]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
2682f07d8f1e6d3dc89ad0858f136c511040b517
[karo-tx-linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45         struct drm_crtc base;
46         const struct vc4_crtc_data *data;
47         void __iomem *regs;
48
49         /* Timestamp at start of vblank irq - unaffected by lock delays. */
50         ktime_t t_vblank;
51
52         /* Which HVS channel we're using for our CRTC. */
53         int channel;
54
55         u8 lut_r[256];
56         u8 lut_g[256];
57         u8 lut_b[256];
58         /* Size in pixels of the COB memory allocated to this CRTC. */
59         u32 cob_size;
60
61         struct drm_pending_vblank_event *event;
62 };
63
64 struct vc4_crtc_state {
65         struct drm_crtc_state base;
66         /* Dlist area for this CRTC configuration. */
67         struct drm_mm_node mm;
68 };
69
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73         return (struct vc4_crtc *)crtc;
74 }
75
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79         return (struct vc4_crtc_state *)crtc_state;
80 }
81
82 struct vc4_crtc_data {
83         /* Which channel of the HVS this pixelvalve sources from. */
84         int hvs_channel;
85
86         enum vc4_encoder_type encoder0_type;
87         enum vc4_encoder_type encoder1_type;
88 };
89
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95         u32 reg;
96         const char *name;
97 } crtc_regs[] = {
98         CRTC_REG(PV_CONTROL),
99         CRTC_REG(PV_V_CONTROL),
100         CRTC_REG(PV_VSYNCD_EVEN),
101         CRTC_REG(PV_HORZA),
102         CRTC_REG(PV_HORZB),
103         CRTC_REG(PV_VERTA),
104         CRTC_REG(PV_VERTB),
105         CRTC_REG(PV_VERTA_EVEN),
106         CRTC_REG(PV_VERTB_EVEN),
107         CRTC_REG(PV_INTEN),
108         CRTC_REG(PV_INTSTAT),
109         CRTC_REG(PV_STAT),
110         CRTC_REG(PV_HACT_ACT),
111 };
112
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115         int i;
116
117         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118                 DRM_INFO("0x%04x (%s): 0x%08x\n",
119                          crtc_regs[i].reg, crtc_regs[i].name,
120                          CRTC_READ(crtc_regs[i].reg));
121         }
122 }
123
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127         struct drm_info_node *node = (struct drm_info_node *)m->private;
128         struct drm_device *dev = node->minor->dev;
129         int crtc_index = (uintptr_t)node->info_ent->data;
130         struct drm_crtc *crtc;
131         struct vc4_crtc *vc4_crtc;
132         int i;
133
134         i = 0;
135         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136                 if (i == crtc_index)
137                         break;
138                 i++;
139         }
140         if (!crtc)
141                 return 0;
142         vc4_crtc = to_vc4_crtc(crtc);
143
144         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146                            crtc_regs[i].name, crtc_regs[i].reg,
147                            CRTC_READ(crtc_regs[i].reg));
148         }
149
150         return 0;
151 }
152 #endif
153
154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155                             unsigned int flags, int *vpos, int *hpos,
156                             ktime_t *stime, ktime_t *etime,
157                             const struct drm_display_mode *mode)
158 {
159         struct vc4_dev *vc4 = to_vc4_dev(dev);
160         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
161         u32 val;
162         int fifo_lines;
163         int vblank_lines;
164         int ret = 0;
165
166         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
167
168         /* Get optional system timestamp before query. */
169         if (stime)
170                 *stime = ktime_get();
171
172         /*
173          * Read vertical scanline which is currently composed for our
174          * pixelvalve by the HVS, and also the scaler status.
175          */
176         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
177
178         /* Get optional system timestamp after query. */
179         if (etime)
180                 *etime = ktime_get();
181
182         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
183
184         /* Vertical position of hvs composed scanline. */
185         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
186         *hpos = 0;
187
188         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
189                 *vpos /= 2;
190
191                 /* Use hpos to correct for field offset in interlaced mode. */
192                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
193                         *hpos += mode->crtc_htotal / 2;
194         }
195
196         /* This is the offset we need for translating hvs -> pv scanout pos. */
197         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
198
199         if (fifo_lines > 0)
200                 ret |= DRM_SCANOUTPOS_VALID;
201
202         /* HVS more than fifo_lines into frame for compositing? */
203         if (*vpos > fifo_lines) {
204                 /*
205                  * We are in active scanout and can get some meaningful results
206                  * from HVS. The actual PV scanout can not trail behind more
207                  * than fifo_lines as that is the fifo's capacity. Assume that
208                  * in active scanout the HVS and PV work in lockstep wrt. HVS
209                  * refilling the fifo and PV consuming from the fifo, ie.
210                  * whenever the PV consumes and frees up a scanline in the
211                  * fifo, the HVS will immediately refill it, therefore
212                  * incrementing vpos. Therefore we choose HVS read position -
213                  * fifo size in scanlines as a estimate of the real scanout
214                  * position of the PV.
215                  */
216                 *vpos -= fifo_lines + 1;
217
218                 ret |= DRM_SCANOUTPOS_ACCURATE;
219                 return ret;
220         }
221
222         /*
223          * Less: This happens when we are in vblank and the HVS, after getting
224          * the VSTART restart signal from the PV, just started refilling its
225          * fifo with new lines from the top-most lines of the new framebuffers.
226          * The PV does not scan out in vblank, so does not remove lines from
227          * the fifo, so the fifo will be full quickly and the HVS has to pause.
228          * We can't get meaningful readings wrt. scanline position of the PV
229          * and need to make things up in a approximative but consistent way.
230          */
231         ret |= DRM_SCANOUTPOS_IN_VBLANK;
232         vblank_lines = mode->crtc_vtotal - mode->crtc_vdisplay;
233
234         if (flags & DRM_CALLED_FROM_VBLIRQ) {
235                 /*
236                  * Assume the irq handler got called close to first
237                  * line of vblank, so PV has about a full vblank
238                  * scanlines to go, and as a base timestamp use the
239                  * one taken at entry into vblank irq handler, so it
240                  * is not affected by random delays due to lock
241                  * contention on event_lock or vblank_time lock in
242                  * the core.
243                  */
244                 *vpos = -vblank_lines;
245
246                 if (stime)
247                         *stime = vc4_crtc->t_vblank;
248                 if (etime)
249                         *etime = vc4_crtc->t_vblank;
250
251                 /*
252                  * If the HVS fifo is not yet full then we know for certain
253                  * we are at the very beginning of vblank, as the hvs just
254                  * started refilling, and the stime and etime timestamps
255                  * truly correspond to start of vblank.
256                  */
257                 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
258                         ret |= DRM_SCANOUTPOS_ACCURATE;
259         } else {
260                 /*
261                  * No clue where we are inside vblank. Return a vpos of zero,
262                  * which will cause calling code to just return the etime
263                  * timestamp uncorrected. At least this is no worse than the
264                  * standard fallback.
265                  */
266                 *vpos = 0;
267         }
268
269         return ret;
270 }
271
272 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
273                                   int *max_error, struct timeval *vblank_time,
274                                   unsigned flags)
275 {
276         struct vc4_dev *vc4 = to_vc4_dev(dev);
277         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
278         struct drm_crtc *crtc = &vc4_crtc->base;
279         struct drm_crtc_state *state = crtc->state;
280
281         /* Helper routine in DRM core does all the work: */
282         return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
283                                                      vblank_time, flags,
284                                                      &state->adjusted_mode);
285 }
286
287 static void vc4_crtc_destroy(struct drm_crtc *crtc)
288 {
289         drm_crtc_cleanup(crtc);
290 }
291
292 static void
293 vc4_crtc_lut_load(struct drm_crtc *crtc)
294 {
295         struct drm_device *dev = crtc->dev;
296         struct vc4_dev *vc4 = to_vc4_dev(dev);
297         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298         u32 i;
299
300         /* The LUT memory is laid out with each HVS channel in order,
301          * each of which takes 256 writes for R, 256 for G, then 256
302          * for B.
303          */
304         HVS_WRITE(SCALER_GAMADDR,
305                   SCALER_GAMADDR_AUTOINC |
306                   (vc4_crtc->channel * 3 * crtc->gamma_size));
307
308         for (i = 0; i < crtc->gamma_size; i++)
309                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
310         for (i = 0; i < crtc->gamma_size; i++)
311                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
312         for (i = 0; i < crtc->gamma_size; i++)
313                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
314 }
315
316 static int
317 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
318                    uint32_t size)
319 {
320         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
321         u32 i;
322
323         for (i = 0; i < size; i++) {
324                 vc4_crtc->lut_r[i] = r[i] >> 8;
325                 vc4_crtc->lut_g[i] = g[i] >> 8;
326                 vc4_crtc->lut_b[i] = b[i] >> 8;
327         }
328
329         vc4_crtc_lut_load(crtc);
330
331         return 0;
332 }
333
334 static u32 vc4_get_fifo_full_level(u32 format)
335 {
336         static const u32 fifo_len_bytes = 64;
337         static const u32 hvs_latency_pix = 6;
338
339         switch (format) {
340         case PV_CONTROL_FORMAT_DSIV_16:
341         case PV_CONTROL_FORMAT_DSIC_16:
342                 return fifo_len_bytes - 2 * hvs_latency_pix;
343         case PV_CONTROL_FORMAT_DSIV_18:
344                 return fifo_len_bytes - 14;
345         case PV_CONTROL_FORMAT_24:
346         case PV_CONTROL_FORMAT_DSIV_24:
347         default:
348                 return fifo_len_bytes - 3 * hvs_latency_pix;
349         }
350 }
351
352 /*
353  * Returns the clock select bit for the connector attached to the
354  * CRTC.
355  */
356 static int vc4_get_clock_select(struct drm_crtc *crtc)
357 {
358         struct drm_connector *connector;
359
360         drm_for_each_connector(connector, crtc->dev) {
361                 if (connector->state->crtc == crtc) {
362                         struct drm_encoder *encoder = connector->encoder;
363                         struct vc4_encoder *vc4_encoder =
364                                 to_vc4_encoder(encoder);
365
366                         return vc4_encoder->clock_select;
367                 }
368         }
369
370         return -1;
371 }
372
373 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
374 {
375         struct drm_device *dev = crtc->dev;
376         struct vc4_dev *vc4 = to_vc4_dev(dev);
377         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
378         struct drm_crtc_state *state = crtc->state;
379         struct drm_display_mode *mode = &state->adjusted_mode;
380         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
381         u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
382         u32 format = PV_CONTROL_FORMAT_24;
383         bool debug_dump_regs = false;
384         int clock_select = vc4_get_clock_select(crtc);
385
386         if (debug_dump_regs) {
387                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
388                 vc4_crtc_dump_regs(vc4_crtc);
389         }
390
391         /* Reset the PV fifo. */
392         CRTC_WRITE(PV_CONTROL, 0);
393         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
394         CRTC_WRITE(PV_CONTROL, 0);
395
396         CRTC_WRITE(PV_HORZA,
397                    VC4_SET_FIELD(mode->htotal - mode->hsync_end,
398                                  PV_HORZA_HBP) |
399                    VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
400                                  PV_HORZA_HSYNC));
401         CRTC_WRITE(PV_HORZB,
402                    VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
403                                  PV_HORZB_HFP) |
404                    VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
405
406         CRTC_WRITE(PV_VERTA,
407                    VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
408                                  PV_VERTA_VBP) |
409                    VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
410                                  PV_VERTA_VSYNC));
411         CRTC_WRITE(PV_VERTB,
412                    VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
413                                  PV_VERTB_VFP) |
414                    VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
415
416         if (interlace) {
417                 CRTC_WRITE(PV_VERTA_EVEN,
418                            VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
419                                          PV_VERTA_VBP) |
420                            VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
421                                          PV_VERTA_VSYNC));
422                 CRTC_WRITE(PV_VERTB_EVEN,
423                            VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
424                                          PV_VERTB_VFP) |
425                            VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
426         }
427
428         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
429
430         CRTC_WRITE(PV_V_CONTROL,
431                    PV_VCONTROL_CONTINUOUS |
432                    (interlace ? PV_VCONTROL_INTERLACE : 0));
433
434         CRTC_WRITE(PV_CONTROL,
435                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
436                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
437                                  PV_CONTROL_FIFO_LEVEL) |
438                    PV_CONTROL_CLR_AT_START |
439                    PV_CONTROL_TRIGGER_UNDERFLOW |
440                    PV_CONTROL_WAIT_HSTART |
441                    VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
442                    PV_CONTROL_FIFO_CLR |
443                    PV_CONTROL_EN);
444
445         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
446                   SCALER_DISPBKGND_AUTOHS |
447                   SCALER_DISPBKGND_GAMMA |
448                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
449
450         /* Reload the LUT, since the SRAMs would have been disabled if
451          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
452          */
453         vc4_crtc_lut_load(crtc);
454
455         if (debug_dump_regs) {
456                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
457                 vc4_crtc_dump_regs(vc4_crtc);
458         }
459 }
460
461 static void require_hvs_enabled(struct drm_device *dev)
462 {
463         struct vc4_dev *vc4 = to_vc4_dev(dev);
464
465         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
466                      SCALER_DISPCTRL_ENABLE);
467 }
468
469 static void vc4_crtc_disable(struct drm_crtc *crtc)
470 {
471         struct drm_device *dev = crtc->dev;
472         struct vc4_dev *vc4 = to_vc4_dev(dev);
473         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
474         u32 chan = vc4_crtc->channel;
475         int ret;
476         require_hvs_enabled(dev);
477
478         /* Disable vblank irq handling before crtc is disabled. */
479         drm_crtc_vblank_off(crtc);
480
481         CRTC_WRITE(PV_V_CONTROL,
482                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
483         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
484         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
485
486         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
487             SCALER_DISPCTRLX_ENABLE) {
488                 HVS_WRITE(SCALER_DISPCTRLX(chan),
489                           SCALER_DISPCTRLX_RESET);
490
491                 /* While the docs say that reset is self-clearing, it
492                  * seems it doesn't actually.
493                  */
494                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
495         }
496
497         /* Once we leave, the scaler should be disabled and its fifo empty. */
498
499         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
500
501         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
502                                    SCALER_DISPSTATX_MODE) !=
503                      SCALER_DISPSTATX_MODE_DISABLED);
504
505         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
506                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
507                      SCALER_DISPSTATX_EMPTY);
508 }
509
510 static void vc4_crtc_enable(struct drm_crtc *crtc)
511 {
512         struct drm_device *dev = crtc->dev;
513         struct vc4_dev *vc4 = to_vc4_dev(dev);
514         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
515         struct drm_crtc_state *state = crtc->state;
516         struct drm_display_mode *mode = &state->adjusted_mode;
517
518         require_hvs_enabled(dev);
519
520         /* Turn on the scaler, which will wait for vstart to start
521          * compositing.
522          */
523         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
524                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
525                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
526                   SCALER_DISPCTRLX_ENABLE);
527
528         /* Turn on the pixel valve, which will emit the vstart signal. */
529         CRTC_WRITE(PV_V_CONTROL,
530                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
531
532         /* Enable vblank irq handling after crtc is started. */
533         drm_crtc_vblank_on(crtc);
534 }
535
536 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
537                                 const struct drm_display_mode *mode,
538                                 struct drm_display_mode *adjusted_mode)
539 {
540         /* Do not allow doublescan modes from user space */
541         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
542                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
543                               crtc->base.id);
544                 return false;
545         }
546
547         /*
548          * Interlaced video modes got CRTC_INTERLACE_HALVE_V applied when
549          * coming from user space. We don't want this, as it screws up
550          * vblank timestamping, so fix it up.
551          */
552         drm_mode_set_crtcinfo(adjusted_mode, 0);
553
554         DRM_DEBUG_KMS("[CRTC:%d] adjusted_mode :\n", crtc->base.id);
555         drm_mode_debug_printmodeline(adjusted_mode);
556
557         return true;
558 }
559
560 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
561                                  struct drm_crtc_state *state)
562 {
563         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
564         struct drm_device *dev = crtc->dev;
565         struct vc4_dev *vc4 = to_vc4_dev(dev);
566         struct drm_plane *plane;
567         unsigned long flags;
568         const struct drm_plane_state *plane_state;
569         u32 dlist_count = 0;
570         int ret;
571
572         /* The pixelvalve can only feed one encoder (and encoders are
573          * 1:1 with connectors.)
574          */
575         if (hweight32(state->connector_mask) > 1)
576                 return -EINVAL;
577
578         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
579                 dlist_count += vc4_plane_dlist_size(plane_state);
580
581         dlist_count++; /* Account for SCALER_CTL0_END. */
582
583         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
584         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
585                                  dlist_count, 1, 0);
586         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
587         if (ret)
588                 return ret;
589
590         return 0;
591 }
592
593 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
594                                   struct drm_crtc_state *old_state)
595 {
596         struct drm_device *dev = crtc->dev;
597         struct vc4_dev *vc4 = to_vc4_dev(dev);
598         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
599         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
600         struct drm_plane *plane;
601         bool debug_dump_regs = false;
602         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
603         u32 __iomem *dlist_next = dlist_start;
604
605         if (debug_dump_regs) {
606                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
607                 vc4_hvs_dump_state(dev);
608         }
609
610         /* Copy all the active planes' dlist contents to the hardware dlist. */
611         drm_atomic_crtc_for_each_plane(plane, crtc) {
612                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
613         }
614
615         writel(SCALER_CTL0_END, dlist_next);
616         dlist_next++;
617
618         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
619
620         if (crtc->state->event) {
621                 unsigned long flags;
622
623                 crtc->state->event->pipe = drm_crtc_index(crtc);
624
625                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
626
627                 spin_lock_irqsave(&dev->event_lock, flags);
628                 vc4_crtc->event = crtc->state->event;
629                 crtc->state->event = NULL;
630
631                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
632                           vc4_state->mm.start);
633
634                 spin_unlock_irqrestore(&dev->event_lock, flags);
635         } else {
636                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
637                           vc4_state->mm.start);
638         }
639
640         if (debug_dump_regs) {
641                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
642                 vc4_hvs_dump_state(dev);
643         }
644 }
645
646 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
647 {
648         struct vc4_dev *vc4 = to_vc4_dev(dev);
649         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
650
651         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
652
653         return 0;
654 }
655
656 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
657 {
658         struct vc4_dev *vc4 = to_vc4_dev(dev);
659         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
660
661         CRTC_WRITE(PV_INTEN, 0);
662 }
663
664 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
665 {
666         struct drm_crtc *crtc = &vc4_crtc->base;
667         struct drm_device *dev = crtc->dev;
668         struct vc4_dev *vc4 = to_vc4_dev(dev);
669         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
670         u32 chan = vc4_crtc->channel;
671         unsigned long flags;
672
673         spin_lock_irqsave(&dev->event_lock, flags);
674         if (vc4_crtc->event &&
675             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
676                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
677                 vc4_crtc->event = NULL;
678                 drm_crtc_vblank_put(crtc);
679         }
680         spin_unlock_irqrestore(&dev->event_lock, flags);
681 }
682
683 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
684 {
685         struct vc4_crtc *vc4_crtc = data;
686         u32 stat = CRTC_READ(PV_INTSTAT);
687         irqreturn_t ret = IRQ_NONE;
688
689         if (stat & PV_INT_VFP_START) {
690                 vc4_crtc->t_vblank = ktime_get();
691                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
692                 drm_crtc_handle_vblank(&vc4_crtc->base);
693                 vc4_crtc_handle_page_flip(vc4_crtc);
694                 ret = IRQ_HANDLED;
695         }
696
697         return ret;
698 }
699
700 struct vc4_async_flip_state {
701         struct drm_crtc *crtc;
702         struct drm_framebuffer *fb;
703         struct drm_pending_vblank_event *event;
704
705         struct vc4_seqno_cb cb;
706 };
707
708 /* Called when the V3D execution for the BO being flipped to is done, so that
709  * we can actually update the plane's address to point to it.
710  */
711 static void
712 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
713 {
714         struct vc4_async_flip_state *flip_state =
715                 container_of(cb, struct vc4_async_flip_state, cb);
716         struct drm_crtc *crtc = flip_state->crtc;
717         struct drm_device *dev = crtc->dev;
718         struct vc4_dev *vc4 = to_vc4_dev(dev);
719         struct drm_plane *plane = crtc->primary;
720
721         vc4_plane_async_set_fb(plane, flip_state->fb);
722         if (flip_state->event) {
723                 unsigned long flags;
724
725                 spin_lock_irqsave(&dev->event_lock, flags);
726                 drm_crtc_send_vblank_event(crtc, flip_state->event);
727                 spin_unlock_irqrestore(&dev->event_lock, flags);
728         }
729
730         drm_crtc_vblank_put(crtc);
731         drm_framebuffer_unreference(flip_state->fb);
732         kfree(flip_state);
733
734         up(&vc4->async_modeset);
735 }
736
737 /* Implements async (non-vblank-synced) page flips.
738  *
739  * The page flip ioctl needs to return immediately, so we grab the
740  * modeset semaphore on the pipe, and queue the address update for
741  * when V3D is done with the BO being flipped to.
742  */
743 static int vc4_async_page_flip(struct drm_crtc *crtc,
744                                struct drm_framebuffer *fb,
745                                struct drm_pending_vblank_event *event,
746                                uint32_t flags)
747 {
748         struct drm_device *dev = crtc->dev;
749         struct vc4_dev *vc4 = to_vc4_dev(dev);
750         struct drm_plane *plane = crtc->primary;
751         int ret = 0;
752         struct vc4_async_flip_state *flip_state;
753         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
754         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
755
756         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
757         if (!flip_state)
758                 return -ENOMEM;
759
760         drm_framebuffer_reference(fb);
761         flip_state->fb = fb;
762         flip_state->crtc = crtc;
763         flip_state->event = event;
764
765         /* Make sure all other async modesetes have landed. */
766         ret = down_interruptible(&vc4->async_modeset);
767         if (ret) {
768                 drm_framebuffer_unreference(fb);
769                 kfree(flip_state);
770                 return ret;
771         }
772
773         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
774
775         /* Immediately update the plane's legacy fb pointer, so that later
776          * modeset prep sees the state that will be present when the semaphore
777          * is released.
778          */
779         drm_atomic_set_fb_for_plane(plane->state, fb);
780         plane->fb = fb;
781
782         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
783                            vc4_async_page_flip_complete);
784
785         /* Driver takes ownership of state on successful async commit. */
786         return 0;
787 }
788
789 static int vc4_page_flip(struct drm_crtc *crtc,
790                          struct drm_framebuffer *fb,
791                          struct drm_pending_vblank_event *event,
792                          uint32_t flags)
793 {
794         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
795                 return vc4_async_page_flip(crtc, fb, event, flags);
796         else
797                 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
798 }
799
800 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
801 {
802         struct vc4_crtc_state *vc4_state;
803
804         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
805         if (!vc4_state)
806                 return NULL;
807
808         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
809         return &vc4_state->base;
810 }
811
812 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
813                                    struct drm_crtc_state *state)
814 {
815         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
816         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
817
818         if (vc4_state->mm.allocated) {
819                 unsigned long flags;
820
821                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
822                 drm_mm_remove_node(&vc4_state->mm);
823                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
824
825         }
826
827         __drm_atomic_helper_crtc_destroy_state(state);
828 }
829
830 static const struct drm_crtc_funcs vc4_crtc_funcs = {
831         .set_config = drm_atomic_helper_set_config,
832         .destroy = vc4_crtc_destroy,
833         .page_flip = vc4_page_flip,
834         .set_property = NULL,
835         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
836         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
837         .reset = drm_atomic_helper_crtc_reset,
838         .atomic_duplicate_state = vc4_crtc_duplicate_state,
839         .atomic_destroy_state = vc4_crtc_destroy_state,
840         .gamma_set = vc4_crtc_gamma_set,
841 };
842
843 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
844         .mode_set_nofb = vc4_crtc_mode_set_nofb,
845         .disable = vc4_crtc_disable,
846         .enable = vc4_crtc_enable,
847         .mode_fixup = vc4_crtc_mode_fixup,
848         .atomic_check = vc4_crtc_atomic_check,
849         .atomic_flush = vc4_crtc_atomic_flush,
850 };
851
852 static const struct vc4_crtc_data pv0_data = {
853         .hvs_channel = 0,
854         .encoder0_type = VC4_ENCODER_TYPE_DSI0,
855         .encoder1_type = VC4_ENCODER_TYPE_DPI,
856 };
857
858 static const struct vc4_crtc_data pv1_data = {
859         .hvs_channel = 2,
860         .encoder0_type = VC4_ENCODER_TYPE_DSI1,
861         .encoder1_type = VC4_ENCODER_TYPE_SMI,
862 };
863
864 static const struct vc4_crtc_data pv2_data = {
865         .hvs_channel = 1,
866         .encoder0_type = VC4_ENCODER_TYPE_VEC,
867         .encoder1_type = VC4_ENCODER_TYPE_HDMI,
868 };
869
870 static const struct of_device_id vc4_crtc_dt_match[] = {
871         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
872         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
873         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
874         {}
875 };
876
877 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
878                                         struct drm_crtc *crtc)
879 {
880         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
881         struct drm_encoder *encoder;
882
883         drm_for_each_encoder(encoder, drm) {
884                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
885
886                 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
887                         vc4_encoder->clock_select = 0;
888                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
889                 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
890                         vc4_encoder->clock_select = 1;
891                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
892                 }
893         }
894 }
895
896 static void
897 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
898 {
899         struct drm_device *drm = vc4_crtc->base.dev;
900         struct vc4_dev *vc4 = to_vc4_dev(drm);
901         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
902         /* Top/base are supposed to be 4-pixel aligned, but the
903          * Raspberry Pi firmware fills the low bits (which are
904          * presumably ignored).
905          */
906         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
907         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
908
909         vc4_crtc->cob_size = top - base + 4;
910 }
911
912 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
913 {
914         struct platform_device *pdev = to_platform_device(dev);
915         struct drm_device *drm = dev_get_drvdata(master);
916         struct vc4_dev *vc4 = to_vc4_dev(drm);
917         struct vc4_crtc *vc4_crtc;
918         struct drm_crtc *crtc;
919         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
920         const struct of_device_id *match;
921         int ret, i;
922
923         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
924         if (!vc4_crtc)
925                 return -ENOMEM;
926         crtc = &vc4_crtc->base;
927
928         match = of_match_device(vc4_crtc_dt_match, dev);
929         if (!match)
930                 return -ENODEV;
931         vc4_crtc->data = match->data;
932
933         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
934         if (IS_ERR(vc4_crtc->regs))
935                 return PTR_ERR(vc4_crtc->regs);
936
937         /* For now, we create just the primary and the legacy cursor
938          * planes.  We should be able to stack more planes on easily,
939          * but to do that we would need to compute the bandwidth
940          * requirement of the plane configuration, and reject ones
941          * that will take too much.
942          */
943         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
944         if (IS_ERR(primary_plane)) {
945                 dev_err(dev, "failed to construct primary plane\n");
946                 ret = PTR_ERR(primary_plane);
947                 goto err;
948         }
949
950         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
951                                   &vc4_crtc_funcs, NULL);
952         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
953         primary_plane->crtc = crtc;
954         vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
955         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
956         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
957
958         /* Set up some arbitrary number of planes.  We're not limited
959          * by a set number of physical registers, just the space in
960          * the HVS (16k) and how small an plane can be (28 bytes).
961          * However, each plane we set up takes up some memory, and
962          * increases the cost of looping over planes, which atomic
963          * modesetting does quite a bit.  As a result, we pick a
964          * modest number of planes to expose, that should hopefully
965          * still cover any sane usecase.
966          */
967         for (i = 0; i < 8; i++) {
968                 struct drm_plane *plane =
969                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
970
971                 if (IS_ERR(plane))
972                         continue;
973
974                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
975         }
976
977         /* Set up the legacy cursor after overlay initialization,
978          * since we overlay planes on the CRTC in the order they were
979          * initialized.
980          */
981         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
982         if (!IS_ERR(cursor_plane)) {
983                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
984                 cursor_plane->crtc = crtc;
985                 crtc->cursor = cursor_plane;
986         }
987
988         vc4_crtc_get_cob_allocation(vc4_crtc);
989
990         CRTC_WRITE(PV_INTEN, 0);
991         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
992         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
993                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
994         if (ret)
995                 goto err_destroy_planes;
996
997         vc4_set_crtc_possible_masks(drm, crtc);
998
999         for (i = 0; i < crtc->gamma_size; i++) {
1000                 vc4_crtc->lut_r[i] = i;
1001                 vc4_crtc->lut_g[i] = i;
1002                 vc4_crtc->lut_b[i] = i;
1003         }
1004
1005         platform_set_drvdata(pdev, vc4_crtc);
1006
1007         return 0;
1008
1009 err_destroy_planes:
1010         list_for_each_entry_safe(destroy_plane, temp,
1011                                  &drm->mode_config.plane_list, head) {
1012                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1013                     destroy_plane->funcs->destroy(destroy_plane);
1014         }
1015 err:
1016         return ret;
1017 }
1018
1019 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1020                             void *data)
1021 {
1022         struct platform_device *pdev = to_platform_device(dev);
1023         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1024
1025         vc4_crtc_destroy(&vc4_crtc->base);
1026
1027         CRTC_WRITE(PV_INTEN, 0);
1028
1029         platform_set_drvdata(pdev, NULL);
1030 }
1031
1032 static const struct component_ops vc4_crtc_ops = {
1033         .bind   = vc4_crtc_bind,
1034         .unbind = vc4_crtc_unbind,
1035 };
1036
1037 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1038 {
1039         return component_add(&pdev->dev, &vc4_crtc_ops);
1040 }
1041
1042 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1043 {
1044         component_del(&pdev->dev, &vc4_crtc_ops);
1045         return 0;
1046 }
1047
1048 struct platform_driver vc4_crtc_driver = {
1049         .probe = vc4_crtc_dev_probe,
1050         .remove = vc4_crtc_dev_remove,
1051         .driver = {
1052                 .name = "vc4_crtc",
1053                 .of_match_table = vc4_crtc_dt_match,
1054         },
1055 };