |= ring->irq_enable_mask;
723                 I915_WRITE(IMR, dev_priv->irq_mask);
724                 POSTING_READ(IMR);
725         }
726         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
727 }
728
729 static bool
730 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
731 {
732         struct drm_device *dev = ring->dev;
733         drm_i915_private_t *dev_priv = dev->dev_private;
734         unsigned long flags;
735
736         if (!dev->irq_enabled)
737                 return false;
738
739         spin_lock_irqsave(&dev_priv->irq_lock, flags);
740         if (ring->irq_refcount++ == 0) {
741                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
742                 I915_WRITE16(IMR, dev_priv->irq_mask);
743                 POSTING_READ16(IMR);
744         }
745         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
746
747         return true;
748 }
749
750 static void
751 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
752 {
753         struct drm_device *dev = ring->dev;
754         drm_i915_private_t *dev_priv = dev->dev_private;
755         unsigned long flags;
756
757         spin_lock_irqsave(&dev_priv->irq_lock, flags);
758         if (--ring->irq_refcount == 0) {
759                 dev_priv->irq_mask |= ring->irq_enable_mask;
760                 I915_WRITE16(IMR, dev_priv->irq_mask);
761                 POSTING_READ16(IMR);
762         }
763         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
764 }
765
766 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
767 {
768         struct drm_device *dev = ring->dev;
769         drm_i915_private_t *dev_priv = ring->dev->dev_private;
770         u32 mmio = 0;
771
772         /* The ring status page addresses are no longer next to the rest of
773          * the ring registers as of gen7.
774          */
775         if (IS_GEN7(dev)) {
776                 switch (ring->id) {
777                 case RCS:
778                         mmio = RENDER_HWS_PGA_GEN7;
779                         break;
780                 case BCS:
781                         mmio = BLT_HWS_PGA_GEN7;
782                         break;
783                 case VCS:
784                         mmio = BSD_HWS_PGA_GEN7;
785                         break;
786                 }
787         } else if (IS_GEN6(ring->dev)) {
788                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
789         } else {
790                 mmio = RING_HWS_PGA(ring->mmio_base);
791         }
792
793         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
794         POSTING_READ(mmio);
795 }
796
797 static int
798 bsd_ring_flush(struct intel_ring_buffer *ring,
799                u32     invalidate_domains,
800                u32     flush_domains)
801 {
802         int ret;
803
804         ret = intel_ring_begin(ring, 2);
805         if (ret)
806                 return ret;
807
808         intel_ring_emit(ring, MI_FLUSH);
809         intel_ring_emit(ring, MI_NOOP);
810         intel_ring_advance(ring);
811         return 0;
812 }
813
814 static int
815 i9xx_add_request(struct intel_ring_buffer *ring,
816                  u32 *result)
817 {
818         u32 seqno;
819         int ret;
820
821         ret = intel_ring_begin(ring, 4);
822         if (ret)
823                 return ret;
824
825         seqno = i915_gem_next_request_seqno(ring);
826
827         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
828         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
829         intel_ring_emit(ring, seqno);
830         intel_ring_emit(ring, MI_USER_INTERRUPT);
831         intel_ring_advance(ring);
832
833         *result = seqno;
834         return 0;
835 }
836
837 static bool
838 gen6_ring_get_irq(struct intel_ring_buffer *ring)
839 {
840         struct drm_device *dev = ring->dev;
841         drm_i915_private_t *dev_priv = dev->dev_private;
842         unsigned long flags;
843
844         if (!dev->irq_enabled)
845                return false;
846
847         /* It looks like we need to prevent the gt from suspending while waiting
848          * for an notifiy irq, otherwise irqs seem to get lost on at least the
849          * blt/bsd rings on ivb. */
850         gen6_gt_force_wake_get(dev_priv);
851
852         spin_lock_irqsave(&dev_priv->irq_lock, flags);
853         if (ring->irq_refcount++ == 0) {
854                 if (IS_IVYBRIDGE(dev) && ring->id == RCS)
855                         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask |
856                                                 GEN6_RENDER_L3_PARITY_ERROR));
857                 else
858                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
859                 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
860                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
861                 POSTING_READ(GTIMR);
862         }
863         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
864
865         return true;
866 }
867
868 static void
869 gen6_ring_put_irq(struct intel_ring_buffer *ring)
870 {
871         struct drm_device *dev = ring->dev;
872         drm_i915_private_t *dev_priv = dev->dev_private;
873         unsigned long flags;
874
875         spin_lock_irqsave(&dev_priv->irq_lock, flags);
876         if (--ring->irq_refcount == 0) {
877                 if (IS_IVYBRIDGE(dev) && ring->id == RCS)
878                         I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
879                 else
880                         I915_WRITE_IMR(ring, ~0);
881                 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
882                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
883                 POSTING_READ(GTIMR);
884         }
885         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
886
887         gen6_gt_force_wake_put(dev_priv);
888 }
889
890 static int
891 i965_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
892 {
893         int ret;
894
895         ret = intel_ring_begin(ring, 2);
896         if (ret)
897                 return ret;
898
899         intel_ring_emit(ring,
900                         MI_BATCH_BUFFER_START |
901                         MI_BATCH_GTT |
902                         MI_BATCH_NON_SECURE_I965);
903         intel_ring_emit(ring, offset);
904         intel_ring_advance(ring);
905
906         return 0;
907 }
908
909 static int
910 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
911                                 u32 offset, u32 len)
912 {
913         int ret;
914
915         ret = intel_ring_begin(ring, 4);
916         if (ret)
917                 return ret;
918
919         intel_ring_emit(ring, MI_BATCH_BUFFER);
920         intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
921         intel_ring_emit(ring, offset + len - 8);
922         intel_ring_emit(ring, 0);
923         intel_ring_advance(ring);
924
925         return 0;
926 }
927
928 static int
929 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
930                                 u32 offset, u32 len)
931 {
932         int ret;
933
934         ret = intel_ring_begin(ring, 2);
935         if (ret)
936                 return ret;
937
938         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
939         intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
940         intel_ring_advance(ring);
941
942         return 0;
943 }
944
945 static void cleanup_status_page(struct intel_ring_buffer *ring)
946 {
947         struct drm_i915_gem_object *obj;
948
949         obj = ring->status_page.obj;
950         if (obj == NULL)
951                 return;
952
953         kunmap(obj->pages[0]);
954         i915_gem_object_unpin(obj);
955         drm_gem_object_unreference(&obj->base);
956         ring->status_page.obj = NULL;
957 }
958
959 static int init_status_page(struct intel_ring_buffer *ring)
960 {
961         struct drm_device *dev = ring->dev;
962         struct drm_i915_gem_object *obj;
963         int ret;
964
965         obj = i915_gem_alloc_object(dev, 4096);
966         if (obj == NULL) {
967                 DRM_ERROR("Failed to allocate status page\n");
968                 ret = -ENOMEM;
969                 goto err;
970         }
971
972         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
973
974         ret = i915_gem_object_pin(obj, 4096, true);
975         if (ret != 0) {
976                 goto err_unref;
977         }
978
979         ring->status_page.gfx_addr = obj->gtt_offset;
980         ring->status_page.page_addr = kmap(obj->pages[0]);
981         if (ring->status_page.page_addr == NULL) {
982                 ret = -ENOMEM;
983                 goto err_unpin;
984         }
985         ring->status_page.obj = obj;
986         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
987
988         intel_ring_setup_status_page(ring);
989         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
990                         ring->name, ring->status_page.gfx_addr);
991
992         return 0;
993
994 err_unpin:
995         i915_gem_object_unpin(obj);
996 err_unref:
997         drm_gem_object_unreference(&obj->base);
998 err:
999         return ret;
1000 }
1001
1002 static int intel_init_ring_buffer(struct drm_device *dev,
1003                                   struct intel_ring_buffer *ring)
1004 {
1005         struct drm_i915_gem_object *obj;
1006         struct drm_i915_private *dev_priv = dev->dev_private;
1007         int ret;
1008
1009         ring->dev = dev;
1010         INIT_LIST_HEAD(&ring->active_list);
1011         INIT_LIST_HEAD(&ring->request_list);
1012         INIT_LIST_HEAD(&ring->gpu_write_list);
1013         ring->size = 32 * PAGE_SIZE;
1014
1015         init_waitqueue_head(&ring->irq_queue);
1016
1017         if (I915_NEED_GFX_HWS(dev)) {
1018                 ret = init_status_page(ring);
1019                 if (ret)
1020                         return ret;
1021         }
1022
1023         obj = i915_gem_alloc_object(dev, ring->size);
1024         if (obj == NULL) {
1025                 DRM_ERROR("Failed to allocate ringbuffer\n");
1026                 ret = -ENOMEM;
1027                 goto err_hws;
1028         }
1029
1030         ring->obj = obj;
1031
1032         ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1033         if (ret)
1034                 goto err_unref;
1035
1036         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1037         if (ret)
1038                 goto err_unpin;
1039
1040         ring->virtual_start =
1041                 ioremap_wc(dev_priv->mm.gtt->gma_bus_addr + obj->gtt_offset,
1042                            ring->size);
1043         if (ring->virtual_start == NULL) {
1044                 DRM_ERROR("Failed to map ringbuffer.\n");
1045                 ret = -EINVAL;
1046                 goto err_unpin;
1047         }
1048
1049         ret = ring->init(ring);
1050         if (ret)
1051                 goto err_unmap;
1052
1053         /* Workaround an erratum on the i830 which causes a hang if
1054          * the TAIL pointer points to within the last 2 cachelines
1055          * of the buffer.
1056          */
1057         ring->effective_size = ring->size;
1058         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1059                 ring->effective_size -= 128;
1060
1061         return 0;
1062
1063 err_unmap:
1064         iounmap(ring->virtual_start);
1065 err_unpin:
1066         i915_gem_object_unpin(obj);
1067 err_unref:
1068         drm_gem_object_unreference(&obj->base);
1069         ring->obj = NULL;
1070 err_hws:
1071         cleanup_status_page(ring);
1072         return ret;
1073 }
1074
1075 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1076 {
1077         struct drm_i915_private *dev_priv;
1078         int ret;
1079
1080         if (ring->obj == NULL)
1081                 return;
1082
1083         /* Disable the ring buffer. The ring must be idle at this point */
1084         dev_priv = ring->dev->dev_private;
1085         ret = intel_wait_ring_idle(ring);
1086         if (ret)
1087                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1088                           ring->name, ret);
1089
1090         I915_WRITE_CTL(ring, 0);
1091
1092         iounmap(ring->virtual_start);
1093
1094         i915_gem_object_unpin(ring->obj);
1095         drm_gem_object_unreference(&ring->obj->base);
1096         ring->obj = NULL;
1097
1098         if (ring->cleanup)
1099                 ring->cleanup(ring);
1100
1101         cleanup_status_page(ring);
1102 }
1103
1104 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1105 {
1106         uint32_t __iomem *virt;
1107         int rem = ring->size - ring->tail;
1108
1109         if (ring->space < rem) {
1110                 int ret = intel_wait_ring_buffer(ring, rem);
1111                 if (ret)
1112                         return ret;
1113         }
1114
1115         virt = ring->virtual_start + ring->tail;
1116         rem /= 4;
1117         while (rem--)
1118                 iowrite32(MI_NOOP, virt++);
1119
1120         ring->tail = 0;
1121         ring->space = ring_space(ring);
1122
1123         return 0;
1124 }
1125
1126 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1127 {
1128         int ret;
1129
1130         ret = i915_wait_seqno(ring, seqno);
1131         if (!ret)
1132                 i915_gem_retire_requests_ring(ring);
1133
1134         return ret;
1135 }
1136
1137 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1138 {
1139         struct drm_i915_gem_request *request;
1140         u32 seqno = 0;
1141         int ret;
1142
1143         i915_gem_retire_requests_ring(ring);
1144
1145         if (ring->last_retired_head != -1) {
1146                 ring->head = ring->last_retired_head;
1147                 ring->last_retired_head = -1;
1148                 ring->space = ring_space(ring);
1149                 if (ring->space >= n)
1150                         return 0;
1151         }
1152
1153         list_for_each_entry(request, &ring->request_list, list) {
1154                 int space;
1155
1156                 if (request->tail == -1)
1157                         continue;
1158
1159                 space = request->tail - (ring->tail + 8);
1160                 if (space < 0)
1161                         space += ring->size;
1162                 if (space >= n) {
1163                         seqno = request->seqno;
1164                         break;
1165                 }
1166
1167                 /* Consume this request in case we need more space than
1168                  * is available and so need to prevent a race between
1169                  * updating last_retired_head and direct reads of
1170                  * I915_RING_HEAD. It also provides a nice sanity check.
1171                  */
1172                 request->tail = -1;
1173         }
1174
1175         if (seqno == 0)
1176                 return -ENOSPC;
1177
1178         ret = intel_ring_wait_seqno(ring, seqno);
1179         if (ret)
1180                 return ret;
1181
1182         if (WARN_ON(ring->last_retired_head == -1))
1183                 return -ENOSPC;
1184
1185         ring->head = ring->last_retired_head;
1186         ring->last_retired_head = -1;
1187         ring->space = ring_space(ring);
1188         if (WARN_ON(ring->space < n))
1189                 return -ENOSPC;
1190
1191         return 0;
1192 }
1193
1194 int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1195 {
1196         struct drm_device *dev = ring->dev;
1197         struct drm_i915_private *dev_priv = dev->dev_private;
1198         unsigned long end;
1199         int ret;
1200
1201         ret = intel_ring_wait_request(ring, n);
1202         if (ret != -ENOSPC)
1203                 return ret;
1204
1205         trace_i915_ring_wait_begin(ring);
1206         /* With GEM the hangcheck timer should kick us out of the loop,
1207          * leaving it early runs the risk of corrupting GEM state (due
1208          * to running on almost untested codepaths). But on resume
1209          * timers don't work yet, so prevent a complete hang in that
1210          * case by choosing an insanely large timeout. */
1211         end = jiffies + 60 * HZ;
1212
1213         do {
1214                 ring->head = I915_READ_HEAD(ring);
1215                 ring->space = ring_space(ring);
1216                 if (ring->space >= n) {
1217                         trace_i915_ring_wait_end(ring);
1218                         return 0;
1219                 }
1220
1221                 if (dev->primary->master) {
1222                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1223                         if (master_priv->sarea_priv)
1224                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1225                 }
1226
1227                 msleep(1);
1228
1229                 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1230                 if (ret)
1231                         return ret;
1232         } while (!time_after(jiffies, end));
1233         trace_i915_ring_wait_end(ring);
1234         return -EBUSY;
1235 }
1236
1237 int intel_ring_begin(struct intel_ring_buffer *ring,
1238                      int num_dwords)
1239 {
1240         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1241         int n = 4*num_dwords;
1242         int ret;
1243
1244         ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1245         if (ret)
1246                 return ret;
1247
1248         if (unlikely(ring->tail + n > ring->effective_size)) {
1249                 ret = intel_wrap_ring_buffer(ring);
1250                 if (unlikely(ret))
1251                         return ret;
1252         }
1253
1254         if (unlikely(ring->space < n)) {
1255                 ret = intel_wait_ring_buffer(ring, n);
1256                 if (unlikely(ret))
1257                         return ret;
1258         }
1259
1260         ring->space -= n;
1261         return 0;
1262 }
1263
1264 void intel_ring_advance(struct intel_ring_buffer *ring)
1265 {
1266         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1267
1268         ring->tail &= ring->size - 1;
1269         if (dev_priv->stop_rings & intel_ring_flag(ring))
1270                 return;
1271         ring->write_tail(ring, ring->tail);
1272 }
1273
1274
1275 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1276                                      u32 value)
1277 {
1278         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1279
1280        /* Every tail move must follow the sequence below */
1281
1282         /* Disable notification that the ring is IDLE. The GT
1283          * will then assume that it is busy and bring it out of rc6.
1284          */
1285         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1286                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1287
1288         /* Clear the context id. Here be magic! */
1289         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1290
1291         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1292         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1293                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1294                      50))
1295                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1296
1297         /* Now that the ring is fully powered up, update the tail */
1298         I915_WRITE_TAIL(ring, value);
1299         POSTING_READ(RING_TAIL(ring->mmio_base));
1300
1301         /* Let the ring send IDLE messages to the GT again,
1302          * and so let it sleep to conserve power when idle.
1303          */
1304         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1305                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1306 }
1307
1308 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1309                            u32 invalidate, u32 flush)
1310 {
1311         uint32_t cmd;
1312         int ret;
1313
1314         ret = intel_ring_begin(ring, 4);
1315         if (ret)
1316                 return ret;
1317
1318         cmd = MI_FLUSH_DW;
1319         if (invalidate & I915_GEM_GPU_DOMAINS)
1320                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1321         intel_ring_emit(ring, cmd);
1322         intel_ring_emit(ring, 0);
1323         intel_ring_emit(ring, 0);
1324         intel_ring_emit(ring, MI_NOOP);
1325         intel_ring_advance(ring);
1326         return 0;
1327 }
1328
1329 static int
1330 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1331                               u32 offset, u32 len)
1332 {
1333         int ret;
1334
1335         ret = intel_ring_begin(ring, 2);
1336         if (ret)
1337                 return ret;
1338
1339         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1340         /* bit0-7 is the length on GEN6+ */
1341         intel_ring_emit(ring, offset);
1342         intel_ring_advance(ring);
1343
1344         return 0;
1345 }
1346
1347 /* Blitter support (SandyBridge+) */
1348
1349 static int blt_ring_flush(struct intel_ring_buffer *ring,
1350                           u32 invalidate, u32 flush)
1351 {
1352         uint32_t cmd;
1353         int ret;
1354
1355         ret = intel_ring_begin(ring, 4);
1356         if (ret)
1357                 return ret;
1358
1359         cmd = MI_FLUSH_DW;
1360         if (invalidate & I915_GEM_DOMAIN_RENDER)
1361                 cmd |= MI_INVALIDATE_TLB;
1362         intel_ring_emit(ring, cmd);
1363         intel_ring_emit(ring, 0);
1364         intel_ring_emit(ring, 0);
1365         intel_ring_emit(ring, MI_NOOP);
1366         intel_ring_advance(ring);
1367         return 0;
1368 }
1369
1370 int intel_init_render_ring_buffer(struct drm_device *dev)
1371 {
1372         drm_i915_private_t *dev_priv = dev->dev_private;
1373         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1374
1375         ring->name = "render ring";
1376         ring->id = RCS;
1377         ring->mmio_base = RENDER_RING_BASE;
1378
1379         if (INTEL_INFO(dev)->gen >= 6) {
1380                 ring->add_request = gen6_add_request;
1381                 ring->flush = gen6_render_ring_flush;
1382                 ring->irq_get = gen6_ring_get_irq;
1383                 ring->irq_put = gen6_ring_put_irq;
1384                 ring->irq_enable_mask = GT_USER_INTERRUPT;
1385                 ring->get_seqno = gen6_ring_get_seqno;
1386                 ring->sync_to = gen6_ring_sync;
1387                 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_INVALID;
1388                 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_RV;
1389                 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_RB;
1390                 ring->signal_mbox[0] = GEN6_VRSYNC;
1391                 ring->signal_mbox[1] = GEN6_BRSYNC;
1392         } else if (IS_GEN5(dev)) {
1393                 ring->add_request = pc_render_add_request;
1394                 ring->flush = gen4_render_ring_flush;
1395                 ring->get_seqno = pc_render_get_seqno;
1396                 ring->irq_get = gen5_ring_get_irq;
1397                 ring->irq_put = gen5_ring_put_irq;
1398                 ring->irq_enable_mask = GT_USER_INTERRUPT | GT_PIPE_NOTIFY;
1399         } else {
1400                 ring->add_request = i9xx_add_request;
1401                 if (INTEL_INFO(dev)->gen < 4)
1402                         ring->flush = gen2_render_ring_flush;
1403                 else
1404                         ring->flush = gen4_render_ring_flush;
1405                 ring->get_seqno = ring_get_seqno;
1406                 if (IS_GEN2(dev)) {
1407                         ring->irq_get = i8xx_ring_get_irq;
1408                         ring->irq_put = i8xx_ring_put_irq;
1409                 } else {
1410                         ring->irq_get = i9xx_ring_get_irq;
1411                         ring->irq_put = i9xx_ring_put_irq;
1412                 }
1413                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1414         }
1415         ring->write_tail = ring_write_tail;
1416         if (INTEL_INFO(dev)->gen >= 6)
1417                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1418         else if (INTEL_INFO(dev)->gen >= 4)
1419                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1420         else if (IS_I830(dev) || IS_845G(dev))
1421                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1422         else
1423                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1424         ring->init = init_render_ring;
1425         ring->cleanup = render_ring_cleanup;
1426
1427
1428         if (!I915_NEED_GFX_HWS(dev)) {
1429                 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1430                 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1431         }
1432
1433         return intel_init_ring_buffer(dev, ring);
1434 }
1435
1436 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1437 {
1438         drm_i915_private_t *dev_priv = dev->dev_private;
1439         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1440
1441         ring->name = "render ring";
1442         ring->id = RCS;
1443         ring->mmio_base = RENDER_RING_BASE;
1444
1445         if (INTEL_INFO(dev)->gen >= 6) {
1446                 /* non-kms not supported on gen6+ */
1447                 return -ENODEV;
1448         }
1449
1450         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1451          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1452          * the special gen5 functions. */
1453         ring->add_request = i9xx_add_request;
1454         if (INTEL_INFO(dev)->gen < 4)
1455                 ring->flush = gen2_render_ring_flush;
1456         else
1457                 ring->flush = gen4_render_ring_flush;
1458         ring->get_seqno = ring_get_seqno;
1459         if (IS_GEN2(dev)) {
1460                 ring->irq_get = i8xx_ring_get_irq;
1461                 ring->irq_put = i8xx_ring_put_irq;
1462         } else {
1463                 ring->irq_get = i9xx_ring_get_irq;
1464                 ring->irq_put = i9xx_ring_put_irq;
1465         }
1466         ring->irq_enable_mask = I915_USER_INTERRUPT;
1467         ring->write_tail = ring_write_tail;
1468         if (INTEL_INFO(dev)->gen >= 4)
1469                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1470         else if (IS_I830(dev) || IS_845G(dev))
1471                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1472         else
1473                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1474         ring->init = init_render_ring;
1475         ring->cleanup = render_ring_cleanup;
1476
1477         if (!I915_NEED_GFX_HWS(dev))
1478                 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1479
1480         ring->dev = dev;
1481         INIT_LIST_HEAD(&ring->active_list);
1482         INIT_LIST_HEAD(&ring->request_list);
1483         INIT_LIST_HEAD(&ring->gpu_write_list);
1484
1485         ring->size = size;
1486         ring->effective_size = ring->size;
1487         if (IS_I830(ring->dev))
1488                 ring->effective_size -= 128;
1489
1490         ring->virtual_start = ioremap_wc(start, size);
1491         if (ring->virtual_start == NULL) {
1492                 DRM_ERROR("can not ioremap virtual address for"
1493                           " ring buffer\n");
1494                 return -ENOMEM;
1495         }
1496
1497         return 0;
1498 }
1499
1500 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1501 {
1502         drm_i915_private_t *dev_priv = dev->dev_private;
1503         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1504
1505         ring->name = "bsd ring";
1506         ring->id = VCS;
1507
1508         ring->write_tail = ring_write_tail;
1509         if (IS_GEN6(dev) || IS_GEN7(dev)) {
1510                 ring->mmio_base = GEN6_BSD_RING_BASE;
1511                 /* gen6 bsd needs a special wa for tail updates */
1512                 if (IS_GEN6(dev))
1513                         ring->write_tail = gen6_bsd_ring_write_tail;
1514                 ring->flush = gen6_ring_flush;
1515                 ring->add_request = gen6_add_request;
1516                 ring->get_seqno = gen6_ring_get_seqno;
1517                 ring->irq_enable_mask = GEN6_BSD_USER_INTERRUPT;
1518                 ring->irq_get = gen6_ring_get_irq;
1519                 ring->irq_put = gen6_ring_put_irq;
1520                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1521                 ring->sync_to = gen6_ring_sync;
1522                 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_VR;
1523                 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_INVALID;
1524                 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_VB;
1525                 ring->signal_mbox[0] = GEN6_RVSYNC;
1526                 ring->signal_mbox[1] = GEN6_BVSYNC;
1527         } else {
1528                 ring->mmio_base = BSD_RING_BASE;
1529                 ring->flush = bsd_ring_flush;
1530                 ring->add_request = i9xx_add_request;
1531                 ring->get_seqno = ring_get_seqno;
1532                 if (IS_GEN5(dev)) {
1533                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1534                         ring->irq_get = gen5_ring_get_irq;
1535                         ring->irq_put = gen5_ring_put_irq;
1536                 } else {
1537                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1538                         ring->irq_get = i9xx_ring_get_irq;
1539                         ring->irq_put = i9xx_ring_put_irq;
1540                 }
1541                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1542         }
1543         ring->init = init_ring_common;
1544
1545
1546         return intel_init_ring_buffer(dev, ring);
1547 }
1548
1549 int intel_init_blt_ring_buffer(struct drm_device *dev)
1550 {
1551         drm_i915_private_t *dev_priv = dev->dev_private;
1552         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1553
1554         ring->name = "blitter ring";
1555         ring->id = BCS;
1556
1557         ring->mmio_base = BLT_RING_BASE;
1558         ring->write_tail = ring_write_tail;
1559         ring->flush = blt_ring_flush;
1560         ring->add_request = gen6_add_request;
1561         ring->get_seqno = gen6_ring_get_seqno;
1562         ring->irq_enable_mask = GEN6_BLITTER_USER_INTERRUPT;
1563         ring->irq_get = gen6_ring_get_irq;
1564         ring->irq_put = gen6_ring_put_irq;
1565         ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1566         ring->sync_to = gen6_ring_sync;
1567         ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_BR;
1568         ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_BV;
1569         ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_INVALID;
1570         ring->signal_mbox[0] = GEN6_RBSYNC;
1571         ring->signal_mbox[1] = GEN6_VBSYNC;
1572         ring->init = init_ring_common;
1573
1574         return intel_init_ring_buffer(dev, ring);
1575 }