]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/nouveau/nvkm/engine/gr/gf100.c
drm/nouveau/gr/gf100-: handle GPC/TPC/MPC trap
[karo-tx-linux.git] / drivers / gpu / drm / nouveau / nvkm / engine / gr / gf100.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27
28 #include <core/client.h>
29 #include <core/option.h>
30 #include <core/firmware.h>
31 #include <subdev/secboot.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/timer.h>
36 #include <engine/fifo.h>
37
38 #include <nvif/class.h>
39 #include <nvif/cl9097.h>
40 #include <nvif/unpack.h>
41
42 /*******************************************************************************
43  * Zero Bandwidth Clear
44  ******************************************************************************/
45
46 static void
47 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
48 {
49         struct nvkm_device *device = gr->base.engine.subdev.device;
50         if (gr->zbc_color[zbc].format) {
51                 nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
52                 nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
53                 nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
54                 nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
55         }
56         nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
57         nvkm_wr32(device, 0x405820, zbc);
58         nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
59 }
60
61 static int
62 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
63                        const u32 ds[4], const u32 l2[4])
64 {
65         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
66         int zbc = -ENOSPC, i;
67
68         for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
69                 if (gr->zbc_color[i].format) {
70                         if (gr->zbc_color[i].format != format)
71                                 continue;
72                         if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
73                                    gr->zbc_color[i].ds)))
74                                 continue;
75                         if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
76                                    gr->zbc_color[i].l2))) {
77                                 WARN_ON(1);
78                                 return -EINVAL;
79                         }
80                         return i;
81                 } else {
82                         zbc = (zbc < 0) ? i : zbc;
83                 }
84         }
85
86         if (zbc < 0)
87                 return zbc;
88
89         memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
90         memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
91         gr->zbc_color[zbc].format = format;
92         nvkm_ltc_zbc_color_get(ltc, zbc, l2);
93         gf100_gr_zbc_clear_color(gr, zbc);
94         return zbc;
95 }
96
97 static void
98 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
99 {
100         struct nvkm_device *device = gr->base.engine.subdev.device;
101         if (gr->zbc_depth[zbc].format)
102                 nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
103         nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
104         nvkm_wr32(device, 0x405820, zbc);
105         nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
106 }
107
108 static int
109 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
110                        const u32 ds, const u32 l2)
111 {
112         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
113         int zbc = -ENOSPC, i;
114
115         for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
116                 if (gr->zbc_depth[i].format) {
117                         if (gr->zbc_depth[i].format != format)
118                                 continue;
119                         if (gr->zbc_depth[i].ds != ds)
120                                 continue;
121                         if (gr->zbc_depth[i].l2 != l2) {
122                                 WARN_ON(1);
123                                 return -EINVAL;
124                         }
125                         return i;
126                 } else {
127                         zbc = (zbc < 0) ? i : zbc;
128                 }
129         }
130
131         if (zbc < 0)
132                 return zbc;
133
134         gr->zbc_depth[zbc].format = format;
135         gr->zbc_depth[zbc].ds = ds;
136         gr->zbc_depth[zbc].l2 = l2;
137         nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
138         gf100_gr_zbc_clear_depth(gr, zbc);
139         return zbc;
140 }
141
142 /*******************************************************************************
143  * Graphics object classes
144  ******************************************************************************/
145 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
146
147 struct gf100_gr_object {
148         struct nvkm_object object;
149         struct gf100_gr_chan *chan;
150 };
151
152 static int
153 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
154 {
155         struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
156         union {
157                 struct fermi_a_zbc_color_v0 v0;
158         } *args = data;
159         int ret = -ENOSYS;
160
161         if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
162                 switch (args->v0.format) {
163                 case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
164                 case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
165                 case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
166                 case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
167                 case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
168                 case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
169                 case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
170                 case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
171                 case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
172                 case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
173                 case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
174                 case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
175                 case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
176                 case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
177                 case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
178                 case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
179                 case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
180                 case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
181                 case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
182                         ret = gf100_gr_zbc_color_get(gr, args->v0.format,
183                                                            args->v0.ds,
184                                                            args->v0.l2);
185                         if (ret >= 0) {
186                                 args->v0.index = ret;
187                                 return 0;
188                         }
189                         break;
190                 default:
191                         return -EINVAL;
192                 }
193         }
194
195         return ret;
196 }
197
198 static int
199 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
200 {
201         struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
202         union {
203                 struct fermi_a_zbc_depth_v0 v0;
204         } *args = data;
205         int ret = -ENOSYS;
206
207         if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
208                 switch (args->v0.format) {
209                 case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
210                         ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
211                                                            args->v0.ds,
212                                                            args->v0.l2);
213                         return (ret >= 0) ? 0 : -ENOSPC;
214                 default:
215                         return -EINVAL;
216                 }
217         }
218
219         return ret;
220 }
221
222 static int
223 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
224 {
225         nvif_ioctl(object, "fermi mthd %08x\n", mthd);
226         switch (mthd) {
227         case FERMI_A_ZBC_COLOR:
228                 return gf100_fermi_mthd_zbc_color(object, data, size);
229         case FERMI_A_ZBC_DEPTH:
230                 return gf100_fermi_mthd_zbc_depth(object, data, size);
231         default:
232                 break;
233         }
234         return -EINVAL;
235 }
236
237 const struct nvkm_object_func
238 gf100_fermi = {
239         .mthd = gf100_fermi_mthd,
240 };
241
242 static void
243 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
244 {
245         nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
246         nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
247 }
248
249 static bool
250 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
251 {
252         switch (class & 0x00ff) {
253         case 0x97:
254         case 0xc0:
255                 switch (mthd) {
256                 case 0x1528:
257                         gf100_gr_mthd_set_shader_exceptions(device, data);
258                         return true;
259                 default:
260                         break;
261                 }
262                 break;
263         default:
264                 break;
265         }
266         return false;
267 }
268
269 static const struct nvkm_object_func
270 gf100_gr_object_func = {
271 };
272
273 static int
274 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
275                     struct nvkm_object **pobject)
276 {
277         struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
278         struct gf100_gr_object *object;
279
280         if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
281                 return -ENOMEM;
282         *pobject = &object->object;
283
284         nvkm_object_ctor(oclass->base.func ? oclass->base.func :
285                          &gf100_gr_object_func, oclass, &object->object);
286         object->chan = chan;
287         return 0;
288 }
289
290 static int
291 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
292 {
293         struct gf100_gr *gr = gf100_gr(base);
294         int c = 0;
295
296         while (gr->func->sclass[c].oclass) {
297                 if (c++ == index) {
298                         *sclass = gr->func->sclass[index];
299                         sclass->ctor = gf100_gr_object_new;
300                         return index;
301                 }
302         }
303
304         return c;
305 }
306
307 /*******************************************************************************
308  * PGRAPH context
309  ******************************************************************************/
310
311 static int
312 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
313                    int align, struct nvkm_gpuobj **pgpuobj)
314 {
315         struct gf100_gr_chan *chan = gf100_gr_chan(object);
316         struct gf100_gr *gr = chan->gr;
317         int ret, i;
318
319         ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
320                               align, false, parent, pgpuobj);
321         if (ret)
322                 return ret;
323
324         nvkm_kmap(*pgpuobj);
325         for (i = 0; i < gr->size; i += 4)
326                 nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
327
328         if (!gr->firmware) {
329                 nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
330                 nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma.offset >> 8);
331         } else {
332                 nvkm_wo32(*pgpuobj, 0xf4, 0);
333                 nvkm_wo32(*pgpuobj, 0xf8, 0);
334                 nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
335                 nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma.offset));
336                 nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma.offset));
337                 nvkm_wo32(*pgpuobj, 0x1c, 1);
338                 nvkm_wo32(*pgpuobj, 0x20, 0);
339                 nvkm_wo32(*pgpuobj, 0x28, 0);
340                 nvkm_wo32(*pgpuobj, 0x2c, 0);
341         }
342         nvkm_done(*pgpuobj);
343         return 0;
344 }
345
346 static void *
347 gf100_gr_chan_dtor(struct nvkm_object *object)
348 {
349         struct gf100_gr_chan *chan = gf100_gr_chan(object);
350         int i;
351
352         for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
353                 if (chan->data[i].vma.node) {
354                         nvkm_vm_unmap(&chan->data[i].vma);
355                         nvkm_vm_put(&chan->data[i].vma);
356                 }
357                 nvkm_memory_del(&chan->data[i].mem);
358         }
359
360         if (chan->mmio_vma.node) {
361                 nvkm_vm_unmap(&chan->mmio_vma);
362                 nvkm_vm_put(&chan->mmio_vma);
363         }
364         nvkm_memory_del(&chan->mmio);
365         return chan;
366 }
367
368 static const struct nvkm_object_func
369 gf100_gr_chan = {
370         .dtor = gf100_gr_chan_dtor,
371         .bind = gf100_gr_chan_bind,
372 };
373
374 static int
375 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
376                   const struct nvkm_oclass *oclass,
377                   struct nvkm_object **pobject)
378 {
379         struct gf100_gr *gr = gf100_gr(base);
380         struct gf100_gr_data *data = gr->mmio_data;
381         struct gf100_gr_mmio *mmio = gr->mmio_list;
382         struct gf100_gr_chan *chan;
383         struct nvkm_device *device = gr->base.engine.subdev.device;
384         int ret, i;
385
386         if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
387                 return -ENOMEM;
388         nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
389         chan->gr = gr;
390         *pobject = &chan->object;
391
392         /* allocate memory for a "mmio list" buffer that's used by the HUB
393          * fuc to modify some per-context register settings on first load
394          * of the context.
395          */
396         ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
397                               false, &chan->mmio);
398         if (ret)
399                 return ret;
400
401         ret = nvkm_vm_get(fifoch->vm, 0x1000, 12, NV_MEM_ACCESS_RW |
402                           NV_MEM_ACCESS_SYS, &chan->mmio_vma);
403         if (ret)
404                 return ret;
405
406         nvkm_memory_map(chan->mmio, &chan->mmio_vma, 0);
407
408         /* allocate buffers referenced by mmio list */
409         for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
410                 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
411                                       data->size, data->align, false,
412                                       &chan->data[i].mem);
413                 if (ret)
414                         return ret;
415
416                 ret = nvkm_vm_get(fifoch->vm,
417                                   nvkm_memory_size(chan->data[i].mem), 12,
418                                   data->access, &chan->data[i].vma);
419                 if (ret)
420                         return ret;
421
422                 nvkm_memory_map(chan->data[i].mem, &chan->data[i].vma, 0);
423                 data++;
424         }
425
426         /* finally, fill in the mmio list and point the context at it */
427         nvkm_kmap(chan->mmio);
428         for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
429                 u32 addr = mmio->addr;
430                 u32 data = mmio->data;
431
432                 if (mmio->buffer >= 0) {
433                         u64 info = chan->data[mmio->buffer].vma.offset;
434                         data |= info >> mmio->shift;
435                 }
436
437                 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
438                 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
439                 mmio++;
440         }
441         nvkm_done(chan->mmio);
442         return 0;
443 }
444
445 /*******************************************************************************
446  * PGRAPH register lists
447  ******************************************************************************/
448
449 const struct gf100_gr_init
450 gf100_gr_init_main_0[] = {
451         { 0x400080,   1, 0x04, 0x003083c2 },
452         { 0x400088,   1, 0x04, 0x00006fe7 },
453         { 0x40008c,   1, 0x04, 0x00000000 },
454         { 0x400090,   1, 0x04, 0x00000030 },
455         { 0x40013c,   1, 0x04, 0x013901f7 },
456         { 0x400140,   1, 0x04, 0x00000100 },
457         { 0x400144,   1, 0x04, 0x00000000 },
458         { 0x400148,   1, 0x04, 0x00000110 },
459         { 0x400138,   1, 0x04, 0x00000000 },
460         { 0x400130,   2, 0x04, 0x00000000 },
461         { 0x400124,   1, 0x04, 0x00000002 },
462         {}
463 };
464
465 const struct gf100_gr_init
466 gf100_gr_init_fe_0[] = {
467         { 0x40415c,   1, 0x04, 0x00000000 },
468         { 0x404170,   1, 0x04, 0x00000000 },
469         {}
470 };
471
472 const struct gf100_gr_init
473 gf100_gr_init_pri_0[] = {
474         { 0x404488,   2, 0x04, 0x00000000 },
475         {}
476 };
477
478 const struct gf100_gr_init
479 gf100_gr_init_rstr2d_0[] = {
480         { 0x407808,   1, 0x04, 0x00000000 },
481         {}
482 };
483
484 const struct gf100_gr_init
485 gf100_gr_init_pd_0[] = {
486         { 0x406024,   1, 0x04, 0x00000000 },
487         {}
488 };
489
490 const struct gf100_gr_init
491 gf100_gr_init_ds_0[] = {
492         { 0x405844,   1, 0x04, 0x00ffffff },
493         { 0x405850,   1, 0x04, 0x00000000 },
494         { 0x405908,   1, 0x04, 0x00000000 },
495         {}
496 };
497
498 const struct gf100_gr_init
499 gf100_gr_init_scc_0[] = {
500         { 0x40803c,   1, 0x04, 0x00000000 },
501         {}
502 };
503
504 const struct gf100_gr_init
505 gf100_gr_init_prop_0[] = {
506         { 0x4184a0,   1, 0x04, 0x00000000 },
507         {}
508 };
509
510 const struct gf100_gr_init
511 gf100_gr_init_gpc_unk_0[] = {
512         { 0x418604,   1, 0x04, 0x00000000 },
513         { 0x418680,   1, 0x04, 0x00000000 },
514         { 0x418714,   1, 0x04, 0x80000000 },
515         { 0x418384,   1, 0x04, 0x00000000 },
516         {}
517 };
518
519 const struct gf100_gr_init
520 gf100_gr_init_setup_0[] = {
521         { 0x418814,   3, 0x04, 0x00000000 },
522         {}
523 };
524
525 const struct gf100_gr_init
526 gf100_gr_init_crstr_0[] = {
527         { 0x418b04,   1, 0x04, 0x00000000 },
528         {}
529 };
530
531 const struct gf100_gr_init
532 gf100_gr_init_setup_1[] = {
533         { 0x4188c8,   1, 0x04, 0x80000000 },
534         { 0x4188cc,   1, 0x04, 0x00000000 },
535         { 0x4188d0,   1, 0x04, 0x00010000 },
536         { 0x4188d4,   1, 0x04, 0x00000001 },
537         {}
538 };
539
540 const struct gf100_gr_init
541 gf100_gr_init_zcull_0[] = {
542         { 0x418910,   1, 0x04, 0x00010001 },
543         { 0x418914,   1, 0x04, 0x00000301 },
544         { 0x418918,   1, 0x04, 0x00800000 },
545         { 0x418980,   1, 0x04, 0x77777770 },
546         { 0x418984,   3, 0x04, 0x77777777 },
547         {}
548 };
549
550 const struct gf100_gr_init
551 gf100_gr_init_gpm_0[] = {
552         { 0x418c04,   1, 0x04, 0x00000000 },
553         { 0x418c88,   1, 0x04, 0x00000000 },
554         {}
555 };
556
557 const struct gf100_gr_init
558 gf100_gr_init_gpc_unk_1[] = {
559         { 0x418d00,   1, 0x04, 0x00000000 },
560         { 0x418f08,   1, 0x04, 0x00000000 },
561         { 0x418e00,   1, 0x04, 0x00000050 },
562         { 0x418e08,   1, 0x04, 0x00000000 },
563         {}
564 };
565
566 const struct gf100_gr_init
567 gf100_gr_init_gcc_0[] = {
568         { 0x41900c,   1, 0x04, 0x00000000 },
569         { 0x419018,   1, 0x04, 0x00000000 },
570         {}
571 };
572
573 const struct gf100_gr_init
574 gf100_gr_init_tpccs_0[] = {
575         { 0x419d08,   2, 0x04, 0x00000000 },
576         { 0x419d10,   1, 0x04, 0x00000014 },
577         {}
578 };
579
580 const struct gf100_gr_init
581 gf100_gr_init_tex_0[] = {
582         { 0x419ab0,   1, 0x04, 0x00000000 },
583         { 0x419ab8,   1, 0x04, 0x000000e7 },
584         { 0x419abc,   2, 0x04, 0x00000000 },
585         {}
586 };
587
588 const struct gf100_gr_init
589 gf100_gr_init_pe_0[] = {
590         { 0x41980c,   3, 0x04, 0x00000000 },
591         { 0x419844,   1, 0x04, 0x00000000 },
592         { 0x41984c,   1, 0x04, 0x00005bc5 },
593         { 0x419850,   4, 0x04, 0x00000000 },
594         {}
595 };
596
597 const struct gf100_gr_init
598 gf100_gr_init_l1c_0[] = {
599         { 0x419c98,   1, 0x04, 0x00000000 },
600         { 0x419ca8,   1, 0x04, 0x80000000 },
601         { 0x419cb4,   1, 0x04, 0x00000000 },
602         { 0x419cb8,   1, 0x04, 0x00008bf4 },
603         { 0x419cbc,   1, 0x04, 0x28137606 },
604         { 0x419cc0,   2, 0x04, 0x00000000 },
605         {}
606 };
607
608 const struct gf100_gr_init
609 gf100_gr_init_wwdx_0[] = {
610         { 0x419bd4,   1, 0x04, 0x00800000 },
611         { 0x419bdc,   1, 0x04, 0x00000000 },
612         {}
613 };
614
615 const struct gf100_gr_init
616 gf100_gr_init_tpccs_1[] = {
617         { 0x419d2c,   1, 0x04, 0x00000000 },
618         {}
619 };
620
621 const struct gf100_gr_init
622 gf100_gr_init_mpc_0[] = {
623         { 0x419c0c,   1, 0x04, 0x00000000 },
624         {}
625 };
626
627 static const struct gf100_gr_init
628 gf100_gr_init_sm_0[] = {
629         { 0x419e00,   1, 0x04, 0x00000000 },
630         { 0x419ea0,   1, 0x04, 0x00000000 },
631         { 0x419ea4,   1, 0x04, 0x00000100 },
632         { 0x419ea8,   1, 0x04, 0x00001100 },
633         { 0x419eac,   1, 0x04, 0x11100702 },
634         { 0x419eb0,   1, 0x04, 0x00000003 },
635         { 0x419eb4,   4, 0x04, 0x00000000 },
636         { 0x419ec8,   1, 0x04, 0x06060618 },
637         { 0x419ed0,   1, 0x04, 0x0eff0e38 },
638         { 0x419ed4,   1, 0x04, 0x011104f1 },
639         { 0x419edc,   1, 0x04, 0x00000000 },
640         { 0x419f00,   1, 0x04, 0x00000000 },
641         { 0x419f2c,   1, 0x04, 0x00000000 },
642         {}
643 };
644
645 const struct gf100_gr_init
646 gf100_gr_init_be_0[] = {
647         { 0x40880c,   1, 0x04, 0x00000000 },
648         { 0x408910,   9, 0x04, 0x00000000 },
649         { 0x408950,   1, 0x04, 0x00000000 },
650         { 0x408954,   1, 0x04, 0x0000ffff },
651         { 0x408984,   1, 0x04, 0x00000000 },
652         { 0x408988,   1, 0x04, 0x08040201 },
653         { 0x40898c,   1, 0x04, 0x80402010 },
654         {}
655 };
656
657 const struct gf100_gr_init
658 gf100_gr_init_fe_1[] = {
659         { 0x4040f0,   1, 0x04, 0x00000000 },
660         {}
661 };
662
663 const struct gf100_gr_init
664 gf100_gr_init_pe_1[] = {
665         { 0x419880,   1, 0x04, 0x00000002 },
666         {}
667 };
668
669 static const struct gf100_gr_pack
670 gf100_gr_pack_mmio[] = {
671         { gf100_gr_init_main_0 },
672         { gf100_gr_init_fe_0 },
673         { gf100_gr_init_pri_0 },
674         { gf100_gr_init_rstr2d_0 },
675         { gf100_gr_init_pd_0 },
676         { gf100_gr_init_ds_0 },
677         { gf100_gr_init_scc_0 },
678         { gf100_gr_init_prop_0 },
679         { gf100_gr_init_gpc_unk_0 },
680         { gf100_gr_init_setup_0 },
681         { gf100_gr_init_crstr_0 },
682         { gf100_gr_init_setup_1 },
683         { gf100_gr_init_zcull_0 },
684         { gf100_gr_init_gpm_0 },
685         { gf100_gr_init_gpc_unk_1 },
686         { gf100_gr_init_gcc_0 },
687         { gf100_gr_init_tpccs_0 },
688         { gf100_gr_init_tex_0 },
689         { gf100_gr_init_pe_0 },
690         { gf100_gr_init_l1c_0 },
691         { gf100_gr_init_wwdx_0 },
692         { gf100_gr_init_tpccs_1 },
693         { gf100_gr_init_mpc_0 },
694         { gf100_gr_init_sm_0 },
695         { gf100_gr_init_be_0 },
696         { gf100_gr_init_fe_1 },
697         { gf100_gr_init_pe_1 },
698         {}
699 };
700
701 /*******************************************************************************
702  * PGRAPH engine/subdev functions
703  ******************************************************************************/
704
705 int
706 gf100_gr_rops(struct gf100_gr *gr)
707 {
708         struct nvkm_device *device = gr->base.engine.subdev.device;
709         return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
710 }
711
712 void
713 gf100_gr_zbc_init(struct gf100_gr *gr)
714 {
715         const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
716                               0x00000000, 0x00000000, 0x00000000, 0x00000000 };
717         const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
718                               0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
719         const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
720                               0x00000000, 0x00000000, 0x00000000, 0x00000000 };
721         const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
722                               0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
723         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
724         int index;
725
726         if (!gr->zbc_color[0].format) {
727                 gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]);
728                 gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]);
729                 gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]);
730                 gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]);
731                 gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000);
732                 gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000);
733         }
734
735         for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
736                 gf100_gr_zbc_clear_color(gr, index);
737         for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
738                 gf100_gr_zbc_clear_depth(gr, index);
739 }
740
741 /**
742  * Wait until GR goes idle. GR is considered idle if it is disabled by the
743  * MC (0x200) register, or GR is not busy and a context switch is not in
744  * progress.
745  */
746 int
747 gf100_gr_wait_idle(struct gf100_gr *gr)
748 {
749         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
750         struct nvkm_device *device = subdev->device;
751         unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
752         bool gr_enabled, ctxsw_active, gr_busy;
753
754         do {
755                 /*
756                  * required to make sure FIFO_ENGINE_STATUS (0x2640) is
757                  * up-to-date
758                  */
759                 nvkm_rd32(device, 0x400700);
760
761                 gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
762                 ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
763                 gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
764
765                 if (!gr_enabled || (!gr_busy && !ctxsw_active))
766                         return 0;
767         } while (time_before(jiffies, end_jiffies));
768
769         nvkm_error(subdev,
770                    "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
771                    gr_enabled, ctxsw_active, gr_busy);
772         return -EAGAIN;
773 }
774
775 void
776 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
777 {
778         struct nvkm_device *device = gr->base.engine.subdev.device;
779         const struct gf100_gr_pack *pack;
780         const struct gf100_gr_init *init;
781
782         pack_for_each_init(init, pack, p) {
783                 u32 next = init->addr + init->count * init->pitch;
784                 u32 addr = init->addr;
785                 while (addr < next) {
786                         nvkm_wr32(device, addr, init->data);
787                         addr += init->pitch;
788                 }
789         }
790 }
791
792 void
793 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
794 {
795         struct nvkm_device *device = gr->base.engine.subdev.device;
796         const struct gf100_gr_pack *pack;
797         const struct gf100_gr_init *init;
798         u32 data = 0;
799
800         nvkm_wr32(device, 0x400208, 0x80000000);
801
802         pack_for_each_init(init, pack, p) {
803                 u32 next = init->addr + init->count * init->pitch;
804                 u32 addr = init->addr;
805
806                 if ((pack == p && init == p->init) || data != init->data) {
807                         nvkm_wr32(device, 0x400204, init->data);
808                         data = init->data;
809                 }
810
811                 while (addr < next) {
812                         nvkm_wr32(device, 0x400200, addr);
813                         /**
814                          * Wait for GR to go idle after submitting a
815                          * GO_IDLE bundle
816                          */
817                         if ((addr & 0xffff) == 0xe100)
818                                 gf100_gr_wait_idle(gr);
819                         nvkm_msec(device, 2000,
820                                 if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
821                                         break;
822                         );
823                         addr += init->pitch;
824                 }
825         }
826
827         nvkm_wr32(device, 0x400208, 0x00000000);
828 }
829
830 void
831 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
832 {
833         struct nvkm_device *device = gr->base.engine.subdev.device;
834         const struct gf100_gr_pack *pack;
835         const struct gf100_gr_init *init;
836         u32 data = 0;
837
838         pack_for_each_init(init, pack, p) {
839                 u32 ctrl = 0x80000000 | pack->type;
840                 u32 next = init->addr + init->count * init->pitch;
841                 u32 addr = init->addr;
842
843                 if ((pack == p && init == p->init) || data != init->data) {
844                         nvkm_wr32(device, 0x40448c, init->data);
845                         data = init->data;
846                 }
847
848                 while (addr < next) {
849                         nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
850                         addr += init->pitch;
851                 }
852         }
853 }
854
855 u64
856 gf100_gr_units(struct nvkm_gr *base)
857 {
858         struct gf100_gr *gr = gf100_gr(base);
859         u64 cfg;
860
861         cfg  = (u32)gr->gpc_nr;
862         cfg |= (u32)gr->tpc_total << 8;
863         cfg |= (u64)gr->rop_nr << 32;
864
865         return cfg;
866 }
867
868 static const struct nvkm_bitfield gf100_dispatch_error[] = {
869         { 0x00000001, "INJECTED_BUNDLE_ERROR" },
870         { 0x00000002, "CLASS_SUBCH_MISMATCH" },
871         { 0x00000004, "SUBCHSW_DURING_NOTIFY" },
872         {}
873 };
874
875 static const struct nvkm_bitfield gf100_m2mf_error[] = {
876         { 0x00000001, "PUSH_TOO_MUCH_DATA" },
877         { 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
878         {}
879 };
880
881 static const struct nvkm_bitfield gf100_unk6_error[] = {
882         { 0x00000001, "TEMP_TOO_SMALL" },
883         {}
884 };
885
886 static const struct nvkm_bitfield gf100_ccache_error[] = {
887         { 0x00000001, "INTR" },
888         { 0x00000002, "LDCONST_OOB" },
889         {}
890 };
891
892 static const struct nvkm_bitfield gf100_macro_error[] = {
893         { 0x00000001, "TOO_FEW_PARAMS" },
894         { 0x00000002, "TOO_MANY_PARAMS" },
895         { 0x00000004, "ILLEGAL_OPCODE" },
896         { 0x00000008, "DOUBLE_BRANCH" },
897         { 0x00000010, "WATCHDOG" },
898         {}
899 };
900
901 static const struct nvkm_bitfield gk104_sked_error[] = {
902         { 0x00000040, "CTA_RESUME" },
903         { 0x00000080, "CONSTANT_BUFFER_SIZE" },
904         { 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
905         { 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
906         { 0x00000800, "WARP_CSTACK_SIZE" },
907         { 0x00001000, "TOTAL_TEMP_SIZE" },
908         { 0x00002000, "REGISTER_COUNT" },
909         { 0x00040000, "TOTAL_THREADS" },
910         { 0x00100000, "PROGRAM_OFFSET" },
911         { 0x00200000, "SHARED_MEMORY_SIZE" },
912         { 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
913         { 0x01000000, "MEMORY_WINDOW_OVERLAP" },
914         { 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
915         { 0x04000000, "TOTAL_REGISTER_COUNT" },
916         {}
917 };
918
919 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
920         { 0x00000002, "RT_PITCH_OVERRUN" },
921         { 0x00000010, "RT_WIDTH_OVERRUN" },
922         { 0x00000020, "RT_HEIGHT_OVERRUN" },
923         { 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
924         { 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
925         { 0x00000400, "RT_LINEAR_MISMATCH" },
926         {}
927 };
928
929 static void
930 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
931 {
932         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
933         struct nvkm_device *device = subdev->device;
934         char error[128];
935         u32 trap[4];
936
937         trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
938         trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
939         trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
940         trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
941
942         nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
943
944         nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
945                            "format = %x, storage type = %x\n",
946                    gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
947                    (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
948         nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
949 }
950
951 static const struct nvkm_enum gf100_mp_warp_error[] = {
952         { 0x01, "STACK_ERROR" },
953         { 0x02, "API_STACK_ERROR" },
954         { 0x03, "RET_EMPTY_STACK_ERROR" },
955         { 0x04, "PC_WRAP" },
956         { 0x05, "MISALIGNED_PC" },
957         { 0x06, "PC_OVERFLOW" },
958         { 0x07, "MISALIGNED_IMMC_ADDR" },
959         { 0x08, "MISALIGNED_REG" },
960         { 0x09, "ILLEGAL_INSTR_ENCODING" },
961         { 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
962         { 0x0b, "ILLEGAL_INSTR_PARAM" },
963         { 0x0c, "INVALID_CONST_ADDR" },
964         { 0x0d, "OOR_REG" },
965         { 0x0e, "OOR_ADDR" },
966         { 0x0f, "MISALIGNED_ADDR" },
967         { 0x10, "INVALID_ADDR_SPACE" },
968         { 0x11, "ILLEGAL_INSTR_PARAM2" },
969         { 0x12, "INVALID_CONST_ADDR_LDC" },
970         { 0x13, "GEOMETRY_SM_ERROR" },
971         { 0x14, "DIVERGENT" },
972         { 0x15, "WARP_EXIT" },
973         {}
974 };
975
976 static const struct nvkm_bitfield gf100_mp_global_error[] = {
977         { 0x00000001, "SM_TO_SM_FAULT" },
978         { 0x00000002, "L1_ERROR" },
979         { 0x00000004, "MULTIPLE_WARP_ERRORS" },
980         { 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
981         { 0x00000010, "BPT_INT" },
982         { 0x00000020, "BPT_PAUSE" },
983         { 0x00000040, "SINGLE_STEP_COMPLETE" },
984         { 0x20000000, "ECC_SEC_ERROR" },
985         { 0x40000000, "ECC_DED_ERROR" },
986         { 0x80000000, "TIMEOUT" },
987         {}
988 };
989
990 static void
991 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
992 {
993         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
994         struct nvkm_device *device = subdev->device;
995         u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
996         u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
997         const struct nvkm_enum *warp;
998         char glob[128];
999
1000         nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1001         warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1002
1003         nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1004                            "global %08x [%s] warp %04x [%s]\n",
1005                    gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1006
1007         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1008         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1009 }
1010
1011 static void
1012 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1013 {
1014         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1015         struct nvkm_device *device = subdev->device;
1016         u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1017
1018         if (stat & 0x00000001) {
1019                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1020                 nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1021                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1022                 stat &= ~0x00000001;
1023         }
1024
1025         if (stat & 0x00000002) {
1026                 gf100_gr_trap_mp(gr, gpc, tpc);
1027                 stat &= ~0x00000002;
1028         }
1029
1030         if (stat & 0x00000004) {
1031                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1032                 nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1033                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1034                 stat &= ~0x00000004;
1035         }
1036
1037         if (stat & 0x00000008) {
1038                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1039                 nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1040                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1041                 stat &= ~0x00000008;
1042         }
1043
1044         if (stat & 0x00000010) {
1045                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430));
1046                 nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap);
1047                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000);
1048                 stat &= ~0x00000010;
1049         }
1050
1051         if (stat) {
1052                 nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1053         }
1054 }
1055
1056 static void
1057 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1058 {
1059         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1060         struct nvkm_device *device = subdev->device;
1061         u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1062         int tpc;
1063
1064         if (stat & 0x00000001) {
1065                 gf100_gr_trap_gpc_rop(gr, gpc);
1066                 stat &= ~0x00000001;
1067         }
1068
1069         if (stat & 0x00000002) {
1070                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1071                 nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1072                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1073                 stat &= ~0x00000002;
1074         }
1075
1076         if (stat & 0x00000004) {
1077                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1078                 nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1079                 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1080                 stat &= ~0x00000004;
1081         }
1082
1083         if (stat & 0x00000008) {
1084                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1085                 nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1086                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1087                 stat &= ~0x00000009;
1088         }
1089
1090         for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1091                 u32 mask = 0x00010000 << tpc;
1092                 if (stat & mask) {
1093                         gf100_gr_trap_tpc(gr, gpc, tpc);
1094                         nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1095                         stat &= ~mask;
1096                 }
1097         }
1098
1099         if (stat) {
1100                 nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1101         }
1102 }
1103
1104 static void
1105 gf100_gr_trap_intr(struct gf100_gr *gr)
1106 {
1107         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1108         struct nvkm_device *device = subdev->device;
1109         char error[128];
1110         u32 trap = nvkm_rd32(device, 0x400108);
1111         int rop, gpc;
1112
1113         if (trap & 0x00000001) {
1114                 u32 stat = nvkm_rd32(device, 0x404000);
1115
1116                 nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1117                                stat & 0x3fffffff);
1118                 nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1119                 nvkm_wr32(device, 0x404000, 0xc0000000);
1120                 nvkm_wr32(device, 0x400108, 0x00000001);
1121                 trap &= ~0x00000001;
1122         }
1123
1124         if (trap & 0x00000002) {
1125                 u32 stat = nvkm_rd32(device, 0x404600);
1126
1127                 nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1128                                stat & 0x3fffffff);
1129                 nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1130
1131                 nvkm_wr32(device, 0x404600, 0xc0000000);
1132                 nvkm_wr32(device, 0x400108, 0x00000002);
1133                 trap &= ~0x00000002;
1134         }
1135
1136         if (trap & 0x00000008) {
1137                 u32 stat = nvkm_rd32(device, 0x408030);
1138
1139                 nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1140                                stat & 0x3fffffff);
1141                 nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1142                 nvkm_wr32(device, 0x408030, 0xc0000000);
1143                 nvkm_wr32(device, 0x400108, 0x00000008);
1144                 trap &= ~0x00000008;
1145         }
1146
1147         if (trap & 0x00000010) {
1148                 u32 stat = nvkm_rd32(device, 0x405840);
1149                 nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1150                            stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1151                 nvkm_wr32(device, 0x405840, 0xc0000000);
1152                 nvkm_wr32(device, 0x400108, 0x00000010);
1153                 trap &= ~0x00000010;
1154         }
1155
1156         if (trap & 0x00000040) {
1157                 u32 stat = nvkm_rd32(device, 0x40601c);
1158
1159                 nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1160                                stat & 0x3fffffff);
1161                 nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1162
1163                 nvkm_wr32(device, 0x40601c, 0xc0000000);
1164                 nvkm_wr32(device, 0x400108, 0x00000040);
1165                 trap &= ~0x00000040;
1166         }
1167
1168         if (trap & 0x00000080) {
1169                 u32 stat = nvkm_rd32(device, 0x404490);
1170                 u32 pc = nvkm_rd32(device, 0x404494);
1171                 u32 op = nvkm_rd32(device, 0x40449c);
1172
1173                 nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1174                                stat & 0x1fffffff);
1175                 nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1176                            stat, error, pc & 0x7ff,
1177                            (pc & 0x10000000) ? "" : " (invalid)",
1178                            op);
1179
1180                 nvkm_wr32(device, 0x404490, 0xc0000000);
1181                 nvkm_wr32(device, 0x400108, 0x00000080);
1182                 trap &= ~0x00000080;
1183         }
1184
1185         if (trap & 0x00000100) {
1186                 u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1187
1188                 nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1189                 nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1190
1191                 if (stat)
1192                         nvkm_wr32(device, 0x407020, 0x40000000);
1193                 nvkm_wr32(device, 0x400108, 0x00000100);
1194                 trap &= ~0x00000100;
1195         }
1196
1197         if (trap & 0x01000000) {
1198                 u32 stat = nvkm_rd32(device, 0x400118);
1199                 for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1200                         u32 mask = 0x00000001 << gpc;
1201                         if (stat & mask) {
1202                                 gf100_gr_trap_gpc(gr, gpc);
1203                                 nvkm_wr32(device, 0x400118, mask);
1204                                 stat &= ~mask;
1205                         }
1206                 }
1207                 nvkm_wr32(device, 0x400108, 0x01000000);
1208                 trap &= ~0x01000000;
1209         }
1210
1211         if (trap & 0x02000000) {
1212                 for (rop = 0; rop < gr->rop_nr; rop++) {
1213                         u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1214                         u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1215                         nvkm_error(subdev, "ROP%d %08x %08x\n",
1216                                  rop, statz, statc);
1217                         nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1218                         nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1219                 }
1220                 nvkm_wr32(device, 0x400108, 0x02000000);
1221                 trap &= ~0x02000000;
1222         }
1223
1224         if (trap) {
1225                 nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1226                 nvkm_wr32(device, 0x400108, trap);
1227         }
1228 }
1229
1230 static void
1231 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1232 {
1233         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1234         struct nvkm_device *device = subdev->device;
1235         nvkm_error(subdev, "%06x - done %08x\n", base,
1236                    nvkm_rd32(device, base + 0x400));
1237         nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1238                    nvkm_rd32(device, base + 0x800),
1239                    nvkm_rd32(device, base + 0x804),
1240                    nvkm_rd32(device, base + 0x808),
1241                    nvkm_rd32(device, base + 0x80c));
1242         nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1243                    nvkm_rd32(device, base + 0x810),
1244                    nvkm_rd32(device, base + 0x814),
1245                    nvkm_rd32(device, base + 0x818),
1246                    nvkm_rd32(device, base + 0x81c));
1247 }
1248
1249 void
1250 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1251 {
1252         struct nvkm_device *device = gr->base.engine.subdev.device;
1253         u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1254         u32 gpc;
1255
1256         gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1257         for (gpc = 0; gpc < gpcnr; gpc++)
1258                 gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1259 }
1260
1261 static void
1262 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1263 {
1264         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1265         struct nvkm_device *device = subdev->device;
1266         u32 stat = nvkm_rd32(device, 0x409c18);
1267
1268         if (!gr->firmware && (stat & 0x00000001)) {
1269                 u32 code = nvkm_rd32(device, 0x409814);
1270                 if (code == E_BAD_FWMTHD) {
1271                         u32 class = nvkm_rd32(device, 0x409808);
1272                         u32  addr = nvkm_rd32(device, 0x40980c);
1273                         u32  subc = (addr & 0x00070000) >> 16;
1274                         u32  mthd = (addr & 0x00003ffc);
1275                         u32  data = nvkm_rd32(device, 0x409810);
1276
1277                         nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1278                                            "mthd %04x data %08x\n",
1279                                    subc, class, mthd, data);
1280                 } else {
1281                         nvkm_error(subdev, "FECS ucode error %d\n", code);
1282                 }
1283                 nvkm_wr32(device, 0x409c20, 0x00000001);
1284                 stat &= ~0x00000001;
1285         }
1286
1287         if (!gr->firmware && (stat & 0x00080000)) {
1288                 nvkm_error(subdev, "FECS watchdog timeout\n");
1289                 gf100_gr_ctxctl_debug(gr);
1290                 nvkm_wr32(device, 0x409c20, 0x00080000);
1291                 stat &= ~0x00080000;
1292         }
1293
1294         if (stat) {
1295                 nvkm_error(subdev, "FECS %08x\n", stat);
1296                 gf100_gr_ctxctl_debug(gr);
1297                 nvkm_wr32(device, 0x409c20, stat);
1298         }
1299 }
1300
1301 static void
1302 gf100_gr_intr(struct nvkm_gr *base)
1303 {
1304         struct gf100_gr *gr = gf100_gr(base);
1305         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1306         struct nvkm_device *device = subdev->device;
1307         struct nvkm_fifo_chan *chan;
1308         unsigned long flags;
1309         u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1310         u32 stat = nvkm_rd32(device, 0x400100);
1311         u32 addr = nvkm_rd32(device, 0x400704);
1312         u32 mthd = (addr & 0x00003ffc);
1313         u32 subc = (addr & 0x00070000) >> 16;
1314         u32 data = nvkm_rd32(device, 0x400708);
1315         u32 code = nvkm_rd32(device, 0x400110);
1316         u32 class;
1317         const char *name = "unknown";
1318         int chid = -1;
1319
1320         chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
1321         if (chan) {
1322                 name = chan->object.client->name;
1323                 chid = chan->chid;
1324         }
1325
1326         if (device->card_type < NV_E0 || subc < 4)
1327                 class = nvkm_rd32(device, 0x404200 + (subc * 4));
1328         else
1329                 class = 0x0000;
1330
1331         if (stat & 0x00000001) {
1332                 /*
1333                  * notifier interrupt, only needed for cyclestats
1334                  * can be safely ignored
1335                  */
1336                 nvkm_wr32(device, 0x400100, 0x00000001);
1337                 stat &= ~0x00000001;
1338         }
1339
1340         if (stat & 0x00000010) {
1341                 if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1342                         nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1343                                    "subc %d class %04x mthd %04x data %08x\n",
1344                                    chid, inst << 12, name, subc,
1345                                    class, mthd, data);
1346                 }
1347                 nvkm_wr32(device, 0x400100, 0x00000010);
1348                 stat &= ~0x00000010;
1349         }
1350
1351         if (stat & 0x00000020) {
1352                 nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1353                            "subc %d class %04x mthd %04x data %08x\n",
1354                            chid, inst << 12, name, subc, class, mthd, data);
1355                 nvkm_wr32(device, 0x400100, 0x00000020);
1356                 stat &= ~0x00000020;
1357         }
1358
1359         if (stat & 0x00100000) {
1360                 const struct nvkm_enum *en =
1361                         nvkm_enum_find(nv50_data_error_names, code);
1362                 nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1363                                    "subc %d class %04x mthd %04x data %08x\n",
1364                            code, en ? en->name : "", chid, inst << 12,
1365                            name, subc, class, mthd, data);
1366                 nvkm_wr32(device, 0x400100, 0x00100000);
1367                 stat &= ~0x00100000;
1368         }
1369
1370         if (stat & 0x00200000) {
1371                 nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1372                            chid, inst << 12, name);
1373                 gf100_gr_trap_intr(gr);
1374                 nvkm_wr32(device, 0x400100, 0x00200000);
1375                 stat &= ~0x00200000;
1376         }
1377
1378         if (stat & 0x00080000) {
1379                 gf100_gr_ctxctl_isr(gr);
1380                 nvkm_wr32(device, 0x400100, 0x00080000);
1381                 stat &= ~0x00080000;
1382         }
1383
1384         if (stat) {
1385                 nvkm_error(subdev, "intr %08x\n", stat);
1386                 nvkm_wr32(device, 0x400100, stat);
1387         }
1388
1389         nvkm_wr32(device, 0x400500, 0x00010001);
1390         nvkm_fifo_chan_put(device->fifo, flags, &chan);
1391 }
1392
1393 static void
1394 gf100_gr_init_fw(struct gf100_gr *gr, u32 fuc_base,
1395                  struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
1396 {
1397         struct nvkm_device *device = gr->base.engine.subdev.device;
1398         int i;
1399
1400         nvkm_wr32(device, fuc_base + 0x01c0, 0x01000000);
1401         for (i = 0; i < data->size / 4; i++)
1402                 nvkm_wr32(device, fuc_base + 0x01c4, data->data[i]);
1403
1404         nvkm_wr32(device, fuc_base + 0x0180, 0x01000000);
1405         for (i = 0; i < code->size / 4; i++) {
1406                 if ((i & 0x3f) == 0)
1407                         nvkm_wr32(device, fuc_base + 0x0188, i >> 6);
1408                 nvkm_wr32(device, fuc_base + 0x0184, code->data[i]);
1409         }
1410
1411         /* code must be padded to 0x40 words */
1412         for (; i & 0x3f; i++)
1413                 nvkm_wr32(device, fuc_base + 0x0184, 0);
1414 }
1415
1416 static void
1417 gf100_gr_init_csdata(struct gf100_gr *gr,
1418                      const struct gf100_gr_pack *pack,
1419                      u32 falcon, u32 starstar, u32 base)
1420 {
1421         struct nvkm_device *device = gr->base.engine.subdev.device;
1422         const struct gf100_gr_pack *iter;
1423         const struct gf100_gr_init *init;
1424         u32 addr = ~0, prev = ~0, xfer = 0;
1425         u32 star, temp;
1426
1427         nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1428         star = nvkm_rd32(device, falcon + 0x01c4);
1429         temp = nvkm_rd32(device, falcon + 0x01c4);
1430         if (temp > star)
1431                 star = temp;
1432         nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1433
1434         pack_for_each_init(init, iter, pack) {
1435                 u32 head = init->addr - base;
1436                 u32 tail = head + init->count * init->pitch;
1437                 while (head < tail) {
1438                         if (head != prev + 4 || xfer >= 32) {
1439                                 if (xfer) {
1440                                         u32 data = ((--xfer << 26) | addr);
1441                                         nvkm_wr32(device, falcon + 0x01c4, data);
1442                                         star += 4;
1443                                 }
1444                                 addr = head;
1445                                 xfer = 0;
1446                         }
1447                         prev = head;
1448                         xfer = xfer + 1;
1449                         head = head + init->pitch;
1450                 }
1451         }
1452
1453         nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1454         nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1455         nvkm_wr32(device, falcon + 0x01c4, star + 4);
1456 }
1457
1458 int
1459 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1460 {
1461         const struct gf100_grctx_func *grctx = gr->func->grctx;
1462         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1463         struct nvkm_device *device = subdev->device;
1464         struct nvkm_secboot *sb = device->secboot;
1465         int i;
1466         int ret = 0;
1467
1468         if (gr->firmware) {
1469                 /* load fuc microcode */
1470                 nvkm_mc_unk260(device, 0);
1471
1472                 /* securely-managed falcons must be reset using secure boot */
1473                 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1474                         ret = nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_FECS);
1475                 else
1476                         gf100_gr_init_fw(gr, 0x409000, &gr->fuc409c,
1477                                          &gr->fuc409d);
1478                 if (ret)
1479                         return ret;
1480
1481                 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1482                         ret = nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_GPCCS);
1483                 else
1484                         gf100_gr_init_fw(gr, 0x41a000, &gr->fuc41ac,
1485                                          &gr->fuc41ad);
1486                 if (ret)
1487                         return ret;
1488
1489                 nvkm_mc_unk260(device, 1);
1490
1491                 /* start both of them running */
1492                 nvkm_wr32(device, 0x409840, 0xffffffff);
1493                 nvkm_wr32(device, 0x41a10c, 0x00000000);
1494                 nvkm_wr32(device, 0x40910c, 0x00000000);
1495
1496                 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1497                         nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_GPCCS);
1498                 else
1499                         nvkm_wr32(device, 0x41a100, 0x00000002);
1500                 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1501                         nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_FECS);
1502                 else
1503                         nvkm_wr32(device, 0x409100, 0x00000002);
1504                 if (nvkm_msec(device, 2000,
1505                         if (nvkm_rd32(device, 0x409800) & 0x00000001)
1506                                 break;
1507                 ) < 0)
1508                         return -EBUSY;
1509
1510                 nvkm_wr32(device, 0x409840, 0xffffffff);
1511                 nvkm_wr32(device, 0x409500, 0x7fffffff);
1512                 nvkm_wr32(device, 0x409504, 0x00000021);
1513
1514                 nvkm_wr32(device, 0x409840, 0xffffffff);
1515                 nvkm_wr32(device, 0x409500, 0x00000000);
1516                 nvkm_wr32(device, 0x409504, 0x00000010);
1517                 if (nvkm_msec(device, 2000,
1518                         if ((gr->size = nvkm_rd32(device, 0x409800)))
1519                                 break;
1520                 ) < 0)
1521                         return -EBUSY;
1522
1523                 nvkm_wr32(device, 0x409840, 0xffffffff);
1524                 nvkm_wr32(device, 0x409500, 0x00000000);
1525                 nvkm_wr32(device, 0x409504, 0x00000016);
1526                 if (nvkm_msec(device, 2000,
1527                         if (nvkm_rd32(device, 0x409800))
1528                                 break;
1529                 ) < 0)
1530                         return -EBUSY;
1531
1532                 nvkm_wr32(device, 0x409840, 0xffffffff);
1533                 nvkm_wr32(device, 0x409500, 0x00000000);
1534                 nvkm_wr32(device, 0x409504, 0x00000025);
1535                 if (nvkm_msec(device, 2000,
1536                         if (nvkm_rd32(device, 0x409800))
1537                                 break;
1538                 ) < 0)
1539                         return -EBUSY;
1540
1541                 if (device->chipset >= 0xe0) {
1542                         nvkm_wr32(device, 0x409800, 0x00000000);
1543                         nvkm_wr32(device, 0x409500, 0x00000001);
1544                         nvkm_wr32(device, 0x409504, 0x00000030);
1545                         if (nvkm_msec(device, 2000,
1546                                 if (nvkm_rd32(device, 0x409800))
1547                                         break;
1548                         ) < 0)
1549                                 return -EBUSY;
1550
1551                         nvkm_wr32(device, 0x409810, 0xb00095c8);
1552                         nvkm_wr32(device, 0x409800, 0x00000000);
1553                         nvkm_wr32(device, 0x409500, 0x00000001);
1554                         nvkm_wr32(device, 0x409504, 0x00000031);
1555                         if (nvkm_msec(device, 2000,
1556                                 if (nvkm_rd32(device, 0x409800))
1557                                         break;
1558                         ) < 0)
1559                                 return -EBUSY;
1560
1561                         nvkm_wr32(device, 0x409810, 0x00080420);
1562                         nvkm_wr32(device, 0x409800, 0x00000000);
1563                         nvkm_wr32(device, 0x409500, 0x00000001);
1564                         nvkm_wr32(device, 0x409504, 0x00000032);
1565                         if (nvkm_msec(device, 2000,
1566                                 if (nvkm_rd32(device, 0x409800))
1567                                         break;
1568                         ) < 0)
1569                                 return -EBUSY;
1570
1571                         nvkm_wr32(device, 0x409614, 0x00000070);
1572                         nvkm_wr32(device, 0x409614, 0x00000770);
1573                         nvkm_wr32(device, 0x40802c, 0x00000001);
1574                 }
1575
1576                 if (gr->data == NULL) {
1577                         int ret = gf100_grctx_generate(gr);
1578                         if (ret) {
1579                                 nvkm_error(subdev, "failed to construct context\n");
1580                                 return ret;
1581                         }
1582                 }
1583
1584                 return 0;
1585         } else
1586         if (!gr->func->fecs.ucode) {
1587                 return -ENOSYS;
1588         }
1589
1590         /* load HUB microcode */
1591         nvkm_mc_unk260(device, 0);
1592         nvkm_wr32(device, 0x4091c0, 0x01000000);
1593         for (i = 0; i < gr->func->fecs.ucode->data.size / 4; i++)
1594                 nvkm_wr32(device, 0x4091c4, gr->func->fecs.ucode->data.data[i]);
1595
1596         nvkm_wr32(device, 0x409180, 0x01000000);
1597         for (i = 0; i < gr->func->fecs.ucode->code.size / 4; i++) {
1598                 if ((i & 0x3f) == 0)
1599                         nvkm_wr32(device, 0x409188, i >> 6);
1600                 nvkm_wr32(device, 0x409184, gr->func->fecs.ucode->code.data[i]);
1601         }
1602
1603         /* load GPC microcode */
1604         nvkm_wr32(device, 0x41a1c0, 0x01000000);
1605         for (i = 0; i < gr->func->gpccs.ucode->data.size / 4; i++)
1606                 nvkm_wr32(device, 0x41a1c4, gr->func->gpccs.ucode->data.data[i]);
1607
1608         nvkm_wr32(device, 0x41a180, 0x01000000);
1609         for (i = 0; i < gr->func->gpccs.ucode->code.size / 4; i++) {
1610                 if ((i & 0x3f) == 0)
1611                         nvkm_wr32(device, 0x41a188, i >> 6);
1612                 nvkm_wr32(device, 0x41a184, gr->func->gpccs.ucode->code.data[i]);
1613         }
1614         nvkm_mc_unk260(device, 1);
1615
1616         /* load register lists */
1617         gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1618         gf100_gr_init_csdata(gr, grctx->gpc, 0x41a000, 0x000, 0x418000);
1619         gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1620         gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1621
1622         /* start HUB ucode running, it'll init the GPCs */
1623         nvkm_wr32(device, 0x40910c, 0x00000000);
1624         nvkm_wr32(device, 0x409100, 0x00000002);
1625         if (nvkm_msec(device, 2000,
1626                 if (nvkm_rd32(device, 0x409800) & 0x80000000)
1627                         break;
1628         ) < 0) {
1629                 gf100_gr_ctxctl_debug(gr);
1630                 return -EBUSY;
1631         }
1632
1633         gr->size = nvkm_rd32(device, 0x409804);
1634         if (gr->data == NULL) {
1635                 int ret = gf100_grctx_generate(gr);
1636                 if (ret) {
1637                         nvkm_error(subdev, "failed to construct context\n");
1638                         return ret;
1639                 }
1640         }
1641
1642         return 0;
1643 }
1644
1645 static int
1646 gf100_gr_oneinit(struct nvkm_gr *base)
1647 {
1648         struct gf100_gr *gr = gf100_gr(base);
1649         struct nvkm_device *device = gr->base.engine.subdev.device;
1650         int i, j;
1651
1652         nvkm_pmu_pgob(device->pmu, false);
1653
1654         gr->rop_nr = gr->func->rops(gr);
1655         gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
1656         for (i = 0; i < gr->gpc_nr; i++) {
1657                 gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1658                 gr->tpc_total += gr->tpc_nr[i];
1659                 gr->ppc_nr[i]  = gr->func->ppc_nr;
1660                 for (j = 0; j < gr->ppc_nr[i]; j++) {
1661                         u8 mask = nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
1662                         if (mask)
1663                                 gr->ppc_mask[i] |= (1 << j);
1664                         gr->ppc_tpc_nr[i][j] = hweight8(mask);
1665                 }
1666         }
1667
1668         /*XXX: these need figuring out... though it might not even matter */
1669         switch (device->chipset) {
1670         case 0xc0:
1671                 if (gr->tpc_total == 11) { /* 465, 3/4/4/0, 4 */
1672                         gr->screen_tile_row_offset = 0x07;
1673                 } else
1674                 if (gr->tpc_total == 14) { /* 470, 3/3/4/4, 5 */
1675                         gr->screen_tile_row_offset = 0x05;
1676                 } else
1677                 if (gr->tpc_total == 15) { /* 480, 3/4/4/4, 6 */
1678                         gr->screen_tile_row_offset = 0x06;
1679                 }
1680                 break;
1681         case 0xc3: /* 450, 4/0/0/0, 2 */
1682                 gr->screen_tile_row_offset = 0x03;
1683                 break;
1684         case 0xc4: /* 460, 3/4/0/0, 4 */
1685                 gr->screen_tile_row_offset = 0x01;
1686                 break;
1687         case 0xc1: /* 2/0/0/0, 1 */
1688                 gr->screen_tile_row_offset = 0x01;
1689                 break;
1690         case 0xc8: /* 4/4/3/4, 5 */
1691                 gr->screen_tile_row_offset = 0x06;
1692                 break;
1693         case 0xce: /* 4/4/0/0, 4 */
1694                 gr->screen_tile_row_offset = 0x03;
1695                 break;
1696         case 0xcf: /* 4/0/0/0, 3 */
1697                 gr->screen_tile_row_offset = 0x03;
1698                 break;
1699         case 0xd7:
1700         case 0xd9: /* 1/0/0/0, 1 */
1701         case 0xea: /* gk20a */
1702         case 0x12b: /* gm20b */
1703                 gr->screen_tile_row_offset = 0x01;
1704                 break;
1705         }
1706
1707         return 0;
1708 }
1709
1710 static int
1711 gf100_gr_init_(struct nvkm_gr *base)
1712 {
1713         struct gf100_gr *gr = gf100_gr(base);
1714         nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
1715         return gr->func->init(gr);
1716 }
1717
1718 void
1719 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc)
1720 {
1721         kfree(fuc->data);
1722         fuc->data = NULL;
1723 }
1724
1725 static void
1726 gf100_gr_dtor_init(struct gf100_gr_pack *pack)
1727 {
1728         vfree(pack);
1729 }
1730
1731 void *
1732 gf100_gr_dtor(struct nvkm_gr *base)
1733 {
1734         struct gf100_gr *gr = gf100_gr(base);
1735
1736         if (gr->func->dtor)
1737                 gr->func->dtor(gr);
1738         kfree(gr->data);
1739
1740         gf100_gr_dtor_fw(&gr->fuc409c);
1741         gf100_gr_dtor_fw(&gr->fuc409d);
1742         gf100_gr_dtor_fw(&gr->fuc41ac);
1743         gf100_gr_dtor_fw(&gr->fuc41ad);
1744
1745         gf100_gr_dtor_init(gr->fuc_bundle);
1746         gf100_gr_dtor_init(gr->fuc_method);
1747         gf100_gr_dtor_init(gr->fuc_sw_ctx);
1748         gf100_gr_dtor_init(gr->fuc_sw_nonctx);
1749
1750         return gr;
1751 }
1752
1753 static const struct nvkm_gr_func
1754 gf100_gr_ = {
1755         .dtor = gf100_gr_dtor,
1756         .oneinit = gf100_gr_oneinit,
1757         .init = gf100_gr_init_,
1758         .intr = gf100_gr_intr,
1759         .units = gf100_gr_units,
1760         .chan_new = gf100_gr_chan_new,
1761         .object_get = gf100_gr_object_get,
1762 };
1763
1764 int
1765 gf100_gr_ctor_fw_legacy(struct gf100_gr *gr, const char *fwname,
1766                         struct gf100_gr_fuc *fuc, int ret)
1767 {
1768         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1769         struct nvkm_device *device = subdev->device;
1770         const struct firmware *fw;
1771         char f[32];
1772
1773         /* see if this firmware has a legacy path */
1774         if (!strcmp(fwname, "fecs_inst"))
1775                 fwname = "fuc409c";
1776         else if (!strcmp(fwname, "fecs_data"))
1777                 fwname = "fuc409d";
1778         else if (!strcmp(fwname, "gpccs_inst"))
1779                 fwname = "fuc41ac";
1780         else if (!strcmp(fwname, "gpccs_data"))
1781                 fwname = "fuc41ad";
1782         else {
1783                 /* nope, let's just return the error we got */
1784                 nvkm_error(subdev, "failed to load %s\n", fwname);
1785                 return ret;
1786         }
1787
1788         /* yes, try to load from the legacy path */
1789         nvkm_debug(subdev, "%s: falling back to legacy path\n", fwname);
1790
1791         snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, fwname);
1792         ret = request_firmware(&fw, f, device->dev);
1793         if (ret) {
1794                 snprintf(f, sizeof(f), "nouveau/%s", fwname);
1795                 ret = request_firmware(&fw, f, device->dev);
1796                 if (ret) {
1797                         nvkm_error(subdev, "failed to load %s\n", fwname);
1798                         return ret;
1799                 }
1800         }
1801
1802         fuc->size = fw->size;
1803         fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1804         release_firmware(fw);
1805         return (fuc->data != NULL) ? 0 : -ENOMEM;
1806 }
1807
1808 int
1809 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
1810                  struct gf100_gr_fuc *fuc)
1811 {
1812         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1813         struct nvkm_device *device = subdev->device;
1814         const struct firmware *fw;
1815         int ret;
1816
1817         ret = nvkm_firmware_get(device, fwname, &fw);
1818         if (ret)
1819                 return gf100_gr_ctor_fw_legacy(gr, fwname, fuc, ret);
1820
1821         fuc->size = fw->size;
1822         fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1823         nvkm_firmware_put(fw);
1824         return (fuc->data != NULL) ? 0 : -ENOMEM;
1825 }
1826
1827 int
1828 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device,
1829               int index, struct gf100_gr *gr)
1830 {
1831         int ret;
1832
1833         gr->func = func;
1834         gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW",
1835                                     func->fecs.ucode == NULL);
1836
1837         ret = nvkm_gr_ctor(&gf100_gr_, device, index,
1838                            gr->firmware || func->fecs.ucode != NULL,
1839                            &gr->base);
1840         if (ret)
1841                 return ret;
1842
1843         return 0;
1844 }
1845
1846 int
1847 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device,
1848               int index, struct nvkm_gr **pgr)
1849 {
1850         struct gf100_gr *gr;
1851         int ret;
1852
1853         if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
1854                 return -ENOMEM;
1855         *pgr = &gr->base;
1856
1857         ret = gf100_gr_ctor(func, device, index, gr);
1858         if (ret)
1859                 return ret;
1860
1861         if (gr->firmware) {
1862                 if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) ||
1863                     gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) ||
1864                     gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) ||
1865                     gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad))
1866                         return -ENODEV;
1867         }
1868
1869         return 0;
1870 }
1871
1872 int
1873 gf100_gr_init(struct gf100_gr *gr)
1874 {
1875         struct nvkm_device *device = gr->base.engine.subdev.device;
1876         struct nvkm_fb *fb = device->fb;
1877         const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
1878         u32 data[TPC_MAX / 8] = {};
1879         u8  tpcnr[GPC_MAX];
1880         int gpc, tpc, rop;
1881         int i;
1882
1883         nvkm_wr32(device, GPC_BCAST(0x0880), 0x00000000);
1884         nvkm_wr32(device, GPC_BCAST(0x08a4), 0x00000000);
1885         nvkm_wr32(device, GPC_BCAST(0x0888), 0x00000000);
1886         nvkm_wr32(device, GPC_BCAST(0x088c), 0x00000000);
1887         nvkm_wr32(device, GPC_BCAST(0x0890), 0x00000000);
1888         nvkm_wr32(device, GPC_BCAST(0x0894), 0x00000000);
1889         nvkm_wr32(device, GPC_BCAST(0x08b4), nvkm_memory_addr(fb->mmu_wr) >> 8);
1890         nvkm_wr32(device, GPC_BCAST(0x08b8), nvkm_memory_addr(fb->mmu_rd) >> 8);
1891
1892         gf100_gr_mmio(gr, gr->func->mmio);
1893
1894         nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
1895
1896         memcpy(tpcnr, gr->tpc_nr, sizeof(gr->tpc_nr));
1897         for (i = 0, gpc = -1; i < gr->tpc_total; i++) {
1898                 do {
1899                         gpc = (gpc + 1) % gr->gpc_nr;
1900                 } while (!tpcnr[gpc]);
1901                 tpc = gr->tpc_nr[gpc] - tpcnr[gpc]--;
1902
1903                 data[i / 8] |= tpc << ((i % 8) * 4);
1904         }
1905
1906         nvkm_wr32(device, GPC_BCAST(0x0980), data[0]);
1907         nvkm_wr32(device, GPC_BCAST(0x0984), data[1]);
1908         nvkm_wr32(device, GPC_BCAST(0x0988), data[2]);
1909         nvkm_wr32(device, GPC_BCAST(0x098c), data[3]);
1910
1911         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1912                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
1913                           gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
1914                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
1915                                                          gr->tpc_total);
1916                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
1917         }
1918
1919         if (device->chipset != 0xd7)
1920                 nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
1921         else
1922                 nvkm_wr32(device, GPC_BCAST(0x3fd4), magicgpc918);
1923
1924         nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
1925
1926         nvkm_wr32(device, 0x400500, 0x00010001);
1927
1928         nvkm_wr32(device, 0x400100, 0xffffffff);
1929         nvkm_wr32(device, 0x40013c, 0xffffffff);
1930
1931         nvkm_wr32(device, 0x409c24, 0x000f0000);
1932         nvkm_wr32(device, 0x404000, 0xc0000000);
1933         nvkm_wr32(device, 0x404600, 0xc0000000);
1934         nvkm_wr32(device, 0x408030, 0xc0000000);
1935         nvkm_wr32(device, 0x40601c, 0xc0000000);
1936         nvkm_wr32(device, 0x404490, 0xc0000000);
1937         nvkm_wr32(device, 0x406018, 0xc0000000);
1938         nvkm_wr32(device, 0x405840, 0xc0000000);
1939         nvkm_wr32(device, 0x405844, 0x00ffffff);
1940         nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
1941         nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
1942
1943         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1944                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
1945                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1946                 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1947                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1948                 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1949                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
1950                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
1951                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
1952                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
1953                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
1954                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
1955                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
1956                 }
1957                 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
1958                 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
1959         }
1960
1961         for (rop = 0; rop < gr->rop_nr; rop++) {
1962                 nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1963                 nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1964                 nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
1965                 nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
1966         }
1967
1968         nvkm_wr32(device, 0x400108, 0xffffffff);
1969         nvkm_wr32(device, 0x400138, 0xffffffff);
1970         nvkm_wr32(device, 0x400118, 0xffffffff);
1971         nvkm_wr32(device, 0x400130, 0xffffffff);
1972         nvkm_wr32(device, 0x40011c, 0xffffffff);
1973         nvkm_wr32(device, 0x400134, 0xffffffff);
1974
1975         nvkm_wr32(device, 0x400054, 0x34ce3464);
1976
1977         gf100_gr_zbc_init(gr);
1978
1979         return gf100_gr_init_ctxctl(gr);
1980 }
1981
1982 #include "fuc/hubgf100.fuc3.h"
1983
1984 struct gf100_gr_ucode
1985 gf100_gr_fecs_ucode = {
1986         .code.data = gf100_grhub_code,
1987         .code.size = sizeof(gf100_grhub_code),
1988         .data.data = gf100_grhub_data,
1989         .data.size = sizeof(gf100_grhub_data),
1990 };
1991
1992 #include "fuc/gpcgf100.fuc3.h"
1993
1994 struct gf100_gr_ucode
1995 gf100_gr_gpccs_ucode = {
1996         .code.data = gf100_grgpc_code,
1997         .code.size = sizeof(gf100_grgpc_code),
1998         .data.data = gf100_grgpc_data,
1999         .data.size = sizeof(gf100_grgpc_data),
2000 };
2001
2002 static const struct gf100_gr_func
2003 gf100_gr = {
2004         .init = gf100_gr_init,
2005         .mmio = gf100_gr_pack_mmio,
2006         .fecs.ucode = &gf100_gr_fecs_ucode,
2007         .gpccs.ucode = &gf100_gr_gpccs_ucode,
2008         .rops = gf100_gr_rops,
2009         .grctx = &gf100_grctx,
2010         .sclass = {
2011                 { -1, -1, FERMI_TWOD_A },
2012                 { -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
2013                 { -1, -1, FERMI_A, &gf100_fermi },
2014                 { -1, -1, FERMI_COMPUTE_A },
2015                 {}
2016         }
2017 };
2018
2019 int
2020 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr)
2021 {
2022         return gf100_gr_new_(&gf100_gr, device, index, pgr);
2023 }