]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/hv/vmbus_drv.c
nvme.h: Add get_log_page command strucure
[karo-tx-linux.git] / drivers / hv / vmbus_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include "hyperv_vmbus.h"
46
47 static struct acpi_device  *hv_acpi_dev;
48
49 static struct completion probe_event;
50
51
52 static void hyperv_report_panic(struct pt_regs *regs)
53 {
54         static bool panic_reported;
55
56         /*
57          * We prefer to report panic on 'die' chain as we have proper
58          * registers to report, but if we miss it (e.g. on BUG()) we need
59          * to report it on 'panic'.
60          */
61         if (panic_reported)
62                 return;
63         panic_reported = true;
64
65         wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
66         wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
67         wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
68         wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
69         wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
70
71         /*
72          * Let Hyper-V know there is crash data available
73          */
74         wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
75 }
76
77 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
78                               void *args)
79 {
80         struct pt_regs *regs;
81
82         regs = current_pt_regs();
83
84         hyperv_report_panic(regs);
85         return NOTIFY_DONE;
86 }
87
88 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
89                             void *args)
90 {
91         struct die_args *die = (struct die_args *)args;
92         struct pt_regs *regs = die->regs;
93
94         hyperv_report_panic(regs);
95         return NOTIFY_DONE;
96 }
97
98 static struct notifier_block hyperv_die_block = {
99         .notifier_call = hyperv_die_event,
100 };
101 static struct notifier_block hyperv_panic_block = {
102         .notifier_call = hyperv_panic_event,
103 };
104
105 static const char *fb_mmio_name = "fb_range";
106 static struct resource *fb_mmio;
107 struct resource *hyperv_mmio;
108 DEFINE_SEMAPHORE(hyperv_mmio_lock);
109
110 static int vmbus_exists(void)
111 {
112         if (hv_acpi_dev == NULL)
113                 return -ENODEV;
114
115         return 0;
116 }
117
118 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
119 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
120 {
121         int i;
122         for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
123                 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
124 }
125
126 static u8 channel_monitor_group(struct vmbus_channel *channel)
127 {
128         return (u8)channel->offermsg.monitorid / 32;
129 }
130
131 static u8 channel_monitor_offset(struct vmbus_channel *channel)
132 {
133         return (u8)channel->offermsg.monitorid % 32;
134 }
135
136 static u32 channel_pending(struct vmbus_channel *channel,
137                            struct hv_monitor_page *monitor_page)
138 {
139         u8 monitor_group = channel_monitor_group(channel);
140         return monitor_page->trigger_group[monitor_group].pending;
141 }
142
143 static u32 channel_latency(struct vmbus_channel *channel,
144                            struct hv_monitor_page *monitor_page)
145 {
146         u8 monitor_group = channel_monitor_group(channel);
147         u8 monitor_offset = channel_monitor_offset(channel);
148         return monitor_page->latency[monitor_group][monitor_offset];
149 }
150
151 static u32 channel_conn_id(struct vmbus_channel *channel,
152                            struct hv_monitor_page *monitor_page)
153 {
154         u8 monitor_group = channel_monitor_group(channel);
155         u8 monitor_offset = channel_monitor_offset(channel);
156         return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
157 }
158
159 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
160                        char *buf)
161 {
162         struct hv_device *hv_dev = device_to_hv_device(dev);
163
164         if (!hv_dev->channel)
165                 return -ENODEV;
166         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
167 }
168 static DEVICE_ATTR_RO(id);
169
170 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
171                           char *buf)
172 {
173         struct hv_device *hv_dev = device_to_hv_device(dev);
174
175         if (!hv_dev->channel)
176                 return -ENODEV;
177         return sprintf(buf, "%d\n", hv_dev->channel->state);
178 }
179 static DEVICE_ATTR_RO(state);
180
181 static ssize_t monitor_id_show(struct device *dev,
182                                struct device_attribute *dev_attr, char *buf)
183 {
184         struct hv_device *hv_dev = device_to_hv_device(dev);
185
186         if (!hv_dev->channel)
187                 return -ENODEV;
188         return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
189 }
190 static DEVICE_ATTR_RO(monitor_id);
191
192 static ssize_t class_id_show(struct device *dev,
193                                struct device_attribute *dev_attr, char *buf)
194 {
195         struct hv_device *hv_dev = device_to_hv_device(dev);
196
197         if (!hv_dev->channel)
198                 return -ENODEV;
199         return sprintf(buf, "{%pUl}\n",
200                        hv_dev->channel->offermsg.offer.if_type.b);
201 }
202 static DEVICE_ATTR_RO(class_id);
203
204 static ssize_t device_id_show(struct device *dev,
205                               struct device_attribute *dev_attr, char *buf)
206 {
207         struct hv_device *hv_dev = device_to_hv_device(dev);
208
209         if (!hv_dev->channel)
210                 return -ENODEV;
211         return sprintf(buf, "{%pUl}\n",
212                        hv_dev->channel->offermsg.offer.if_instance.b);
213 }
214 static DEVICE_ATTR_RO(device_id);
215
216 static ssize_t modalias_show(struct device *dev,
217                              struct device_attribute *dev_attr, char *buf)
218 {
219         struct hv_device *hv_dev = device_to_hv_device(dev);
220         char alias_name[VMBUS_ALIAS_LEN + 1];
221
222         print_alias_name(hv_dev, alias_name);
223         return sprintf(buf, "vmbus:%s\n", alias_name);
224 }
225 static DEVICE_ATTR_RO(modalias);
226
227 static ssize_t server_monitor_pending_show(struct device *dev,
228                                            struct device_attribute *dev_attr,
229                                            char *buf)
230 {
231         struct hv_device *hv_dev = device_to_hv_device(dev);
232
233         if (!hv_dev->channel)
234                 return -ENODEV;
235         return sprintf(buf, "%d\n",
236                        channel_pending(hv_dev->channel,
237                                        vmbus_connection.monitor_pages[1]));
238 }
239 static DEVICE_ATTR_RO(server_monitor_pending);
240
241 static ssize_t client_monitor_pending_show(struct device *dev,
242                                            struct device_attribute *dev_attr,
243                                            char *buf)
244 {
245         struct hv_device *hv_dev = device_to_hv_device(dev);
246
247         if (!hv_dev->channel)
248                 return -ENODEV;
249         return sprintf(buf, "%d\n",
250                        channel_pending(hv_dev->channel,
251                                        vmbus_connection.monitor_pages[1]));
252 }
253 static DEVICE_ATTR_RO(client_monitor_pending);
254
255 static ssize_t server_monitor_latency_show(struct device *dev,
256                                            struct device_attribute *dev_attr,
257                                            char *buf)
258 {
259         struct hv_device *hv_dev = device_to_hv_device(dev);
260
261         if (!hv_dev->channel)
262                 return -ENODEV;
263         return sprintf(buf, "%d\n",
264                        channel_latency(hv_dev->channel,
265                                        vmbus_connection.monitor_pages[0]));
266 }
267 static DEVICE_ATTR_RO(server_monitor_latency);
268
269 static ssize_t client_monitor_latency_show(struct device *dev,
270                                            struct device_attribute *dev_attr,
271                                            char *buf)
272 {
273         struct hv_device *hv_dev = device_to_hv_device(dev);
274
275         if (!hv_dev->channel)
276                 return -ENODEV;
277         return sprintf(buf, "%d\n",
278                        channel_latency(hv_dev->channel,
279                                        vmbus_connection.monitor_pages[1]));
280 }
281 static DEVICE_ATTR_RO(client_monitor_latency);
282
283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284                                            struct device_attribute *dev_attr,
285                                            char *buf)
286 {
287         struct hv_device *hv_dev = device_to_hv_device(dev);
288
289         if (!hv_dev->channel)
290                 return -ENODEV;
291         return sprintf(buf, "%d\n",
292                        channel_conn_id(hv_dev->channel,
293                                        vmbus_connection.monitor_pages[0]));
294 }
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
296
297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298                                            struct device_attribute *dev_attr,
299                                            char *buf)
300 {
301         struct hv_device *hv_dev = device_to_hv_device(dev);
302
303         if (!hv_dev->channel)
304                 return -ENODEV;
305         return sprintf(buf, "%d\n",
306                        channel_conn_id(hv_dev->channel,
307                                        vmbus_connection.monitor_pages[1]));
308 }
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
310
311 static ssize_t out_intr_mask_show(struct device *dev,
312                                   struct device_attribute *dev_attr, char *buf)
313 {
314         struct hv_device *hv_dev = device_to_hv_device(dev);
315         struct hv_ring_buffer_debug_info outbound;
316
317         if (!hv_dev->channel)
318                 return -ENODEV;
319         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
320         return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
321 }
322 static DEVICE_ATTR_RO(out_intr_mask);
323
324 static ssize_t out_read_index_show(struct device *dev,
325                                    struct device_attribute *dev_attr, char *buf)
326 {
327         struct hv_device *hv_dev = device_to_hv_device(dev);
328         struct hv_ring_buffer_debug_info outbound;
329
330         if (!hv_dev->channel)
331                 return -ENODEV;
332         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
333         return sprintf(buf, "%d\n", outbound.current_read_index);
334 }
335 static DEVICE_ATTR_RO(out_read_index);
336
337 static ssize_t out_write_index_show(struct device *dev,
338                                     struct device_attribute *dev_attr,
339                                     char *buf)
340 {
341         struct hv_device *hv_dev = device_to_hv_device(dev);
342         struct hv_ring_buffer_debug_info outbound;
343
344         if (!hv_dev->channel)
345                 return -ENODEV;
346         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
347         return sprintf(buf, "%d\n", outbound.current_write_index);
348 }
349 static DEVICE_ATTR_RO(out_write_index);
350
351 static ssize_t out_read_bytes_avail_show(struct device *dev,
352                                          struct device_attribute *dev_attr,
353                                          char *buf)
354 {
355         struct hv_device *hv_dev = device_to_hv_device(dev);
356         struct hv_ring_buffer_debug_info outbound;
357
358         if (!hv_dev->channel)
359                 return -ENODEV;
360         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
361         return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
362 }
363 static DEVICE_ATTR_RO(out_read_bytes_avail);
364
365 static ssize_t out_write_bytes_avail_show(struct device *dev,
366                                           struct device_attribute *dev_attr,
367                                           char *buf)
368 {
369         struct hv_device *hv_dev = device_to_hv_device(dev);
370         struct hv_ring_buffer_debug_info outbound;
371
372         if (!hv_dev->channel)
373                 return -ENODEV;
374         hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
375         return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
376 }
377 static DEVICE_ATTR_RO(out_write_bytes_avail);
378
379 static ssize_t in_intr_mask_show(struct device *dev,
380                                  struct device_attribute *dev_attr, char *buf)
381 {
382         struct hv_device *hv_dev = device_to_hv_device(dev);
383         struct hv_ring_buffer_debug_info inbound;
384
385         if (!hv_dev->channel)
386                 return -ENODEV;
387         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
388         return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
389 }
390 static DEVICE_ATTR_RO(in_intr_mask);
391
392 static ssize_t in_read_index_show(struct device *dev,
393                                   struct device_attribute *dev_attr, char *buf)
394 {
395         struct hv_device *hv_dev = device_to_hv_device(dev);
396         struct hv_ring_buffer_debug_info inbound;
397
398         if (!hv_dev->channel)
399                 return -ENODEV;
400         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
401         return sprintf(buf, "%d\n", inbound.current_read_index);
402 }
403 static DEVICE_ATTR_RO(in_read_index);
404
405 static ssize_t in_write_index_show(struct device *dev,
406                                    struct device_attribute *dev_attr, char *buf)
407 {
408         struct hv_device *hv_dev = device_to_hv_device(dev);
409         struct hv_ring_buffer_debug_info inbound;
410
411         if (!hv_dev->channel)
412                 return -ENODEV;
413         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
414         return sprintf(buf, "%d\n", inbound.current_write_index);
415 }
416 static DEVICE_ATTR_RO(in_write_index);
417
418 static ssize_t in_read_bytes_avail_show(struct device *dev,
419                                         struct device_attribute *dev_attr,
420                                         char *buf)
421 {
422         struct hv_device *hv_dev = device_to_hv_device(dev);
423         struct hv_ring_buffer_debug_info inbound;
424
425         if (!hv_dev->channel)
426                 return -ENODEV;
427         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
428         return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
429 }
430 static DEVICE_ATTR_RO(in_read_bytes_avail);
431
432 static ssize_t in_write_bytes_avail_show(struct device *dev,
433                                          struct device_attribute *dev_attr,
434                                          char *buf)
435 {
436         struct hv_device *hv_dev = device_to_hv_device(dev);
437         struct hv_ring_buffer_debug_info inbound;
438
439         if (!hv_dev->channel)
440                 return -ENODEV;
441         hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
442         return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
443 }
444 static DEVICE_ATTR_RO(in_write_bytes_avail);
445
446 static ssize_t channel_vp_mapping_show(struct device *dev,
447                                        struct device_attribute *dev_attr,
448                                        char *buf)
449 {
450         struct hv_device *hv_dev = device_to_hv_device(dev);
451         struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
452         unsigned long flags;
453         int buf_size = PAGE_SIZE, n_written, tot_written;
454         struct list_head *cur;
455
456         if (!channel)
457                 return -ENODEV;
458
459         tot_written = snprintf(buf, buf_size, "%u:%u\n",
460                 channel->offermsg.child_relid, channel->target_cpu);
461
462         spin_lock_irqsave(&channel->lock, flags);
463
464         list_for_each(cur, &channel->sc_list) {
465                 if (tot_written >= buf_size - 1)
466                         break;
467
468                 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
469                 n_written = scnprintf(buf + tot_written,
470                                      buf_size - tot_written,
471                                      "%u:%u\n",
472                                      cur_sc->offermsg.child_relid,
473                                      cur_sc->target_cpu);
474                 tot_written += n_written;
475         }
476
477         spin_unlock_irqrestore(&channel->lock, flags);
478
479         return tot_written;
480 }
481 static DEVICE_ATTR_RO(channel_vp_mapping);
482
483 static ssize_t vendor_show(struct device *dev,
484                            struct device_attribute *dev_attr,
485                            char *buf)
486 {
487         struct hv_device *hv_dev = device_to_hv_device(dev);
488         return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
489 }
490 static DEVICE_ATTR_RO(vendor);
491
492 static ssize_t device_show(struct device *dev,
493                            struct device_attribute *dev_attr,
494                            char *buf)
495 {
496         struct hv_device *hv_dev = device_to_hv_device(dev);
497         return sprintf(buf, "0x%x\n", hv_dev->device_id);
498 }
499 static DEVICE_ATTR_RO(device);
500
501 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
502 static struct attribute *vmbus_attrs[] = {
503         &dev_attr_id.attr,
504         &dev_attr_state.attr,
505         &dev_attr_monitor_id.attr,
506         &dev_attr_class_id.attr,
507         &dev_attr_device_id.attr,
508         &dev_attr_modalias.attr,
509         &dev_attr_server_monitor_pending.attr,
510         &dev_attr_client_monitor_pending.attr,
511         &dev_attr_server_monitor_latency.attr,
512         &dev_attr_client_monitor_latency.attr,
513         &dev_attr_server_monitor_conn_id.attr,
514         &dev_attr_client_monitor_conn_id.attr,
515         &dev_attr_out_intr_mask.attr,
516         &dev_attr_out_read_index.attr,
517         &dev_attr_out_write_index.attr,
518         &dev_attr_out_read_bytes_avail.attr,
519         &dev_attr_out_write_bytes_avail.attr,
520         &dev_attr_in_intr_mask.attr,
521         &dev_attr_in_read_index.attr,
522         &dev_attr_in_write_index.attr,
523         &dev_attr_in_read_bytes_avail.attr,
524         &dev_attr_in_write_bytes_avail.attr,
525         &dev_attr_channel_vp_mapping.attr,
526         &dev_attr_vendor.attr,
527         &dev_attr_device.attr,
528         NULL,
529 };
530 ATTRIBUTE_GROUPS(vmbus);
531
532 /*
533  * vmbus_uevent - add uevent for our device
534  *
535  * This routine is invoked when a device is added or removed on the vmbus to
536  * generate a uevent to udev in the userspace. The udev will then look at its
537  * rule and the uevent generated here to load the appropriate driver
538  *
539  * The alias string will be of the form vmbus:guid where guid is the string
540  * representation of the device guid (each byte of the guid will be
541  * represented with two hex characters.
542  */
543 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
544 {
545         struct hv_device *dev = device_to_hv_device(device);
546         int ret;
547         char alias_name[VMBUS_ALIAS_LEN + 1];
548
549         print_alias_name(dev, alias_name);
550         ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
551         return ret;
552 }
553
554 static const uuid_le null_guid;
555
556 static inline bool is_null_guid(const uuid_le *guid)
557 {
558         if (uuid_le_cmp(*guid, null_guid))
559                 return false;
560         return true;
561 }
562
563 /*
564  * Return a matching hv_vmbus_device_id pointer.
565  * If there is no match, return NULL.
566  */
567 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
568                                         const struct hv_vmbus_device_id *id,
569                                         const uuid_le *guid)
570 {
571         for (; !is_null_guid(&id->guid); id++)
572                 if (!uuid_le_cmp(id->guid, *guid))
573                         return id;
574
575         return NULL;
576 }
577
578
579
580 /*
581  * vmbus_match - Attempt to match the specified device to the specified driver
582  */
583 static int vmbus_match(struct device *device, struct device_driver *driver)
584 {
585         struct hv_driver *drv = drv_to_hv_drv(driver);
586         struct hv_device *hv_dev = device_to_hv_device(device);
587
588         /* The hv_sock driver handles all hv_sock offers. */
589         if (is_hvsock_channel(hv_dev->channel))
590                 return drv->hvsock;
591
592         if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
593                 return 1;
594
595         return 0;
596 }
597
598 /*
599  * vmbus_probe - Add the new vmbus's child device
600  */
601 static int vmbus_probe(struct device *child_device)
602 {
603         int ret = 0;
604         struct hv_driver *drv =
605                         drv_to_hv_drv(child_device->driver);
606         struct hv_device *dev = device_to_hv_device(child_device);
607         const struct hv_vmbus_device_id *dev_id;
608
609         dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
610         if (drv->probe) {
611                 ret = drv->probe(dev, dev_id);
612                 if (ret != 0)
613                         pr_err("probe failed for device %s (%d)\n",
614                                dev_name(child_device), ret);
615
616         } else {
617                 pr_err("probe not set for driver %s\n",
618                        dev_name(child_device));
619                 ret = -ENODEV;
620         }
621         return ret;
622 }
623
624 /*
625  * vmbus_remove - Remove a vmbus device
626  */
627 static int vmbus_remove(struct device *child_device)
628 {
629         struct hv_driver *drv;
630         struct hv_device *dev = device_to_hv_device(child_device);
631
632         if (child_device->driver) {
633                 drv = drv_to_hv_drv(child_device->driver);
634                 if (drv->remove)
635                         drv->remove(dev);
636         }
637
638         return 0;
639 }
640
641
642 /*
643  * vmbus_shutdown - Shutdown a vmbus device
644  */
645 static void vmbus_shutdown(struct device *child_device)
646 {
647         struct hv_driver *drv;
648         struct hv_device *dev = device_to_hv_device(child_device);
649
650
651         /* The device may not be attached yet */
652         if (!child_device->driver)
653                 return;
654
655         drv = drv_to_hv_drv(child_device->driver);
656
657         if (drv->shutdown)
658                 drv->shutdown(dev);
659
660         return;
661 }
662
663
664 /*
665  * vmbus_device_release - Final callback release of the vmbus child device
666  */
667 static void vmbus_device_release(struct device *device)
668 {
669         struct hv_device *hv_dev = device_to_hv_device(device);
670         struct vmbus_channel *channel = hv_dev->channel;
671
672         hv_process_channel_removal(channel,
673                                    channel->offermsg.child_relid);
674         kfree(hv_dev);
675
676 }
677
678 /* The one and only one */
679 static struct bus_type  hv_bus = {
680         .name =         "vmbus",
681         .match =                vmbus_match,
682         .shutdown =             vmbus_shutdown,
683         .remove =               vmbus_remove,
684         .probe =                vmbus_probe,
685         .uevent =               vmbus_uevent,
686         .dev_groups =           vmbus_groups,
687 };
688
689 struct onmessage_work_context {
690         struct work_struct work;
691         struct hv_message msg;
692 };
693
694 static void vmbus_onmessage_work(struct work_struct *work)
695 {
696         struct onmessage_work_context *ctx;
697
698         /* Do not process messages if we're in DISCONNECTED state */
699         if (vmbus_connection.conn_state == DISCONNECTED)
700                 return;
701
702         ctx = container_of(work, struct onmessage_work_context,
703                            work);
704         vmbus_onmessage(&ctx->msg);
705         kfree(ctx);
706 }
707
708 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
709 {
710         struct clock_event_device *dev = hv_context.clk_evt[cpu];
711
712         if (dev->event_handler)
713                 dev->event_handler(dev);
714
715         vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
716 }
717
718 void vmbus_on_msg_dpc(unsigned long data)
719 {
720         int cpu = smp_processor_id();
721         void *page_addr = hv_context.synic_message_page[cpu];
722         struct hv_message *msg = (struct hv_message *)page_addr +
723                                   VMBUS_MESSAGE_SINT;
724         struct vmbus_channel_message_header *hdr;
725         struct vmbus_channel_message_table_entry *entry;
726         struct onmessage_work_context *ctx;
727         u32 message_type = msg->header.message_type;
728
729         if (message_type == HVMSG_NONE)
730                 /* no msg */
731                 return;
732
733         hdr = (struct vmbus_channel_message_header *)msg->u.payload;
734
735         if (hdr->msgtype >= CHANNELMSG_COUNT) {
736                 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
737                 goto msg_handled;
738         }
739
740         entry = &channel_message_table[hdr->msgtype];
741         if (entry->handler_type == VMHT_BLOCKING) {
742                 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
743                 if (ctx == NULL)
744                         return;
745
746                 INIT_WORK(&ctx->work, vmbus_onmessage_work);
747                 memcpy(&ctx->msg, msg, sizeof(*msg));
748
749                 queue_work(vmbus_connection.work_queue, &ctx->work);
750         } else
751                 entry->message_handler(hdr);
752
753 msg_handled:
754         vmbus_signal_eom(msg, message_type);
755 }
756
757 static void vmbus_isr(void)
758 {
759         int cpu = smp_processor_id();
760         void *page_addr;
761         struct hv_message *msg;
762         union hv_synic_event_flags *event;
763         bool handled = false;
764
765         page_addr = hv_context.synic_event_page[cpu];
766         if (page_addr == NULL)
767                 return;
768
769         event = (union hv_synic_event_flags *)page_addr +
770                                          VMBUS_MESSAGE_SINT;
771         /*
772          * Check for events before checking for messages. This is the order
773          * in which events and messages are checked in Windows guests on
774          * Hyper-V, and the Windows team suggested we do the same.
775          */
776
777         if ((vmbus_proto_version == VERSION_WS2008) ||
778                 (vmbus_proto_version == VERSION_WIN7)) {
779
780                 /* Since we are a child, we only need to check bit 0 */
781                 if (sync_test_and_clear_bit(0,
782                         (unsigned long *) &event->flags32[0])) {
783                         handled = true;
784                 }
785         } else {
786                 /*
787                  * Our host is win8 or above. The signaling mechanism
788                  * has changed and we can directly look at the event page.
789                  * If bit n is set then we have an interrup on the channel
790                  * whose id is n.
791                  */
792                 handled = true;
793         }
794
795         if (handled)
796                 tasklet_schedule(hv_context.event_dpc[cpu]);
797
798
799         page_addr = hv_context.synic_message_page[cpu];
800         msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
801
802         /* Check if there are actual msgs to be processed */
803         if (msg->header.message_type != HVMSG_NONE) {
804                 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
805                         hv_process_timer_expiration(msg, cpu);
806                 else
807                         tasklet_schedule(hv_context.msg_dpc[cpu]);
808         }
809 }
810
811
812 /*
813  * vmbus_bus_init -Main vmbus driver initialization routine.
814  *
815  * Here, we
816  *      - initialize the vmbus driver context
817  *      - invoke the vmbus hv main init routine
818  *      - retrieve the channel offers
819  */
820 static int vmbus_bus_init(void)
821 {
822         int ret;
823
824         /* Hypervisor initialization...setup hypercall page..etc */
825         ret = hv_init();
826         if (ret != 0) {
827                 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
828                 return ret;
829         }
830
831         ret = bus_register(&hv_bus);
832         if (ret)
833                 goto err_cleanup;
834
835         hv_setup_vmbus_irq(vmbus_isr);
836
837         ret = hv_synic_alloc();
838         if (ret)
839                 goto err_alloc;
840         /*
841          * Initialize the per-cpu interrupt state and
842          * connect to the host.
843          */
844         on_each_cpu(hv_synic_init, NULL, 1);
845         ret = vmbus_connect();
846         if (ret)
847                 goto err_connect;
848
849         if (vmbus_proto_version > VERSION_WIN7)
850                 cpu_hotplug_disable();
851
852         /*
853          * Only register if the crash MSRs are available
854          */
855         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
856                 register_die_notifier(&hyperv_die_block);
857                 atomic_notifier_chain_register(&panic_notifier_list,
858                                                &hyperv_panic_block);
859         }
860
861         vmbus_request_offers();
862
863         return 0;
864
865 err_connect:
866         on_each_cpu(hv_synic_cleanup, NULL, 1);
867 err_alloc:
868         hv_synic_free();
869         hv_remove_vmbus_irq();
870
871         bus_unregister(&hv_bus);
872
873 err_cleanup:
874         hv_cleanup();
875
876         return ret;
877 }
878
879 /**
880  * __vmbus_child_driver_register() - Register a vmbus's driver
881  * @hv_driver: Pointer to driver structure you want to register
882  * @owner: owner module of the drv
883  * @mod_name: module name string
884  *
885  * Registers the given driver with Linux through the 'driver_register()' call
886  * and sets up the hyper-v vmbus handling for this driver.
887  * It will return the state of the 'driver_register()' call.
888  *
889  */
890 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
891 {
892         int ret;
893
894         pr_info("registering driver %s\n", hv_driver->name);
895
896         ret = vmbus_exists();
897         if (ret < 0)
898                 return ret;
899
900         hv_driver->driver.name = hv_driver->name;
901         hv_driver->driver.owner = owner;
902         hv_driver->driver.mod_name = mod_name;
903         hv_driver->driver.bus = &hv_bus;
904
905         ret = driver_register(&hv_driver->driver);
906
907         return ret;
908 }
909 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
910
911 /**
912  * vmbus_driver_unregister() - Unregister a vmbus's driver
913  * @hv_driver: Pointer to driver structure you want to
914  *             un-register
915  *
916  * Un-register the given driver that was previous registered with a call to
917  * vmbus_driver_register()
918  */
919 void vmbus_driver_unregister(struct hv_driver *hv_driver)
920 {
921         pr_info("unregistering driver %s\n", hv_driver->name);
922
923         if (!vmbus_exists())
924                 driver_unregister(&hv_driver->driver);
925 }
926 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
927
928 /*
929  * vmbus_device_create - Creates and registers a new child device
930  * on the vmbus.
931  */
932 struct hv_device *vmbus_device_create(const uuid_le *type,
933                                       const uuid_le *instance,
934                                       struct vmbus_channel *channel)
935 {
936         struct hv_device *child_device_obj;
937
938         child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
939         if (!child_device_obj) {
940                 pr_err("Unable to allocate device object for child device\n");
941                 return NULL;
942         }
943
944         child_device_obj->channel = channel;
945         memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
946         memcpy(&child_device_obj->dev_instance, instance,
947                sizeof(uuid_le));
948         child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
949
950
951         return child_device_obj;
952 }
953
954 /*
955  * vmbus_device_register - Register the child device
956  */
957 int vmbus_device_register(struct hv_device *child_device_obj)
958 {
959         int ret = 0;
960
961         dev_set_name(&child_device_obj->device, "vmbus_%d",
962                      child_device_obj->channel->id);
963
964         child_device_obj->device.bus = &hv_bus;
965         child_device_obj->device.parent = &hv_acpi_dev->dev;
966         child_device_obj->device.release = vmbus_device_release;
967
968         /*
969          * Register with the LDM. This will kick off the driver/device
970          * binding...which will eventually call vmbus_match() and vmbus_probe()
971          */
972         ret = device_register(&child_device_obj->device);
973
974         if (ret)
975                 pr_err("Unable to register child device\n");
976         else
977                 pr_debug("child device %s registered\n",
978                         dev_name(&child_device_obj->device));
979
980         return ret;
981 }
982
983 /*
984  * vmbus_device_unregister - Remove the specified child device
985  * from the vmbus.
986  */
987 void vmbus_device_unregister(struct hv_device *device_obj)
988 {
989         pr_debug("child device %s unregistered\n",
990                 dev_name(&device_obj->device));
991
992         /*
993          * Kick off the process of unregistering the device.
994          * This will call vmbus_remove() and eventually vmbus_device_release()
995          */
996         device_unregister(&device_obj->device);
997 }
998
999
1000 /*
1001  * VMBUS is an acpi enumerated device. Get the information we
1002  * need from DSDT.
1003  */
1004 #define VTPM_BASE_ADDRESS 0xfed40000
1005 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1006 {
1007         resource_size_t start = 0;
1008         resource_size_t end = 0;
1009         struct resource *new_res;
1010         struct resource **old_res = &hyperv_mmio;
1011         struct resource **prev_res = NULL;
1012
1013         switch (res->type) {
1014
1015         /*
1016          * "Address" descriptors are for bus windows. Ignore
1017          * "memory" descriptors, which are for registers on
1018          * devices.
1019          */
1020         case ACPI_RESOURCE_TYPE_ADDRESS32:
1021                 start = res->data.address32.address.minimum;
1022                 end = res->data.address32.address.maximum;
1023                 break;
1024
1025         case ACPI_RESOURCE_TYPE_ADDRESS64:
1026                 start = res->data.address64.address.minimum;
1027                 end = res->data.address64.address.maximum;
1028                 break;
1029
1030         default:
1031                 /* Unused resource type */
1032                 return AE_OK;
1033
1034         }
1035         /*
1036          * Ignore ranges that are below 1MB, as they're not
1037          * necessary or useful here.
1038          */
1039         if (end < 0x100000)
1040                 return AE_OK;
1041
1042         new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1043         if (!new_res)
1044                 return AE_NO_MEMORY;
1045
1046         /* If this range overlaps the virtual TPM, truncate it. */
1047         if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1048                 end = VTPM_BASE_ADDRESS;
1049
1050         new_res->name = "hyperv mmio";
1051         new_res->flags = IORESOURCE_MEM;
1052         new_res->start = start;
1053         new_res->end = end;
1054
1055         /*
1056          * If two ranges are adjacent, merge them.
1057          */
1058         do {
1059                 if (!*old_res) {
1060                         *old_res = new_res;
1061                         break;
1062                 }
1063
1064                 if (((*old_res)->end + 1) == new_res->start) {
1065                         (*old_res)->end = new_res->end;
1066                         kfree(new_res);
1067                         break;
1068                 }
1069
1070                 if ((*old_res)->start == new_res->end + 1) {
1071                         (*old_res)->start = new_res->start;
1072                         kfree(new_res);
1073                         break;
1074                 }
1075
1076                 if ((*old_res)->start > new_res->end) {
1077                         new_res->sibling = *old_res;
1078                         if (prev_res)
1079                                 (*prev_res)->sibling = new_res;
1080                         *old_res = new_res;
1081                         break;
1082                 }
1083
1084                 prev_res = old_res;
1085                 old_res = &(*old_res)->sibling;
1086
1087         } while (1);
1088
1089         return AE_OK;
1090 }
1091
1092 static int vmbus_acpi_remove(struct acpi_device *device)
1093 {
1094         struct resource *cur_res;
1095         struct resource *next_res;
1096
1097         if (hyperv_mmio) {
1098                 if (fb_mmio) {
1099                         __release_region(hyperv_mmio, fb_mmio->start,
1100                                          resource_size(fb_mmio));
1101                         fb_mmio = NULL;
1102                 }
1103
1104                 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1105                         next_res = cur_res->sibling;
1106                         kfree(cur_res);
1107                 }
1108         }
1109
1110         return 0;
1111 }
1112
1113 static void vmbus_reserve_fb(void)
1114 {
1115         int size;
1116         /*
1117          * Make a claim for the frame buffer in the resource tree under the
1118          * first node, which will be the one below 4GB.  The length seems to
1119          * be underreported, particularly in a Generation 1 VM.  So start out
1120          * reserving a larger area and make it smaller until it succeeds.
1121          */
1122
1123         if (screen_info.lfb_base) {
1124                 if (efi_enabled(EFI_BOOT))
1125                         size = max_t(__u32, screen_info.lfb_size, 0x800000);
1126                 else
1127                         size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1128
1129                 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1130                         fb_mmio = __request_region(hyperv_mmio,
1131                                                    screen_info.lfb_base, size,
1132                                                    fb_mmio_name, 0);
1133                 }
1134         }
1135 }
1136
1137 /**
1138  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1139  * @new:                If successful, supplied a pointer to the
1140  *                      allocated MMIO space.
1141  * @device_obj:         Identifies the caller
1142  * @min:                Minimum guest physical address of the
1143  *                      allocation
1144  * @max:                Maximum guest physical address
1145  * @size:               Size of the range to be allocated
1146  * @align:              Alignment of the range to be allocated
1147  * @fb_overlap_ok:      Whether this allocation can be allowed
1148  *                      to overlap the video frame buffer.
1149  *
1150  * This function walks the resources granted to VMBus by the
1151  * _CRS object in the ACPI namespace underneath the parent
1152  * "bridge" whether that's a root PCI bus in the Generation 1
1153  * case or a Module Device in the Generation 2 case.  It then
1154  * attempts to allocate from the global MMIO pool in a way that
1155  * matches the constraints supplied in these parameters and by
1156  * that _CRS.
1157  *
1158  * Return: 0 on success, -errno on failure
1159  */
1160 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1161                         resource_size_t min, resource_size_t max,
1162                         resource_size_t size, resource_size_t align,
1163                         bool fb_overlap_ok)
1164 {
1165         struct resource *iter, *shadow;
1166         resource_size_t range_min, range_max, start;
1167         const char *dev_n = dev_name(&device_obj->device);
1168         int retval;
1169
1170         retval = -ENXIO;
1171         down(&hyperv_mmio_lock);
1172
1173         /*
1174          * If overlaps with frame buffers are allowed, then first attempt to
1175          * make the allocation from within the reserved region.  Because it
1176          * is already reserved, no shadow allocation is necessary.
1177          */
1178         if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1179             !(max < fb_mmio->start)) {
1180
1181                 range_min = fb_mmio->start;
1182                 range_max = fb_mmio->end;
1183                 start = (range_min + align - 1) & ~(align - 1);
1184                 for (; start + size - 1 <= range_max; start += align) {
1185                         *new = request_mem_region_exclusive(start, size, dev_n);
1186                         if (*new) {
1187                                 retval = 0;
1188                                 goto exit;
1189                         }
1190                 }
1191         }
1192
1193         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1194                 if ((iter->start >= max) || (iter->end <= min))
1195                         continue;
1196
1197                 range_min = iter->start;
1198                 range_max = iter->end;
1199                 start = (range_min + align - 1) & ~(align - 1);
1200                 for (; start + size - 1 <= range_max; start += align) {
1201                         shadow = __request_region(iter, start, size, NULL,
1202                                                   IORESOURCE_BUSY);
1203                         if (!shadow)
1204                                 continue;
1205
1206                         *new = request_mem_region_exclusive(start, size, dev_n);
1207                         if (*new) {
1208                                 shadow->name = (char *)*new;
1209                                 retval = 0;
1210                                 goto exit;
1211                         }
1212
1213                         __release_region(iter, start, size);
1214                 }
1215         }
1216
1217 exit:
1218         up(&hyperv_mmio_lock);
1219         return retval;
1220 }
1221 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1222
1223 /**
1224  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1225  * @start:              Base address of region to release.
1226  * @size:               Size of the range to be allocated
1227  *
1228  * This function releases anything requested by
1229  * vmbus_mmio_allocate().
1230  */
1231 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1232 {
1233         struct resource *iter;
1234
1235         down(&hyperv_mmio_lock);
1236         for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1237                 if ((iter->start >= start + size) || (iter->end <= start))
1238                         continue;
1239
1240                 __release_region(iter, start, size);
1241         }
1242         release_mem_region(start, size);
1243         up(&hyperv_mmio_lock);
1244
1245 }
1246 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1247
1248 /**
1249  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1250  * @cpu_number: CPU number in Linux terms
1251  *
1252  * This function returns the mapping between the Linux processor
1253  * number and the hypervisor's virtual processor number, useful
1254  * in making hypercalls and such that talk about specific
1255  * processors.
1256  *
1257  * Return: Virtual processor number in Hyper-V terms
1258  */
1259 int vmbus_cpu_number_to_vp_number(int cpu_number)
1260 {
1261         return hv_context.vp_index[cpu_number];
1262 }
1263 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1264
1265 static int vmbus_acpi_add(struct acpi_device *device)
1266 {
1267         acpi_status result;
1268         int ret_val = -ENODEV;
1269         struct acpi_device *ancestor;
1270
1271         hv_acpi_dev = device;
1272
1273         result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1274                                         vmbus_walk_resources, NULL);
1275
1276         if (ACPI_FAILURE(result))
1277                 goto acpi_walk_err;
1278         /*
1279          * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1280          * firmware) is the VMOD that has the mmio ranges. Get that.
1281          */
1282         for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1283                 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1284                                              vmbus_walk_resources, NULL);
1285
1286                 if (ACPI_FAILURE(result))
1287                         continue;
1288                 if (hyperv_mmio) {
1289                         vmbus_reserve_fb();
1290                         break;
1291                 }
1292         }
1293         ret_val = 0;
1294
1295 acpi_walk_err:
1296         complete(&probe_event);
1297         if (ret_val)
1298                 vmbus_acpi_remove(device);
1299         return ret_val;
1300 }
1301
1302 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1303         {"VMBUS", 0},
1304         {"VMBus", 0},
1305         {"", 0},
1306 };
1307 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1308
1309 static struct acpi_driver vmbus_acpi_driver = {
1310         .name = "vmbus",
1311         .ids = vmbus_acpi_device_ids,
1312         .ops = {
1313                 .add = vmbus_acpi_add,
1314                 .remove = vmbus_acpi_remove,
1315         },
1316 };
1317
1318 static void hv_kexec_handler(void)
1319 {
1320         int cpu;
1321
1322         hv_synic_clockevents_cleanup();
1323         vmbus_initiate_unload(false);
1324         for_each_online_cpu(cpu)
1325                 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1326         hv_cleanup();
1327 };
1328
1329 static void hv_crash_handler(struct pt_regs *regs)
1330 {
1331         vmbus_initiate_unload(true);
1332         /*
1333          * In crash handler we can't schedule synic cleanup for all CPUs,
1334          * doing the cleanup for current CPU only. This should be sufficient
1335          * for kdump.
1336          */
1337         hv_synic_cleanup(NULL);
1338         hv_cleanup();
1339 };
1340
1341 static int __init hv_acpi_init(void)
1342 {
1343         int ret, t;
1344
1345         if (x86_hyper != &x86_hyper_ms_hyperv)
1346                 return -ENODEV;
1347
1348         init_completion(&probe_event);
1349
1350         /*
1351          * Get ACPI resources first.
1352          */
1353         ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1354
1355         if (ret)
1356                 return ret;
1357
1358         t = wait_for_completion_timeout(&probe_event, 5*HZ);
1359         if (t == 0) {
1360                 ret = -ETIMEDOUT;
1361                 goto cleanup;
1362         }
1363
1364         ret = vmbus_bus_init();
1365         if (ret)
1366                 goto cleanup;
1367
1368         hv_setup_kexec_handler(hv_kexec_handler);
1369         hv_setup_crash_handler(hv_crash_handler);
1370
1371         return 0;
1372
1373 cleanup:
1374         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1375         hv_acpi_dev = NULL;
1376         return ret;
1377 }
1378
1379 static void __exit vmbus_exit(void)
1380 {
1381         int cpu;
1382
1383         hv_remove_kexec_handler();
1384         hv_remove_crash_handler();
1385         vmbus_connection.conn_state = DISCONNECTED;
1386         hv_synic_clockevents_cleanup();
1387         vmbus_disconnect();
1388         hv_remove_vmbus_irq();
1389         for_each_online_cpu(cpu)
1390                 tasklet_kill(hv_context.msg_dpc[cpu]);
1391         vmbus_free_channels();
1392         if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1393                 unregister_die_notifier(&hyperv_die_block);
1394                 atomic_notifier_chain_unregister(&panic_notifier_list,
1395                                                  &hyperv_panic_block);
1396         }
1397         bus_unregister(&hv_bus);
1398         hv_cleanup();
1399         for_each_online_cpu(cpu) {
1400                 tasklet_kill(hv_context.event_dpc[cpu]);
1401                 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1402         }
1403         hv_synic_free();
1404         acpi_bus_unregister_driver(&vmbus_acpi_driver);
1405         if (vmbus_proto_version > VERSION_WIN7)
1406                 cpu_hotplug_enable();
1407 }
1408
1409
1410 MODULE_LICENSE("GPL");
1411
1412 subsys_initcall(hv_acpi_init);
1413 module_exit(vmbus_exit);