]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/hwtracing/coresight/coresight-etm3x.c
7f0df778bd8575785a1e14df41283bb8c78f1b7f
[karo-tx-linux.git] / drivers / hwtracing / coresight / coresight-etm3x.c
1 /* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License version 2 and
5  * only version 2 as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/io.h>
19 #include <linux/err.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/smp.h>
24 #include <linux/sysfs.h>
25 #include <linux/stat.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/cpu.h>
28 #include <linux/of.h>
29 #include <linux/coresight.h>
30 #include <linux/amba/bus.h>
31 #include <linux/seq_file.h>
32 #include <linux/uaccess.h>
33 #include <asm/sections.h>
34
35 #include "coresight-etm.h"
36
37 static int boot_enable;
38 module_param_named(boot_enable, boot_enable, int, S_IRUGO);
39
40 /* The number of ETM/PTM currently registered */
41 static int etm_count;
42 static struct etm_drvdata *etmdrvdata[NR_CPUS];
43
44 static inline void etm_writel(struct etm_drvdata *drvdata,
45                               u32 val, u32 off)
46 {
47         if (drvdata->use_cp14) {
48                 if (etm_writel_cp14(off, val)) {
49                         dev_err(drvdata->dev,
50                                 "invalid CP14 access to ETM reg: %#x", off);
51                 }
52         } else {
53                 writel_relaxed(val, drvdata->base + off);
54         }
55 }
56
57 static inline unsigned int etm_readl(struct etm_drvdata *drvdata, u32 off)
58 {
59         u32 val;
60
61         if (drvdata->use_cp14) {
62                 if (etm_readl_cp14(off, &val)) {
63                         dev_err(drvdata->dev,
64                                 "invalid CP14 access to ETM reg: %#x", off);
65                 }
66         } else {
67                 val = readl_relaxed(drvdata->base + off);
68         }
69
70         return val;
71 }
72
73 /*
74  * Memory mapped writes to clear os lock are not supported on some processors
75  * and OS lock must be unlocked before any memory mapped access on such
76  * processors, otherwise memory mapped reads/writes will be invalid.
77  */
78 static void etm_os_unlock(void *info)
79 {
80         struct etm_drvdata *drvdata = (struct etm_drvdata *)info;
81         /* Writing any value to ETMOSLAR unlocks the trace registers */
82         etm_writel(drvdata, 0x0, ETMOSLAR);
83         isb();
84 }
85
86 static void etm_set_pwrdwn(struct etm_drvdata *drvdata)
87 {
88         u32 etmcr;
89
90         /* Ensure pending cp14 accesses complete before setting pwrdwn */
91         mb();
92         isb();
93         etmcr = etm_readl(drvdata, ETMCR);
94         etmcr |= ETMCR_PWD_DWN;
95         etm_writel(drvdata, etmcr, ETMCR);
96 }
97
98 static void etm_clr_pwrdwn(struct etm_drvdata *drvdata)
99 {
100         u32 etmcr;
101
102         etmcr = etm_readl(drvdata, ETMCR);
103         etmcr &= ~ETMCR_PWD_DWN;
104         etm_writel(drvdata, etmcr, ETMCR);
105         /* Ensure pwrup completes before subsequent cp14 accesses */
106         mb();
107         isb();
108 }
109
110 static void etm_set_pwrup(struct etm_drvdata *drvdata)
111 {
112         u32 etmpdcr;
113
114         etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
115         etmpdcr |= ETMPDCR_PWD_UP;
116         writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
117         /* Ensure pwrup completes before subsequent cp14 accesses */
118         mb();
119         isb();
120 }
121
122 static void etm_clr_pwrup(struct etm_drvdata *drvdata)
123 {
124         u32 etmpdcr;
125
126         /* Ensure pending cp14 accesses complete before clearing pwrup */
127         mb();
128         isb();
129         etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
130         etmpdcr &= ~ETMPDCR_PWD_UP;
131         writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
132 }
133
134 /**
135  * coresight_timeout_etm - loop until a bit has changed to a specific state.
136  * @drvdata: etm's private data structure.
137  * @offset: address of a register, starting from @addr.
138  * @position: the position of the bit of interest.
139  * @value: the value the bit should have.
140  *
141  * Basically the same as @coresight_timeout except for the register access
142  * method where we have to account for CP14 configurations.
143
144  * Return: 0 as soon as the bit has taken the desired state or -EAGAIN if
145  * TIMEOUT_US has elapsed, which ever happens first.
146  */
147
148 static int coresight_timeout_etm(struct etm_drvdata *drvdata, u32 offset,
149                                   int position, int value)
150 {
151         int i;
152         u32 val;
153
154         for (i = TIMEOUT_US; i > 0; i--) {
155                 val = etm_readl(drvdata, offset);
156                 /* Waiting on the bit to go from 0 to 1 */
157                 if (value) {
158                         if (val & BIT(position))
159                                 return 0;
160                 /* Waiting on the bit to go from 1 to 0 */
161                 } else {
162                         if (!(val & BIT(position)))
163                                 return 0;
164                 }
165
166                 /*
167                  * Delay is arbitrary - the specification doesn't say how long
168                  * we are expected to wait.  Extra check required to make sure
169                  * we don't wait needlessly on the last iteration.
170                  */
171                 if (i - 1)
172                         udelay(1);
173         }
174
175         return -EAGAIN;
176 }
177
178
179 static void etm_set_prog(struct etm_drvdata *drvdata)
180 {
181         u32 etmcr;
182
183         etmcr = etm_readl(drvdata, ETMCR);
184         etmcr |= ETMCR_ETM_PRG;
185         etm_writel(drvdata, etmcr, ETMCR);
186         /*
187          * Recommended by spec for cp14 accesses to ensure etmcr write is
188          * complete before polling etmsr
189          */
190         isb();
191         if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 1)) {
192                 dev_err(drvdata->dev,
193                         "timeout observed when probing at offset %#x\n", ETMSR);
194         }
195 }
196
197 static void etm_clr_prog(struct etm_drvdata *drvdata)
198 {
199         u32 etmcr;
200
201         etmcr = etm_readl(drvdata, ETMCR);
202         etmcr &= ~ETMCR_ETM_PRG;
203         etm_writel(drvdata, etmcr, ETMCR);
204         /*
205          * Recommended by spec for cp14 accesses to ensure etmcr write is
206          * complete before polling etmsr
207          */
208         isb();
209         if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 0)) {
210                 dev_err(drvdata->dev,
211                         "timeout observed when probing at offset %#x\n", ETMSR);
212         }
213 }
214
215 static void etm_set_default(struct etm_drvdata *drvdata)
216 {
217         int i;
218
219         drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
220         drvdata->enable_event = ETM_HARD_WIRE_RES_A;
221
222         drvdata->seq_12_event = ETM_DEFAULT_EVENT_VAL;
223         drvdata->seq_21_event = ETM_DEFAULT_EVENT_VAL;
224         drvdata->seq_23_event = ETM_DEFAULT_EVENT_VAL;
225         drvdata->seq_31_event = ETM_DEFAULT_EVENT_VAL;
226         drvdata->seq_32_event = ETM_DEFAULT_EVENT_VAL;
227         drvdata->seq_13_event = ETM_DEFAULT_EVENT_VAL;
228         drvdata->timestamp_event = ETM_DEFAULT_EVENT_VAL;
229
230         for (i = 0; i < drvdata->nr_cntr; i++) {
231                 drvdata->cntr_rld_val[i] = 0x0;
232                 drvdata->cntr_event[i] = ETM_DEFAULT_EVENT_VAL;
233                 drvdata->cntr_rld_event[i] = ETM_DEFAULT_EVENT_VAL;
234                 drvdata->cntr_val[i] = 0x0;
235         }
236
237         drvdata->seq_curr_state = 0x0;
238         drvdata->ctxid_idx = 0x0;
239         for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
240                 drvdata->ctxid_val[i] = 0x0;
241         drvdata->ctxid_mask = 0x0;
242 }
243
244 static void etm_enable_hw(void *info)
245 {
246         int i;
247         u32 etmcr;
248         struct etm_drvdata *drvdata = info;
249
250         CS_UNLOCK(drvdata->base);
251
252         /* Turn engine on */
253         etm_clr_pwrdwn(drvdata);
254         /* Apply power to trace registers */
255         etm_set_pwrup(drvdata);
256         /* Make sure all registers are accessible */
257         etm_os_unlock(drvdata);
258
259         etm_set_prog(drvdata);
260
261         etmcr = etm_readl(drvdata, ETMCR);
262         etmcr &= (ETMCR_PWD_DWN | ETMCR_ETM_PRG);
263         etmcr |= drvdata->port_size;
264         etm_writel(drvdata, drvdata->ctrl | etmcr, ETMCR);
265         etm_writel(drvdata, drvdata->trigger_event, ETMTRIGGER);
266         etm_writel(drvdata, drvdata->startstop_ctrl, ETMTSSCR);
267         etm_writel(drvdata, drvdata->enable_event, ETMTEEVR);
268         etm_writel(drvdata, drvdata->enable_ctrl1, ETMTECR1);
269         etm_writel(drvdata, drvdata->fifofull_level, ETMFFLR);
270         for (i = 0; i < drvdata->nr_addr_cmp; i++) {
271                 etm_writel(drvdata, drvdata->addr_val[i], ETMACVRn(i));
272                 etm_writel(drvdata, drvdata->addr_acctype[i], ETMACTRn(i));
273         }
274         for (i = 0; i < drvdata->nr_cntr; i++) {
275                 etm_writel(drvdata, drvdata->cntr_rld_val[i], ETMCNTRLDVRn(i));
276                 etm_writel(drvdata, drvdata->cntr_event[i], ETMCNTENRn(i));
277                 etm_writel(drvdata, drvdata->cntr_rld_event[i],
278                            ETMCNTRLDEVRn(i));
279                 etm_writel(drvdata, drvdata->cntr_val[i], ETMCNTVRn(i));
280         }
281         etm_writel(drvdata, drvdata->seq_12_event, ETMSQ12EVR);
282         etm_writel(drvdata, drvdata->seq_21_event, ETMSQ21EVR);
283         etm_writel(drvdata, drvdata->seq_23_event, ETMSQ23EVR);
284         etm_writel(drvdata, drvdata->seq_31_event, ETMSQ31EVR);
285         etm_writel(drvdata, drvdata->seq_32_event, ETMSQ32EVR);
286         etm_writel(drvdata, drvdata->seq_13_event, ETMSQ13EVR);
287         etm_writel(drvdata, drvdata->seq_curr_state, ETMSQR);
288         for (i = 0; i < drvdata->nr_ext_out; i++)
289                 etm_writel(drvdata, ETM_DEFAULT_EVENT_VAL, ETMEXTOUTEVRn(i));
290         for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
291                 etm_writel(drvdata, drvdata->ctxid_val[i], ETMCIDCVRn(i));
292         etm_writel(drvdata, drvdata->ctxid_mask, ETMCIDCMR);
293         etm_writel(drvdata, drvdata->sync_freq, ETMSYNCFR);
294         /* No external input selected */
295         etm_writel(drvdata, 0x0, ETMEXTINSELR);
296         etm_writel(drvdata, drvdata->timestamp_event, ETMTSEVR);
297         /* No auxiliary control selected */
298         etm_writel(drvdata, 0x0, ETMAUXCR);
299         etm_writel(drvdata, drvdata->traceid, ETMTRACEIDR);
300         /* No VMID comparator value selected */
301         etm_writel(drvdata, 0x0, ETMVMIDCVR);
302
303         /* Ensures trace output is enabled from this ETM */
304         etm_writel(drvdata, drvdata->ctrl | ETMCR_ETM_EN | etmcr, ETMCR);
305
306         etm_clr_prog(drvdata);
307         CS_LOCK(drvdata->base);
308
309         dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu);
310 }
311
312 static int etm_trace_id_simple(struct etm_drvdata *drvdata)
313 {
314         if (!drvdata->enable)
315                 return drvdata->traceid;
316
317         return (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
318 }
319
320 static int etm_trace_id(struct coresight_device *csdev)
321 {
322         struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
323         unsigned long flags;
324         int trace_id = -1;
325
326         if (!drvdata->enable)
327                 return drvdata->traceid;
328         pm_runtime_get_sync(csdev->dev.parent);
329
330         spin_lock_irqsave(&drvdata->spinlock, flags);
331
332         CS_UNLOCK(drvdata->base);
333         trace_id = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
334         CS_LOCK(drvdata->base);
335
336         spin_unlock_irqrestore(&drvdata->spinlock, flags);
337         pm_runtime_put(csdev->dev.parent);
338
339         return trace_id;
340 }
341
342 static int etm_enable(struct coresight_device *csdev)
343 {
344         struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
345         int ret;
346
347         pm_runtime_get_sync(csdev->dev.parent);
348         spin_lock(&drvdata->spinlock);
349
350         /*
351          * Configure the ETM only if the CPU is online.  If it isn't online
352          * hw configuration will take place when 'CPU_STARTING' is received
353          * in @etm_cpu_callback.
354          */
355         if (cpu_online(drvdata->cpu)) {
356                 ret = smp_call_function_single(drvdata->cpu,
357                                                etm_enable_hw, drvdata, 1);
358                 if (ret)
359                         goto err;
360         }
361
362         drvdata->enable = true;
363         drvdata->sticky_enable = true;
364
365         spin_unlock(&drvdata->spinlock);
366
367         dev_info(drvdata->dev, "ETM tracing enabled\n");
368         return 0;
369 err:
370         spin_unlock(&drvdata->spinlock);
371         pm_runtime_put(csdev->dev.parent);
372         return ret;
373 }
374
375 static void etm_disable_hw(void *info)
376 {
377         int i;
378         struct etm_drvdata *drvdata = info;
379
380         CS_UNLOCK(drvdata->base);
381         etm_set_prog(drvdata);
382
383         /* Program trace enable to low by using always false event */
384         etm_writel(drvdata, ETM_HARD_WIRE_RES_A | ETM_EVENT_NOT_A, ETMTEEVR);
385
386         /* Read back sequencer and counters for post trace analysis */
387         drvdata->seq_curr_state = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
388
389         for (i = 0; i < drvdata->nr_cntr; i++)
390                 drvdata->cntr_val[i] = etm_readl(drvdata, ETMCNTVRn(i));
391
392         etm_set_pwrdwn(drvdata);
393         CS_LOCK(drvdata->base);
394
395         dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu);
396 }
397
398 static void etm_disable(struct coresight_device *csdev)
399 {
400         struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
401
402         /*
403          * Taking hotplug lock here protects from clocks getting disabled
404          * with tracing being left on (crash scenario) if user disable occurs
405          * after cpu online mask indicates the cpu is offline but before the
406          * DYING hotplug callback is serviced by the ETM driver.
407          */
408         get_online_cpus();
409         spin_lock(&drvdata->spinlock);
410
411         /*
412          * Executing etm_disable_hw on the cpu whose ETM is being disabled
413          * ensures that register writes occur when cpu is powered.
414          */
415         smp_call_function_single(drvdata->cpu, etm_disable_hw, drvdata, 1);
416         drvdata->enable = false;
417
418         spin_unlock(&drvdata->spinlock);
419         put_online_cpus();
420         pm_runtime_put(csdev->dev.parent);
421
422         dev_info(drvdata->dev, "ETM tracing disabled\n");
423 }
424
425 static const struct coresight_ops_source etm_source_ops = {
426         .trace_id       = etm_trace_id,
427         .enable         = etm_enable,
428         .disable        = etm_disable,
429 };
430
431 static const struct coresight_ops etm_cs_ops = {
432         .source_ops     = &etm_source_ops,
433 };
434
435 static ssize_t nr_addr_cmp_show(struct device *dev,
436                                 struct device_attribute *attr, char *buf)
437 {
438         unsigned long val;
439         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
440
441         val = drvdata->nr_addr_cmp;
442         return sprintf(buf, "%#lx\n", val);
443 }
444 static DEVICE_ATTR_RO(nr_addr_cmp);
445
446 static ssize_t nr_cntr_show(struct device *dev,
447                             struct device_attribute *attr, char *buf)
448 {       unsigned long val;
449         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
450
451         val = drvdata->nr_cntr;
452         return sprintf(buf, "%#lx\n", val);
453 }
454 static DEVICE_ATTR_RO(nr_cntr);
455
456 static ssize_t nr_ctxid_cmp_show(struct device *dev,
457                                  struct device_attribute *attr, char *buf)
458 {
459         unsigned long val;
460         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
461
462         val = drvdata->nr_ctxid_cmp;
463         return sprintf(buf, "%#lx\n", val);
464 }
465 static DEVICE_ATTR_RO(nr_ctxid_cmp);
466
467 static ssize_t etmsr_show(struct device *dev,
468                           struct device_attribute *attr, char *buf)
469 {
470         unsigned long flags, val;
471         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
472
473         pm_runtime_get_sync(drvdata->dev);
474         spin_lock_irqsave(&drvdata->spinlock, flags);
475         CS_UNLOCK(drvdata->base);
476
477         val = etm_readl(drvdata, ETMSR);
478
479         CS_LOCK(drvdata->base);
480         spin_unlock_irqrestore(&drvdata->spinlock, flags);
481         pm_runtime_put(drvdata->dev);
482
483         return sprintf(buf, "%#lx\n", val);
484 }
485 static DEVICE_ATTR_RO(etmsr);
486
487 static ssize_t reset_store(struct device *dev,
488                            struct device_attribute *attr,
489                            const char *buf, size_t size)
490 {
491         int i, ret;
492         unsigned long val;
493         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
494
495         ret = kstrtoul(buf, 16, &val);
496         if (ret)
497                 return ret;
498
499         if (val) {
500                 spin_lock(&drvdata->spinlock);
501                 drvdata->mode = ETM_MODE_EXCLUDE;
502                 drvdata->ctrl = 0x0;
503                 drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
504                 drvdata->startstop_ctrl = 0x0;
505                 drvdata->addr_idx = 0x0;
506                 for (i = 0; i < drvdata->nr_addr_cmp; i++) {
507                         drvdata->addr_val[i] = 0x0;
508                         drvdata->addr_acctype[i] = 0x0;
509                         drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
510                 }
511                 drvdata->cntr_idx = 0x0;
512
513                 etm_set_default(drvdata);
514                 spin_unlock(&drvdata->spinlock);
515         }
516
517         return size;
518 }
519 static DEVICE_ATTR_WO(reset);
520
521 static ssize_t mode_show(struct device *dev,
522                          struct device_attribute *attr, char *buf)
523 {
524         unsigned long val;
525         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
526
527         val = drvdata->mode;
528         return sprintf(buf, "%#lx\n", val);
529 }
530
531 static ssize_t mode_store(struct device *dev,
532                           struct device_attribute *attr,
533                           const char *buf, size_t size)
534 {
535         int ret;
536         unsigned long val;
537         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
538
539         ret = kstrtoul(buf, 16, &val);
540         if (ret)
541                 return ret;
542
543         spin_lock(&drvdata->spinlock);
544         drvdata->mode = val & ETM_MODE_ALL;
545
546         if (drvdata->mode & ETM_MODE_EXCLUDE)
547                 drvdata->enable_ctrl1 |= ETMTECR1_INC_EXC;
548         else
549                 drvdata->enable_ctrl1 &= ~ETMTECR1_INC_EXC;
550
551         if (drvdata->mode & ETM_MODE_CYCACC)
552                 drvdata->ctrl |= ETMCR_CYC_ACC;
553         else
554                 drvdata->ctrl &= ~ETMCR_CYC_ACC;
555
556         if (drvdata->mode & ETM_MODE_STALL) {
557                 if (!(drvdata->etmccr & ETMCCR_FIFOFULL)) {
558                         dev_warn(drvdata->dev, "stall mode not supported\n");
559                         ret = -EINVAL;
560                         goto err_unlock;
561                 }
562                 drvdata->ctrl |= ETMCR_STALL_MODE;
563          } else
564                 drvdata->ctrl &= ~ETMCR_STALL_MODE;
565
566         if (drvdata->mode & ETM_MODE_TIMESTAMP) {
567                 if (!(drvdata->etmccer & ETMCCER_TIMESTAMP)) {
568                         dev_warn(drvdata->dev, "timestamp not supported\n");
569                         ret = -EINVAL;
570                         goto err_unlock;
571                 }
572                 drvdata->ctrl |= ETMCR_TIMESTAMP_EN;
573         } else
574                 drvdata->ctrl &= ~ETMCR_TIMESTAMP_EN;
575
576         if (drvdata->mode & ETM_MODE_CTXID)
577                 drvdata->ctrl |= ETMCR_CTXID_SIZE;
578         else
579                 drvdata->ctrl &= ~ETMCR_CTXID_SIZE;
580         spin_unlock(&drvdata->spinlock);
581
582         return size;
583
584 err_unlock:
585         spin_unlock(&drvdata->spinlock);
586         return ret;
587 }
588 static DEVICE_ATTR_RW(mode);
589
590 static ssize_t trigger_event_show(struct device *dev,
591                                   struct device_attribute *attr, char *buf)
592 {
593         unsigned long val;
594         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
595
596         val = drvdata->trigger_event;
597         return sprintf(buf, "%#lx\n", val);
598 }
599
600 static ssize_t trigger_event_store(struct device *dev,
601                                    struct device_attribute *attr,
602                                    const char *buf, size_t size)
603 {
604         int ret;
605         unsigned long val;
606         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
607
608         ret = kstrtoul(buf, 16, &val);
609         if (ret)
610                 return ret;
611
612         drvdata->trigger_event = val & ETM_EVENT_MASK;
613
614         return size;
615 }
616 static DEVICE_ATTR_RW(trigger_event);
617
618 static ssize_t enable_event_show(struct device *dev,
619                                  struct device_attribute *attr, char *buf)
620 {
621         unsigned long val;
622         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
623
624         val = drvdata->enable_event;
625         return sprintf(buf, "%#lx\n", val);
626 }
627
628 static ssize_t enable_event_store(struct device *dev,
629                                   struct device_attribute *attr,
630                                   const char *buf, size_t size)
631 {
632         int ret;
633         unsigned long val;
634         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
635
636         ret = kstrtoul(buf, 16, &val);
637         if (ret)
638                 return ret;
639
640         drvdata->enable_event = val & ETM_EVENT_MASK;
641
642         return size;
643 }
644 static DEVICE_ATTR_RW(enable_event);
645
646 static ssize_t fifofull_level_show(struct device *dev,
647                                    struct device_attribute *attr, char *buf)
648 {
649         unsigned long val;
650         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
651
652         val = drvdata->fifofull_level;
653         return sprintf(buf, "%#lx\n", val);
654 }
655
656 static ssize_t fifofull_level_store(struct device *dev,
657                                     struct device_attribute *attr,
658                                     const char *buf, size_t size)
659 {
660         int ret;
661         unsigned long val;
662         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
663
664         ret = kstrtoul(buf, 16, &val);
665         if (ret)
666                 return ret;
667
668         drvdata->fifofull_level = val;
669
670         return size;
671 }
672 static DEVICE_ATTR_RW(fifofull_level);
673
674 static ssize_t addr_idx_show(struct device *dev,
675                              struct device_attribute *attr, char *buf)
676 {
677         unsigned long val;
678         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
679
680         val = drvdata->addr_idx;
681         return sprintf(buf, "%#lx\n", val);
682 }
683
684 static ssize_t addr_idx_store(struct device *dev,
685                               struct device_attribute *attr,
686                               const char *buf, size_t size)
687 {
688         int ret;
689         unsigned long val;
690         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
691
692         ret = kstrtoul(buf, 16, &val);
693         if (ret)
694                 return ret;
695
696         if (val >= drvdata->nr_addr_cmp)
697                 return -EINVAL;
698
699         /*
700          * Use spinlock to ensure index doesn't change while it gets
701          * dereferenced multiple times within a spinlock block elsewhere.
702          */
703         spin_lock(&drvdata->spinlock);
704         drvdata->addr_idx = val;
705         spin_unlock(&drvdata->spinlock);
706
707         return size;
708 }
709 static DEVICE_ATTR_RW(addr_idx);
710
711 static ssize_t addr_single_show(struct device *dev,
712                                 struct device_attribute *attr, char *buf)
713 {
714         u8 idx;
715         unsigned long val;
716         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
717
718         spin_lock(&drvdata->spinlock);
719         idx = drvdata->addr_idx;
720         if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
721               drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
722                 spin_unlock(&drvdata->spinlock);
723                 return -EINVAL;
724         }
725
726         val = drvdata->addr_val[idx];
727         spin_unlock(&drvdata->spinlock);
728
729         return sprintf(buf, "%#lx\n", val);
730 }
731
732 static ssize_t addr_single_store(struct device *dev,
733                                  struct device_attribute *attr,
734                                  const char *buf, size_t size)
735 {
736         u8 idx;
737         int ret;
738         unsigned long val;
739         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
740
741         ret = kstrtoul(buf, 16, &val);
742         if (ret)
743                 return ret;
744
745         spin_lock(&drvdata->spinlock);
746         idx = drvdata->addr_idx;
747         if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
748               drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
749                 spin_unlock(&drvdata->spinlock);
750                 return -EINVAL;
751         }
752
753         drvdata->addr_val[idx] = val;
754         drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE;
755         spin_unlock(&drvdata->spinlock);
756
757         return size;
758 }
759 static DEVICE_ATTR_RW(addr_single);
760
761 static ssize_t addr_range_show(struct device *dev,
762                                struct device_attribute *attr, char *buf)
763 {
764         u8 idx;
765         unsigned long val1, val2;
766         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
767
768         spin_lock(&drvdata->spinlock);
769         idx = drvdata->addr_idx;
770         if (idx % 2 != 0) {
771                 spin_unlock(&drvdata->spinlock);
772                 return -EPERM;
773         }
774         if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
775                drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
776               (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
777                drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
778                 spin_unlock(&drvdata->spinlock);
779                 return -EPERM;
780         }
781
782         val1 = drvdata->addr_val[idx];
783         val2 = drvdata->addr_val[idx + 1];
784         spin_unlock(&drvdata->spinlock);
785
786         return sprintf(buf, "%#lx %#lx\n", val1, val2);
787 }
788
789 static ssize_t addr_range_store(struct device *dev,
790                               struct device_attribute *attr,
791                               const char *buf, size_t size)
792 {
793         u8 idx;
794         unsigned long val1, val2;
795         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
796
797         if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
798                 return -EINVAL;
799         /* Lower address comparator cannot have a higher address value */
800         if (val1 > val2)
801                 return -EINVAL;
802
803         spin_lock(&drvdata->spinlock);
804         idx = drvdata->addr_idx;
805         if (idx % 2 != 0) {
806                 spin_unlock(&drvdata->spinlock);
807                 return -EPERM;
808         }
809         if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
810                drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
811               (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
812                drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
813                 spin_unlock(&drvdata->spinlock);
814                 return -EPERM;
815         }
816
817         drvdata->addr_val[idx] = val1;
818         drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE;
819         drvdata->addr_val[idx + 1] = val2;
820         drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE;
821         drvdata->enable_ctrl1 |= (1 << (idx/2));
822         spin_unlock(&drvdata->spinlock);
823
824         return size;
825 }
826 static DEVICE_ATTR_RW(addr_range);
827
828 static ssize_t addr_start_show(struct device *dev,
829                                struct device_attribute *attr, char *buf)
830 {
831         u8 idx;
832         unsigned long val;
833         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
834
835         spin_lock(&drvdata->spinlock);
836         idx = drvdata->addr_idx;
837         if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
838               drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
839                 spin_unlock(&drvdata->spinlock);
840                 return -EPERM;
841         }
842
843         val = drvdata->addr_val[idx];
844         spin_unlock(&drvdata->spinlock);
845
846         return sprintf(buf, "%#lx\n", val);
847 }
848
849 static ssize_t addr_start_store(struct device *dev,
850                                 struct device_attribute *attr,
851                                 const char *buf, size_t size)
852 {
853         u8 idx;
854         int ret;
855         unsigned long val;
856         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
857
858         ret = kstrtoul(buf, 16, &val);
859         if (ret)
860                 return ret;
861
862         spin_lock(&drvdata->spinlock);
863         idx = drvdata->addr_idx;
864         if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
865               drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
866                 spin_unlock(&drvdata->spinlock);
867                 return -EPERM;
868         }
869
870         drvdata->addr_val[idx] = val;
871         drvdata->addr_type[idx] = ETM_ADDR_TYPE_START;
872         drvdata->startstop_ctrl |= (1 << idx);
873         drvdata->enable_ctrl1 |= BIT(25);
874         spin_unlock(&drvdata->spinlock);
875
876         return size;
877 }
878 static DEVICE_ATTR_RW(addr_start);
879
880 static ssize_t addr_stop_show(struct device *dev,
881                               struct device_attribute *attr, char *buf)
882 {
883         u8 idx;
884         unsigned long val;
885         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
886
887         spin_lock(&drvdata->spinlock);
888         idx = drvdata->addr_idx;
889         if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
890               drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
891                 spin_unlock(&drvdata->spinlock);
892                 return -EPERM;
893         }
894
895         val = drvdata->addr_val[idx];
896         spin_unlock(&drvdata->spinlock);
897
898         return sprintf(buf, "%#lx\n", val);
899 }
900
901 static ssize_t addr_stop_store(struct device *dev,
902                                struct device_attribute *attr,
903                                const char *buf, size_t size)
904 {
905         u8 idx;
906         int ret;
907         unsigned long val;
908         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
909
910         ret = kstrtoul(buf, 16, &val);
911         if (ret)
912                 return ret;
913
914         spin_lock(&drvdata->spinlock);
915         idx = drvdata->addr_idx;
916         if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
917               drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
918                 spin_unlock(&drvdata->spinlock);
919                 return -EPERM;
920         }
921
922         drvdata->addr_val[idx] = val;
923         drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP;
924         drvdata->startstop_ctrl |= (1 << (idx + 16));
925         drvdata->enable_ctrl1 |= ETMTECR1_START_STOP;
926         spin_unlock(&drvdata->spinlock);
927
928         return size;
929 }
930 static DEVICE_ATTR_RW(addr_stop);
931
932 static ssize_t addr_acctype_show(struct device *dev,
933                                  struct device_attribute *attr, char *buf)
934 {
935         unsigned long val;
936         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
937
938         spin_lock(&drvdata->spinlock);
939         val = drvdata->addr_acctype[drvdata->addr_idx];
940         spin_unlock(&drvdata->spinlock);
941
942         return sprintf(buf, "%#lx\n", val);
943 }
944
945 static ssize_t addr_acctype_store(struct device *dev,
946                                   struct device_attribute *attr,
947                                   const char *buf, size_t size)
948 {
949         int ret;
950         unsigned long val;
951         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
952
953         ret = kstrtoul(buf, 16, &val);
954         if (ret)
955                 return ret;
956
957         spin_lock(&drvdata->spinlock);
958         drvdata->addr_acctype[drvdata->addr_idx] = val;
959         spin_unlock(&drvdata->spinlock);
960
961         return size;
962 }
963 static DEVICE_ATTR_RW(addr_acctype);
964
965 static ssize_t cntr_idx_show(struct device *dev,
966                              struct device_attribute *attr, char *buf)
967 {
968         unsigned long val;
969         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
970
971         val = drvdata->cntr_idx;
972         return sprintf(buf, "%#lx\n", val);
973 }
974
975 static ssize_t cntr_idx_store(struct device *dev,
976                               struct device_attribute *attr,
977                               const char *buf, size_t size)
978 {
979         int ret;
980         unsigned long val;
981         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
982
983         ret = kstrtoul(buf, 16, &val);
984         if (ret)
985                 return ret;
986
987         if (val >= drvdata->nr_cntr)
988                 return -EINVAL;
989         /*
990          * Use spinlock to ensure index doesn't change while it gets
991          * dereferenced multiple times within a spinlock block elsewhere.
992          */
993         spin_lock(&drvdata->spinlock);
994         drvdata->cntr_idx = val;
995         spin_unlock(&drvdata->spinlock);
996
997         return size;
998 }
999 static DEVICE_ATTR_RW(cntr_idx);
1000
1001 static ssize_t cntr_rld_val_show(struct device *dev,
1002                                  struct device_attribute *attr, char *buf)
1003 {
1004         unsigned long val;
1005         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1006
1007         spin_lock(&drvdata->spinlock);
1008         val = drvdata->cntr_rld_val[drvdata->cntr_idx];
1009         spin_unlock(&drvdata->spinlock);
1010
1011         return sprintf(buf, "%#lx\n", val);
1012 }
1013
1014 static ssize_t cntr_rld_val_store(struct device *dev,
1015                                   struct device_attribute *attr,
1016                                   const char *buf, size_t size)
1017 {
1018         int ret;
1019         unsigned long val;
1020         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1021
1022         ret = kstrtoul(buf, 16, &val);
1023         if (ret)
1024                 return ret;
1025
1026         spin_lock(&drvdata->spinlock);
1027         drvdata->cntr_rld_val[drvdata->cntr_idx] = val;
1028         spin_unlock(&drvdata->spinlock);
1029
1030         return size;
1031 }
1032 static DEVICE_ATTR_RW(cntr_rld_val);
1033
1034 static ssize_t cntr_event_show(struct device *dev,
1035                                struct device_attribute *attr, char *buf)
1036 {
1037         unsigned long val;
1038         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1039
1040         spin_lock(&drvdata->spinlock);
1041         val = drvdata->cntr_event[drvdata->cntr_idx];
1042         spin_unlock(&drvdata->spinlock);
1043
1044         return sprintf(buf, "%#lx\n", val);
1045 }
1046
1047 static ssize_t cntr_event_store(struct device *dev,
1048                                 struct device_attribute *attr,
1049                                 const char *buf, size_t size)
1050 {
1051         int ret;
1052         unsigned long val;
1053         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1054
1055         ret = kstrtoul(buf, 16, &val);
1056         if (ret)
1057                 return ret;
1058
1059         spin_lock(&drvdata->spinlock);
1060         drvdata->cntr_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
1061         spin_unlock(&drvdata->spinlock);
1062
1063         return size;
1064 }
1065 static DEVICE_ATTR_RW(cntr_event);
1066
1067 static ssize_t cntr_rld_event_show(struct device *dev,
1068                                    struct device_attribute *attr, char *buf)
1069 {
1070         unsigned long val;
1071         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1072
1073         spin_lock(&drvdata->spinlock);
1074         val = drvdata->cntr_rld_event[drvdata->cntr_idx];
1075         spin_unlock(&drvdata->spinlock);
1076
1077         return sprintf(buf, "%#lx\n", val);
1078 }
1079
1080 static ssize_t cntr_rld_event_store(struct device *dev,
1081                                     struct device_attribute *attr,
1082                                     const char *buf, size_t size)
1083 {
1084         int ret;
1085         unsigned long val;
1086         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1087
1088         ret = kstrtoul(buf, 16, &val);
1089         if (ret)
1090                 return ret;
1091
1092         spin_lock(&drvdata->spinlock);
1093         drvdata->cntr_rld_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
1094         spin_unlock(&drvdata->spinlock);
1095
1096         return size;
1097 }
1098 static DEVICE_ATTR_RW(cntr_rld_event);
1099
1100 static ssize_t cntr_val_show(struct device *dev,
1101                              struct device_attribute *attr, char *buf)
1102 {
1103         int i, ret = 0;
1104         u32 val;
1105         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1106
1107         if (!drvdata->enable) {
1108                 spin_lock(&drvdata->spinlock);
1109                 for (i = 0; i < drvdata->nr_cntr; i++)
1110                         ret += sprintf(buf, "counter %d: %x\n",
1111                                        i, drvdata->cntr_val[i]);
1112                 spin_unlock(&drvdata->spinlock);
1113                 return ret;
1114         }
1115
1116         for (i = 0; i < drvdata->nr_cntr; i++) {
1117                 val = etm_readl(drvdata, ETMCNTVRn(i));
1118                 ret += sprintf(buf, "counter %d: %x\n", i, val);
1119         }
1120
1121         return ret;
1122 }
1123
1124 static ssize_t cntr_val_store(struct device *dev,
1125                               struct device_attribute *attr,
1126                               const char *buf, size_t size)
1127 {
1128         int ret;
1129         unsigned long val;
1130         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1131
1132         ret = kstrtoul(buf, 16, &val);
1133         if (ret)
1134                 return ret;
1135
1136         spin_lock(&drvdata->spinlock);
1137         drvdata->cntr_val[drvdata->cntr_idx] = val;
1138         spin_unlock(&drvdata->spinlock);
1139
1140         return size;
1141 }
1142 static DEVICE_ATTR_RW(cntr_val);
1143
1144 static ssize_t seq_12_event_show(struct device *dev,
1145                                  struct device_attribute *attr, char *buf)
1146 {
1147         unsigned long val;
1148         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1149
1150         val = drvdata->seq_12_event;
1151         return sprintf(buf, "%#lx\n", val);
1152 }
1153
1154 static ssize_t seq_12_event_store(struct device *dev,
1155                                   struct device_attribute *attr,
1156                                   const char *buf, size_t size)
1157 {
1158         int ret;
1159         unsigned long val;
1160         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1161
1162         ret = kstrtoul(buf, 16, &val);
1163         if (ret)
1164                 return ret;
1165
1166         drvdata->seq_12_event = val & ETM_EVENT_MASK;
1167         return size;
1168 }
1169 static DEVICE_ATTR_RW(seq_12_event);
1170
1171 static ssize_t seq_21_event_show(struct device *dev,
1172                                  struct device_attribute *attr, char *buf)
1173 {
1174         unsigned long val;
1175         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1176
1177         val = drvdata->seq_21_event;
1178         return sprintf(buf, "%#lx\n", val);
1179 }
1180
1181 static ssize_t seq_21_event_store(struct device *dev,
1182                                   struct device_attribute *attr,
1183                                   const char *buf, size_t size)
1184 {
1185         int ret;
1186         unsigned long val;
1187         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1188
1189         ret = kstrtoul(buf, 16, &val);
1190         if (ret)
1191                 return ret;
1192
1193         drvdata->seq_21_event = val & ETM_EVENT_MASK;
1194         return size;
1195 }
1196 static DEVICE_ATTR_RW(seq_21_event);
1197
1198 static ssize_t seq_23_event_show(struct device *dev,
1199                                  struct device_attribute *attr, char *buf)
1200 {
1201         unsigned long val;
1202         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1203
1204         val = drvdata->seq_23_event;
1205         return sprintf(buf, "%#lx\n", val);
1206 }
1207
1208 static ssize_t seq_23_event_store(struct device *dev,
1209                                   struct device_attribute *attr,
1210                                   const char *buf, size_t size)
1211 {
1212         int ret;
1213         unsigned long val;
1214         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1215
1216         ret = kstrtoul(buf, 16, &val);
1217         if (ret)
1218                 return ret;
1219
1220         drvdata->seq_23_event = val & ETM_EVENT_MASK;
1221         return size;
1222 }
1223 static DEVICE_ATTR_RW(seq_23_event);
1224
1225 static ssize_t seq_31_event_show(struct device *dev,
1226                                  struct device_attribute *attr, char *buf)
1227 {
1228         unsigned long val;
1229         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1230
1231         val = drvdata->seq_31_event;
1232         return sprintf(buf, "%#lx\n", val);
1233 }
1234
1235 static ssize_t seq_31_event_store(struct device *dev,
1236                                   struct device_attribute *attr,
1237                                   const char *buf, size_t size)
1238 {
1239         int ret;
1240         unsigned long val;
1241         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1242
1243         ret = kstrtoul(buf, 16, &val);
1244         if (ret)
1245                 return ret;
1246
1247         drvdata->seq_31_event = val & ETM_EVENT_MASK;
1248         return size;
1249 }
1250 static DEVICE_ATTR_RW(seq_31_event);
1251
1252 static ssize_t seq_32_event_show(struct device *dev,
1253                                  struct device_attribute *attr, char *buf)
1254 {
1255         unsigned long val;
1256         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1257
1258         val = drvdata->seq_32_event;
1259         return sprintf(buf, "%#lx\n", val);
1260 }
1261
1262 static ssize_t seq_32_event_store(struct device *dev,
1263                                   struct device_attribute *attr,
1264                                   const char *buf, size_t size)
1265 {
1266         int ret;
1267         unsigned long val;
1268         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1269
1270         ret = kstrtoul(buf, 16, &val);
1271         if (ret)
1272                 return ret;
1273
1274         drvdata->seq_32_event = val & ETM_EVENT_MASK;
1275         return size;
1276 }
1277 static DEVICE_ATTR_RW(seq_32_event);
1278
1279 static ssize_t seq_13_event_show(struct device *dev,
1280                                  struct device_attribute *attr, char *buf)
1281 {
1282         unsigned long val;
1283         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1284
1285         val = drvdata->seq_13_event;
1286         return sprintf(buf, "%#lx\n", val);
1287 }
1288
1289 static ssize_t seq_13_event_store(struct device *dev,
1290                                   struct device_attribute *attr,
1291                                   const char *buf, size_t size)
1292 {
1293         int ret;
1294         unsigned long val;
1295         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1296
1297         ret = kstrtoul(buf, 16, &val);
1298         if (ret)
1299                 return ret;
1300
1301         drvdata->seq_13_event = val & ETM_EVENT_MASK;
1302         return size;
1303 }
1304 static DEVICE_ATTR_RW(seq_13_event);
1305
1306 static ssize_t seq_curr_state_show(struct device *dev,
1307                                    struct device_attribute *attr, char *buf)
1308 {
1309         unsigned long val, flags;
1310         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1311
1312         if (!drvdata->enable) {
1313                 val = drvdata->seq_curr_state;
1314                 goto out;
1315         }
1316
1317         pm_runtime_get_sync(drvdata->dev);
1318
1319         spin_lock_irqsave(&drvdata->spinlock, flags);
1320
1321         CS_UNLOCK(drvdata->base);
1322         val = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
1323         CS_LOCK(drvdata->base);
1324
1325         spin_unlock_irqrestore(&drvdata->spinlock, flags);
1326         pm_runtime_put(drvdata->dev);
1327 out:
1328         return sprintf(buf, "%#lx\n", val);
1329 }
1330
1331 static ssize_t seq_curr_state_store(struct device *dev,
1332                                     struct device_attribute *attr,
1333                                     const char *buf, size_t size)
1334 {
1335         int ret;
1336         unsigned long val;
1337         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1338
1339         ret = kstrtoul(buf, 16, &val);
1340         if (ret)
1341                 return ret;
1342
1343         if (val > ETM_SEQ_STATE_MAX_VAL)
1344                 return -EINVAL;
1345
1346         drvdata->seq_curr_state = val;
1347
1348         return size;
1349 }
1350 static DEVICE_ATTR_RW(seq_curr_state);
1351
1352 static ssize_t ctxid_idx_show(struct device *dev,
1353                               struct device_attribute *attr, char *buf)
1354 {
1355         unsigned long val;
1356         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1357
1358         val = drvdata->ctxid_idx;
1359         return sprintf(buf, "%#lx\n", val);
1360 }
1361
1362 static ssize_t ctxid_idx_store(struct device *dev,
1363                                 struct device_attribute *attr,
1364                                 const char *buf, size_t size)
1365 {
1366         int ret;
1367         unsigned long val;
1368         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1369
1370         ret = kstrtoul(buf, 16, &val);
1371         if (ret)
1372                 return ret;
1373
1374         if (val >= drvdata->nr_ctxid_cmp)
1375                 return -EINVAL;
1376
1377         /*
1378          * Use spinlock to ensure index doesn't change while it gets
1379          * dereferenced multiple times within a spinlock block elsewhere.
1380          */
1381         spin_lock(&drvdata->spinlock);
1382         drvdata->ctxid_idx = val;
1383         spin_unlock(&drvdata->spinlock);
1384
1385         return size;
1386 }
1387 static DEVICE_ATTR_RW(ctxid_idx);
1388
1389 static ssize_t ctxid_val_show(struct device *dev,
1390                               struct device_attribute *attr, char *buf)
1391 {
1392         unsigned long val;
1393         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1394
1395         spin_lock(&drvdata->spinlock);
1396         val = drvdata->ctxid_val[drvdata->ctxid_idx];
1397         spin_unlock(&drvdata->spinlock);
1398
1399         return sprintf(buf, "%#lx\n", val);
1400 }
1401
1402 static ssize_t ctxid_val_store(struct device *dev,
1403                                struct device_attribute *attr,
1404                                const char *buf, size_t size)
1405 {
1406         int ret;
1407         unsigned long val;
1408         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1409
1410         ret = kstrtoul(buf, 16, &val);
1411         if (ret)
1412                 return ret;
1413
1414         spin_lock(&drvdata->spinlock);
1415         drvdata->ctxid_val[drvdata->ctxid_idx] = val;
1416         spin_unlock(&drvdata->spinlock);
1417
1418         return size;
1419 }
1420 static DEVICE_ATTR_RW(ctxid_val);
1421
1422 static ssize_t ctxid_mask_show(struct device *dev,
1423                                struct device_attribute *attr, char *buf)
1424 {
1425         unsigned long val;
1426         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1427
1428         val = drvdata->ctxid_mask;
1429         return sprintf(buf, "%#lx\n", val);
1430 }
1431
1432 static ssize_t ctxid_mask_store(struct device *dev,
1433                                 struct device_attribute *attr,
1434                                 const char *buf, size_t size)
1435 {
1436         int ret;
1437         unsigned long val;
1438         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1439
1440         ret = kstrtoul(buf, 16, &val);
1441         if (ret)
1442                 return ret;
1443
1444         drvdata->ctxid_mask = val;
1445         return size;
1446 }
1447 static DEVICE_ATTR_RW(ctxid_mask);
1448
1449 static ssize_t sync_freq_show(struct device *dev,
1450                               struct device_attribute *attr, char *buf)
1451 {
1452         unsigned long val;
1453         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1454
1455         val = drvdata->sync_freq;
1456         return sprintf(buf, "%#lx\n", val);
1457 }
1458
1459 static ssize_t sync_freq_store(struct device *dev,
1460                                struct device_attribute *attr,
1461                                const char *buf, size_t size)
1462 {
1463         int ret;
1464         unsigned long val;
1465         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1466
1467         ret = kstrtoul(buf, 16, &val);
1468         if (ret)
1469                 return ret;
1470
1471         drvdata->sync_freq = val & ETM_SYNC_MASK;
1472         return size;
1473 }
1474 static DEVICE_ATTR_RW(sync_freq);
1475
1476 static ssize_t timestamp_event_show(struct device *dev,
1477                                     struct device_attribute *attr, char *buf)
1478 {
1479         unsigned long val;
1480         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1481
1482         val = drvdata->timestamp_event;
1483         return sprintf(buf, "%#lx\n", val);
1484 }
1485
1486 static ssize_t timestamp_event_store(struct device *dev,
1487                                      struct device_attribute *attr,
1488                                      const char *buf, size_t size)
1489 {
1490         int ret;
1491         unsigned long val;
1492         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1493
1494         ret = kstrtoul(buf, 16, &val);
1495         if (ret)
1496                 return ret;
1497
1498         drvdata->timestamp_event = val & ETM_EVENT_MASK;
1499         return size;
1500 }
1501 static DEVICE_ATTR_RW(timestamp_event);
1502
1503 static ssize_t status_show(struct device *dev,
1504                            struct device_attribute *attr, char *buf)
1505 {
1506         int ret;
1507         unsigned long flags;
1508         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1509
1510         pm_runtime_get_sync(drvdata->dev);
1511         spin_lock_irqsave(&drvdata->spinlock, flags);
1512
1513         CS_UNLOCK(drvdata->base);
1514         ret = sprintf(buf,
1515                       "ETMCCR: 0x%08x\n"
1516                       "ETMCCER: 0x%08x\n"
1517                       "ETMSCR: 0x%08x\n"
1518                       "ETMIDR: 0x%08x\n"
1519                       "ETMCR: 0x%08x\n"
1520                       "ETMTRACEIDR: 0x%08x\n"
1521                       "Enable event: 0x%08x\n"
1522                       "Enable start/stop: 0x%08x\n"
1523                       "Enable control: CR1 0x%08x CR2 0x%08x\n"
1524                       "CPU affinity: %d\n",
1525                       drvdata->etmccr, drvdata->etmccer,
1526                       etm_readl(drvdata, ETMSCR), etm_readl(drvdata, ETMIDR),
1527                       etm_readl(drvdata, ETMCR), etm_trace_id_simple(drvdata),
1528                       etm_readl(drvdata, ETMTEEVR),
1529                       etm_readl(drvdata, ETMTSSCR),
1530                       etm_readl(drvdata, ETMTECR1),
1531                       etm_readl(drvdata, ETMTECR2),
1532                       drvdata->cpu);
1533         CS_LOCK(drvdata->base);
1534
1535         spin_unlock_irqrestore(&drvdata->spinlock, flags);
1536         pm_runtime_put(drvdata->dev);
1537
1538         return ret;
1539 }
1540 static DEVICE_ATTR_RO(status);
1541
1542 static ssize_t traceid_show(struct device *dev,
1543                             struct device_attribute *attr, char *buf)
1544 {
1545         unsigned long val, flags;
1546         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1547
1548         if (!drvdata->enable) {
1549                 val = drvdata->traceid;
1550                 goto out;
1551         }
1552
1553         pm_runtime_get_sync(drvdata->dev);
1554         spin_lock_irqsave(&drvdata->spinlock, flags);
1555         CS_UNLOCK(drvdata->base);
1556
1557         val = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
1558
1559         CS_LOCK(drvdata->base);
1560         spin_unlock_irqrestore(&drvdata->spinlock, flags);
1561         pm_runtime_put(drvdata->dev);
1562 out:
1563         return sprintf(buf, "%#lx\n", val);
1564 }
1565
1566 static ssize_t traceid_store(struct device *dev,
1567                              struct device_attribute *attr,
1568                              const char *buf, size_t size)
1569 {
1570         int ret;
1571         unsigned long val;
1572         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1573
1574         ret = kstrtoul(buf, 16, &val);
1575         if (ret)
1576                 return ret;
1577
1578         drvdata->traceid = val & ETM_TRACEID_MASK;
1579         return size;
1580 }
1581 static DEVICE_ATTR_RW(traceid);
1582
1583 static struct attribute *coresight_etm_attrs[] = {
1584         &dev_attr_nr_addr_cmp.attr,
1585         &dev_attr_nr_cntr.attr,
1586         &dev_attr_nr_ctxid_cmp.attr,
1587         &dev_attr_etmsr.attr,
1588         &dev_attr_reset.attr,
1589         &dev_attr_mode.attr,
1590         &dev_attr_trigger_event.attr,
1591         &dev_attr_enable_event.attr,
1592         &dev_attr_fifofull_level.attr,
1593         &dev_attr_addr_idx.attr,
1594         &dev_attr_addr_single.attr,
1595         &dev_attr_addr_range.attr,
1596         &dev_attr_addr_start.attr,
1597         &dev_attr_addr_stop.attr,
1598         &dev_attr_addr_acctype.attr,
1599         &dev_attr_cntr_idx.attr,
1600         &dev_attr_cntr_rld_val.attr,
1601         &dev_attr_cntr_event.attr,
1602         &dev_attr_cntr_rld_event.attr,
1603         &dev_attr_cntr_val.attr,
1604         &dev_attr_seq_12_event.attr,
1605         &dev_attr_seq_21_event.attr,
1606         &dev_attr_seq_23_event.attr,
1607         &dev_attr_seq_31_event.attr,
1608         &dev_attr_seq_32_event.attr,
1609         &dev_attr_seq_13_event.attr,
1610         &dev_attr_seq_curr_state.attr,
1611         &dev_attr_ctxid_idx.attr,
1612         &dev_attr_ctxid_val.attr,
1613         &dev_attr_ctxid_mask.attr,
1614         &dev_attr_sync_freq.attr,
1615         &dev_attr_timestamp_event.attr,
1616         &dev_attr_status.attr,
1617         &dev_attr_traceid.attr,
1618         NULL,
1619 };
1620 ATTRIBUTE_GROUPS(coresight_etm);
1621
1622 static int etm_cpu_callback(struct notifier_block *nfb, unsigned long action,
1623                             void *hcpu)
1624 {
1625         unsigned int cpu = (unsigned long)hcpu;
1626
1627         if (!etmdrvdata[cpu])
1628                 goto out;
1629
1630         switch (action & (~CPU_TASKS_FROZEN)) {
1631         case CPU_STARTING:
1632                 spin_lock(&etmdrvdata[cpu]->spinlock);
1633                 if (!etmdrvdata[cpu]->os_unlock) {
1634                         etm_os_unlock(etmdrvdata[cpu]);
1635                         etmdrvdata[cpu]->os_unlock = true;
1636                 }
1637
1638                 if (etmdrvdata[cpu]->enable)
1639                         etm_enable_hw(etmdrvdata[cpu]);
1640                 spin_unlock(&etmdrvdata[cpu]->spinlock);
1641                 break;
1642
1643         case CPU_ONLINE:
1644                 if (etmdrvdata[cpu]->boot_enable &&
1645                     !etmdrvdata[cpu]->sticky_enable)
1646                         coresight_enable(etmdrvdata[cpu]->csdev);
1647                 break;
1648
1649         case CPU_DYING:
1650                 spin_lock(&etmdrvdata[cpu]->spinlock);
1651                 if (etmdrvdata[cpu]->enable)
1652                         etm_disable_hw(etmdrvdata[cpu]);
1653                 spin_unlock(&etmdrvdata[cpu]->spinlock);
1654                 break;
1655         }
1656 out:
1657         return NOTIFY_OK;
1658 }
1659
1660 static struct notifier_block etm_cpu_notifier = {
1661         .notifier_call = etm_cpu_callback,
1662 };
1663
1664 static bool etm_arch_supported(u8 arch)
1665 {
1666         switch (arch) {
1667         case ETM_ARCH_V3_3:
1668                 break;
1669         case ETM_ARCH_V3_5:
1670                 break;
1671         case PFT_ARCH_V1_0:
1672                 break;
1673         case PFT_ARCH_V1_1:
1674                 break;
1675         default:
1676                 return false;
1677         }
1678         return true;
1679 }
1680
1681 static void etm_init_arch_data(void *info)
1682 {
1683         u32 etmidr;
1684         u32 etmccr;
1685         struct etm_drvdata *drvdata = info;
1686
1687         CS_UNLOCK(drvdata->base);
1688
1689         /* First dummy read */
1690         (void)etm_readl(drvdata, ETMPDSR);
1691         /* Provide power to ETM: ETMPDCR[3] == 1 */
1692         etm_set_pwrup(drvdata);
1693         /*
1694          * Clear power down bit since when this bit is set writes to
1695          * certain registers might be ignored.
1696          */
1697         etm_clr_pwrdwn(drvdata);
1698         /*
1699          * Set prog bit. It will be set from reset but this is included to
1700          * ensure it is set
1701          */
1702         etm_set_prog(drvdata);
1703
1704         /* Find all capabilities */
1705         etmidr = etm_readl(drvdata, ETMIDR);
1706         drvdata->arch = BMVAL(etmidr, 4, 11);
1707         drvdata->port_size = etm_readl(drvdata, ETMCR) & PORT_SIZE_MASK;
1708
1709         drvdata->etmccer = etm_readl(drvdata, ETMCCER);
1710         etmccr = etm_readl(drvdata, ETMCCR);
1711         drvdata->etmccr = etmccr;
1712         drvdata->nr_addr_cmp = BMVAL(etmccr, 0, 3) * 2;
1713         drvdata->nr_cntr = BMVAL(etmccr, 13, 15);
1714         drvdata->nr_ext_inp = BMVAL(etmccr, 17, 19);
1715         drvdata->nr_ext_out = BMVAL(etmccr, 20, 22);
1716         drvdata->nr_ctxid_cmp = BMVAL(etmccr, 24, 25);
1717
1718         etm_set_pwrdwn(drvdata);
1719         etm_clr_pwrup(drvdata);
1720         CS_LOCK(drvdata->base);
1721 }
1722
1723 static void etm_init_default_data(struct etm_drvdata *drvdata)
1724 {
1725         /*
1726          * A trace ID of value 0 is invalid, so let's start at some
1727          * random value that fits in 7 bits and will be just as good.
1728          */
1729         static int etm3x_traceid = 0x10;
1730
1731         u32 flags = (1 << 0 | /* instruction execute*/
1732                      3 << 3 | /* ARM instruction */
1733                      0 << 5 | /* No data value comparison */
1734                      0 << 7 | /* No exact mach */
1735                      0 << 8 | /* Ignore context ID */
1736                      0 << 10); /* Security ignored */
1737
1738         /*
1739          * Initial configuration only - guarantees sources handled by
1740          * this driver have a unique ID at startup time but not between
1741          * all other types of sources.  For that we lean on the core
1742          * framework.
1743          */
1744         drvdata->traceid = etm3x_traceid++;
1745         drvdata->ctrl = (ETMCR_CYC_ACC | ETMCR_TIMESTAMP_EN);
1746         drvdata->enable_ctrl1 = ETMTECR1_ADDR_COMP_1;
1747         if (drvdata->nr_addr_cmp >= 2) {
1748                 drvdata->addr_val[0] = (u32) _stext;
1749                 drvdata->addr_val[1] = (u32) _etext;
1750                 drvdata->addr_acctype[0] = flags;
1751                 drvdata->addr_acctype[1] = flags;
1752                 drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE;
1753                 drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE;
1754         }
1755
1756         etm_set_default(drvdata);
1757 }
1758
1759 static int etm_probe(struct amba_device *adev, const struct amba_id *id)
1760 {
1761         int ret;
1762         void __iomem *base;
1763         struct device *dev = &adev->dev;
1764         struct coresight_platform_data *pdata = NULL;
1765         struct etm_drvdata *drvdata;
1766         struct resource *res = &adev->res;
1767         struct coresight_desc *desc;
1768         struct device_node *np = adev->dev.of_node;
1769
1770         desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
1771         if (!desc)
1772                 return -ENOMEM;
1773
1774         drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
1775         if (!drvdata)
1776                 return -ENOMEM;
1777
1778         if (np) {
1779                 pdata = of_get_coresight_platform_data(dev, np);
1780                 if (IS_ERR(pdata))
1781                         return PTR_ERR(pdata);
1782
1783                 adev->dev.platform_data = pdata;
1784                 drvdata->use_cp14 = of_property_read_bool(np, "arm,cp14");
1785         }
1786
1787         drvdata->dev = &adev->dev;
1788         dev_set_drvdata(dev, drvdata);
1789
1790         /* Validity for the resource is already checked by the AMBA core */
1791         base = devm_ioremap_resource(dev, res);
1792         if (IS_ERR(base))
1793                 return PTR_ERR(base);
1794
1795         drvdata->base = base;
1796
1797         spin_lock_init(&drvdata->spinlock);
1798
1799         drvdata->cpu = pdata ? pdata->cpu : 0;
1800
1801         get_online_cpus();
1802         etmdrvdata[drvdata->cpu] = drvdata;
1803
1804         if (!smp_call_function_single(drvdata->cpu, etm_os_unlock, drvdata, 1))
1805                 drvdata->os_unlock = true;
1806
1807         if (smp_call_function_single(drvdata->cpu,
1808                                      etm_init_arch_data,  drvdata, 1))
1809                 dev_err(dev, "ETM arch init failed\n");
1810
1811         if (!etm_count++)
1812                 register_hotcpu_notifier(&etm_cpu_notifier);
1813
1814         put_online_cpus();
1815
1816         if (etm_arch_supported(drvdata->arch) == false) {
1817                 ret = -EINVAL;
1818                 goto err_arch_supported;
1819         }
1820         etm_init_default_data(drvdata);
1821
1822         desc->type = CORESIGHT_DEV_TYPE_SOURCE;
1823         desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC;
1824         desc->ops = &etm_cs_ops;
1825         desc->pdata = pdata;
1826         desc->dev = dev;
1827         desc->groups = coresight_etm_groups;
1828         drvdata->csdev = coresight_register(desc);
1829         if (IS_ERR(drvdata->csdev)) {
1830                 ret = PTR_ERR(drvdata->csdev);
1831                 goto err_arch_supported;
1832         }
1833
1834         pm_runtime_put(&adev->dev);
1835         dev_info(dev, "%s initialized\n", (char *)id->data);
1836
1837         if (boot_enable) {
1838                 coresight_enable(drvdata->csdev);
1839                 drvdata->boot_enable = true;
1840         }
1841
1842         return 0;
1843
1844 err_arch_supported:
1845         if (--etm_count == 0)
1846                 unregister_hotcpu_notifier(&etm_cpu_notifier);
1847         return ret;
1848 }
1849
1850 static int etm_remove(struct amba_device *adev)
1851 {
1852         struct etm_drvdata *drvdata = amba_get_drvdata(adev);
1853
1854         coresight_unregister(drvdata->csdev);
1855         if (--etm_count == 0)
1856                 unregister_hotcpu_notifier(&etm_cpu_notifier);
1857
1858         return 0;
1859 }
1860
1861 static struct amba_id etm_ids[] = {
1862         {       /* ETM 3.3 */
1863                 .id     = 0x0003b921,
1864                 .mask   = 0x0003ffff,
1865                 .data   = "ETM 3.3",
1866         },
1867         {       /* ETM 3.5 */
1868                 .id     = 0x0003b956,
1869                 .mask   = 0x0003ffff,
1870                 .data   = "ETM 3.5",
1871         },
1872         {       /* PTM 1.0 */
1873                 .id     = 0x0003b950,
1874                 .mask   = 0x0003ffff,
1875                 .data   = "PTM 1.0",
1876         },
1877         {       /* PTM 1.1 */
1878                 .id     = 0x0003b95f,
1879                 .mask   = 0x0003ffff,
1880                 .data   = "PTM 1.1",
1881         },
1882         { 0, 0},
1883 };
1884
1885 static struct amba_driver etm_driver = {
1886         .drv = {
1887                 .name   = "coresight-etm3x",
1888                 .owner  = THIS_MODULE,
1889         },
1890         .probe          = etm_probe,
1891         .remove         = etm_remove,
1892         .id_table       = etm_ids,
1893 };
1894
1895 module_amba_driver(etm_driver);
1896
1897 MODULE_LICENSE("GPL v2");
1898 MODULE_DESCRIPTION("CoreSight Program Flow Trace driver");