]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
75b708b36890591caaa0b2612d9c8617f942d82f
[karo-tx-linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45         struct drm_crtc base;
46         const struct vc4_crtc_data *data;
47         void __iomem *regs;
48
49         /* Timestamp at start of vblank irq - unaffected by lock delays. */
50         ktime_t t_vblank;
51
52         /* Which HVS channel we're using for our CRTC. */
53         int channel;
54
55         u8 lut_r[256];
56         u8 lut_g[256];
57         u8 lut_b[256];
58         /* Size in pixels of the COB memory allocated to this CRTC. */
59         u32 cob_size;
60
61         struct drm_pending_vblank_event *event;
62 };
63
64 struct vc4_crtc_state {
65         struct drm_crtc_state base;
66         /* Dlist area for this CRTC configuration. */
67         struct drm_mm_node mm;
68 };
69
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73         return (struct vc4_crtc *)crtc;
74 }
75
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79         return (struct vc4_crtc_state *)crtc_state;
80 }
81
82 struct vc4_crtc_data {
83         /* Which channel of the HVS this pixelvalve sources from. */
84         int hvs_channel;
85
86         enum vc4_encoder_type encoder_types[4];
87 };
88
89 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
90 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
91
92 #define CRTC_REG(reg) { reg, #reg }
93 static const struct {
94         u32 reg;
95         const char *name;
96 } crtc_regs[] = {
97         CRTC_REG(PV_CONTROL),
98         CRTC_REG(PV_V_CONTROL),
99         CRTC_REG(PV_VSYNCD_EVEN),
100         CRTC_REG(PV_HORZA),
101         CRTC_REG(PV_HORZB),
102         CRTC_REG(PV_VERTA),
103         CRTC_REG(PV_VERTB),
104         CRTC_REG(PV_VERTA_EVEN),
105         CRTC_REG(PV_VERTB_EVEN),
106         CRTC_REG(PV_INTEN),
107         CRTC_REG(PV_INTSTAT),
108         CRTC_REG(PV_STAT),
109         CRTC_REG(PV_HACT_ACT),
110 };
111
112 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
113 {
114         int i;
115
116         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
117                 DRM_INFO("0x%04x (%s): 0x%08x\n",
118                          crtc_regs[i].reg, crtc_regs[i].name,
119                          CRTC_READ(crtc_regs[i].reg));
120         }
121 }
122
123 #ifdef CONFIG_DEBUG_FS
124 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
125 {
126         struct drm_info_node *node = (struct drm_info_node *)m->private;
127         struct drm_device *dev = node->minor->dev;
128         int crtc_index = (uintptr_t)node->info_ent->data;
129         struct drm_crtc *crtc;
130         struct vc4_crtc *vc4_crtc;
131         int i;
132
133         i = 0;
134         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
135                 if (i == crtc_index)
136                         break;
137                 i++;
138         }
139         if (!crtc)
140                 return 0;
141         vc4_crtc = to_vc4_crtc(crtc);
142
143         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
144                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
145                            crtc_regs[i].name, crtc_regs[i].reg,
146                            CRTC_READ(crtc_regs[i].reg));
147         }
148
149         return 0;
150 }
151 #endif
152
153 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
154                             unsigned int flags, int *vpos, int *hpos,
155                             ktime_t *stime, ktime_t *etime,
156                             const struct drm_display_mode *mode)
157 {
158         struct vc4_dev *vc4 = to_vc4_dev(dev);
159         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
160         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
161         u32 val;
162         int fifo_lines;
163         int vblank_lines;
164         int ret = 0;
165
166         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
167
168         /* Get optional system timestamp before query. */
169         if (stime)
170                 *stime = ktime_get();
171
172         /*
173          * Read vertical scanline which is currently composed for our
174          * pixelvalve by the HVS, and also the scaler status.
175          */
176         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
177
178         /* Get optional system timestamp after query. */
179         if (etime)
180                 *etime = ktime_get();
181
182         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
183
184         /* Vertical position of hvs composed scanline. */
185         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
186         *hpos = 0;
187
188         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
189                 *vpos /= 2;
190
191                 /* Use hpos to correct for field offset in interlaced mode. */
192                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
193                         *hpos += mode->crtc_htotal / 2;
194         }
195
196         /* This is the offset we need for translating hvs -> pv scanout pos. */
197         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
198
199         if (fifo_lines > 0)
200                 ret |= DRM_SCANOUTPOS_VALID;
201
202         /* HVS more than fifo_lines into frame for compositing? */
203         if (*vpos > fifo_lines) {
204                 /*
205                  * We are in active scanout and can get some meaningful results
206                  * from HVS. The actual PV scanout can not trail behind more
207                  * than fifo_lines as that is the fifo's capacity. Assume that
208                  * in active scanout the HVS and PV work in lockstep wrt. HVS
209                  * refilling the fifo and PV consuming from the fifo, ie.
210                  * whenever the PV consumes and frees up a scanline in the
211                  * fifo, the HVS will immediately refill it, therefore
212                  * incrementing vpos. Therefore we choose HVS read position -
213                  * fifo size in scanlines as a estimate of the real scanout
214                  * position of the PV.
215                  */
216                 *vpos -= fifo_lines + 1;
217
218                 ret |= DRM_SCANOUTPOS_ACCURATE;
219                 return ret;
220         }
221
222         /*
223          * Less: This happens when we are in vblank and the HVS, after getting
224          * the VSTART restart signal from the PV, just started refilling its
225          * fifo with new lines from the top-most lines of the new framebuffers.
226          * The PV does not scan out in vblank, so does not remove lines from
227          * the fifo, so the fifo will be full quickly and the HVS has to pause.
228          * We can't get meaningful readings wrt. scanline position of the PV
229          * and need to make things up in a approximative but consistent way.
230          */
231         ret |= DRM_SCANOUTPOS_IN_VBLANK;
232         vblank_lines = mode->vtotal - mode->vdisplay;
233
234         if (flags & DRM_CALLED_FROM_VBLIRQ) {
235                 /*
236                  * Assume the irq handler got called close to first
237                  * line of vblank, so PV has about a full vblank
238                  * scanlines to go, and as a base timestamp use the
239                  * one taken at entry into vblank irq handler, so it
240                  * is not affected by random delays due to lock
241                  * contention on event_lock or vblank_time lock in
242                  * the core.
243                  */
244                 *vpos = -vblank_lines;
245
246                 if (stime)
247                         *stime = vc4_crtc->t_vblank;
248                 if (etime)
249                         *etime = vc4_crtc->t_vblank;
250
251                 /*
252                  * If the HVS fifo is not yet full then we know for certain
253                  * we are at the very beginning of vblank, as the hvs just
254                  * started refilling, and the stime and etime timestamps
255                  * truly correspond to start of vblank.
256                  */
257                 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
258                         ret |= DRM_SCANOUTPOS_ACCURATE;
259         } else {
260                 /*
261                  * No clue where we are inside vblank. Return a vpos of zero,
262                  * which will cause calling code to just return the etime
263                  * timestamp uncorrected. At least this is no worse than the
264                  * standard fallback.
265                  */
266                 *vpos = 0;
267         }
268
269         return ret;
270 }
271
272 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
273                                   int *max_error, struct timeval *vblank_time,
274                                   unsigned flags)
275 {
276         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
277         struct drm_crtc_state *state = crtc->state;
278
279         /* Helper routine in DRM core does all the work: */
280         return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
281                                                      vblank_time, flags,
282                                                      &state->adjusted_mode);
283 }
284
285 static void vc4_crtc_destroy(struct drm_crtc *crtc)
286 {
287         drm_crtc_cleanup(crtc);
288 }
289
290 static void
291 vc4_crtc_lut_load(struct drm_crtc *crtc)
292 {
293         struct drm_device *dev = crtc->dev;
294         struct vc4_dev *vc4 = to_vc4_dev(dev);
295         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
296         u32 i;
297
298         /* The LUT memory is laid out with each HVS channel in order,
299          * each of which takes 256 writes for R, 256 for G, then 256
300          * for B.
301          */
302         HVS_WRITE(SCALER_GAMADDR,
303                   SCALER_GAMADDR_AUTOINC |
304                   (vc4_crtc->channel * 3 * crtc->gamma_size));
305
306         for (i = 0; i < crtc->gamma_size; i++)
307                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
308         for (i = 0; i < crtc->gamma_size; i++)
309                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
310         for (i = 0; i < crtc->gamma_size; i++)
311                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
312 }
313
314 static int
315 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
316                    uint32_t size)
317 {
318         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
319         u32 i;
320
321         for (i = 0; i < size; i++) {
322                 vc4_crtc->lut_r[i] = r[i] >> 8;
323                 vc4_crtc->lut_g[i] = g[i] >> 8;
324                 vc4_crtc->lut_b[i] = b[i] >> 8;
325         }
326
327         vc4_crtc_lut_load(crtc);
328
329         return 0;
330 }
331
332 static u32 vc4_get_fifo_full_level(u32 format)
333 {
334         static const u32 fifo_len_bytes = 64;
335         static const u32 hvs_latency_pix = 6;
336
337         switch (format) {
338         case PV_CONTROL_FORMAT_DSIV_16:
339         case PV_CONTROL_FORMAT_DSIC_16:
340                 return fifo_len_bytes - 2 * hvs_latency_pix;
341         case PV_CONTROL_FORMAT_DSIV_18:
342                 return fifo_len_bytes - 14;
343         case PV_CONTROL_FORMAT_24:
344         case PV_CONTROL_FORMAT_DSIV_24:
345         default:
346                 return fifo_len_bytes - 3 * hvs_latency_pix;
347         }
348 }
349
350 /*
351  * Returns the clock select bit for the connector attached to the
352  * CRTC.
353  */
354 static int vc4_get_clock_select(struct drm_crtc *crtc)
355 {
356         struct drm_connector *connector;
357
358         drm_for_each_connector(connector, crtc->dev) {
359                 if (connector->state->crtc == crtc) {
360                         struct drm_encoder *encoder = connector->encoder;
361                         struct vc4_encoder *vc4_encoder =
362                                 to_vc4_encoder(encoder);
363
364                         return vc4_encoder->clock_select;
365                 }
366         }
367
368         return -1;
369 }
370
371 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
372 {
373         struct drm_device *dev = crtc->dev;
374         struct vc4_dev *vc4 = to_vc4_dev(dev);
375         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
376         struct drm_crtc_state *state = crtc->state;
377         struct drm_display_mode *mode = &state->adjusted_mode;
378         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
379         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
380         u32 format = PV_CONTROL_FORMAT_24;
381         bool debug_dump_regs = false;
382         int clock_select = vc4_get_clock_select(crtc);
383
384         if (debug_dump_regs) {
385                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
386                 vc4_crtc_dump_regs(vc4_crtc);
387         }
388
389         /* Reset the PV fifo. */
390         CRTC_WRITE(PV_CONTROL, 0);
391         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
392         CRTC_WRITE(PV_CONTROL, 0);
393
394         CRTC_WRITE(PV_HORZA,
395                    VC4_SET_FIELD((mode->htotal -
396                                   mode->hsync_end) * pixel_rep,
397                                  PV_HORZA_HBP) |
398                    VC4_SET_FIELD((mode->hsync_end -
399                                   mode->hsync_start) * pixel_rep,
400                                  PV_HORZA_HSYNC));
401         CRTC_WRITE(PV_HORZB,
402                    VC4_SET_FIELD((mode->hsync_start -
403                                   mode->hdisplay) * pixel_rep,
404                                  PV_HORZB_HFP) |
405                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
406
407         CRTC_WRITE(PV_VERTA,
408                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
409                                  PV_VERTA_VBP) |
410                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
411                                  PV_VERTA_VSYNC));
412         CRTC_WRITE(PV_VERTB,
413                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
414                                  PV_VERTB_VFP) |
415                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
416
417         if (interlace) {
418                 CRTC_WRITE(PV_VERTA_EVEN,
419                            VC4_SET_FIELD(mode->crtc_vtotal -
420                                          mode->crtc_vsync_end - 1,
421                                          PV_VERTA_VBP) |
422                            VC4_SET_FIELD(mode->crtc_vsync_end -
423                                          mode->crtc_vsync_start,
424                                          PV_VERTA_VSYNC));
425                 CRTC_WRITE(PV_VERTB_EVEN,
426                            VC4_SET_FIELD(mode->crtc_vsync_start -
427                                          mode->crtc_vdisplay,
428                                          PV_VERTB_VFP) |
429                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
430
431                 /* We set up first field even mode for HDMI.  VEC's
432                  * NTSC mode would want first field odd instead, once
433                  * we support it (to do so, set ODD_FIRST and put the
434                  * delay in VSYNCD_EVEN instead).
435                  */
436                 CRTC_WRITE(PV_V_CONTROL,
437                            PV_VCONTROL_CONTINUOUS |
438                            PV_VCONTROL_INTERLACE |
439                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
440                                          PV_VCONTROL_ODD_DELAY));
441                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
442         } else {
443                 CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
444         }
445
446         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
447
448
449         CRTC_WRITE(PV_CONTROL,
450                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
451                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
452                                  PV_CONTROL_FIFO_LEVEL) |
453                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
454                    PV_CONTROL_CLR_AT_START |
455                    PV_CONTROL_TRIGGER_UNDERFLOW |
456                    PV_CONTROL_WAIT_HSTART |
457                    VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
458                    PV_CONTROL_FIFO_CLR |
459                    PV_CONTROL_EN);
460
461         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
462                   SCALER_DISPBKGND_AUTOHS |
463                   SCALER_DISPBKGND_GAMMA |
464                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
465
466         /* Reload the LUT, since the SRAMs would have been disabled if
467          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
468          */
469         vc4_crtc_lut_load(crtc);
470
471         if (debug_dump_regs) {
472                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
473                 vc4_crtc_dump_regs(vc4_crtc);
474         }
475 }
476
477 static void require_hvs_enabled(struct drm_device *dev)
478 {
479         struct vc4_dev *vc4 = to_vc4_dev(dev);
480
481         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
482                      SCALER_DISPCTRL_ENABLE);
483 }
484
485 static void vc4_crtc_disable(struct drm_crtc *crtc)
486 {
487         struct drm_device *dev = crtc->dev;
488         struct vc4_dev *vc4 = to_vc4_dev(dev);
489         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
490         u32 chan = vc4_crtc->channel;
491         int ret;
492         require_hvs_enabled(dev);
493
494         /* Disable vblank irq handling before crtc is disabled. */
495         drm_crtc_vblank_off(crtc);
496
497         CRTC_WRITE(PV_V_CONTROL,
498                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
499         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
500         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
501
502         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
503             SCALER_DISPCTRLX_ENABLE) {
504                 HVS_WRITE(SCALER_DISPCTRLX(chan),
505                           SCALER_DISPCTRLX_RESET);
506
507                 /* While the docs say that reset is self-clearing, it
508                  * seems it doesn't actually.
509                  */
510                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
511         }
512
513         /* Once we leave, the scaler should be disabled and its fifo empty. */
514
515         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
516
517         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
518                                    SCALER_DISPSTATX_MODE) !=
519                      SCALER_DISPSTATX_MODE_DISABLED);
520
521         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
522                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
523                      SCALER_DISPSTATX_EMPTY);
524 }
525
526 static void vc4_crtc_enable(struct drm_crtc *crtc)
527 {
528         struct drm_device *dev = crtc->dev;
529         struct vc4_dev *vc4 = to_vc4_dev(dev);
530         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
531         struct drm_crtc_state *state = crtc->state;
532         struct drm_display_mode *mode = &state->adjusted_mode;
533
534         require_hvs_enabled(dev);
535
536         /* Turn on the scaler, which will wait for vstart to start
537          * compositing.
538          */
539         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
540                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
541                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
542                   SCALER_DISPCTRLX_ENABLE);
543
544         /* Turn on the pixel valve, which will emit the vstart signal. */
545         CRTC_WRITE(PV_V_CONTROL,
546                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
547
548         /* Enable vblank irq handling after crtc is started. */
549         drm_crtc_vblank_on(crtc);
550 }
551
552 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
553                                 const struct drm_display_mode *mode,
554                                 struct drm_display_mode *adjusted_mode)
555 {
556         /* Do not allow doublescan modes from user space */
557         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
558                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
559                               crtc->base.id);
560                 return false;
561         }
562
563         return true;
564 }
565
566 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
567                                  struct drm_crtc_state *state)
568 {
569         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
570         struct drm_device *dev = crtc->dev;
571         struct vc4_dev *vc4 = to_vc4_dev(dev);
572         struct drm_plane *plane;
573         unsigned long flags;
574         const struct drm_plane_state *plane_state;
575         u32 dlist_count = 0;
576         int ret;
577
578         /* The pixelvalve can only feed one encoder (and encoders are
579          * 1:1 with connectors.)
580          */
581         if (hweight32(state->connector_mask) > 1)
582                 return -EINVAL;
583
584         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
585                 dlist_count += vc4_plane_dlist_size(plane_state);
586
587         dlist_count++; /* Account for SCALER_CTL0_END. */
588
589         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
590         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
591                                  dlist_count, 1, 0);
592         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
593         if (ret)
594                 return ret;
595
596         return 0;
597 }
598
599 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
600                                   struct drm_crtc_state *old_state)
601 {
602         struct drm_device *dev = crtc->dev;
603         struct vc4_dev *vc4 = to_vc4_dev(dev);
604         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
605         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
606         struct drm_plane *plane;
607         bool debug_dump_regs = false;
608         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
609         u32 __iomem *dlist_next = dlist_start;
610
611         if (debug_dump_regs) {
612                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
613                 vc4_hvs_dump_state(dev);
614         }
615
616         /* Copy all the active planes' dlist contents to the hardware dlist. */
617         drm_atomic_crtc_for_each_plane(plane, crtc) {
618                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
619         }
620
621         writel(SCALER_CTL0_END, dlist_next);
622         dlist_next++;
623
624         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
625
626         if (crtc->state->event) {
627                 unsigned long flags;
628
629                 crtc->state->event->pipe = drm_crtc_index(crtc);
630
631                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
632
633                 spin_lock_irqsave(&dev->event_lock, flags);
634                 vc4_crtc->event = crtc->state->event;
635                 crtc->state->event = NULL;
636
637                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
638                           vc4_state->mm.start);
639
640                 spin_unlock_irqrestore(&dev->event_lock, flags);
641         } else {
642                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
643                           vc4_state->mm.start);
644         }
645
646         if (debug_dump_regs) {
647                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
648                 vc4_hvs_dump_state(dev);
649         }
650 }
651
652 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
653 {
654         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
655         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
656
657         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
658
659         return 0;
660 }
661
662 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
663 {
664         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
665         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
666
667         CRTC_WRITE(PV_INTEN, 0);
668 }
669
670 /* Must be called with the event lock held */
671 bool vc4_event_pending(struct drm_crtc *crtc)
672 {
673         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
674
675         return !!vc4_crtc->event;
676 }
677
678 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
679 {
680         struct drm_crtc *crtc = &vc4_crtc->base;
681         struct drm_device *dev = crtc->dev;
682         struct vc4_dev *vc4 = to_vc4_dev(dev);
683         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
684         u32 chan = vc4_crtc->channel;
685         unsigned long flags;
686
687         spin_lock_irqsave(&dev->event_lock, flags);
688         if (vc4_crtc->event &&
689             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
690                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
691                 vc4_crtc->event = NULL;
692                 drm_crtc_vblank_put(crtc);
693         }
694         spin_unlock_irqrestore(&dev->event_lock, flags);
695 }
696
697 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
698 {
699         struct vc4_crtc *vc4_crtc = data;
700         u32 stat = CRTC_READ(PV_INTSTAT);
701         irqreturn_t ret = IRQ_NONE;
702
703         if (stat & PV_INT_VFP_START) {
704                 vc4_crtc->t_vblank = ktime_get();
705                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
706                 drm_crtc_handle_vblank(&vc4_crtc->base);
707                 vc4_crtc_handle_page_flip(vc4_crtc);
708                 ret = IRQ_HANDLED;
709         }
710
711         return ret;
712 }
713
714 struct vc4_async_flip_state {
715         struct drm_crtc *crtc;
716         struct drm_framebuffer *fb;
717         struct drm_pending_vblank_event *event;
718
719         struct vc4_seqno_cb cb;
720 };
721
722 /* Called when the V3D execution for the BO being flipped to is done, so that
723  * we can actually update the plane's address to point to it.
724  */
725 static void
726 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
727 {
728         struct vc4_async_flip_state *flip_state =
729                 container_of(cb, struct vc4_async_flip_state, cb);
730         struct drm_crtc *crtc = flip_state->crtc;
731         struct drm_device *dev = crtc->dev;
732         struct vc4_dev *vc4 = to_vc4_dev(dev);
733         struct drm_plane *plane = crtc->primary;
734
735         vc4_plane_async_set_fb(plane, flip_state->fb);
736         if (flip_state->event) {
737                 unsigned long flags;
738
739                 spin_lock_irqsave(&dev->event_lock, flags);
740                 drm_crtc_send_vblank_event(crtc, flip_state->event);
741                 spin_unlock_irqrestore(&dev->event_lock, flags);
742         }
743
744         drm_crtc_vblank_put(crtc);
745         drm_framebuffer_unreference(flip_state->fb);
746         kfree(flip_state);
747
748         up(&vc4->async_modeset);
749 }
750
751 /* Implements async (non-vblank-synced) page flips.
752  *
753  * The page flip ioctl needs to return immediately, so we grab the
754  * modeset semaphore on the pipe, and queue the address update for
755  * when V3D is done with the BO being flipped to.
756  */
757 static int vc4_async_page_flip(struct drm_crtc *crtc,
758                                struct drm_framebuffer *fb,
759                                struct drm_pending_vblank_event *event,
760                                uint32_t flags)
761 {
762         struct drm_device *dev = crtc->dev;
763         struct vc4_dev *vc4 = to_vc4_dev(dev);
764         struct drm_plane *plane = crtc->primary;
765         int ret = 0;
766         struct vc4_async_flip_state *flip_state;
767         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
768         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
769
770         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
771         if (!flip_state)
772                 return -ENOMEM;
773
774         drm_framebuffer_reference(fb);
775         flip_state->fb = fb;
776         flip_state->crtc = crtc;
777         flip_state->event = event;
778
779         /* Make sure all other async modesetes have landed. */
780         ret = down_interruptible(&vc4->async_modeset);
781         if (ret) {
782                 drm_framebuffer_unreference(fb);
783                 kfree(flip_state);
784                 return ret;
785         }
786
787         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
788
789         /* Immediately update the plane's legacy fb pointer, so that later
790          * modeset prep sees the state that will be present when the semaphore
791          * is released.
792          */
793         drm_atomic_set_fb_for_plane(plane->state, fb);
794         plane->fb = fb;
795
796         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
797                            vc4_async_page_flip_complete);
798
799         /* Driver takes ownership of state on successful async commit. */
800         return 0;
801 }
802
803 static int vc4_page_flip(struct drm_crtc *crtc,
804                          struct drm_framebuffer *fb,
805                          struct drm_pending_vblank_event *event,
806                          uint32_t flags)
807 {
808         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
809                 return vc4_async_page_flip(crtc, fb, event, flags);
810         else
811                 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
812 }
813
814 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
815 {
816         struct vc4_crtc_state *vc4_state;
817
818         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
819         if (!vc4_state)
820                 return NULL;
821
822         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
823         return &vc4_state->base;
824 }
825
826 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
827                                    struct drm_crtc_state *state)
828 {
829         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
830         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
831
832         if (vc4_state->mm.allocated) {
833                 unsigned long flags;
834
835                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
836                 drm_mm_remove_node(&vc4_state->mm);
837                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
838
839         }
840
841         __drm_atomic_helper_crtc_destroy_state(state);
842 }
843
844 static const struct drm_crtc_funcs vc4_crtc_funcs = {
845         .set_config = drm_atomic_helper_set_config,
846         .destroy = vc4_crtc_destroy,
847         .page_flip = vc4_page_flip,
848         .set_property = NULL,
849         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
850         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
851         .reset = drm_atomic_helper_crtc_reset,
852         .atomic_duplicate_state = vc4_crtc_duplicate_state,
853         .atomic_destroy_state = vc4_crtc_destroy_state,
854         .gamma_set = vc4_crtc_gamma_set,
855 };
856
857 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
858         .mode_set_nofb = vc4_crtc_mode_set_nofb,
859         .disable = vc4_crtc_disable,
860         .enable = vc4_crtc_enable,
861         .mode_fixup = vc4_crtc_mode_fixup,
862         .atomic_check = vc4_crtc_atomic_check,
863         .atomic_flush = vc4_crtc_atomic_flush,
864 };
865
866 static const struct vc4_crtc_data pv0_data = {
867         .hvs_channel = 0,
868         .encoder_types = {
869                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
870                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
871         },
872 };
873
874 static const struct vc4_crtc_data pv1_data = {
875         .hvs_channel = 2,
876         .encoder_types = {
877                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
878                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
879         },
880 };
881
882 static const struct vc4_crtc_data pv2_data = {
883         .hvs_channel = 1,
884         .encoder_types = {
885                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
886                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
887         },
888 };
889
890 static const struct of_device_id vc4_crtc_dt_match[] = {
891         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
892         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
893         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
894         {}
895 };
896
897 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
898                                         struct drm_crtc *crtc)
899 {
900         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
901         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
902         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
903         struct drm_encoder *encoder;
904
905         drm_for_each_encoder(encoder, drm) {
906                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
907                 int i;
908
909                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
910                         if (vc4_encoder->type == encoder_types[i]) {
911                                 vc4_encoder->clock_select = i;
912                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
913                                 break;
914                         }
915                 }
916         }
917 }
918
919 static void
920 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
921 {
922         struct drm_device *drm = vc4_crtc->base.dev;
923         struct vc4_dev *vc4 = to_vc4_dev(drm);
924         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
925         /* Top/base are supposed to be 4-pixel aligned, but the
926          * Raspberry Pi firmware fills the low bits (which are
927          * presumably ignored).
928          */
929         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
930         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
931
932         vc4_crtc->cob_size = top - base + 4;
933 }
934
935 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
936 {
937         struct platform_device *pdev = to_platform_device(dev);
938         struct drm_device *drm = dev_get_drvdata(master);
939         struct vc4_crtc *vc4_crtc;
940         struct drm_crtc *crtc;
941         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
942         const struct of_device_id *match;
943         int ret, i;
944
945         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
946         if (!vc4_crtc)
947                 return -ENOMEM;
948         crtc = &vc4_crtc->base;
949
950         match = of_match_device(vc4_crtc_dt_match, dev);
951         if (!match)
952                 return -ENODEV;
953         vc4_crtc->data = match->data;
954
955         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
956         if (IS_ERR(vc4_crtc->regs))
957                 return PTR_ERR(vc4_crtc->regs);
958
959         /* For now, we create just the primary and the legacy cursor
960          * planes.  We should be able to stack more planes on easily,
961          * but to do that we would need to compute the bandwidth
962          * requirement of the plane configuration, and reject ones
963          * that will take too much.
964          */
965         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
966         if (IS_ERR(primary_plane)) {
967                 dev_err(dev, "failed to construct primary plane\n");
968                 ret = PTR_ERR(primary_plane);
969                 goto err;
970         }
971
972         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
973                                   &vc4_crtc_funcs, NULL);
974         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
975         primary_plane->crtc = crtc;
976         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
977         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
978
979         /* Set up some arbitrary number of planes.  We're not limited
980          * by a set number of physical registers, just the space in
981          * the HVS (16k) and how small an plane can be (28 bytes).
982          * However, each plane we set up takes up some memory, and
983          * increases the cost of looping over planes, which atomic
984          * modesetting does quite a bit.  As a result, we pick a
985          * modest number of planes to expose, that should hopefully
986          * still cover any sane usecase.
987          */
988         for (i = 0; i < 8; i++) {
989                 struct drm_plane *plane =
990                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
991
992                 if (IS_ERR(plane))
993                         continue;
994
995                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
996         }
997
998         /* Set up the legacy cursor after overlay initialization,
999          * since we overlay planes on the CRTC in the order they were
1000          * initialized.
1001          */
1002         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1003         if (!IS_ERR(cursor_plane)) {
1004                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1005                 cursor_plane->crtc = crtc;
1006                 crtc->cursor = cursor_plane;
1007         }
1008
1009         vc4_crtc_get_cob_allocation(vc4_crtc);
1010
1011         CRTC_WRITE(PV_INTEN, 0);
1012         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1013         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1014                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1015         if (ret)
1016                 goto err_destroy_planes;
1017
1018         vc4_set_crtc_possible_masks(drm, crtc);
1019
1020         for (i = 0; i < crtc->gamma_size; i++) {
1021                 vc4_crtc->lut_r[i] = i;
1022                 vc4_crtc->lut_g[i] = i;
1023                 vc4_crtc->lut_b[i] = i;
1024         }
1025
1026         platform_set_drvdata(pdev, vc4_crtc);
1027
1028         return 0;
1029
1030 err_destroy_planes:
1031         list_for_each_entry_safe(destroy_plane, temp,
1032                                  &drm->mode_config.plane_list, head) {
1033                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1034                     destroy_plane->funcs->destroy(destroy_plane);
1035         }
1036 err:
1037         return ret;
1038 }
1039
1040 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1041                             void *data)
1042 {
1043         struct platform_device *pdev = to_platform_device(dev);
1044         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1045
1046         vc4_crtc_destroy(&vc4_crtc->base);
1047
1048         CRTC_WRITE(PV_INTEN, 0);
1049
1050         platform_set_drvdata(pdev, NULL);
1051 }
1052
1053 static const struct component_ops vc4_crtc_ops = {
1054         .bind   = vc4_crtc_bind,
1055         .unbind = vc4_crtc_unbind,
1056 };
1057
1058 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1059 {
1060         return component_add(&pdev->dev, &vc4_crtc_ops);
1061 }
1062
1063 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1064 {
1065         component_del(&pdev->dev, &vc4_crtc_ops);
1066         return 0;
1067 }
1068
1069 struct platform_driver vc4_crtc_driver = {
1070         .probe = vc4_crtc_dev_probe,
1071         .remove = vc4_crtc_dev_remove,
1072         .driver = {
1073                 .name = "vc4_crtc",
1074                 .of_match_table = vc4_crtc_dt_match,
1075         },
1076 };