]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/radeon/radeon_kfd.c
Merge remote-tracking branches 'asoc/topic/rx51', 'asoc/topic/samsung', 'asoc/topic...
[karo-tx-linux.git] / drivers / gpu / drm / radeon / radeon_kfd.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/module.h>
24 #include <linux/fdtable.h>
25 #include <linux/uaccess.h>
26 #include <drm/drmP.h>
27 #include "radeon.h"
28 #include "cikd.h"
29 #include "cik_reg.h"
30 #include "radeon_kfd.h"
31 #include "radeon_ucode.h"
32 #include <linux/firmware.h>
33
34 #define CIK_PIPE_PER_MEC        (4)
35
36 struct kgd_mem {
37         struct radeon_sa_bo *sa_bo;
38         uint64_t gpu_addr;
39         void *ptr;
40 };
41
42 static int init_sa_manager(struct kgd_dev *kgd, unsigned int size);
43 static void fini_sa_manager(struct kgd_dev *kgd);
44
45 static int allocate_mem(struct kgd_dev *kgd, size_t size, size_t alignment,
46                 enum kgd_memory_pool pool, struct kgd_mem **mem);
47
48 static void free_mem(struct kgd_dev *kgd, struct kgd_mem *mem);
49
50 static uint64_t get_vmem_size(struct kgd_dev *kgd);
51 static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd);
52
53 static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd);
54 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
55
56 /*
57  * Register access functions
58  */
59
60 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
61                 uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
62                 uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
63
64 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
65                                         unsigned int vmid);
66
67 static int kgd_init_memory(struct kgd_dev *kgd);
68
69 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
70                                 uint32_t hpd_size, uint64_t hpd_gpu_addr);
71
72 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
73                         uint32_t queue_id, uint32_t __user *wptr);
74
75 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
76                                 uint32_t pipe_id, uint32_t queue_id);
77
78 static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
79                                 unsigned int timeout, uint32_t pipe_id,
80                                 uint32_t queue_id);
81
82 static const struct kfd2kgd_calls kfd2kgd = {
83         .init_sa_manager = init_sa_manager,
84         .fini_sa_manager = fini_sa_manager,
85         .allocate_mem = allocate_mem,
86         .free_mem = free_mem,
87         .get_vmem_size = get_vmem_size,
88         .get_gpu_clock_counter = get_gpu_clock_counter,
89         .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
90         .program_sh_mem_settings = kgd_program_sh_mem_settings,
91         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
92         .init_memory = kgd_init_memory,
93         .init_pipeline = kgd_init_pipeline,
94         .hqd_load = kgd_hqd_load,
95         .hqd_is_occupied = kgd_hqd_is_occupied,
96         .hqd_destroy = kgd_hqd_destroy,
97         .get_fw_version = get_fw_version
98 };
99
100 static const struct kgd2kfd_calls *kgd2kfd;
101
102 bool radeon_kfd_init(void)
103 {
104 #if defined(CONFIG_HSA_AMD_MODULE)
105         bool (*kgd2kfd_init_p)(unsigned, const struct kfd2kgd_calls*,
106                                 const struct kgd2kfd_calls**);
107
108         kgd2kfd_init_p = symbol_request(kgd2kfd_init);
109
110         if (kgd2kfd_init_p == NULL)
111                 return false;
112
113         if (!kgd2kfd_init_p(KFD_INTERFACE_VERSION, &kfd2kgd, &kgd2kfd)) {
114                 symbol_put(kgd2kfd_init);
115                 kgd2kfd = NULL;
116
117                 return false;
118         }
119
120         return true;
121 #elif defined(CONFIG_HSA_AMD)
122         if (!kgd2kfd_init(KFD_INTERFACE_VERSION, &kfd2kgd, &kgd2kfd)) {
123                 kgd2kfd = NULL;
124
125                 return false;
126         }
127
128         return true;
129 #else
130         return false;
131 #endif
132 }
133
134 void radeon_kfd_fini(void)
135 {
136         if (kgd2kfd) {
137                 kgd2kfd->exit();
138                 symbol_put(kgd2kfd_init);
139         }
140 }
141
142 void radeon_kfd_device_probe(struct radeon_device *rdev)
143 {
144         if (kgd2kfd)
145                 rdev->kfd = kgd2kfd->probe((struct kgd_dev *)rdev, rdev->pdev);
146 }
147
148 void radeon_kfd_device_init(struct radeon_device *rdev)
149 {
150         if (rdev->kfd) {
151                 struct kgd2kfd_shared_resources gpu_resources = {
152                         .compute_vmid_bitmap = 0xFF00,
153
154                         .first_compute_pipe = 1,
155                         .compute_pipe_count = 8 - 1,
156                 };
157
158                 radeon_doorbell_get_kfd_info(rdev,
159                                 &gpu_resources.doorbell_physical_address,
160                                 &gpu_resources.doorbell_aperture_size,
161                                 &gpu_resources.doorbell_start_offset);
162
163                 kgd2kfd->device_init(rdev->kfd, &gpu_resources);
164         }
165 }
166
167 void radeon_kfd_device_fini(struct radeon_device *rdev)
168 {
169         if (rdev->kfd) {
170                 kgd2kfd->device_exit(rdev->kfd);
171                 rdev->kfd = NULL;
172         }
173 }
174
175 void radeon_kfd_interrupt(struct radeon_device *rdev, const void *ih_ring_entry)
176 {
177         if (rdev->kfd)
178                 kgd2kfd->interrupt(rdev->kfd, ih_ring_entry);
179 }
180
181 void radeon_kfd_suspend(struct radeon_device *rdev)
182 {
183         if (rdev->kfd)
184                 kgd2kfd->suspend(rdev->kfd);
185 }
186
187 int radeon_kfd_resume(struct radeon_device *rdev)
188 {
189         int r = 0;
190
191         if (rdev->kfd)
192                 r = kgd2kfd->resume(rdev->kfd);
193
194         return r;
195 }
196
197 static u32 pool_to_domain(enum kgd_memory_pool p)
198 {
199         switch (p) {
200         case KGD_POOL_FRAMEBUFFER: return RADEON_GEM_DOMAIN_VRAM;
201         default: return RADEON_GEM_DOMAIN_GTT;
202         }
203 }
204
205 static int init_sa_manager(struct kgd_dev *kgd, unsigned int size)
206 {
207         struct radeon_device *rdev = (struct radeon_device *)kgd;
208         int r;
209
210         BUG_ON(kgd == NULL);
211
212         r = radeon_sa_bo_manager_init(rdev, &rdev->kfd_bo,
213                                       size,
214                                       RADEON_GPU_PAGE_SIZE,
215                                       RADEON_GEM_DOMAIN_GTT,
216                                       RADEON_GEM_GTT_WC);
217
218         if (r)
219                 return r;
220
221         r = radeon_sa_bo_manager_start(rdev, &rdev->kfd_bo);
222         if (r)
223                 radeon_sa_bo_manager_fini(rdev, &rdev->kfd_bo);
224
225         return r;
226 }
227
228 static void fini_sa_manager(struct kgd_dev *kgd)
229 {
230         struct radeon_device *rdev = (struct radeon_device *)kgd;
231
232         BUG_ON(kgd == NULL);
233
234         radeon_sa_bo_manager_suspend(rdev, &rdev->kfd_bo);
235         radeon_sa_bo_manager_fini(rdev, &rdev->kfd_bo);
236 }
237
238 static int allocate_mem(struct kgd_dev *kgd, size_t size, size_t alignment,
239                 enum kgd_memory_pool pool, struct kgd_mem **mem)
240 {
241         struct radeon_device *rdev = (struct radeon_device *)kgd;
242         u32 domain;
243         int r;
244
245         BUG_ON(kgd == NULL);
246
247         domain = pool_to_domain(pool);
248         if (domain != RADEON_GEM_DOMAIN_GTT) {
249                 dev_err(rdev->dev,
250                         "Only allowed to allocate gart memory for kfd\n");
251                 return -EINVAL;
252         }
253
254         *mem = kmalloc(sizeof(struct kgd_mem), GFP_KERNEL);
255         if ((*mem) == NULL)
256                 return -ENOMEM;
257
258         r = radeon_sa_bo_new(rdev, &rdev->kfd_bo, &(*mem)->sa_bo, size,
259                                 alignment);
260         if (r) {
261                 dev_err(rdev->dev, "failed to get memory for kfd (%d)\n", r);
262                 return r;
263         }
264
265         (*mem)->ptr = radeon_sa_bo_cpu_addr((*mem)->sa_bo);
266         (*mem)->gpu_addr = radeon_sa_bo_gpu_addr((*mem)->sa_bo);
267
268         return 0;
269 }
270
271 static void free_mem(struct kgd_dev *kgd, struct kgd_mem *mem)
272 {
273         struct radeon_device *rdev = (struct radeon_device *)kgd;
274
275         BUG_ON(kgd == NULL);
276
277         radeon_sa_bo_free(rdev, &mem->sa_bo, NULL);
278         kfree(mem);
279 }
280
281 static uint64_t get_vmem_size(struct kgd_dev *kgd)
282 {
283         struct radeon_device *rdev = (struct radeon_device *)kgd;
284
285         BUG_ON(kgd == NULL);
286
287         return rdev->mc.real_vram_size;
288 }
289
290 static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd)
291 {
292         struct radeon_device *rdev = (struct radeon_device *)kgd;
293
294         return rdev->asic->get_gpu_clock_counter(rdev);
295 }
296
297 static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd)
298 {
299         struct radeon_device *rdev = (struct radeon_device *)kgd;
300
301         /* The sclk is in quantas of 10kHz */
302         return rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk / 100;
303 }
304
305 static inline struct radeon_device *get_radeon_device(struct kgd_dev *kgd)
306 {
307         return (struct radeon_device *)kgd;
308 }
309
310 static void write_register(struct kgd_dev *kgd, uint32_t offset, uint32_t value)
311 {
312         struct radeon_device *rdev = get_radeon_device(kgd);
313
314         writel(value, (void __iomem *)(rdev->rmmio + offset));
315 }
316
317 static uint32_t read_register(struct kgd_dev *kgd, uint32_t offset)
318 {
319         struct radeon_device *rdev = get_radeon_device(kgd);
320
321         return readl((void __iomem *)(rdev->rmmio + offset));
322 }
323
324 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
325                         uint32_t queue, uint32_t vmid)
326 {
327         struct radeon_device *rdev = get_radeon_device(kgd);
328         uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
329
330         mutex_lock(&rdev->srbm_mutex);
331         write_register(kgd, SRBM_GFX_CNTL, value);
332 }
333
334 static void unlock_srbm(struct kgd_dev *kgd)
335 {
336         struct radeon_device *rdev = get_radeon_device(kgd);
337
338         write_register(kgd, SRBM_GFX_CNTL, 0);
339         mutex_unlock(&rdev->srbm_mutex);
340 }
341
342 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
343                                 uint32_t queue_id)
344 {
345         uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
346         uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
347
348         lock_srbm(kgd, mec, pipe, queue_id, 0);
349 }
350
351 static void release_queue(struct kgd_dev *kgd)
352 {
353         unlock_srbm(kgd);
354 }
355
356 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
357                                         uint32_t sh_mem_config,
358                                         uint32_t sh_mem_ape1_base,
359                                         uint32_t sh_mem_ape1_limit,
360                                         uint32_t sh_mem_bases)
361 {
362         lock_srbm(kgd, 0, 0, 0, vmid);
363
364         write_register(kgd, SH_MEM_CONFIG, sh_mem_config);
365         write_register(kgd, SH_MEM_APE1_BASE, sh_mem_ape1_base);
366         write_register(kgd, SH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
367         write_register(kgd, SH_MEM_BASES, sh_mem_bases);
368
369         unlock_srbm(kgd);
370 }
371
372 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
373                                         unsigned int vmid)
374 {
375         /*
376          * We have to assume that there is no outstanding mapping.
377          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0
378          * because a mapping is in progress or because a mapping finished and
379          * the SW cleared it.
380          * So the protocol is to always wait & clear.
381          */
382         uint32_t pasid_mapping = (pasid == 0) ? 0 :
383                                 (uint32_t)pasid | ATC_VMID_PASID_MAPPING_VALID;
384
385         write_register(kgd, ATC_VMID0_PASID_MAPPING + vmid*sizeof(uint32_t),
386                         pasid_mapping);
387
388         while (!(read_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS) &
389                                                                 (1U << vmid)))
390                 cpu_relax();
391         write_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
392
393         /* Mapping vmid to pasid also for IH block */
394         write_register(kgd, IH_VMID_0_LUT + vmid * sizeof(uint32_t),
395                         pasid_mapping);
396
397         return 0;
398 }
399
400 static int kgd_init_memory(struct kgd_dev *kgd)
401 {
402         /*
403          * Configure apertures:
404          * LDS:         0x60000000'00000000 - 0x60000001'00000000 (4GB)
405          * Scratch:     0x60000001'00000000 - 0x60000002'00000000 (4GB)
406          * GPUVM:       0x60010000'00000000 - 0x60020000'00000000 (1TB)
407          */
408         int i;
409         uint32_t sh_mem_bases = PRIVATE_BASE(0x6000) | SHARED_BASE(0x6000);
410
411         for (i = 8; i < 16; i++) {
412                 uint32_t sh_mem_config;
413
414                 lock_srbm(kgd, 0, 0, 0, i);
415
416                 sh_mem_config = ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED);
417                 sh_mem_config |= DEFAULT_MTYPE(MTYPE_NONCACHED);
418
419                 write_register(kgd, SH_MEM_CONFIG, sh_mem_config);
420
421                 write_register(kgd, SH_MEM_BASES, sh_mem_bases);
422
423                 /* Scratch aperture is not supported for now. */
424                 write_register(kgd, SH_STATIC_MEM_CONFIG, 0);
425
426                 /* APE1 disabled for now. */
427                 write_register(kgd, SH_MEM_APE1_BASE, 1);
428                 write_register(kgd, SH_MEM_APE1_LIMIT, 0);
429
430                 unlock_srbm(kgd);
431         }
432
433         return 0;
434 }
435
436 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
437                                 uint32_t hpd_size, uint64_t hpd_gpu_addr)
438 {
439         uint32_t mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
440         uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
441
442         lock_srbm(kgd, mec, pipe, 0, 0);
443         write_register(kgd, CP_HPD_EOP_BASE_ADDR,
444                         lower_32_bits(hpd_gpu_addr >> 8));
445         write_register(kgd, CP_HPD_EOP_BASE_ADDR_HI,
446                         upper_32_bits(hpd_gpu_addr >> 8));
447         write_register(kgd, CP_HPD_EOP_VMID, 0);
448         write_register(kgd, CP_HPD_EOP_CONTROL, hpd_size);
449         unlock_srbm(kgd);
450
451         return 0;
452 }
453
454 static inline struct cik_mqd *get_mqd(void *mqd)
455 {
456         return (struct cik_mqd *)mqd;
457 }
458
459 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
460                         uint32_t queue_id, uint32_t __user *wptr)
461 {
462         uint32_t wptr_shadow, is_wptr_shadow_valid;
463         struct cik_mqd *m;
464
465         m = get_mqd(mqd);
466
467         is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);
468
469         acquire_queue(kgd, pipe_id, queue_id);
470         write_register(kgd, CP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
471         write_register(kgd, CP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
472         write_register(kgd, CP_MQD_CONTROL, m->cp_mqd_control);
473
474         write_register(kgd, CP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
475         write_register(kgd, CP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
476         write_register(kgd, CP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);
477
478         write_register(kgd, CP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
479         write_register(kgd, CP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
480         write_register(kgd, CP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);
481
482         write_register(kgd, CP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);
483
484         write_register(kgd, CP_HQD_PERSISTENT_STATE,
485                         m->cp_hqd_persistent_state);
486         write_register(kgd, CP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
487         write_register(kgd, CP_HQD_MSG_TYPE, m->cp_hqd_msg_type);
488
489         write_register(kgd, CP_HQD_ATOMIC0_PREOP_LO,
490                         m->cp_hqd_atomic0_preop_lo);
491
492         write_register(kgd, CP_HQD_ATOMIC0_PREOP_HI,
493                         m->cp_hqd_atomic0_preop_hi);
494
495         write_register(kgd, CP_HQD_ATOMIC1_PREOP_LO,
496                         m->cp_hqd_atomic1_preop_lo);
497
498         write_register(kgd, CP_HQD_ATOMIC1_PREOP_HI,
499                         m->cp_hqd_atomic1_preop_hi);
500
501         write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR,
502                         m->cp_hqd_pq_rptr_report_addr_lo);
503
504         write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR_HI,
505                         m->cp_hqd_pq_rptr_report_addr_hi);
506
507         write_register(kgd, CP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);
508
509         write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR,
510                         m->cp_hqd_pq_wptr_poll_addr_lo);
511
512         write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR_HI,
513                         m->cp_hqd_pq_wptr_poll_addr_hi);
514
515         write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL,
516                         m->cp_hqd_pq_doorbell_control);
517
518         write_register(kgd, CP_HQD_VMID, m->cp_hqd_vmid);
519
520         write_register(kgd, CP_HQD_QUANTUM, m->cp_hqd_quantum);
521
522         write_register(kgd, CP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
523         write_register(kgd, CP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);
524
525         write_register(kgd, CP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);
526
527         if (is_wptr_shadow_valid)
528                 write_register(kgd, CP_HQD_PQ_WPTR, wptr_shadow);
529
530         write_register(kgd, CP_HQD_ACTIVE, m->cp_hqd_active);
531         release_queue(kgd);
532
533         return 0;
534 }
535
536 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
537                                 uint32_t pipe_id, uint32_t queue_id)
538 {
539         uint32_t act;
540         bool retval = false;
541         uint32_t low, high;
542
543         acquire_queue(kgd, pipe_id, queue_id);
544         act = read_register(kgd, CP_HQD_ACTIVE);
545         if (act) {
546                 low = lower_32_bits(queue_address >> 8);
547                 high = upper_32_bits(queue_address >> 8);
548
549                 if (low == read_register(kgd, CP_HQD_PQ_BASE) &&
550                                 high == read_register(kgd, CP_HQD_PQ_BASE_HI))
551                         retval = true;
552         }
553         release_queue(kgd);
554         return retval;
555 }
556
557 static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
558                                 unsigned int timeout, uint32_t pipe_id,
559                                 uint32_t queue_id)
560 {
561         uint32_t temp;
562
563         acquire_queue(kgd, pipe_id, queue_id);
564         write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL, 0);
565
566         write_register(kgd, CP_HQD_DEQUEUE_REQUEST, reset_type);
567
568         while (true) {
569                 temp = read_register(kgd, CP_HQD_ACTIVE);
570                 if (temp & 0x1)
571                         break;
572                 if (timeout == 0) {
573                         pr_err("kfd: cp queue preemption time out (%dms)\n",
574                                 temp);
575                         release_queue(kgd);
576                         return -ETIME;
577                 }
578                 msleep(20);
579                 timeout -= 20;
580         }
581
582         release_queue(kgd);
583         return 0;
584 }
585
586 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
587 {
588         struct radeon_device *rdev = (struct radeon_device *) kgd;
589         const union radeon_firmware_header *hdr;
590
591         BUG_ON(kgd == NULL || rdev->mec_fw == NULL);
592
593         switch (type) {
594         case KGD_ENGINE_PFP:
595                 hdr = (const union radeon_firmware_header *) rdev->pfp_fw->data;
596                 break;
597
598         case KGD_ENGINE_ME:
599                 hdr = (const union radeon_firmware_header *) rdev->me_fw->data;
600                 break;
601
602         case KGD_ENGINE_CE:
603                 hdr = (const union radeon_firmware_header *) rdev->ce_fw->data;
604                 break;
605
606         case KGD_ENGINE_MEC1:
607                 hdr = (const union radeon_firmware_header *) rdev->mec_fw->data;
608                 break;
609
610         case KGD_ENGINE_MEC2:
611                 hdr = (const union radeon_firmware_header *)
612                                                         rdev->mec2_fw->data;
613                 break;
614
615         case KGD_ENGINE_RLC:
616                 hdr = (const union radeon_firmware_header *) rdev->rlc_fw->data;
617                 break;
618
619         case KGD_ENGINE_SDMA:
620                 hdr = (const union radeon_firmware_header *)
621                                                         rdev->sdma_fw->data;
622                 break;
623
624         default:
625                 return 0;
626         }
627
628         if (hdr == NULL)
629                 return 0;
630
631         /* Only 12 bit in use*/
632         return hdr->common.ucode_version;
633 }